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1 Introduction

Many issues in Þnance require the analysis of the variances and covariances of a large

number of security returns. For instance, asset pricing theories often derive restrictions

on risk premia from the cross-sectional correlation structure of a very large, possibly in-

Þnite, collection of assets. Similarly, portfolio allocation models exploit the imperfect

cross sectional correlation of returns in order to reduce risk by means of diversiÞed port-

folios. Traditionally, these issues were considered in a static framework, but over the

last two decades, the emphasis has gradually shifted to intertemporal models, in which

agents� actions are based on the distribution of returns conditional on their time-varying

information set.

Parallel to these theoretical developments, a large family of statistical models for

the time variation in conditional variances has grown up following Engle�s (1982) work

on arch processes (see e.g. Shephard (1996) for a survey), and numerous applications

have already appeared. By and large, though, most applied work in this area has been

on univariate Þnancial time series, as the application of these models in a multivariate

context has been hampered by the sheer number of parameters involved. In this respect,

it is worth mentioning that even with the massive computational power economists have

available to them nowadays, the multivariate vec analogue of the ubiquitous univariate

garch(1,1) model has been hardly ever estimated for more than two series at a time,

often with many additional parametric restrictions to ensure that the resulting conditional

covariance matrices are positive deÞnite (see Bauwens, Laurent and Rombouts (2004) for

a recent survey).

Given the strong commonality in volatility movements across different Þnancial as-

sets and markets, it is perhaps not surprising that one of the most popular approaches

to multivariate dynamic heteroskedasticity employs the same idea as traditional factor

analysis to obtain a parsimonious representation of conditional second moments. That

is, it is assumed that each of N observed variables is a linear combination of k (k < N)

common factors plus an idiosyncratic term, but allowing for conditional heteroskedasticity

effects in the underlying factors. Such models are particularly appealing in Þnance, as the
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concept of factors plays a fundamental role in major asset pricing theories, such as the

Arbitrage Pricing Theory (APT) of Ross (1976) (see King, Sentana and Wadhwani (1994)

(KSW)). In addition, they automatically guarantee a positive (semi-)deÞnite conditional

covariance matrix for the observed series, once we ensure that the variances of common

and speciÞc factors are non-negative. Finally, if the factors are covariance stationary,

these models imply an unconditional factor structure, which makes them compatible with

statistical factor analysis (see e.g. Lawley and Maxwell (1971)).

If the conditional variances of the factors are measurable functions of observed vari-

ables, as in the factor arch model discussed by Engle, Ng and Rothschild (1990) (ENR),

full-information maximum likelihood (ML) estimation is time-consuming, but straightfor-

ward. In this respect, the evidence presented in Demos and Sentana (1998) clearly shows

that when combined with an efficient maximisation procedure, they can be successfully

applied to a very large cross-section of time series. In addition, Sentana and Fiorentini

(2001) (SF) propose sequential ML estimators, which, although generally inefficient, can

consistently estimate the model parameters in a simpler manner.

However, much care has to be exercised in dealing with conditional variances that

depend on past values of the factors, as their true values do not necessarily belong to

the econometrician�s information set (see Harvey, Ruiz and Sentana (1992)) (HRS). The

original latent factor model with arch effects on the underlying factors introduced by

Diebold and Nerlove (1989) (DN) is the best known example. In such models, the form of

the distribution and moments of the observed variables conditional on their past values

alone is unknown. To some degree this has prompted interest in other parameter driven

models (see Andersen (1994) or Shephard (1996)), in which the volatility of the latent fac-

tors evolves according to discrete-time stochastic volatility processes, whether lognormal

or not (see Pitt and Shephard (1999), Aguilar and West (2000), Doz and Renault (2001),

Chib, Nardari and Shephard (2002) and Meddahi and Renault (2004)), or discrete-state

Markov chains (see Carter and Kohn (1994), Shephard (1994), Kim and Nelson (1999),

and the references therein).

Despite the attractive features of these alternative models, it does not necessarily fol-

low that one should abandon the use of garch processes in models with latent variables,
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especially when the degree of unobservability is small. In this respect, it is important to

remember that many macro and Þnance theories are often speciÞed using one-step ahead

moments, although those moments are deÞned with respect to the economic agents� infor-

mation set, not the econometrician�s. Hence, it is perhaps not surprising that economists

have built, and continue to build, many models that involve latent garch process in

order to tackle a number of important empirical problems.

In a recent paper, Fiorentini, Sentana and Shephard (2003) (FSS) develop compu-

tationally feasible Markov Chain Monte Carlo (MCMC) simulation algorithms that can

be used to obtain exact likelihood-based estimators of unobserved component time series

models with garch structures, thereby avoiding the inconsistencies associated with the

Kalman Þlter approximations to the log-likelihood function proposed by DN and HRS. In

this paper, we analyse alternative simulation-based estimation methods to correct those

asymptotic biases, which belong to the class of indirect estimation procedures proposed

by Gallant and Tauchen (1996) (GT), Gouriéroux, Monfort and Renault (1993) (GMR)

and Smith (1993). In fact, GMR explicitly considered conditionally heteroskedastic fac-

tor models as one of their examples, and suggested the use of a Þrst order, discrete-state

Markov chain as auxiliary model for the case of arch(1) dynamics (see also Billio and

Monfort (2003), who use alternative indirect estimation procedures). Our approach is

more closely related to Dungey, Martin and Pagan (2000) (DMP), who also developed

indirect estimators for such models. SpeciÞcally, they considered two auxiliary parametric

models: a �dual� VARmodel for the levels and the squares (but not cross products) of the

observed series (see also Zhumabekova and Dungey (2001)), and the Kalman Þlter-based

approximation to the log-likelihood function used by DN.1 Although DMP found in a

limited Monte Carlo exercise that the latter yields indirect estimators with substantially

smaller root mean square errors (RMSE) than the former, they did not use it in their

empirical application because it was considerably more demanding from a computational

point of view. These authors also found that the biases associated with the Kalman Þlter

1DMP explicitly consider models in which not only the squares but also the levels of the common
factors are serially correlated. However, since the econometric complications arise exclusively from the
dynamics in the second moments, we shall concentrate on models without mean dynamics for ease of
exposition.
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as direct estimators were fairly small, and that their sampling variability was often smaller

than the variability of the indirect estimators based on the dual VAR model.

In this context, our main contributions are as follows:

1. We provide a thorough analysis of the determinants of the biases in the parameters of

the Kalman Þlter approximation put forward by HRS, who reÞned the DN approach

by including a term in the conditional variance of the latent factors that explicitly

accounts for their unobservability.

2. We Þnd that the role of those biases is to ensure that in most parameter conÞgura-

tions the model proposed by HRS provides a rather accurate approximation to the

distribution of the observable variables conditional on their past values alone.

3. We show that in some limiting cases, the score of the HRS approximation to the log-

likelihood function coincides with the exact log-likelihood score, so that our indirect

estimators would be as efficient as ML under those circumstances.

4. We provide fast and numerically reliable analytical expressions for computing the

score of the approximate log-likelihood function, which are of paramount importance

in the implementation of the score-based indirect estimation procedures introduced

by GT.

5. We use the �constrained� indirect estimation procedures developed in our earlier

work (see Calzolari, Fiorentini and Sentana (2004)) (CFS) to explicitly account for

the fact that the parameters of our auxiliary model are subject to inequality restric-

tions that guarantee the positive (semi-)deÞniteness of the conditional covariance

matrix,

6. We also use the same CFS procedures to deal with the fact that some of the auxiliary

model parameters become very poorly identiÞed, if at all, in certain regions of the

auxiliary parameter space.

7. We propose sequential indirect estimation procedures in which the effective dimen-

sion of the parameter space does not grow with the number of series under consider-
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ation, which allows the application of our methods to practical situations in which

the cross-sectional dimension is large.

8. We conduct a detailed Monte Carlo experiment to assess the Þnite sample perfor-

mance of our two proposed indirect estimators relative to the full-information and

sequential approximate ML methods of HRS and SF, respectively.

The paper is organised as follows. We formally introduce the model in section 2,

and study the HRS approximation in section 3. Then in section 4, we include a general

discussion on the use of indirect estimation in this context. Monte Carlo evidence on the

performance of our proposed estimators relative to the approximations usually employed

is included in section 5. Finally, our conclusions can be found in section 6. Proofs and

some useful auxiliary results can be found in an appendix

2 Conditionally Heteroskedastic Factor Models

2.1 DeÞnition

Consider the following multivariate model:

xt = Bf t + vt, (1)µ
ft
vt

¶
|It−1 ∼ N

·µ
0
0

¶
,

µ
∆t 0
0 Ψ

¶¸
, (2)

where xt is a N×1 vector of observable random variables, ft is a k×1 vector of unobserved
common factors, B is the N × k matrix of factor loadings, with N ≥ k and rank (B) = k,
vt is a N × 1 vector of idiosyncratic noises, which are conditionally orthogonal to ft, Ψ is

a N×N diagonal positive semideÞnite (p.s.d.) matrix of constant idiosyncratic variances,

∆t is a k × k diagonal positive deÞnite (p.d.) matrix of time-varying factor variances,
and It−1 is an information set that contains the values of xt and ft up to, and including

time t − 1. These assumptions imply that the distribution of xt conditional on It−1 is
N(0,Σt), where the conditional covariance matrix Σt = B∆tB

0 +Ψ has the usual exact

factor structure. For this reason, we shall refer to the data generation process speciÞed

by (1) and (2) as a multivariate conditionally heteroskedastic exact factor model (CH).
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Such a formulation nests several models widely used in the empirical literature, which

typically assume that the unobserved factors follow dynamic heteroskedastic processes,

but differ in the particular functional form of the conditional variances of the factors,

δjt = V (fjt|It−1) (j = 1, . . . , k), which generally involve some extra parameters, ν (see

Sentana (1998)). For instance, in the latent factor model with arch effects on the un-

derlying factors introduced by DN, the conditional variances of the common factors are

parametrised as univariate strong arch models, in the sense of Drost and Nijman (1993).

In particular, for a covariance stationary garch(1,1) formulation,

δjt = (1− φj − ρj)δj + φjf2jt−1 + ρjδjt−1, (j = 1, . . . , k) (3)

with δj = E(δjt|%) = V (fjt|%), where E(.|%) represents expected values taken with respect
to the model (1), (2) and (3) evaluated at the parameter values % = (b0,ψ0, δ0,ν 0)0,

b = vec(B0) = (b01, . . . ,b
0
N)

0, bi = (bi1, . . . , bik)
0, ψ = vecd(Ψ) = (ψ1, . . . ,ψN)

0, δ =

(δ1, . . . , δk)
0 and ν = (ν 01, . . . ,ν

0
k)
0, with νj = (φj, ρj)

0. In this respect, since (1) can be

equivalently written as

xt = (B∆
1/2)(∆−1/2ft) + vt,

where vecd(∆) = δ, it is necessary to impose restrictions on either B or ∆ to eliminate

such a scale indeterminacy. For instance, we could impose either δj = 1,2 or bjj = 1

(j = 1, . . . , k). As a result, the total number of parameters to estimate, d say, will be

Nk +N + 2k.

2.2 Properties

A non-trivial advantage of the multivariate model (1)-(2) is that it automatically

guarantees a p.d. covariance matrix for xt once we ensure that both∆t and Ψ are p.s.d.,

which obviously requires ψi ≥ 0 ∀i. In this respect, note that Σt cannot be p.d. if k + 1
or more elements of Ψ are zero. Moreover, given that Ψ is diagonal, it is straightforward

to see that a necessary and sufficient condition for Σt to be p.d. when Ψ is p.s.d but not

2If the unconditional variance is unbounded, as in integrated garch-type models, other symmetric
scaling assumptions can be made. For instance, we could choose inft δjt = 1, or simply Þx to 1 the
constant element of δjt. In any case, note that in principle there is no need to set to zero the strict upper
triangle of the factor loading matrix B in view of the identiÞcation results in SF.
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p.d. is that the matrix formed with the rows of B corresponding to the zero elements of

Ψ must have full row rank (see Sentana (1998, 2000)). In fact, the rank of Ψ is related

to the observability of the factors. If rank(Ψ) = N − k, then the factors would be fully
revealed by the xt variables, otherwise they are only partially revealed (see KSW). As for

δjt, sufficient conditions can be obtained by re-writing (3) as a rational distributed lag of

past squared values of the factors. For instance, since a covariance stationary garch(1,1)

model can be written as

δjt =
ςj

1− ρj
+ φj

∞X
s=1

ρsjf
2
jt−s,

with ςj = (1 − φj − ρj)δj, the positivity restrictions become ςj > 0, φj ≥ 0 and ρj ≥ 0,
together with the stationarity condition φj + ρj < 1 (see Nelson and Cao (1992) for other

higher order models). This implies that the admissible parameter space will be inequality

restricted

Another signiÞcant characteristic of this model is that it is dimension independent,

in the sense that it remains valid for any subset of xt. But the most distinctive feature

of factor models is that they provide a parsimonious speciÞcation of the dynamic and

cross-sectional dependence of a vector of observable random variables. In this case in

particular, the factor structure, together with the constancy of Ψ, implies that the time-

variation of Σt is of reduced rank (see ENR, and Engle and Susmel (1993) for a discussion

in terms of the common features literature). SpeciÞcally, assume for simplicity that Ψ is

non-singular, and deÞne the following full rank transformation of the observed series xt:µ
yt
zt

¶
=

µ
ΥB0Ψ−1

U0
1 [IN −BΥB0Ψ−1]

¶
xt =

µ
Ik
0

¶
ft +

µ
ΥB0Ψ−1

U0
1 [IN −BΥB0Ψ−1]

¶
vt,

where Υ = (B0Ψ−1B)−1, and U1M1U
0
1 provides the spectral decomposition of the rank

N −k matrix z = Ψ−BΥB0. Note that if we think of the CH model as a cross-sectional
heteroskedastic regression of xit on the �regressors� bi with regression parameters ft and

residual variances ψi (i = 1, . . . , N), then yt corresponds to the generalised least squares

(GLS) estimator of ft,3 while zt contains the Þrst N −k principal components of the GLS
residuals xt −Byt. Notice also that despite the diagonality of ∆t, the elements of yt are

3These factor mimicking portfolios are usually known as Barlett scores in the multivariate statistical
analysis literature (see e.g. Sentana (2004)).
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contemporaneously correlated unless Υ is itself diagonal, but with constant conditional

covariances. Given that

yt = ft +ΥB
0Ψ−1vt = ft + ηt, ft

ηt
zt

 |It−1 ∼ N

 0
0
0

 ,

 ∆t 0 0
0 Υ 0
0 0 M1

 ,
(see Gouriéroux, Monfort and Renault (1991)), and that ∆t is a function of lag values

of ft only, it is clear that the stochastic process {yt} can be regarded as a minimal set
of �sufficient statistics� for {ft} because it contains the same information about {ft} as
{xt} (see FSS). In addition, this means that the degree of unobservability of the factors
depends onB andΨ exclusively through the magnitude ofΥ relative to the unconditional

variance of the factors, ∆.

Finally, notice that if ft is conditionally homoskedastic, the model in (1)-(2) reduces

to the standard (i.e. static) factor analysis model (see e.g. Lawley and Maxwell (1971)).

But even if ft is conditionally heteroskedastic, provided that it is covariance stationary, it

also implies an unconditional exact k factor structure for xt. That is, the unconditional

covariance matrix, Σ, can be written as:

Σ = E(Σt|%) = B∆B0 +Ψ. (4)

This property makes the models considered here compatible with traditional factor analy-

sis.

2.3 Estimation issues

From the estimation point of view, it is of the utmost importance to distinguish be-

tween It−1 = {xt−1, ft−1, xt−2, ft−2, . . .}, and the econometrician�s information set Xt−1 =
{xt−1,xt−2, . . .}, which only includes lagged values of xt, where It−1 ≡ Xt−1 ∪ Ft−1, with
Ft−1 = {ft−1, ft−2, . . .}. If the diagonal elements of ∆t were measurable functions of Xt−1

(as in section 3), then the distribution of xt conditional on Xt−1 would be normal, and

the parameters of interest, %, could be estimated simultaneously on the basis of the log-

likelihood function of the observed variables, xt. However, when the diagonal elements

8



of ∆t are functions of lagged values of ft, as in (3), the exact form of the conditional

density of xt given Xt−1 alone, p(xt|Xt−1;%) say, is generally unknown. As a result, the
log-likelihood function of the sample can no longer be obtained explicitly except in sim-

ple cases, such as when the conditional variances of all the common factors are in fact

constant, which happens when ν = 0 (see HRS).

One attractive solution is to employ the MCMC method recently put forward by FSS,

which allows the calculation of a ML estimators via the simulated EM algorithm, as well

as a Bayesian approach.

Nevertheless, if we could at least Þnd the Þrst two moments of the conditional dis-

tribution of xt given Xt−1 (and %), then we could also obtain a root-T consistent, albeit

inefficient, estimator of % by maximising the Gaussian pseudo likelihood function of xt, as

advocated by Bollerslev and Wooldridge (1992) among others. Given our assumptions, it

trivially follows that E(xt|Xt−1;%) = 0. As for the conditional variances, it is also clear
that

V (fjt|Xt−1;%) = E(δjt|Xt−1;%) = ςj + φjE(f2jt−1|Xt−1;%) + ρjE(δjt−1|Xt−1;%)

=
ςj

1− ρj
+ φj

∞X
s=1

ρsj
£
E2(fjt−s|Xt−1;%) + V (fjt−s|Xt−1;%)

¤
. (5)

Therefore, we would need to compute E(fjt−s|Xt−1;%) and V (fjt−s|Xt−1;%), a task for
which the Kalman Þlter seems to be ideally suited. In this respect, it is important to note

that the conditionally heteroskedastic factor model in (1)-(2) has a natural time-series

state-space representation, with ft as the state, (1) as the measurement equation, and

ft = 0 · ft−1 + ft

as the transition equation. Unfortunately, while the conditional distribution of ft given

xt and It−1 is normal, with mean and variance given by

E(ft|xt, It−1;%) =∆tB
0 (B∆tB

0 +Ψ)−1 xt (6)

and

V (ft|xt, It−1;%) =∆t −∆tB
0 (B∆tB

0 +Ψ)−1B∆t, (7)
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these expressions do not usually give us E(ft|Xt;%) or V (ft|Xt;%), which must be gen-
erally computed by simulation (see FSS). Hence, Gaussian pseudo-ML estimation is not

generally feasible either.

One thing we can do, though, is to estimate the parameters characterising the uncon-

ditional covariance matrix Σ. SpeciÞcally, SF show that if (a) Ψ and B are identiÞed (up

to rotation) from unconditional moments (b) 1
T

PT
t=1 xtx

0
t

p→ Σ0 = B0B00+Ψ0, where the

superscript 0 denotes the true values of the parameters, (c) T−1/2
PT

t=1 vech(xtx
0
t −Σ0)

has a limiting normal distribution and (d) the matrix (z0 ¯ z0) is nonsingular, where
z0 is the rank N − k covariance matrix of the GLS predictors of the idiosyncratic factors
xt−Byt described in section 2.2, and ¯ denotes Hadamard (or element by element) prod-
uct of two matrices of the same dimensions, then theorem 12.1 in Anderson and Rubin

(1956) and theorem 2 in Kano (1983) imply that

( úb, úψ) = argmax
b,ψ

TX
t=1

p(xt|Xt−1;b,ψ,0)

are asymptotically normally distributed around vec(B0Q0) and vecd(Ψ0), where Q0 is

the orthogonal matrix that imposes on B0 the restrictions used in estimation to avoid

the usual rotational indeterminacy.4 Note that úb and úψ correspond to the values of

the unconditional variance parameters estimated by a standard factor analytic routine.

However, we would need to take into account the serial correlation in vech(xtx0t) in order

to compute the standard errors of úb and úψ.

3 HRS alternative to CH Models

3.1 DeÞnition, Properties and Estimation

Consider now the following closely related model for xt proposed by HRS as a user-

friendly version of (1), (2) and (3):

xt = Cgt +wt (8)

4Obviously, if the estimators of b are only consistent for vec(B0Q0) because B is not uniquely iden-
tiÞable from the unconditional covariance matrix (e.g. if k ≥ 2 and B unrestricted), then consistency is
only guaranteed for ψ.
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µ
gt
wt

¶
|It−1 ∼ N

·µ
0
0

¶
,

µ
Λt 0
0 Γ

¶¸
(9)

where gt is an alternative k×1 vector of unobserved common factors, C is the correspond-
ing N × k matrix of factor loadings, with N ≥ k and rank (C) = k, wt is another N × 1
vector of idiosyncratic noises, which are conditionally orthogonal to gt, Γ is the N × N
diagonal p.s.d. matrix of constant idiosyncratic variances, and Λt is a k×k diagonal p.d.
matrix of time-varying factor variances. By analogy with (5), HRS assumed that

λjt(θ) = (1− αj − βj)λj + αj[g2jt−1|t−1(θ) + ωjjt−1t−1(θ)] + βjλjt−1(θ), (10)

with λj = E[λjt(θ)|θ] = V (gjt|θ), where E(.|θ) represents expected values taken with re-
spect to the model (8), (9) and (10) evaluated at the parameter values θ = (c0,γ 0,λ0,π0)0,

c = vec(C0) = (c01, . . . , c
0
N)

0, ci = (ci1, . . . , cik)0, γ =vecd(Γ) = (γ1, . . . , γN)
0, λ = (λ1, . . . ,

λk)
0 and π = (π01, . . . ,π

0
k)
0, with πj = (αj, βj)

0, and where gjt−1|t−1(θ) and ωjlt−1t−1(θ)

are typical elements of

gt|t(θ) = E(gt|Xt;θ) = Λt(θ)C0[CΛt(θ)C0 + Γ]−1xt,

and

Ωt|t(θ) = V (gt|Xt;θ) = Λt(θ)−Λt(θ)C0[CΛt(θ)C0 + Γ]−1CΛt(θ).

In fact, it is straightforward to see that E(gt|XT ;θ) = gt|t(θ) and V (gt|XT ;θ) = Ωt|t(θ)
since smoothing is unnecessary in this model because (conditional on the parameters θ)

there are no dynamics in the mean speciÞcation of the factors, and therefore, no serial

correlation in their Þltered estimates (see DN).

Not surprisingly, models (1)-(3) and (8)-(10) share many important features, including

the scale indeterminacy of the common factors mentioned in section 2.1. As a result, the

total number of parameters to estimate after setting the scaling of the gt common factors

will also be Nk + N + 2k = d. Moreover, it is straightforward to see that the positive

deÞniteness of the conditional covariance of xt is guaranteed if γi≥ 0 (i = 1, . . . , N) and
λjt(θ) > 0 (j = 1, . . . , k) (cf. section 2.2). But since we can rewrite (10) as

λjt(θ) =
$j

1− βj
+ αj

∞X
s=1

βsj[g
2
jt−s|t−s(θ) + ωjjt−s|t−s(θ)],
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where $j = (1− αj − βj)λj, it is once more clear that we need $j > 0, αj ≥ 0, βj ≥ 0,
and αj + βj < 1.

The dynamics of the conditional second moments are also governed in this case by k

linear transformations of the N observed series xt. SpeciÞcally, if we assume for simplicity

that Γ has full rank, and deÞne the GLS factor representing portfolios and the associated

set of GLS idiosyncratic errors as

gGt (c,γ) = ΞC0Γ−1xt,

wG
t (c,γ) = (I−ΞC0Γ−1)xt,

where Ξ = (C0Γ−1C)−1, then we can write

xt = CgGt (c,γ) +w
G
t (c,γ),

gGt (c,γ) = gt + ΞC
0Γ−1wt = gt + ζt,

and  gt
ζt

wG
t (c,γ)

 | It−1 ∼ N
 0

0
0

 ,

 Λt 0 0
0 Ξ 0
0 0 Γ−CΞC0

 .
Nevertheless, the crucial difference with the model discussed in the previous section

is that in this case the distribution of gt conditional in Xt−1 is normal, with conditional

covariance matrix Λt(θ). Hence, the average log-likelihood function for a sample of size T

based on model (8)-(10) can be written in closed form as l̄T (θ) = T−1
PT

t=1 lt(θ), where

lt(θ) =− N
2
log 2π − 1

2
log
¯̄
CΛt(θ)C

0 + Γ
¯̄− 1

2
x0t[CΛt(θ)C

0 + Γ−1]xt. (11)

As a result, ML estimates of θ will be obtained by numerically maximising (11), where

we can set λj1 = λj ∀j to start up the conditional variance recursions.
However, it is important to realise that the usual deÞnition of pseudo-ML estimators �θT

as a root of the unrestricted Þrst order conditions
PT

t=1 ∂lt(
�θT )/∂θ = 0 is not necessarily

valid in this case, as it ignores the restrictions on γ and the garch parameters π that

we impose to ensure that the conditional covariance matrix remains p.s.d. almost surely.

Therefore, it is more appropriate to use constrained optimisation algorithms that take

into account such restrictions (see Demos and Sentana (1998) and Sentana (2000) for
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alternative optimisation strategies). In fact, it turns out that solutions at the boundary of

the admissible parameter space occur frequently in practice (see section 5). An additional

problem that (10) shares with more standard garch(1,1) formulations is that if αj = 0,

then λjt = λj irrespective of βj, which means that ∂lt(θ)/∂βj = 0 for all t, so that βj

cannot be identiÞed.

3.2 Relationship between the original CH model and the HRS
alternative

HRS explicitly relate the properties of the elements of gjt and fjt when both models are

considered as the true DGP�s.5 In particular, they show that the Þrst two unconditional

moments of gjt and fjt will be identical if θ = %. In contrast, they also show that

E(g4jt|θ = %) ≤ E(f4jt|%).

Intuitively, the reason is the following. It is well known from the Kalman Þlter literature

that the properties of gjt|t(θ) are generally different from the time series properties of gjt

(see e.g. Pagan (1980)). Although in our case both gt and gt|t(θ) are serially uncorrelated

because the transition equation is degenerate, gt|t(θ) must be smoother than gt. Hence,

it is not surprising that the variability of λjt is generally smaller than the variability of

δjt.

Finally, HRS also show that

cor(g2jt, g
2
jt−1|θ = %) ≤ cor(f2jt, f2jt−1|%),

and hence that

cov(g2jt, g
2
jt−1|θ = %) ≤ cov(f2jt, f2jt−1|%).

Therefore, while the two processes share both static and dynamic second moments, all

the fourth moments of are gjt are bounded from above by the corresponding moments of

fjt.

Nevertheless, there are two circumstances in which both processes give rise to exactly

the same log-likelihood functions. The Þrst one trivially arises when φj = αj = 0 ∀j. The
5Although HRS only presented formal proofs for the ARCH(1) case, their results could be easily

extended to higher order processes.
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second one, when there are exactly as many Heywood cases as common factors, which as

we saw before would happen when there are k diagonal elements of Ψ that are equal to

0 (see Sentana (2000)), so that the factors are fully revealed by the observable variables.

In addition, there is a third instance in which the two processes become arbitrarily close.

SpeciÞcally, Sentana (2004) shows that both gt|t(θ) and gGt (c,γ) converge in mean square

to gt as N increases. Although strictly speaking this is a limiting result, in practice, it

means that the two models can become almost identical for large enough N . In fact,

given that the quantity that effectively measures the degree of observability of the factors

is Υ = (B0Ψ−1B)−1, the size of N is effectively irrelevant, and all we need is that Υ be

small.

The similarity between the two models is stronger than what the above discussion may

suggest, as explained in the following result:

Proposition 1 Let st(θ) = ∂lt(θ)/∂θ denote the log-likelihood score of the model for xt
given by (8), (9) and (10). Similarly, let qt(%) = ∂p(xt|Xt−1;%)/∂% denote the exact
log-likelihood score of the model (1), (2) and (3). Then st(θ) = qt(%) when θ = % and
ν = π = 0.

In other words, the HRS model provides a Þrst order approximation to the original

CH model when δjt does not vary much.

In addition, we conjecture that an analogous result holds when the factors are fully

revealed by the observable variables, regardless of the time-variation in the volatility

of the common factors. Unfortunately, we cannot present a second formal proposition

because we have been unable to obtain analytical expressions for the elements of qt(%)

corresponding to the zero idiosyncratic variances for the reasons explained at the end of

the proof of Proposition 1. Nevertheless, extensive numerical simulations suggest that

those elements of the two scores are identical in that situation as well.6

In other cases, though, the exact relationship between the two models is unknown,

and can only be assessed by simulation. For practical purposes, the relevant comparison

is between model (8), (9) and (10) evaluated at the values of θ that provide the best

6SpeciÞcally, we have numerically checked whether ∂E[st(θ)|%]/∂%0 is equal to V [st(θ)|%] when θ = %
and the factors are effectively observed, where E[st(θ)|%] and V [st(θ)|%] refer to the Þrst two moments
of the pseudo-score with respect to the true distribution of the data.
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approximation to the values of %. Given that θ will typically be estimated by maximising

(11), then the comparison should be conducted at the pseudo-true ML values, θ(%) say

(see e.g. White (1982)).

In order to Þnd out how the (asymptotic) binding functions θ(%) behaves, we have

carried out the following Monte Carlo experiments. We have simulated 400 samples of

size 50,000 of the following trivariate single factor model:

xit = bift + vit (i = 1, 2, 3).

Given that the effect of b and Ψ is mostly through the scalar quantity υ = (b0Ψ−1b)−1,

as previously discussed, all the models considered have b = (1, 1, 1)0, Ψ = ψI and δt =

(1 − φ − ρ) + φf2t−1 + ρδt−1. In order to minimise experimental error, we use the same
set of underlying random numbers in all designs. For scaling purposes, we set c3 = 1

and unrestricted the unconditional variance of the common factor λ. Maximisation of the

pseudo log-likelihood (11) with respect to θ = (c1,c2,λ, γ1, γ2, γ3,α,β) was carried out

using the NAG library E04JBL routine.

We have combined 10 different values of ψ with ten different pairs of (φ, ρ). For

the sake of brevity, though, we only report the results of four selected conÞgurations,

namely: (.2,.6), (.4,.4), (.1,.85) and (.2,.75). The Þrst one corresponds roughly to the

values obtained by estimating univariate garch models on the basis of monthly data,

while the third one to the ones obtained with weekly observations. The relevant response

surfaces for φ and ρ are depicted in the two panels of Figure 1, respectively.

As can be clearly seen from Figures 1a and 1b, the most important determinant of the

asymptotic biases α(%)− φ and β(%)− ρ is the noise to signal ratio, as measured by the
variance of ηt relative to the variance of ft. However, these Þgures also illustrate the fact

that the second most important determinant of the biases is not the so-called persistence

parameter, φ+ ρ, but rather, the unconditional coefficient of variation of the unobserved

conditional variance δjt, i.e.

κ2(%) =
V (δjt|%)
δ2j

=
2φ2

(1− 3φ2 − 2φρ− δ2) ,

(cf. Jacquier, Polson and Rossi (1994)), which is related to the unconditional coefficient
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of kurtosis of the latent factor

κ(%) =
E(f4jt|%)
δ2j

=
3[1− (φ+ ρ)2]

(1− 3φ2 − 2φρ− δ2) .

In this respect, it is worth mentioning that for the four reported conÞgurations of (φ, ρ),

we obtain the following values:

κ(%) = 0.51 κ(%) = 3.77 φ = .1 ρ = .85 φ+ ρ = .95
κ(%) = 0.54 κ(%) = 3.86 φ = .2 ρ = .6 φ+ ρ = .8
κ(%) = 2.14 κ(%) = 16.7 φ = .2 ρ = .75 φ+ ρ = .95
κ(%) = 2.83 κ(%) = 27.0 φ = .4 ρ = .4 φ+ ρ = .8

On the other hand, the asymptotic bias [α(%) + β(%)]− (φ+ ρ), although not exactly
zero, is fairly small. However, this bias can be substantial for other parameter conÞgu-

rations. For instance, when φ = .4 and ρ = 0, there is no asymptotic downward bias in

β(%), while α(%) is still upward biased. In contrast, when φ = .05 and ρ = .55, we Þnd

that the downward bias in β(%) is bigger than the upward bias in α(%).

The asymptotic biases found imply that the HRS approximation moves α(%) and β(%)

in the opposite direction to what the weak garch results in Nijman and Sentana (1996)

(NS) indicate. SpeciÞcally, given that in a single factor model the GLS factor yt is the

sum of a strong garch process, ft, whose squares follow an arma(1,1) process with

ar coefficient φ + ρ and ma coefficient ρ, and an independent white noise process, ηt,

NS show that y2t will also follow an arma(1,1) process with the same ar coefficient, i.e.

φ + ρ, but with an ma coefficient which is an explicit function not only of φ and ρ, but

also of the (conditional) kurtosis of ft and ηt (which are both 3 in our case) and the

unconditional variances of ft and ηt, which are 1 and υ, respectively. Given that the size

of the ma coefficient of f2t unequivocally increases as a result of adding uncorrelated noise,

NS found that the weak garch parameter would become larger, while the weak arch

parameter would become smaller. Although the weak garch parameters are not generally

consistently estimated by the Gaussian PML estimators of univariate garch(1,1) models

Þtted to yt, the Monte Carlo evidence in NS suggests that the asymptotic biases of those

estimators go in the same direction.

In contrast, the main effect of the HRS procedure, which explicitly acknowledges that

the GLS factor yt is the sum of a latent factor plus white noise with variance υ, is to
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smooth out the conditional variance of the factor. As a consequence, the estimation

procedure seems to force α(%) to be bigger than φ in an attempt to match the static and

dynamic fourth moments of yt generated by the HRS procedure with the true static and

dynamic fourth moments of the process, and in this way, provide a better approximation

to the true but unknown V (xt|Xt−1;%0).
In order to determine to what extent this intuition is correct, we have generated real-

isations of the GLS factor representing portfolios that would correspond to the trivariate

single factor models discussed above, and compared the Gaussian distribution of yt given

Yt−1 and %0 that the HRS model implies with the true conditional distribution. The for-

mer is simply N{0,λt[θ(%0)]+ξ(%0)}, where ξ(%0) = [c0(%0)Γ−1(%0)c(%0)]−1. In contrast,
to obtain the latter, we have simulated yt|Yt−1;%0 by drawing 100,000 random numbers

from a Gaussian distribution with 0 mean and variance δt+ υ0, where δt had been previ-

ously drawn from its distribution conditional on Yt−1 and %0 by using the exact MCMC

samplers developed in FSS. Although the resulting distribution will be necessarily lep-

tokurtic because it is a scale mixture of normals, the degree of leptokurtosis will depend

on the variability of δt+υ0 given Yt−1 and %0, which would be 0 if either δt is constant or

υ0 = 0. Figure 2, which presents the results of such a comparison for two arbitrarily cho-

sen observations, clearly shows that the approximate Kalman Þlter provides extremely

reliable results, despite the fact that the true distribution of yt|Yt−1;%0 is not exactly
Gaussian, as the reported excess kurtosis statistics conÞrm.

To gain some further insight on the relationship between both models, we have also

computed the probability integral transform (PIT) with respect to the approximate model

N{0,λt[θ(%0)] + ξ(%0)} of the aforementioned realisations of the GLS factor representing
portfolio {yt}. If the conditional distribution of yt given Yt−1 and %0 were indeed Gaussian,
such PIT sequences would be independently and identically distributed uniformly between

0 and 1 (see e.g. Diebold, Gunther and Tay (1998)). As can be seen from Figure 3, which

shows the difference between the empirical cumulative distribution of 4,000,000-long PIT

sequences and the 45◦ degree line, the approximate Kalman Þlter provides more reliable

results the closer the unconditional distribution of the latent factors is to the normal

(φ = .2, ρ = .6), and the larger the signal to noise ratio (υ0 = 1/9). Nevertheless, note
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that the maximum differences are very small (<.005) even in the other cases. Therefore,

given that in many empirical applications it is likely that the signal to noise ratio will be

high, and the conditional variance a fairly smooth process, in practice we would expect

the model proposed by HRS to provide a rather accurate approximation to the conditional

distribution of the observations given their past values.

3.3 Sequential pseudo-ML estimators

Although c(%)−b and γ(%)−ψ, which are the asymptotic biases of the PML estimators
of c and γ when regarded as estimators of b andψ, are generally rather small, they are not

exactly zero.7 In fact, it is possible to Þnd parameter conÞgurations in which those biases

become noticeable. To some extent, this prompted SF to suggest sequential estimators of

the conditional variance parameters π, deÞned as

π̈ = argmax
π
l̄T (c = úb;γ = úψ;π),

where úb and úψ are the consistent estimators described at the end of section 2. Although

such a sequential estimator of π will continue to be inconsistent for ν, the biases could

be potentially lower since they are not contaminated by the biases in c(%) and γ(%).

Paradoxically, it is worth mentioning that if we were to iterate the sequential procedure,

by alternating between the maximisation of (11) with respect to (c,γ) on the one hand,

and π on the other, and achieved convergence, then we would destroy the consistency of

the estimators of the static factor parameters because we would recover �θT .

In this context, it is worth mentioning that úb, úψ and π̈ have a very interesting in-

terpretation in terms of the GLS factors gGt (c,γ). First of all, we can use the results

in Grinblatt and Titman (1987) to prove that the Þrst stage ML estimates of the factor

loadings úb can be obtained from the OLS regression of xt on the estimated GLS factor

representing portfolios gGt (c = úb,γ = úψ), which suggests an obvious iterative procedure

to estimate the factor loadings. Moreover, since the pseudo log-likelihood function of the

observed series xt (given Xt−1) can be factorised as the sum of the log-likelihood function

7These binding functions, which we do not report for the sake of brevity, are available from the authors
on request.
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of the GLS factors, gGt (c,γ), conditional on Xt−1, which depends on all the elements of θ,

plus the log-likelihood function of the Þrst N−k principal components of wG
t (c,γ), which

does not depend on π, it is clear that the sequential pseudo-ML estimators of π can also

be obtained by maximising the k-variate log-likelihood function of gGt (c,γ) in which we

set c = úb and γ = úψ as if they were the true values of the parameters. SpeciÞcally, the

objective function takes the following form:

−k
2
log 2π − 1

2
log |Λt(θ) +Φ|− 1

2
gG0t (c,γ)[Λt(θ) +Φ]

−1gGt (c,γ),

which explicitly acknowledges that gGt (c,γ) is generally a noisy estimate of gt. We shall

recall this interpretation in section 4.2.

4 Indirect estimation

The impossibility of writing the log-likelihood function of the model of interest in

closed-form, combined with the ease with which we can simulate drawings from it, sug-

gest that the indirect estimation procedures of GT, GMR and Smith (1993) should be

ideally suited for our case (see Gouriéroux and Monfort (1996) for an advanced textbook

discussion). In this context, the most important decision that we have to make is the

choice of auxiliary model. Ideally, our choice should take us close to the situation covered

by Theorem 2 in GT, which loosely speaking says that if the generally unknown score

of the true model, qt(%), is spanned by the pseudo log-likelihood score of the auxiliary

model, st(θ), then indirect estimation will be as efficient as ML. More generally, the lower

the asymptotic residual covariance matrix in the limiting least squares regression of the

(average) log-likelihood score of the true model,
√
T q̄T (%

0), on the (average) modiÞed

score of the auxiliary model,
√
T s̄T [θ(%

0)], the closer the indirect estimator will be to

achieving the asymptotic efficient of ML (see Proposition 7 in CFS and the references

therein). In principle, one way to reach the asymptotic Cramer-Rao bound is to allow

the number of parameters of the auxiliary model to go to inÞnity at a suitable but as yet

unknown rate, as the semi non-parametric procedures recommended by GT are designed

to do. Unfortunately, their methods are not designed to work with large-scale multivari-

ate models involving many parameters of interest, like the ones we analyse in this paper.
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But since the approximate model proposed by HRS also spans the score of the model

of interest in some important limiting cases (see Proposition 1), and it should provide a

rather good approximation to it in more general situations, as the evidence at the end of

section 3.2 suggests, it looks like an ideal candidate for auxiliary model.

4.1 Constrained indirect estimation

Given that the HRS auxiliary model must be estimated subject to inequality con-

straints, which are often binding in practice, we must use the constrained indirect esti-

mation procedures proposed in our earlier work (see CFS), which can handle a mix of

equality and inequality restrictions on θ. More speciÞcally, let µ denote the Kuhn-Tucker

multipliers associated with s constraints implicitly characterised by the vector of functions

h(θ), and deÞne the (scaled) Lagrangian function as

QT (β) = l̄T (θ) + h
0(θ)µ,

where β = (θ0,µ0)0 is an augment parameter vector of dimension d + s. Assuming that

both the average pseudo-log likelihood function l̄T (θ), and the vector of functions h(θ) are

continuously differentiable with respect to θ, the latter with a Jacobian matrix ∂h0(θ)/∂θ

whose rank coincides with the number of effective constraints at θ, the Þrst-order condi-

tions that take into account the inequality constraints h(θ) ≥ 0 will be given by:
∂QT (�β)

∂θ
= m̄T (�β) = 0,

where m̄T (β) is the sample mean of

mt(β) =
∂lt(θ)

∂θ
+
∂h0(θ)
∂θ

µ,

which is the contribution of the tth observation to the modiÞed score of the auxiliary

model. In addition, �β = (�θ
0
, �µ0)0 must satisfy the complementary slackness restrictions

h(�θ
r

T )¯ �µrT = 0,

plus the inequality restrictions h(�θ) ≥ 0 and �µ ≥ 0. Note that the main difference

with the usual unrestricted case is that mt(β) not only depends on the d auxiliary model

parameters θ, but also on the s multipliers µ associated with the restrictions.
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Let us now deÞne

m(%;β) = E [m̄T (β)|%] = E
·
∂ l̄T (θ)

∂θ

¯̄̄̄
%

¸
+
∂h0(θ)
∂θ

µ.

In this context, the Generalised Method of Moments (GMM) version of the inequality

constrained indirect estimator of % is

�%(P) = argmin
%
m0(%; �β) ·P·m(%; �β),

where P is a p.d. weighting matrix of order d. Therefore, our moment conditions nest

the ones employed by GT when there are no constraints, or when they are not binding,

but remain valid even if they are.8

In practice, of course, it is often impossible to obtain m(%;β) in closed form (but

see section 4.2 below). As explained by GT and CFS, though, we can exploit the strict

stationarity and ergodicity of xt to approximate arbitrarily well the required expectations

by their sample analogues in a single but very long realisation of the process {xn(%), n =
1, . . . , T ·H}. In particular, we will have:

m(%;β) = E

µ
∂ l̄T (θ)

∂θ

¯̄̄̄
%

¶
+
∂h0(θ)
∂θ

µ

' 1

T ·H
T ·HX
n=1

∂ ln f [xn(%)|Xn−1(%);θ]
∂θ

+
∂h0(θ)
∂θ

µ = mTH(%;β),

where we can make left and right hand sides arbitrarily close in a numerical sense as

H → ∞. Importantly, since the term [∂h0(�θ)/∂θ]�µ is Þxed across simulations, the only

thing we need to do in practice is to minimise with respect to % the distance between the

average score in the actual sample, s̄T (�θ)/∂θ, which is no longer zero if the some of the

constraints on �θ are binding, and the average score in the simulated samples. Given that

in practice it is of paramount importance to have available a fast and numerically reliable

8Alternatively, we could combine the constrained parameter estimators �θ and Kuhn-Tucker multipliers
�µ to obtain a constrained classical minimum distance indirect estimator of %, which would reduce to the
one proposed by GMR in the unrestricted case. Nevertheless, since we proved in CFS that we can always
Þnd restricted classical minimum distance indirect estimators that are asymptotically equivalent to the
constrained GMM estimators by an appropriate choice of weighting matrix, we shall only consider GMM-
based indirect estimators hereinafter because the computations required to obtain the indirect estimators
are far more costly for the former than for the latter.
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procedure for the computation of the score of the auxiliary model, in Appendix B we

derive analytical formulae for the score of model (8)-(10) that satisfy those requirements.

As we mentioned before, another problem with the garch(1,1)-type formulation in

(10) is that λjt = λj when αj = 0 irrespective of βj, which means that ∂lt(θ)/∂βj = 0

for all j and t. If �αj = 0 ∀j, this is actually a computational blessing in disguise because
we know from Proposition 1 that the binding function is the identity matrix, and the

approximate and true scores coincide, which means that we can safely set �% = �θ. In

contrast, if �αj is strictly positive but small, then βj will be very poorly estimated, which

in turn implies that there will be very little information in the auxiliary model about ρj.

In those cases, we re-estimate the auxiliary model subject to the additional restriction

αj ≥ αminj > 0, where αminj is some small number. Finally, since the pseudo-ML estimators

of θ may not be well behaved when αj + βj > 1 (cf. Lumsdaine (1996)), and we are

assuming a covariance stationary auxiliary model, then we will also impose the restriction

αj + βj ≤ (αj + βj)max ≤ 1.9

Given that the number of auxiliary model parameters coincides with the number of

parameters of the model of interest, d, % is exactly identiÞed from the moments implied

by the modiÞed Þrst-order conditions of the auxiliary model. Therefore, in the absence

of inequality constraints on %, the indirect estimators would be numerically invariant

(for large enough T ) to the choice of weighting matrix, P. Nevertheless, since the same

inequality restrictions that apply to θ apply to % too, the choice of P will sometimes

matter. For that reason, we will optimally choose P to be equal to the inverse of the

asymptotic covariance matrix of
√
Tm̄T (β

0), which can be consistently estimated on the

basis of m̄t(�β) by means of standard techniques.10

9After some experimentation, we recommend αminj = .05 and (αj + βj)
max = .999. Importantly, note

that these choices do not impair the consistency of the constrained indirect estimators of %.
10In addition, by using this optimal weighting matrix, we ensure that the objective function is evenly

scaled across parameters, which improves the numerical properties of the optimisation algorithm even in
those cases in which the inequality restrictions on % do not bind.
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4.2 Sequential indirect estimators

The practical application of the indirect estimators described in the previous section

to large-scale multivariate model must overcome two problems. First, the estimation of

the pseudo-ML parameters θ can become a very time consuming procedure, especially

when N is large, because the dimension of the auxiliary parameter space grows linearly

with N .11 Second, the indirect estimation of % is at least as time consuming because the

dimension of the true parameter space is the same. In some important cases, though,

we can exploit the SF sequential estimators of c, γ and π described before so that the

dimension of the parameter space over which we effectively minimise the GMM criterion

function does not grow with the number of series under consideration.

To see how, it is convenient to fully characterise those sequential estimators. Assuming

for ease of exposition that there are no binding inequality constraints on either úψ or π̈,

the relevant Þrst-order conditions are: l̄cT ( úb, úψ,0)

l̄γT ( úb, úψ,0)

l̄πT ( úb, úψ, π̈)

 = 0,
where lct(θ), lγt(θ) and lπt(θ) are the period t contributions to pseudo log-likelihood

scores corresponding to c, γ and π, respectively. Importantly, note that π must be set

to 0 in the Þrst two blocks of Þrst-order conditions, and to π̈ in the last one. By analogy

with the indirect estimator described in the previous section, we could then estimate %

by minimising the norm of

1

T ·H
T ·HX
n=1


∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]/∂c
∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]/∂γ
∂ ln f [xn(%)|Xn−1(%); úb, úψ, π̈]/∂π

 . (12)

11The most computationally efficient way to increase the pseudo log-likelihood function in (11) starting
from an arbitrary set of parameter values is by means of the EM algorithm in Demos and Sentana (1998)
(see also Sentana (2000)). These authors showed that after just a few very fast iterations, the EM
algorithm takes θ much closer to their pseudo-ML estimators than a quasi-Newton method after many
very slow iterations, especially when the cross-sectional dimension N is large. But since the EM algorithm
slows down substantially when it gets very close to the optimum, they suggested to shift to a quasi-Newton
algorithm after a few iterations. In that context, EM arguments can also be used to obtain convenient
expressions for the value of the score.
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In fact, given that we can use the results in appendix B of SF to write

∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]
∂c

= vec[( úB úB
0
+ úΨ)−1xn(%)x

0
n(%)(

úB úB
0
+ úΨ)

−1 úB

−( úB úB0 + úΨ)−1 úB]

and

∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]
∂γ

=
1

2
vecd[( úB úB

0
+ úΨ)−1xn(%)x

0
n(%)(

úB úB
0
+ úΨ)

−1

−( úB úB0 + úΨ)−1],

we can easily compute the expected values of these scores without resorting to simulations

as

mc(%; úb, úψ,0) = E

(
∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]

∂c

¯̄̄̄
¯%
)

= vec[( úB úB
0
+ úΨ)−1(BB0 +Ψ)( úB úB

0
+ úΨ)

−1 úB− ( úB úB0 + úΨ)−1 úB]

and

mγ(%; úb, úψ,0) = E

(
∂ ln f [xn(%)|Xn−1(%); úb, úψ,0]

∂γ

¯̄̄̄
¯%
)

= vec[( úB úB
0
+ úΨ)−1(BB0 +Ψ)( úB úB

0
+ úΨ)

−1 − ( úB úB0 + úΨ)−1].

However, while it is true that such an alternative indirect estimation procedure would

beneÞt from the simpliÞed estimation of θ, and a faster calculation of mc(%; úb, úψ,0) and

mγ(%; úb, úψ,0), we would still have to minimise the GMM criterion function over %, which

would be very time consuming for large N . Nevertheless, the consistency of úb and úψ

implies that ·
mc( úb, úψ,υ; úb, úψ,0)

mγ( úb, úψ,υ; úb, úψ,0)

¸
= 0

regardless of the garch parameters υ, as long as these moments are well deÞned. This

fact, together with the exact identiÞcation of %, implies that the indirect estimators of b

and ψ based on (12) will in fact coincide with úb and úψ. As a result, the only task left is

to minimise with respect to υ the norm of

mπ( úb, úψ,υ; úb, úψ, π̈) ' 1

T ·H
T ·HX
n=1

∂ ln f [xn( úb, úψ,υ)|Xn−1( úb, úψ,υ); úb, úψ, π̈]/∂π.
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The interpretation of the sequential estimators of the auxiliary model parameter that

we gave at the end of section 3.3 can also be exploited to enhance our understanding

of the sequential indirect estimators that we have just presented. In effect, what we do

is to use the static factor model parameter estimates to construct k portfolios of the

original N assets, gGt ( úb, úψ), which, conditional on those parameter values, contain as

much information about the latent factors as the original series xt. Then, we estimate

garch-type models for gGt ( úb, úψ), and use indirect estimation procedures to adjust for

the fact that π̈ is generally inconsistent for υ. Given that the dimension of υ does not

depend on N , we can use this sequential indirect estimation procedure to handle practical

situations in which the cross-sectional dimension is large (as in Engle (2002)).

5 Monte Carlo Evidence

In this section, we assess the Þnite sample performance of the two indirect estima-

tors that we have proposed in the previous section relative to the full-information and

sequential approximate ML methods of HRS and SF, respectively. Unfortunately, given

that the estimation of these models is computationally rather intensive, we are forced to

consider here a smaller number of series than in many empirical applications. However,

we select the parameter values, and in particular the signal-to-noise ratio, so as to reßect

empirically relevant situations.

We have used the NAG library G05DDF routine to generate 1,600 samples of 1,000

observations each (plus another 100 for initialisation) of a trivariate single factor model,

which is the smallest possible cross-sectional dimension for which the static variance para-

meters can be identiÞed. This sample size corresponds roughly to twenty years of weekly

data or four years of daily data. Since the performance of the different estimators depends

on b and Ψ mostly through the scalar quantity υ = (b0Ψ−1b)−1, the model considered

is:

xit = bift + vit (i = 1, 2, 3)

with b = (1, 1, 1)0, δt = (1 − φ − ρ) + φf2t−1 + ρλt−1 and Ψ =ψI. Therefore, φ, ρ and ψ

are the only relevant parameters as far as the Monte Carlo designs are concerned. In this
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respect, we have considered the same four different combinations of φ and ρ documented

in section 3.2. As for ψ, we have considered three different values for each of those four

combinations. SpeciÞcally, we have chosen ψ =1/3, 1 and 3. In order to understand

these values, it is convenient to look at three different measures of the strength of the

signal relative to the size of the noise. In particular, if we regress the GLS factor, yt,

which due to our balanced design is simply the cross-sectional mean of the x0its, on the

latent factor ft, we would obtain theoretical R2 coefficients of .9, .75 and .5, respectively.

Similarly, the ratios of the unconditional variance of the residual in the previous regression

to the unconditional variance of the latent factor, which trivially coincide with υ, would

be equal to 1/9, 1/3 and 1, respectively. Finally, the correlation between any two of the

three observed series would be .75, .5 and .25. All in all, we have considered 12 different

parameter conÞgurations.12

For scaling purposes, we use c3 = 1, and leave the unconditional variance free. We also

set λ1 to the unconditional variance of the common factor to start up the recursions. In

order to guarantee the positivity and stationarity restrictions, we Þrst optimise the pseudo

log-likelihood function in terms of some unrestricted parameters θ∗, where λ = (λ∗)2,

γi = (γ∗i )
2 (i = 1, 2, 3), α = .999 sin2(α∗) and β = (.999 − α) sin2(β∗), where .999 acts

as our effective upper bound on α + β. Then, we compute the score in terms of the

original parameters θ using the analytical expressions derived in Appendix B to avoid

large numerical errors, and introduce one multiplier for each of the Þrst order conditions,

which take away any slack left. As we explained before, though, if the maximum of the log-

likelihood function happens at α = 0, then there is no need to resort to indirect estimation

procedures in view of Proposition 1, and we simply set �% = �θ. If, on the other hand,

the ML estimate of α is strictly positive but less than αmin, we re-estimate the auxiliary

model subject to the restriction α = αmin by using α = αmin + (.999− αmin) sin2(α∗).
Since there are no closed-form expressions for the expected value of the modiÞed score,

we compute them on the basis of single path simulations of length TH. In order to reduce

the estimation error, we choose H = 100, which implies that all the required moments

12In their Monte Carlo experiments, DMP considered a single signal to noise ratio and two conditional
variance parameter conÞgurations: φ = ρ = 0, and φ = .2 and ρ = .7.
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have been effectively computed on the basis of 100,000 simulated observations. A larger

value of H should in theory slightly reduce the Monte Carlo variability of the indirect

estimators according to the relation (1+H−1), but at the cost of a signiÞcant increase in

the computational burden. Finally, we minimise numerically the GMM criterion function

in terms of some unrestricted parameters %∗, with b3 = 1, b1 and b2 free, δ = (δ∗)2,

ψi = ψ
∗2
i (i = 1, 2, 3), φ = .999999 sin

2(φ∗) and ρ = (.999999− φ) sin2(ρ∗), so as to ensure
that δ ≥ 0, ψi ≥ 0 ∀i, φ, ρ ≥ 0 and φ + ρ ≤ 1. Given that the auxiliary model Þts

the simulated data rather well, in the sense that the score of the auxiliary model is close

to being a vector martingale difference sequence, the optimal weighting matrix has been

estimated as the variance in the original data of the modiÞed score of the auxiliary model

evaluated at the pseudo-ML parameter estimates. In this respect, note that by including

a multiplier in each Þrst order condition, we automatically centre the scores around their

sample mean.

The Þrst thing to note is that the pseudo ML estimators of the auxiliary parameters

α and β reached their lower bounds fairly frequently in some designs, especially when

the true value of ψ was large. For instance, the estimated value of α was less than αmin

8.75% of the time when φ = .1, ρ = .85 and ψ = 3, while β was estimated as 0 in 10%

of the samples when φ = ρ = .4 and ψ = 3. Hence, these results clearly show that

the constrained indirect estimation procedures that we have used are highly relevant in

practice.

Figures 4a to 4d display kernel estimates of the sampling distributions of the joint and

sequential GMM-based indirect estimators of the structural parameters φ and ρ, together

with the two pseudo-ML estimators on which they are based. As for bandwidth, we have

used the automatic choice given in expression (3.29) in Silverman (1986).

The small sample behaviour of the HRS and SF estimators is very much in accordance

with what we have seen in section 3.2. When the signal to noise ratio is high (i.e. ψ = 1/3)

and the unconditional coefficient of variation of the unobserved conditional variance is

low (i.e. φ = .2, ρ = .6, or φ = .1, ρ = .85), the biases in those two estimators are both

very small and indistinguishable from each other. In contrast, when the signal to noise

ratio is low (i.e. ψ = 3) and the unconditional coefficient of variation of the unobserved
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conditional variance is high (i.e. φ = .4, ρ = .4, or φ = .2 and ρ = .75), their biases

become rather noticeable, with neither dominating the other.

It is precisely in those cases that the systematic elimination of the biases achieved

by the joint and sequential indirect estimators is more pronounced.13 At the same time,

it seems that the variability of the two indirect estimators does not increase much with

respect to the approximate pseudo-ML ones, which suggests that we have accurately

estimated the required expectations by simulating 100, 000 observations.

Although the sequential indirect estimator of φ often seems to outperform the cor-

responding joint estimator, at least in terms of sampling variability, the joint indirect

estimator of ρ tends to outperform the sequential estimator across many Monte Carlo de-

signs. Nevertheless, the differences are rather minor, except when the signal to noise ratio

is low. In any case, the important message is that both indirect estimators are consistent

across all Monte Carlo designs.

As for the estimators of the parameters characterising the unconditional covariance

matrix (i.e. factor loadings and idiosyncratic variances), the results presented in Figure 5

clearly indicate that the HRS estimators are very similar to the joint indirect estimators,

even in a case in which the signal to noise ratio is low and the unconditional coefficient of

variation of the unobserved conditional variance is high. At the same time, the sequential

indirect estimators, which are numerically identical to the SF estimators, seem to be less

efficient than the other two, as one would expect from the Monte Carlo results reported

by SF.

Finally, it is worth mentioning that we also considered a third indirect estimation

procedure, which effectively uncouples the modiÞed score generator mt(θ) from the esti-

mator of θ at which the score is evaluated. In particular, we computed indirect estimators

based on the full score of the HRS auxiliary model evaluated at the sequential pseudo-ML

estimators c = úb, γ = úψ and π̈. However, since their sampling distribution always lied

between the distributions of the other two indirect estimators, we decided not to report

13The Þnite sample bias might be reduced even further by using the implicit bias adjustment procedures
discussed by Gouriéroux, Renault and Touzi (2000), either on their own (see Arvanitis and Demos (2003)),
or together with the control variates techniques developed by Calzolari, Di Iorio and Fiorentini (1998).
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them to avoid cluttering unnecessarily the graphs (see section 2.3 of CFS for a theoretical

discussion of such �fully non-optimised� indirect estimators).

6 Conclusions

In this paper, we discuss the application of the indirect estimation procedures pop-

ularised by GMR and GT to conditionally heteroskedastic factor models, in which the

conditional variances of the latent variables are continuous functions of their own past

values, and as such, unobserved by the econometrician. We use the Kalman Þlter-based

approximation proposed by HRS with analytical derivatives as auxiliary model. Impor-

tantly, we employ the constrained indirect estimation procedures introduced in our earlier

work to take into account inequality restrictions on the auxiliary model parameters. We

compare the Þnite sample performance of our proposed estimators relative to the HRS

approximation by means of Monte Carlo methods. Our results suggest that the indi-

rect estimators that we propose consistently estimate the parameters of the conditional

variances of the heteroskedastic factors, eliminating the biases of the approximate ML

methods without simultaneously increasing their sampling variability. However, it should

also be noted that the performance of the pseudo ML estimator of HRS is itself rather

good, except when the signal to noise ratio is low, or the unconditional coefficient of

variation of the volatility of the factors is high.

We have also proposed sequential indirect estimation procedures that can handle large

multivariate models because the effective dimension of the parameter space does not grow

with the number of series under consideration. In this respect, our simulation evidence

suggests that these sequential estimators are another serious competitor for estimating the

conditional variance parameters. In contrast, while the HRS and joint indirect estimators

perform very similarly as far as the unconditional variance parameters (i.e. factor load-

ings and idiosyncratic variances) are concerned, they outperform the sequential indirect

estimators.

We have shown that the main determinants of the asymptotic biases in the approxi-

mate ML estimators proposed by HRS are the signal to noise ratio, and the coefficient of
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variation of the unobserved conditional volatility of the latent factors. Therefore, given

that in many empirical applications it is likely that the signal to noise ratio will be high,

and the conditional variance a fairly smooth process, in practice we would expect those

biases to be small.

Importantly, we also Þnd that even in less realistic parameter conÞgurations the model

proposed by HRS provides a rather accurate approximation to the distribution of the

observable variables conditional on their past values alone. In any case, the MCMC

algorithms in FSS can be easily combined with our indirect estimators to obtain the

exact distribution and moments of the latent variables conditional upon the observed

data.

Finally, it is important to emphasise that although we have concentrated on factor

models for the sake of concreteness, our indirect estimation procedures can be easily

applied to the general class of unobserved component time series models with garch

disturbances analysed by HRS (see Kim and Nelson (1999) for a textbook description).

One potential drawback of our approach is that our auxiliary model exactly identiÞes

the parameters of interest because it was tailor-made to approximate the true one. As a

result, we cannot use the optimum value of the GMM estimation criterion to assess the

adequacy of the true model to the data. In this context, one attractive way to generate

testable overidentifying restrictions without re-estimating the HRS auxiliary model would

be to artiÞcially nest it into an augmented model, and to add the Lagrange multipliers

associated with the implicit equality restrictions, as suggested by CFS. For instance, we

could replace the Gaussian-based log-likelihood in (11) by a generalised hyperbolic-based

function, and use the scores underlying the multivariate asymmetric and kurtosis tests in

Fiorentini, Sentana and Calzolari (2003) and Mencía and Sentana (2004) as additional

moment conditions. Although we know from Proposition 8 in CFS that the resulting

indirect estimators would be at least as asymptotically efficient as the ones that we have

considered, their Þnite sample behaviour constitute an interest topic for further research.
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Appendix

A Proof of Proposition 1

For the sake of brevity, the proof will be developed for the following univariate model:

yt = ft + ηt

where µ
ft
ηt

¶
|It−1 ∼ N

½µ
0
0

¶
,

·
1 + φ(f2t−1 − 1) 0

0 υ

¸¾
,

and φ ≥ 0, υ ≥ 0. Nevertheless, it can be tediously extended to cover the general case.
Let p(yt|Yt−1;%) denote the conditional density of yt given Yt−1 = {yt−1, yt−2, . . .} and

the parameters % = (υ,φ)0. The log-likelihood function of a sample of size T on yt,

y = (y1, . . . , yT )
0 cannot be written in closed except when φ = 0 and/or υ = 0. In

particular, when φ = 0, we just have the log-likelihood function of an i.i.d. N(0, 1 + υ)

process, while when υ = 0, we will have the log-likelihood function of a univariate arch(1)

model with unit unconditional variance.

In contrast, the joint log-likelihood function of y and the latent factors f = (f1, . . . , fT )0

can always be trivially written as the sum of the marginal log-likelihood function of f and

the conditional log-likelihood of y given f , where (ignoring initial conditions)

ln p(y|f ;%) = −T
2
ln 2π − T

2
ln υ − 1

2

TX
t=1

(yt − ft)2
υ

, (13)

and

ln(f |%) = −T
2
ln 2π − 1

2

TX
t=1

½
ln[1 + φ(f2t−1 − 1)] +

f2t
1 + φ(f2t−1 − 1)

¾
. (14)

Let

q̄T (%) =
1

T

TX
t=1

qt(yt|Yt−1;%)

denote the sample average of the score of the marginal log-likelihood function of y, where

qt(yt|Yt−1;%) =∂ ln p(yt|Yt−1;%)
∂%
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represents the contribution to the score function from observation t. Although qt(yt|Yt−1;%)
cannot generally be obtained in closed form, the well-known Kullback inequality implies

that

E

·
∂ ln p(f |y;%)

∂%

¯̄̄̄
y;%

¸
= 0.

As a result, q̄T (%) can be obtained as the expected value given y and % of the sample

average of the unobservable scores corresponding to ln p(y|f ;%) and ln p(f |%). SpeciÞcally,
assuming that υ > 0, this yields

q̄υT (%) =
1

2T

1

υ

TX
t=1

E

·
(yt − ft)2

υ
− 1
¯̄̄̄
y;%

¸
,

and

q̄φT (%) =
1

2T

TX
t=1

E

½
f2t−1 − 1

1 + φ(f2t−1 − 1)
·

f2t
1 + φ(f2t−1 − 1)

− 1
¸¯̄̄̄
y;%

¾
.

Then, we can use the MCMC procedures proposed by FSS, which draw samples of f

given y and %, to compute these expected values by simulation. However, it is straight-

forward to prove that when φ = 0

q̄υT (υ,φ=0) =
1

2T

1

(1 + υ)

TX
t=1

µ
y2t
1 + υ

− 1
¶

and

q̄φT (υ,φ=0) =
1

2T

1

(1 + υ)2

TX
t=1

µ
y2t−1
1 + υ

− 1
¶µ

y2t
1 + υ

− 1
¶
,

because

ft|(y; υ,φ=0) ∼ i.i.d. N
µ

yt
1 + υ

,
υ

1 + υ

¶
.

Consider now the following auxiliary model

yt = gt + ζt,

whereµ
gt
ζt

¶
|It−1 ∼ N

(µ
0
0

¶
,

"
1 + α

h
g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1

i
0

0 ϕ

#)
,

gt|t(θ) =
1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1]

1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1] + ϕ
· yt,

ωt|t(θ) =
1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1]

1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1] + ϕ
· ϕ,
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and α ≥ 0, ϕ ≥ 0. Since this model is a rather special case of (8)-(10) we can use the

expressions in Appendix B to compute its score. Tedious but straightforward algebra then

shows that

s̄ϕT (ϕ,α=0) =
1

2T

1

(1 + ϕ)

TX
t=1

µ
y2t
1 + ϕ

− 1
¶
,

and

s̄αT (ϕ,α=0) =
1

2T

1

(1 + ϕ)2

TX
t=1

µ
y2t−1
1 + ϕ

− 1
¶µ

y2t
1 + ϕ

− 1
¶
.

Hence, it is clear that this auxiliary model smoothly embeds the true model at α = φ = 0

and ϕ = υ. ¤
A similar argument can be used to show that

s̄αT (ϕ=0,α=φ) = q̄φT (υ=0,φ),

which is not very surprising given that

ln p(yt|Yt−1; υ = 0,φ) = lt(ϕ = 0,α = φ)

for every possible value of φ.

Unfortunately, it is not possible to obtain closed-form expressions for

q̄υT (υ=0,φ) = lim
υ→0

q̄υT (%) = lim
υ→0

1

2T

1

υ

TX
t=1

E

·
(yt − ft)2

υ
− 1
¯̄̄̄
y; υ,φ

¸
except when φ = 0, so we cannot prove in this way whether or not

s̄ϕT (ϕ=0,α=φ) = q̄υT (υ=0,φ).

B The score of the HRS approximate likelihood func-
tion

Bollerslev and Wooldridge (1992) show that the score function st(θ) =∂lt(θ)/∂θ of

any multivariate conditionally heteroskedastic dynamic regression model with conditional

mean vector µt(θ) and conditional covariance matrix Σt(θ) is given by the following

expression:

st(θ) =
∂µ0t(θ)
∂θ

Σ−1t (θ)[xt −µt(θ)]

+
1

2

∂vec0 [Σt(θ)]
∂θ

[Σt(θ)⊗Σt(θ)] vec {[xt −µt(θ)][xt − µt(θ)]0 −Σt(θ)} .
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In our case, the Þrst term disappears because µt(θ) = 0. As for the second, given

that the differential of Σt is

d(CΛtC
0 + Γ) =d(C)ΛtC0 +Cd(Λt)C0 +CΛtd(C0) + d(Γ), (15)

(cf. Magnus and Neudecker (1988)), we have that Jacobian of Σt(θ) corresponding to

c,γ and π will be:

∂vec0 [Σt(θ)]
∂θ

=

 [IN ⊗Λt(θ)C0](IN2 +KNN)
E0N
0

+ ∂λ0t(θ)
∂θ

E0k(C
0 ⊗C0),

where En is the unique n2 × n �diagonalisation� matrix which transforms vec(A) into
vecd(A) as vecd(A) = E0nvec(A), and Kmn is the commutation matrix of orders m and

n (see Magnus (1988)).

After some straightforward algebraic manipulations, we get:

st(θ) =

 vec
£
Λt(θ)C

0Σ−1t (θ)xtx
0
tΣ

−1
t (θ)−Λt(θ)C0Σ−1t (θ)

¤
1
2
vecd

£
Σ−1t xtx

0
tΣ

−1
t (θ)−Σ−1t (θ)

¤
0


+
1

2

∂λ0t(θ)
∂θ

vecd
£
C0Σ−1t (θ)xtx

0
tΣ

−1
t (θ)C−C0Σ−1t (θ)C

¤
.

If γ > 0, we can use the Woodbury formula to prove that

Λt(θ)CΣ
−1
t (θ)xtx

0
tΣ

−1
t (θ)−Λt(θ)CΣ−1t (θ)

=
n
gt|t(θ)x

0
t −

h
gt|t(θ)g

0
t|t(θ) +Ωt|t(θ)

i
C0
o
Γ−1,

Σ−1t (θ)xtx
0
tΣ

−1
t (θ)−Σ−1t (θ)

= Γ−1
©
[xt −Cgt|t(θ)][xt −Cgt|t(θ)]0 +CΩt|t(θ)C0 − Γ

ª
Γ−1,

and

C0Σ−1t (θ)xtx
0
tΣ

−1
t (θ)C−C0Σ−1t (θ)C

= Λ−1t (θ)
nh
gt|t(θ)g

0
t|t(θ) +Ωt|t(θ)

i
−Λt(θ)

o
Λ−1t (θ).

In view of (10), the expressions for ∂λjt(θ)/∂θ will be:

∂λjt(θ)

∂θ
= αj

·
2gjt−1|t−1(θ)

∂gjt−1|t−1(θ)
∂θ

+
∂ωjjt−1|t−1(θ)

∂θ

¸
+ βj

∂λjt−1(θ)
∂θ

+
∂$j(θ)

∂θ
+ [g2jt−1|t−1(θ) + ωjjt−1|t−1(θ)]

∂αj
∂θ

+ λjt−1(θ)
∂βj
∂θ0

,
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where $j(θ) = (1− αj − βj)λj.
Now, given that

Ωt|t(θ) =
¡
C0Γ−1C+Λ−1t

¢−1
when Γ has full rank, the differential of Ωt|t will be −Ωt|td

¡
C0Γ−1C+Λ−1t

¢
Ωt|t, where

d
¡
C0Γ−1C+Λ−1t

¢
= d(C0)Γ−1C+C0Γ−1d(C)−C0Γ−1d(Γ)Γ−1C−Λ−1t d(Λt)Λ−1t .

Then, if we call ωt|t = vech(Ωt|t) = D+
k vec(Ωt|t), where Dk is the duplication matrix

of order k and D+
k its Moore-Penrose inverse, after some algebraic manipulations we will

have that

∂ω0t|Xt
∂θ

=

 −2[Γ−1CΩt|t(θ)⊗Ωt|t]
E0N [Γ

−1CΩt|t(θ)⊗ Γ−1CΩt|t(θ)]
0


+
∂λ0t(θ)
∂θ

E0k[Λ
−1
t Ωt|t(θ)⊗Λ−1t Ωt|t(θ)]

¸
D+0
k .

Similarly, since

gt|t(θ) = Ωt|tC0Γ−1xt

when Γ has full rank, the differential of gt|t is given by

dgt|t = d(Ωt|t)C0Γ−1xt +Ωt|td(C0)Γ−1xt −Ωt|tC0Γ−1d(Γ)Γ−1xt.

As a result, we will have that

∂g0t|t
∂θ

=

 [Γ−1xt ⊗Ωt|t(θ)]
−E0N [Γ−1xt ⊗ Γ−1CΩt|t(θ)]

0

+ ∂ω0t|t(θ)
∂θ

D0
k(C

0Γ−1xt ⊗ Ik).

If γ ≯ 0, though, the above expressions become invalid. Nevertheless, appropriately

modiÞed expressions can be developed along the lines of Sentana (2000). For the sake

of brevity, we only obtain the score when there are as many Heywood cases as factors.

To do so, let us partition the original set of variables in two subsets, say xat and xbt, of

dimensions k and N − k respectively. With this notation, we can re-write the original
model as µ

xat
xbt

¶
=

µ
Ca
Cb

¶
gt +

µ
wat
wbt

¶
,
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where  gt
wat
wbt

 |Xt−1 ∼ N
 0

0
0

 ,
 Λt 0 0

0 Γa 0
0 0 Γb

 .
In this context, it is convenient to factorise the joint log-likelihood function of xat

and xbt (given Xt−1) as the marginal log-likelihood function of xat (given Xt−1) plus the

conditional log-likelihood function of xbt given xat (and Xt−1). More formally, we can

write

lt(θ) = lat(θ) + lbt|at(θ),

so that

st(θ) = sat(θ) + sbt|at(θ).

The two log-likelihood components will be given by

lat(θ) =− k
2
log 2π − 1

2
log |Σat|− 1

2
x0atΣ

−1
at xat,

and

lbt|at(θ) = −N − k
2

log 2π − 1
2
log
¯̄
Σbt|at(θ)

¯̄− 1
2
εbt|at(θ)0Σ−1bt|at(θ)εbt|at(θ),

where

Σat(θ) = V (xat|Xt−1;θ) = CaΛtC0a + Γa,
εbt|at(θ) = xbt −µbt|at(θ),
µbt|at(θ) = E(xbt|xat, Xt−1;θ) = Cbtgt|at,
gt|at(θ) = E(gt|xat,Xt−1;θ) = ΛtC0aΣ−1at xat,
Σbt|at(θ) = E(gt|xat,Xt−1;θ) = CbΩt|atC0b + Γb,

and

Ωt|at(θ) = V (gt|xat,Xt−1;θ) = Λt −ΛtC0aΣ−1at CaΛt.

Hence, if we partition c and γ as (c0a, c
0
b)
0 and (γ0a,γ

0
b) respectively, where ca = vec(C

0
a),

cb = vec(C
0
b), γa = vecd(Γa), and γb = vecd(Γb), then we can use the expressions derived
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before to Þnd

sat(θ) =


vec

£
Λt(θ)C

0
aΣ

−1
at (θ)xatx

0
atΣ

−1
at (θ)−Λt(θ)C0aΣat(θ)

¤
0

1
2
vecd

£
Σ−1at (θ)xatx

0
atΣ

−1
at (θ)−Σ−1at (θ)

¤
0
0


+
1

2

∂λ0t(θ)
∂θ

vecd
£
C0aΣ

−1
at (θ)xatx

0
atΣ

−1
at (θ)Ca −C0aΣ−1at (θ)Ca

¤
.

In order to obtain sbt|at(θ), though, we Þrst need to Þnd the Jacobian matrices

∂µbt|at(θ)/∂θ
0 and ∂vec[Σbt|at(θ)]/∂θ

0. Straightforward algebra shows that

∂µ0bt|at(θ)

∂θ
=
∂c0b
∂θ
[IN−k ⊗ gt|at(θ)] +

∂g0t|at(θ)

∂θ
C0b

and

∂vec0
£
Σbt|at(θ)

¤
∂θ

=


0

[IN ⊗Ωbt|at(θ)C0b](I(N−k)2k2 +K(N−k)k,(N−k)k)
0

E0N−k
0


+
∂ω0bt|at(θ)

∂θ
D0
k(C

0
b ⊗C0b).

Hence,

sbt|at(θ) =
∂g0t|at(θ)

∂θ
C0bΣ

−1
bt|at(θ)εbt|at(θ)

+



0

vec

"
Σ−1bt|at(θ)εbt|at(θ)g

0
t|at(θ)

+Σ−1bt|at(θ)ε
0
bt|at(θ)εbt|at(θ)Σ

−1
bt|at(θ)CbΩt|at(θ)−Σ−1bt|at(θ)CbΩt|at(θ)

#
0

1
2
vecd

h
Σ−1bt|at(θ)εbt|at(θ)ε

0
bt|at(θ)Σ

−1
bt|at(θ)−Σ−1bt|at(θ)

i
0


+
1

2

∂ω0bt|at(θ)

∂θ
D0
kvec

h
C0bΣ

−1
bt|at(θ)εbt|at(θ)ε

0
bt|at(θ)Σ

−1
bt|at(θ)Cb −C0bΣ−1bt|at(θ)Cb

i
.

In this case, the differential of gt|at(θ) will be

d(gt|at) = d(Λt)C0aΣ
−1
at xat +Λtd(C

0
a)Σ

−1
at xat −ΛtC0aΣ−1at d(Σat)Σ−1at xat,
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where d(Σat) is analogous to (15). As a result,

∂g0t|at(θ)

∂θ
=


[Σ−1at (θ)xat ⊗Ωt|at(θ)]− [Σ−1at (θ)CaΛt(θ)⊗ gt|at(θ)]

0
−E0k[Σ−1at (θ)xat ⊗Σ−1at (θ)CaΛt(θ)]

0
0


+
∂λ0t(θ)
∂θ

E0k
£
[gt|at(θ)⊗ Λ−1t (θ)Ωt|at(θ)

¤
.

Similarly, the differential of Ωt|at(θ) will be given by

d(Ωt|at) = d(Λt)− d(Λt)C0aΣ−1at CaΛt −Λtd(C0a)Σ−1at CaΛt +ΛtC0aΣ−1at d(Σat)Σ−1at CaΛt
−ΛtC0aΣ−1at d(Ca)Λt −ΛtC0aΣ−1at Cad(Λt).

Hence,

∂ω0t|at(θ)

∂θ
=




−2[Σ−1at (θ)CaΛt ⊗Ωt|at(θ)]
0

−E0k[Σ−1at (θ)CaΛt ⊗Σ−1at (θ)CaΛt]
0
0


+
∂λ0t(θ)
∂θ

E0k{
©£
Λ−1t (θ)Ωt|at(θ)⊗ Ik

¤− £C0aΣ−1at CaΛt(θ)⊗ Λ−1t (θ)Ωt|at(θ)¤ª¸D0
k.

Finally, we need to obtain ∂g0t|t(θ)/∂θ and ∂ω
0
t|t(θ)/∂θ. But since

gt|t(θ) = gt|at(θ) +Ωt|at(θ)C0bΣ
−1
bt|at(θ)εbt|at(θ)

and

Ωt|t(θ) = Ωt|at(θ)−Ωt|at(θ)C0bΣ−1bt|at(θ)CbΩt|at(θ),

we can obtain the required derivatives by combining the previous expressions.

Fortunately, all the above formulae simplify considerably when Γa = 0. SpeciÞcally,

letûθ denote the value of θ when γa = 0. Then, it is immediate to see that

Σat(ûθ) = CaΛtC
0
a,

gt|at(ûθ) = C−1a xat,

and Ωt|at(ûθ) = 0, so that εbt|at(ûθ) = xbt −C∗bxat, with C∗b = CbC−1a , and Σbt|at(ûθ) = Γb.
Moreover,

Σat(ûθ)xatx
0
atΣat(ûθ)−Σat(ûθ) = C0−1a Λ−1t (ûθ)

h
gt|at(ûθ)g0t|at(ûθ)−Λt(ûθ)

i
Λ−1t (ûθ)C

−1
a .
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As a result, we can write

sat(ûθ) =


vec

h³
gt|atg0t|at −Λt

´
Λ−1t C

−1
a

i
0

1
2
vecd

h
C0−1a Λ−1t

³
gt|atg0t|at −Λt

´
Λ−1t C

−1
a

i
0
0

+
1

2

∂λ0t(ûθ)
∂θ

vecd
£
Λ−1t

¡
gt|atg0t|at −Λt

¢
Λ−1t

¤
and

sbt|at(ûθ) =



−vec[C∗0b Γ−1b εbt|at(ûθ)g0t|at(ûθ)]
vec[Γ−1b εbt|at(ûθ)g

0
t|at(ûθ)]n

1
2
vecd{C∗0b Γ−1b [εbt|at(ûθ)ε0bt|at(ûθ)− Γb]Γ−1b C∗0b }
−E0k[C∗0b Γ−1b εbt|at(ûθ)g0t|at(ûθ)Λ−1t C−1a

o
1
2
vecd{Γ−1b [εbt|at(ûθ)ε0bt|at(ûθ)− Γb]Γ−1b }

0


.

Finally, we obtain

∂g0t|t(ûθ)

∂θ
=
∂g0t|at(ûθ)

∂θ
+
∂ω0t|at(ûθ)

∂θ
Dk[C

∗0
b Γ

−1
b εbt|at(ûθ)⊗ Ik],

and
∂ω0t|t(ûθ)

∂θ
=
∂ω0t|at(ûθ)

∂θ
,

where

∂g0t|at(ûθ)

∂θ
=


−[C−10a ⊗ g0t|at(ûθ)]

0

E0k[C
−10
a Λ−1t gt|at(ûθ)⊗C−10a ]

0
0


and

∂ω0t|at(ûθ)

∂θ
=


0
0

E0k(C
−10
a ⊗C−10a )
0
0

DK.

Although these expressions are strictly speaking only valid when the idiosyncratic

variances are identically 0, in practice, we recommend their use whenever the γ0js are less

than .0001 because the expressions obtained for γ > 0 become numerically unreliable for

smaller values.
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Finally, it is worth mentioning that if we Þx the factor scales by setting cjj = 1

as opposed to λj = 1 for j = 1, . . . , k , then we must exclude the elements of the score

corresponding to those factor loadings, and replace them with the derivatives with respect

to λj, which can be trivially found from the previous expressions because the unconditional

variance parameters only appear directly in the expression for the pseudo log-likelihood

function lt(θ) in (11) through$j(θ), which is the constant term in the conditional variance

expressions. Either way, since we initialise the conditional variances of the factors with

Λ1 = E(Λt) = Λ, then we must always start up the derivative recursions with ∂λj1/∂θ
0 =

∂λ/∂θ0.
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FIGURE 1: Asymptotic biases in HRS estimators of conditional variance parameters
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FIGURE 2: Comparison of the p.d.f. of the GLS factor representing portfolios given their past values and parameters with the 
HRS Kalman filter-based Gaussian approximation for different parameter configurations
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FIGURE 4B: Monte Carlo Distribution of conditional variance parameters estimators. (bi=1; φ=.4; ρ=.4)



0 0.2 0.4 0.6 0.8 1
0

5

10

15

Estimators of φ       (ψi=1/3)

HRS Auxiliary
Joint I.E.
SF Auxiliary
Sequential I.E. 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Estimators of ρ       (ψi=1/3)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Estimators of φ       (ψi=1)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

Estimators of ρ       (ψi=1)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Estimators of φ       (ψi=3)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Estimators of ρ       (ψi=3)

FIGURE 4C: Monte Carlo Distribution of conditional variance parameters estimators. (bi=1; φ=.1; ρ=.85)
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FIGURE 4D: Monte Carlo Distribution of conditional variance parameters estimators. (bi=1; φ=.2; ρ=.75)
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