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Abstract

The factor garch model of Engle (1987) and the latent factor arch model of

Diebold and Nerlove (1989) have become rather popular multivariate volatility

parameterizations due to their parsimony, and the commonality in volatility move-

ments across di¤erent …nancial series. Nevertheless, there is some confusion in the

literature between them. The purpose of this note is to make clear their similar-

ities and di¤erences by providing a formal nesting of the two models, which can

be exploited to analyze their statistical features in a more general context. At the

same time, their di¤erences may be important in the interpretation of empirical

results.



1 Introduction

Most of the econometric and …nance literature on time-varying volatility mod-

els is concerned with univariate time series. However, many issues in …nance can

only be fully addressed within a multivariate framework. Although multivariate

generalizations of the existing univariate models are straightforward in theory,

their empirical applications have been hampered by the sheer number of para-

meters involved. Motivated by the commonality in volatility movements across

di¤erent …nancial time series, several parsimonious alternatives have been pro-

posed. Within the arch class, two such parameterizations have become rather

popular, namely the factor garch model of Engle (1987) and the conditionally

heteroskedastic latent factor model introduced by Diebold and Nerlove (1989)

and extended by King, Sentana and Wadhwani (1994). Broadly speaking, En-

gle’s factor garch model speci…es the time-varying part of the covariance ma-

trix as a function of a few linear combinations of the observed random variables,

but leaves its constant part fully unrestricted. On the other hand, Diebold and

Nerlove’s model is a traditional statistical factor analysis model, with a diagonal

idiosyncratic covariance matrix, in which the variances of the common factors are

parameterized as univariate arch models.

Given that the two models are closely related, it is perhaps not surprising that

there is some confusion in the literature on the similarities and di¤erences between

them, and in some cases they are treated as equivalent. Nevertheless, there are at

least two important di¤erences that distinguish them. Firstly, while the covariance

matrix of a factor garch model is measurable by construction with respect to an

information set that contains only past values of the observed variables, this is not

the case for Diebold and Nerlove’s original model, which in fact can be regarded

as a stochastic volatility model (see e.g. Andersen (1992) and Shephard (1996)).

A second, less well known distinctive feature, is that the implicit de…nition of the
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factors is signi…cantly di¤erent between the two. While in Diebold and Nerlove’s

model the factors capture the comovements between the observed series, in Engle’s

model they are directly related to those linear combinations of the series which

summarize the comovements in their conditional variances.

The purpose of this note is to make clear their similarities and di¤erences by

providing a formal nesting of the two models. This is important for at least two

reasons. First, while many properties of these models have already been studied

in detail, it is not always entirely clear whether they are speci…c to the model

analyzed, or apply to a broader class. Second, as we shall see, in some cases of

substantive interest the interpretation of the empirical results may be sensitive to

the speci…c nature of the model used.

The rest of the paper is organized as follows. We de…ne the general class

of conditionally heteroskedastic models in section 2, and discuss some of their

properties. Then in section 3, we introduce the factor arch model, summarize

its main properties, and present our main result. Finally, section 4 contains a

discussion of our results in relation to empirical tests of multi-beta asset pricing

theories. Two auxiliary lemmas are included in an appendix.

2 Conditionally Heteroskedastic Factor Models

Consider the following multivariate model:

xt = Cf t +wt (1)

ft = ¤
1=2
t f¤t (2)

0
B@
f ¤t

wt
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3
75 (3)

where xt is a N £ 1 vector of observable random variables, ft is a k £ 1 vector of

unobserved common factors, C is the N£ k matrix of associated factor loadings,
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with N ¸ k and rank (C) = k, wt is a N £ 1 vector of idiosyncratic noises, which

are conditionally orthogonal to ft, ¡ is a N£ N positive semide…nite (p.s.d.)

matrix of constant idiosyncratic variances, and ¤t is a k £ k positive de…nite

(p.d.) matrix of time-varying factor variances.

Let us de…ne the information sets It¡1 = fxt¡1; ft¡1;xt¡2; ft¡2; : : :g and Jt¡1 =

fxt¡1;xt¡2; : : :g, with Jt¡1 ½ It¡1. Our assumptions imply that the distribution

of xt conditional on It¡1 has zero mean, and covariance matrix §t = C¤tC0 + ¡.

For this reason, we shall refer to the data generation process speci…ed by (1-3) as

a multivariate conditionally heteroskedastic factor model.

Such a formulation nests several models widely used in the empirical literature,

which typically assume that the unobserved factors follow dynamic heteroskedas-

tic processes, but di¤er in the exact parameterization of ¤t and ¡. For instance,

in the latent factor model with arch e¤ects on the underlying factors introduced

by Diebold and Nerlove (1989), the conditional variances of the factors are para-

meterized as univariate strong arch models, in the sense of Drost and Nijman

(1993). In particular, for a garch (p,q) formulation,

¸jt = Áj +
qX

s=1

®jsf
2
jt¡s +

qX

r=1

¯jr¸jt¡r (4)

Notice that in this case, ¸jt 2 It¡1 but ¸jt =2 Jt¡1, which has important infer-

ence implications (see Harvey, Ruiz and Sentana (1992), Fiorentini and Sentana

(1997) and Shephard (1996)). Notice also that a signi…cant characteristic of a

model like (1-4) is that it is dimension independent, in the sense that it remains

valid for any subset of xt.

Another frequently made assumption is that the common factors represent

(conditionally) orthogonal in‡uences, which implies that ¤t is diagonal. Other-

wise, we say that the factor model is oblique. Similarly, it is often assumed that

¡ is diagonal, in which case the factor structure is termed strict or exact. How-

ever, in some applications, diagonality of ¡ may be thought to be too restrictive.
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For instance, it will not be preserved by linear transformations. For that reason,

Chamberlain and Rothschild (1983) introduced the concept of approximate factor

structures, in which the idiosyncratic terms may be correlated, but only up to a

certain degree. Alternatively, one could assume that ¡ has reduced rank. In fact,

the rank of ¡ is related to the observability of the factors. If rank(¡) =N ¡ k,

the factors would be fully revealed by the xt variables, otherwise they are only

partially revealed (see King, Sentana and Wadhwani (1994)).

A non-trivial advantage of these models is that they automatically guarantee

a p.s.d. covariance matrix for xt once we ensure that the covariance matrix of the

factors is p.s.d. Moreover, using Lemma 1 in the Appendix, it is straightforward

to derive necessary and su¢cient conditions that guarantee that §t is actually

p.d. even when ¡ is of reduced rank.

But the most distinctive feature of factor models is that they provide a par-

simonious speci…cation of the (dynamic) cross-sectional dependence of a vector

of observable random variables. In this case in particular, the factor structure,

together with the constancy of ¡, implies that the time-variation of §t is of re-

duced rank (see Engle, Ng and Rothschild (1990)). More formally, if ÄE denotes a

N £ (N ¡ k) matrix of full column rank such that ÄE0C = 0, and ¹E = ( _E; ÄE) is a

N £N matrix of full rank, with _E arbitrary, then, the only time-varying compo-

nent in the covariance matrix of ¹x0t = x
0
t
¹E = (x0t _E;x

0
t
ÄE) = ( _x0t; Äx

0
t) is the covariance

matrix of _xt. In this respect, Gourieroux, Monfort and Renault (1991) provide a

particularly attractive choice of ¹E, which makes _xt and Äxt orthogonal, and allows

us to express any conditionally heteroskedastic factor model as an oblique factor

model with time-varying conditional variances, constant conditional covariances,

and a singular idiosyncratic covariance matrix. In particular, if we assume for

simplicity that ¡ is non-singular, we can write:

xt = Cf
G
t +w

G
t (5)
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where

fGt = (C
0¡¡1C)¡1C0¡¡1xt = ft + (C

0¡¡1C)¡1C0¡¡1wt

are the Generalized Least Squares (GLS) estimates of the common factors and

wG
t =

h
I¡(C0¡¡1C)¡1C0¡¡1

i
xt.1 Notice that even when ¤t is diagonal, the ele-

ments of fGt are contemporaneously correlated, unless (C0¡¡1C) is itself diagonal.

Also note that if ¤t is given by a strong garch model such as (4), the results in

Nijman and Sentana (1996) imply that these factor scores will follow weak garch

processes.

Finally, notice that if ft is conditionally homoskedastic, the model in (1-3)

reduces to the standard (i.e. static) factor analysis model (see e.g. Johnson and

Wichern (1992)). But even if ft is conditionally heteroskedastic, provided that it

is covariance stationary, it also implies an unconditional k factor structure for xt.

That is, the unconditional covariance matrix, §, can be written as:

§ = C¤C0+¡ (6)

where V (ft) = E(¤t) = ¤. This property makes the models considered here

compatible with traditional factor analysis.

3 Factor GARCH Models as Conditionally Het-
eroskedastic Factor Models

The factor garch model was originally introduced as a parsimonious special

case of the multivariate garch(p,q) model considered in Bollerslev, Engle and

1These factor scores are di¤erent from the minimum (conditional) mean square error esti-

mates, ftjt = E(ftjxt; It¡1); but closely related as fG
t =

h
I + (C0¡¡1C)¡1¤¡1

t

i
ftjt.
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Wooldridge (1988):

vech(§t)= ©+
qX

s=1

Asvech(xt¡sx
0
t¡s) +

qX

r=1

Brvech(§t¡r)

where As and Br are square matrices of order m(m + 1)=2, and © is a vector of

the same order. In fact, it could be regarded as a prototype of the positive de…nite

BEEK parameterization in Engle and Kroner (1995), which is the most general

covariance speci…cation proposed so far within this class (see Kroner (1987) and

Lin (1992)). Formally, Engle’s (1987) k factor garch(p,q) model is characterized

by the following data generation process:

xt = §
1=2
t x¤t ;x

¤
t » i:i:d: (0; IN)

§t = ª+
kX

j=1

cjc
0
j

" qX

s=1

®js(d
0
jxt¡s)

2 +
pX

r=1

¯jr(d
0
j§t¡rdj)

#
=

ª+
kX

j=1

cjc
0
j[®j(L)(d

0
jxt)

2 + ¯j(L)(d
0
j§tdj)] (7)

where ª is a N £N symmetric p.s.d. matrix of rank N1 · N , C = (c1j : : : jck)
and D = (d1j : : : jdk) are N £ k coe¢cient matrices of full column rank satisfying

D0C = Ik, with each column of D (or C) normalized to avoid scale indeterminacy,

and ®j(L) =
Pq
s=1 ®jsL

s, ¯j(L) =
Pp
r=1 ¯jrL

r are polynomials in the lag operator,

with the roots of 1¡ ¯j(L) outside the unit circle.

The name factor garch stems from the fact that the time variation in the

conditional variance can be summarized by k linear combinations of xt which

are univariate strong garch. In this respect, it can be regarded as the condi-

tional variance counterpart to reduced rank vector autoregressive models. These

linear combinations, d0jxt, referred to as “factor representing portfolios” by Ng,

Engle and Rothschild (1992), are univariate strong garch(p,q) processes with

conditional variance

±jt = #jj +
qX

s=1

®js(d
0
jxt¡s)

2 +
pX

r=1

¯jr±jt¡r =
#jj

1¡ ¯j(1)
+

®j(L)

1¡ ¯j(L)
(d0jxt)

2
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where #jj = d0jªdj. Note, however, that in general covt¡1(d0ixt;d
0
jxt) = d

0
iªdj =

#ij 6= 0 for i 6= j, so that the constant part of Vt¡1(D0xt) is not usually diagonal

(see Lin (1992)).

In order to guarantee that ±jt ¸ 0 8t, it is often assumed that #jj ¸ 0 and

the coe¢cients in the power expansion of ®j(L)=(1¡¯j(L)) are non-negative (see

Nelson and Cao (1992) and Drost and Nijman (1993)). In practice, it is also

convenient to rule out cases in which dj is in the nullspace of ª, i.e. #jj = 0,

since otherwise ±jt, and indeed d0jxt, will converge to zero with probability 1 (cf.

Nelson (1990)).

An important property of factor garch models is that they are closed with

respect to full-rank linear transformations (see Lin (1992)). However, they are not

generally closed with respect to (block) marginalization (see Nijman and Sentana

(1996)), as in most cases ±jt becomes non-measurable with respect to a smaller

information set (see the discussion after expression (4)).

Bollerslev and Engle (1993) show that xt is covariance stationary if and only

if ®j(1) + ¯j(1) < 1 8j. In that case, its unconditional covariance matrix is given

by the following expression:

§ = ª+
kX

j=1

cjc
0
j#jj

®j(1) + ¯j(1)

1¡ ®j(1)¡ ¯j(1)

For our purposes, it is more convenient to write §t as

§t = ª¡
kX

j=1

cjc
0
j#jj +

kX

j=1

cjc
0
j±jt = ª+

kX

j=1

cjc
0
j

"
#jj¯j(1)

1¡ ¯j(1)
+

®j(L)

1¡ ¯j(L)
(d0jxt)

2

#

or in matrix form

§t = ª+C [¦+¤t(0)]C
0 = ¹ª+C¤t(0)C

0 (8)

where

¤t(0) = diag

"
®1(L)

1¡ ¯1(L)
(d01xt)

2; : : : ;
®k(L)

1¡ ¯k(L)
(d0kxt)

2)

#
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¦ = diag

"
#11¯1(1)

1¡ ¯1(1)
; : : : ;

#kk¯k(1)

1¡ ¯k(1)

#

and ¹ª = ª+C¦C0.

Equation (8) clearly suggests that Engle’s model must be related to the condi-

tionally heteroskedastic factor model in (1-3). In fact, as the following proposition

shows, the factor garch model is observationally equivalent to a whole family of

oblique factor models with constant conditional covariances, whose limiting cases

are an orthogonal factor model in which the variances of the factors are given by

¤t(0), and an oblique factor model like (5) with a singular idiosyncratic covariance

matrix:

Proposition 1 Assume that §t is p.d., and furthermore that ¹ª has full rank.
Let ­ be any k £ k p.s.d. matrix such that the eigenvalues of ­C0 ¹ª¡1C are less
than or equal to 1. Then, the k factor garch(p,q) model in (7) is observationally
equivalent (up to conditional second moments) to any of the following conditionally
heteroskedastic factor models:

xt= Cf t(­) +wt(­)

where
Vt¡1 (ft(­)) = ¤t(­) = ­+¤t(0)

Vt¡1 (wt(­)) = ¡(­) = ¹ª¡C­C0

covt¡1 (ft(­);wt(­)) = 0

Proof. Since Vt¡1(xt) = ¡(­)+C¤t(­)C0 = ¹ª+C¤t(0)C
0 = §t, we only need

to check that ¡(­) and ¤t(­) are p.s.d. Given that ¹ª is p.d., the restrictions

on ­ guarantee that ¡(­) is p.s.d. in view of Lemma 2. Similarly, since ±jt ¸
#jj=[1¡ ¯j(1)] 8t, ¸jt(­) ¸ ¸jt(0) = ±jt ¡ #jj=[1¡ ¯j(1)] ¸ 0 2

It is also straightforward to check that the GLS factor representing port-

folios of the above models, fGt (­) = (C0¡¡1(­)C)¡1C0¡¡1(­)xt do not de-

pend on ­, and coincide with ft
³
(C0 ¹ª¡1C)¡1

´
= (C0 ¹ª¡1C)¡1C0 ¹ª¡1xt. In this

respect, it is worth noting that the “largest” ­ compatible with ¡(­) p.s.d.
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is precisely (C0 ¹ª¡1C)¡1. Therefore, if we call (C0 ¹ª¡1C)jj the jth diagonal

element of (C0 ¹ª¡1C)¡1, ¸jt(­) · ¸jt
³
(C0 ¹ª¡1C)¡1

´
= ±jt + (C

0 ¹ª¡1C)jj ¡
d0j ¹ªdj · ±jt by the Cauchy-Schwartz inequality, with equality if and only if

D0= (C0 ¹ª¡1C)¡1C0 ¹ª¡1. Except in this unlikely case, ¹ª¡D0 ¹ªD is an inde…nite

matrix, and we cannot interpret D0xt as common factors. As a result, ft(­) will

generally follow weak, rather than strong, garch processes, since D0xt 6= ft(­)
for all admissible ­. In any case, we can replace the in…nite distributed lags in

¤t(­) by the recursions

¸jt(­) = [1¡ ¯j(1)]!jj + ®j(L)(d0jxt)2 + ¯j(L)¸jt(­)

Finally, note that rank(¹ª) = N is very slightly stronger than required, as it

only excludes those cases in which rank(U0
2C¦

1=2) < N ¡ N1 but rank(U0
2C) =

rank(U0
2C [¦+¤t(0)]

1=2) = N ¡N1, where the columns of U2 constitute a basis

of the nullspace of ª. Nevertheless, Proposition 1 can be tediously extended on

the basis of Lemma 2b in the appendix to those cases in which §t is p.d. but ¹ª

is not, at the cost of making the range of admissible ­0s depend on k and the

rank of ¹ª. For instance, if k = 1, ­ can be any non-negative scalar such that

­C0 ¹ª¡1C · 1 if rank(¹ª) = N , and 0 if rank(¹ª) = N ¡ 1.

4 Summary and Discussion

In this note, we discuss the relation between Engle’s (1987) factor garch

model, and a general class of conditionally heteroskedastic factor models, which

includes the latent factor arch model of Diebold and Nerlove (1989) as a special

case. We formally introduce both models, discuss some of their properties, and

provide a precise nesting of the two.

Such a nesting can be fruitfully exploited to analyze the statistical features of

the factor garch model in the more general context of model (1-3). For example,
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Demos and Sentana (1997) exploit this relationship to adapt the EM algorithm to

this class of models, while Sentana and Fiorentini (1997) analyze the identi…ability

of the factor loadings matrix C within a uni…ed framework. Similarly, it can also

be employed to extend some of the inference procedures developed for the factor

garch model to the general class of models in (1-3). This would be the case,

for instance, of the common features test in Engle and Kozicki (1993), under our

maintained assumption of constant idiosyncratic variances.

Nevertheless, one should always remain aware of their di¤erences, especially

in empirical applications. For instance, an implication of our main result is that

if we interpret the factor garch model as a traditional factor model in which

the variances of the factors change over time, we would not generally be able to

separately identify the contributions to the unconditional covariance matrix of

the idiosyncratic terms and common factors, as we can transfer variance between

them (see Sentana and Fiorentini (1997)). This problem is particularly relevant

in testing some of the implications of multi-beta asset pricing theories, such as

the integration of …nancial markets (see King, Sentana and Wadhwani (1994)).

Similarly, even if we avoid the aforementioned observational equivalence, we

will not be able to di¤erentiate the contribution to the covariance matrix of con-

ditionally homoskedastic common factors (see Engle, Ng and Rothschild (1990)).

For instance, if for identi…cation purposes we go to the extreme, and choose the

parameters so that the idiosyncratic covariance matrix has rankN¡k, then model

(7) can also be written as a model with N common factors and no idiosyncratic

noise, in which the …rst k factors have time-varying variances but constant covari-

ances, and the remaining N ¡ k factors are conditionally homoskedastic, as well

as orthogonal to each other and to the …rst k ones. Obviously, the corresponding

asset pricing implications are rather di¤erent.
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Appendix

The following lemmas are useful to derive the relationship between the k

factor garch in (7), and conditionally heteroskedastic factor models in (1-3).

Lemma 1 Let Z be a N £ k matrix of rank k, ­ a k£ k p.s.d. matrix with rank
k1 · k, and ª a N £ N p.s.d. matrix with rank N1 · N , where the spectral
decompositions of ­ and ª are given by

­ = V©V0 =
³
V1 V2

´ Ã
©1

0

! Ã
V0
1

V0
2

!
= V1©1V

0
1

ª = U¢U0 =
³
U1 U2

´ Ã
¢1

0

! Ã
U0
1

U0
2

!
=

³
U1¢

1=2
1 U2

´ Ã
IN1

0

! Ã
¢
1=2
1 U0

1

U0
2

!
= ~U~¢~U

0

with ©1;¢1 > 0, rank(©1) = k1 and rank(¢1) = N1, so that ª+ = U1¢
¡1
1 U

0
1 is

the Moore-Penrose inverse of ª. Then,
a) If rank(ª) = N; rank(ª+ Z­Z0) = rank(ª)
b) If rank(ª) < N; rank(ª+ Z­Z0) = rank(ª) + rank(U0

2ZV1)

Proof. We only prove b), as a) is trivial. Given that U is orthogonal, we can

write

ª+ Z­Z0= U(¢+U0ZV1©1V
0
1Z

0U)U0= U¨U0

with

¨ =

0
B@
¨11 ¨12

¨0
12 ¨22

1
CA =

0
B@
¢1+U

0
1ZV1©1V

0
1Z

0U1 U0
1ZV1©1V

0
1Z

0U2

U0
2ZV1©1V

0
1Z

0U1 U0
2ZV1©1V

0
1Z

0U2

1
CA

so that rank(ª+ Z­Z0) = rank(¨). But since rank(¨11) = N1, ¨ has the same

rank as
0
B@

IN1 0

¡¨0
12¨

¡1
11 IN¡N1

1
CA¨

0
B@
IN1 ¡¨¡1

11¨12

0 IN¡N1

1
CA =

0
B@
¨11 0

0 ¨22¡¨0
12¨

¡1
11¨12

1
CA
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Hence, rank(¨) = rank(¨11) + rank(¨22¡¨0
12¨

¡1
11¨12). Finally, repeated appli-

cation of the Woodbury formula for ¨11 gives after some simpli…cation

¨22¡¨0
12¨

¡1
11¨12= U

0
2ZV1(©

¡1
1 +V

0
1Z

0ª+ZV1)
¡1V0

1Z
0U2

2

As a simple example, consider the case of rank(ª) < N and k = 1, so that

V1 = 1 if ­ 6= 0. Then rank(ª+ Z­Z0) = rank(ª)+1 unless U0
2Z = 0, in which

case Z is in the column space of U1.

Lemma 2 Let Z;­ and ª be de…ned as in Lemma 1. Then:
a) If rank(ª) = N , ª¡ Z­Z0 remains p.s.d. if and only if the eigenvalues

of ­(Z0ª¡1Z) are all less than or equal to 1.
b) If rank(ª) < N , ª¡ Z­Z0 remains p.s.d. if and only if U0

2ZV1 = 0 and
the eigenvalues of ­(Z0ª+Z) are all less than or equal to 1.

Proof. We only prove b), as a) is proved along similar lines. Since ~U has full

rank, we can always write

ª¡ Z­Z0= ~U( ~¢¡ ~U
¡1
Z­Z0 ~U0¡1)~U

0
= ~U ~̈ ~U

0

Therefore, the de…niteness of ª¡ Z­Z0 is the same as the de…niteness of ~̈ .

In this case, ~̈ is
0
B@
IN1¡¢¡1=2

1 U0
1ZV1©1V

0
1Z

0U1¢
¡1=2
1 ¡¢¡1=2

1 U0
1ZV1©1V

0
1Z

0U2

U0
2ZV1©1V

0
1Z

0U1¢
¡1=2
1 ¡U0

2ZV1©1V
0
1Z

0U2

1
CA

which is p.s.d. if and only if U0
2ZV1= 0 and IN1¡¢¡1=2

1 U0
1ZV1©1V

0
1Z

0U1¢
¡1=2
1

is p.s.d. But this matrix has N1¡k1 unit eigenvalues, plus another k1 eigenvalues

which are 1 minus the eigenvalues of ­Z0U1¢
¡1=2
1 ¢

¡1=2
1 U0

1Z = ­Z
0ª+Z 2
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