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1 Introduction

The return mean-variance frontier (RMVF) originally proposed by Markowitz (1952) is

widely regarded as the cornerstone of modern investment theory. Similarly, the stochastic

discount factor mean-variance frontier (SMVF) introduced by Hansen and Jagannathan

(1991) represents a major breakthrough in the way Þnancial economists look at data on

asset returns to discern which asset pricing theories are not empirically falsiÞed. Somewhat

remarkably, it turns out that both frontiers are intimately related, as they effectively

summarise the sample information about the Þrst and second moments of asset payoffs.

In this context, tests for spanning in the RMVF and SMVF try to answer a very

simple question: does the relevant frontier remain unchanged after increasing the number

of assets that we analyse? And although the answer has to be the same for both frontiers,

the implications of spanning are different. When we consider the RMVF, we want to

assess if the exclusion of some assets reduces the risk-return trade-offs faced by investors,

while when we study the SMVF, we want to determine if the additional assets impose

tighter restrictions on asset pricing models. It is perhaps not surprising that there is a

strand of the literature that develops tests for spanning in the RMVF (see Huberman and

Kandel (1987) and Ferson, Foerster and Keim (1993)), and another one that develops tests

for spanning in the SMVF (see De Santis (1993, 1995) and Bekaert and Urias (1996)).

Despite their different motivation, both approaches are systematically used in numer-

ous empirical studies of (i) mutual fund performance evaluation (see De Roon and Nijman

(2001) for a recent survey); (ii) gains from portfolio diversiÞcation, often arising from

cross-border investments (Errunza, Hogan and Hung (1999)), but also accruing from non-

Þnancial assets such as real estate (Stevenson (2001)), or human capital (Palacios-Huerta

(2003)); and (iii) risk premia restrictions imposed by linear factor pricing models (see e.g.

Campbell, Lo and MacKinlay (1996) or Cochrane (2001) for textbook treatments).

Nevertheless, given the duality of the two frontiers, it is possible to develop spanning

tests that are not tied down to the speciÞc properties of either frontier. In particular,

since both frontiers are spanned by the cost and mean representing portfolios (RP�s) intro-

duced by Chamberlain and Rothschild (1983), one can simply test if these two portfolios

are shared by the initial and extended sets of assets. This is precisely the approach that

we follow. An important advantage of our approach is that we can directly apply Hansen�s
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(1982) generalised method of moments (GMM) without introducing any nuisance para-

meters because those RP�s are deÞned in terms of uncentred moment conditions.

Given that Chamberlain and Rothschild (1983) considered cost and mean RP�s de-

Þned in terms of central moments too, we also develop alternative testing procedures based

on these centred portfolios. This second approach, though, requires the introduction of

additional moment conditions that deÞne the mean returns as nuisance parameters. Un-

fortunately, the joint covariance matrix of the augmented set of moment conditions turns

out to be singular in the population, although not necessarily in the sample, which compli-

cates GMM inference. For that reason, we extend the theory of optimal GMM estimation

in Hansen (1982) to those non-trivial situations in which the estimating functions have a

singular covariance matrix along an implicit manifold in the parameter space that contains

the true value. For the beneÞt of practitioners, we also suggest sensible consistent Þrst-

step parameter estimators that can be used to obtain consistent estimates of the optimal

GMM weighting matrices with potentially better Þnite sample properties. The choice

of Þrst-step estimators is particularly important in our singular GMM set-up to avoid

asymptotic discontinuities in the distributions of the estimators and testing procedures.

In addition, we compare our proposed tests to the extant spanning tests, and show that

the parametric restrictions are equivalent, which was known of the existing procedures.

More importantly, we also show that all the tests are asymptotically equivalent under

the null and compatible sequences of local alternatives, despite the fact that the number

of parameters and moment conditions can be different, although the number of degrees

of freedom is the same. In this respect, we would like to emphasise that we obtain our

novel asymptotic equivalence results under fairly weak assumptions on the distribution of

asset returns. In particular, we do not require that returns are independent or identically

distributed (i.i.d.) as Gaussian random vectors. We also present a comparison of the power

against Þxed alternatives of the new and existing testing procedures by using Bahadur�s

notion of asymptotic relative efficiency studied by Geweke (1981).

Finally, we apply our testing procedures to shed some light on the important ques-

tion of whether the elimination of intra-European exchange rate risk resulting from the

European Monetary Union (EMU) has had any effect on global investors, given that it

has limited the extent to which they can internationally diversify their portfolios across
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different currencies. We do so by testing if the opportunity set of investors who diversify

their holdings across the most important developed countries was the same (in a mean-

variance sense) in the pre-EMU era with and without the assets of several of the current

EMU members. We concentrate on the very short end of the term structure, which is the

only case in which a truly PanEuropean interbank money market has been created.

The rest of the paper is as follows. In section 2, we introduce the required mathematical

structure, while in section 3 we present our solution for optimal GMM inference with a

singular covariance matrix. This section is written so that readers who are not interested

in spanning tests can apply it to other problems, while those who are not interested in

GMM inference can go directly to the new spanning tests proposed in section 4. Then, we

describe the existing spanning tests in section 5, and devote section 6 to the asymptotic

comparison of all the tests. Finally, we present our empirical application to the Euro zone

money markets in section 7, and summarise our conclusions in section 8. The proofs of

our main results are in the appendix, while the rest are available on request.

2 Theoretical background

In this section, we Þrst describe the RP�s introduced by Chamberlain and Rothschild

(1983), which we then use to characterise the RMVF and SMVF.

2.1 Cost and Mean Representing Portfolios

Consider an economy with a Þnite number N of primitive risky assets whose random

payoffs are deÞned on an underlying probability space. Let R = (R1, . . . , RN)0 denote the

vector of gross returns on those assets, with Þrst and second uncentred moments given

by ν and Γ, respectively. We assume that these moments are bounded, which implies

that Ri ∈ L2 (i = 1, . . . , N), where L2 is the collection of all random variables deÞned on
the underlying probability space with bounded second moments. We can then obtain the

covariance matrix of the primitive asset returns, Σ say, as Γ− νν 0, which we assume has
full rank. This implies that none of the primitive assets is either riskless or redundant,

and consequently, that it is not possible to generate a riskless portfolio from R, other

than the trivial one.1 We also assume that not all expected returns are the same.2

1Spanning tests in the presence of a safe asset are studied in Peñaranda and Sentana (2004).
2See Peñaranda and Sentana (2004) for a brief discussion of the equal expected returns case.
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Let PN be the set of the payoffs from all possible portfolios of the N original assets,

which is given by the linear span of R, hRi. Therefore, the elements of PN will be of the
form p =

PN
i=1 ωiRi = ω

0R, whereω = (ω1, . . . , ωN)0 ∈ RN is a vector of portfolio weights.
There are at least three characteristics of portfolios in which investors are interested:

their cost, the expected value of their payoffs, and their variance, which will be given by

C(p) = ω0+N , E(p) = ω0ν and V (p) = ω0Σω respectively, where +N is a vector of N ones,

which reßects the fact that we have normalised the price of all the original assets to 1.3

Since PN is a closed linear subspace of L2, it is also a Hilbert space under the mean square
inner product, E(xy), and the associated mean square norm

p
E(x2), where x, y ∈ L2.

Such a topology allows us to deÞne the least squares projection of any q ∈ L2 onto PN ,
P (q|PN), as the element of PN that is closest to q in the mean square norm. SpeciÞcally:

P (q|PN) = E(qR)E−1(RR0)R. (1)

In this context, we can formally understand C(.) and E(.) as linear functionals that

map the elements of PN onto the real line. Since E(p2) ≥ E2(p) by the Markov inequality,
the expected value functional is always continuous on L2. Similarly, our full rank assump-

tion on Σ implies that Γ has full rank too, and consequently, that the cost functional is

also continuous on PN , which is tantamount to the law of one price. The Riesz represen-
tation theorem then implies that there exist two unique elements of PN that represent

these functionals over PN (see Chamberlain and Rothschild (1983)). In particular, the
uncentred cost and mean RP�s, p∗ and p+, respectively, will be such that:

C(p) = E(p∗p) and E(p) = E(p+p) ∀p ∈ PN .

It is then straightforward to show that

p∗ = φ∗0R = +0NΓ
−1R,

p+ = φ+0R = ν 0Γ−1R.
(2)

If PN included a unit payoff, then p+ would coincide with it. But even though it does
not, it follows from (1) that p+ = P (1|PN). To interpret p∗, it is convenient to recall
that a stochastic discount factor (SDF), m say, is any scalar random variable deÞned on

the same underlying probability space which prices assets in terms of their expected cross

3The case of arbitrage (i.e. zero-cost) portfolios is studied in Peñaranda and Sentana (2004).
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product with it. For instance, in a complete markets set-up, m would correspond to the

price of each Arrow-Debreu security divided by the probability of the corresponding state.

But whatever m is, we can again use (1) to interpret p∗ as P (m|PN). In addition, since
C(1) = E(1 ·m) = c say, the expected value ofm deÞnes the shadow price of a unit payoff.
Since C(p∗) = E(p∗2) > 0, we can always deÞne an associated return R∗ as p∗/C(p∗).

Similarly, we can usually deÞne R+ as p+/C(p+), except when p∗ and p+ are orthogonal,

which in view of our assumptions happens if and only if a = cov(p∗∗, p++) = ν 0Σ−1+N = 0.

Finally, Chamberlain and Rothschild (1983) show that an alternative valid topology

on PN can be deÞned with covariance as inner product and standard deviation as norm
when there is not a safe asset in PN .4 Hence, we could also represent the two functionals
by means of two alternative centred RP�s, p∗∗ and p++ in PN , such that

C(p) = Cov(p∗∗, p) and E(p) = Cov(p++, p) ∀p ∈ PN .

Not surprisingly,

p∗∗ = ϕ∗0R = +0NΣ
−1R = p∗ + ap+,

p++ = ϕ+0R = ν 0Σ−1R = (1 + b)p+,
(3)

where b = V (p++) = ν 0Σ−1ν. We can then deÞne the return associated with p∗∗ as R∗∗ =

+0NΣ
−1R/(+0NΣ

−1+N), which coincides with the minimum variance return. Similarly, we

can also deÞne R++ as p++/C(p++) = p+/C(p+) = R+ if (and only if) a 6= 0.5

2.2 SDF and Return Mean-Variance Frontiers

The SMVF, or Hansen and Jagannathan (1991) frontier, is the set of admissible SDF�s

with the lowest variance for a given mean. Therefore, its elements solve the programme

min
m∈L2

V (m) s.t. E(m) = c, E(mR) = +N , c ∈ R+.

If there were a safe asset with gross return c−1, the only SMVF portfolio would be

mMV (c) = c+ β(c)0(R− ν) = α(c) + β(c)0R,
β(c) = Σ−1(+N − cν) = φ∗ − α(c)φ+, α(c) = c− β(c)0ν.

4If 1∈ PN , then the covariance and standard deviation would only constitute a proper metric over the
orthogonal complement to the safe portfolio in PN , UN say (see Chamberlain and Rothschild (1983)).

5When a= 0, both p+ and p++ are arbitrage portfolios, which means that neither R+ nor R++ can
be deÞned. In addition, p∗∗ = p∗, so that R∗∗ = R∗.

5



But even though no safe asset exists, we can trace the SMVF by computing the above

expression for any c ≥ 0. It is sometimes more convenient to write mMV (c) as:

mMV (c) = p∗ + α(c)(1− p+) = p∗∗ + cp++ + α(c),

which shows that all the elements of the SMVF are portfolios spanned by p∗ and 1− p+

alone. Note, however, that mMV (c) /∈ PN except for p∗. Graphically, p∗ is the element
on the SMVF that is closest to the origin because it has the lowest second moment (see

Hansen and Jagannathan (1991)).

The RMVF, or Markowitz (1952) frontier, is the set of feasible unit-cost portfolios that

have the lowest variance for a given mean. Therefore, its elements solve the programme

min
p∈hRi

V (p) s.t. E(p) = ν, C(p) = 1, ν ∈ R.

As shown by Hansen and Richard (1987), the RMVF portfolios will be:

RMV (ν) = R∗ + p# · [ν −E(R∗)]/E(p#),

where p# = p+ − C(p+)R∗, as long as not all νi are equal, which we are assuming
throughout. Thus, the RMVF will also be spanned by p∗ and p+. Graphically, R∗ is the

element of the RMVF that is closest to the origin because it has the minimum second

moment, while R+ is the point of tangency of the frontier with a ray from the origin.

Given the expressions above, it is easy to show that

mMV (c)− α(c) = p∗ − α(c)p+ = β0(c)R,

so that if we subtract from mMV (c) its position on the unit payoff, and compute the

corresponding return, then we will generally Þnd an element on the RMVF. However,

there are some exceptions to such a duality. In particular, we can go from RMV (ν) to

mMV (c) for any return belonging to the RMVF except R+. The reason is that R+ is the

return to p+, while mMV (c) always holds a unit position on p∗. However, we can still

establish a relationship by using a limiting argument. In particular

lim
c→∞

E

·
mMV (c)

c
− (1 + b)(1− p+)

¸2
= 0,

which deÞnes the behaviour of the asymptotes of the SMVF frontier, whose slope is
√
b.

Similarly, we can go from mMV (c) to RMV (ν) for any point on the SMVF except for

c = a−1c, where c= V (p∗∗) = +0NΣ
−1+N . The problem is that mMV (a−1c) holds an

arbitrage position of risky assets, for which there is no counterpart in the usual RMVF.

6



3 Econometric Methods

We begin by brießy reviewing the inference methods proposed by Hansen (1982),

which allows us to introduce all the relevant notation and assumptions required in our

extension to those cases in which the covariance matrix of the estimating functions is

singular along an implicit manifold in the parameter space. Those readers who are not

interested in GMM inference can go directly to our proposed spanning tests in section 4.

3.1 GMM inference procedures

Let {xt}Tt=1 denote a strictly stationary and ergodic stochastic process, and deÞne
h(xt;θ) as an n×1 vector of known functions of xt, where θ is a k×1 vector of unknown
parameters. The true parameter value, θ0, which we assume belongs to the interior of the

compact set Θ ⊆ Rk, is implicitly deÞned by the (population) moment conditions:

E[h(xt;θ
0)] = 0,

where the expectation is with respect to the stationary distribution of xt. In this context,

the unrestricted GMM estimator of θ will be

�θT (ΥT ) = argmin
θ∈Θ

JT (θ;ΥT ),

where JT (θ;ΥT ) = h̄
0
T (θ)ΥT h̄T (θ) deÞnes a particular norm of the sample moments

h̄T (θ) =
1

T

TX
t=1

h(xt;θ)

characterised by the possibly stochastic, positive semideÞnite weighting matrixΥT , which

we assume converges in probability to a positive semideÞnite matrix Υ.

A necessary condition for the identiÞcation of θ is the usual order condition n ≥
k. If the inequality is strict, then we say that θ is (seemingly) overidentiÞed, while if

both dimensions coincide, we say that θ is (seemingly) exactly identiÞed. Assuming that

h(xt;θ) is continuously differentiable in θ, with a Jacobian matrixDt(θ) = ∂h(xt;θ)/∂θ
0

whose sample and population means, D̄T (θ) and D(θ) respectively, are also continuous

in θ, a sufficient condition for the local identiÞability of θ at θ0 is that rank[H(θ0,Υ)] =

k, where H(θ,Υ) = D0(θ)ΥD(θ), which requires that rank[D(θ0)] = k. Under the

additional assumptions that E(supθ∈Θ kh(xt;θ)k) < ∞, D̄T (θ
i)

p→ D(θ0) if θi
p→ θ0,
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and
√
T h̄T (θ

0)
d→ N [0,S(θ0)], where S(θ0) is positive semideÞnite, then

√
T [�θT (ΥT )− θ0] d→ N [0,V(θ0,Υ)],

V(θ0,Υ) = H−1(θ0,Υ) · [D0(θ0)ΥS(θ0)ΥD(θ0)] ·H−1(θ0,Υ)

(see Newey and MacFadden (1994) for more primitive regularity conditions and proofs).

The expression for V(θ0,Υ) simpliÞes to D−1(θ0)S(θ0)D0−1(θ0) in exactly identiÞed

models, as the weighting matrixΥT becomes irrelevant for large enough T if its probability

limitΥ is a positive deÞnite matrix. In the overidentiÞed case, in contrast, Hansen (1982)

showed thatΥ = S−1(θ0) is the �optimal� weighting matrix when the long-run covariance

matrix of the moment conditions S(θ0) has full rank, in the sense that the difference

between the asymptotic covariance matrix of the resulting GMM estimator and a GMM

estimator based on any other norm of the same moment conditions is positive semideÞnite.

The asymptotic distribution of the optimal GMM estimator of θ, �θT [S−1(θ0)], will be

√
T{�θT [S−1(θ0)]− θ0} d→ N{0,H−1[θ0,S−1(θ0)]}.

This optimal estimator is infeasible unless we know S(θ0), but under additional reg-

ularity conditions, we can deÞne a feasible asymptotically equivalent two-step optimal

GMM estimator as �θT [S̄−1T ( úθT )], where úθT is some initial consistent estimator of θ
0, and

S̄T ( úθT ) is a heteroskedasticity and autocorrelation consistent (HAC) estimator of S(θ
0)

based on h(xt; úθT ) (see e.g. de Jong and Davidson (2000) and the references therein).

The optimal weighting matrix is also required in the so-called �overidentiÞcation�

restrictions test, given by T · JT{�θT [S−1(θ0)];S−1(θ0)}, which asymptotically follows a
χ2 with degrees of freedom equal to the difference between the number of moments and

parameters under correct speciÞcation of the original moment conditions (Hansen (1982)).

In this GMM context, it is also straightforward to carry out hypothesis tests of the

r ≤ k implicit parametric restrictions G(θ0) = 0. In particular, under the additional

assumptions that G(θ) is continuously differentiable, with a full-rank Jacobian matrix

Q (θ) = ∂G(θ)/∂θ0 in an open neighbourhood of θ0, and rank[F(θ0,Υ)] = r, where

F(θ0,Υ) = Q(θ0)V(θ0,Υ)Q0(θ0), we can deÞne a potentially suboptimal Wald test as:

WT (ΥT ) = T ·G0[�θT (ΥT )]
0F−1(θ0,Υ)G[�θT (ΥT )].
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Given our assumptions, WT (ΥT ) will be asymptotically distributed as a χ2 with r

degrees of freedom under H0 : G(θ) = 0, and as a non-central χ2 with the same degrees

of freedom and non-centrality parameter δ0F−1(θ0,Υ)δ under the Pitman sequence of

local alternatives Hl : G(θ) = δ/
√
T (see again Newey and MacFadden (1994)). In

contrast,WT (ΥT ) will diverge to inÞnity for Þxed alternatives of the form Hf : G(θ) = δ,

which makes it a consistent test. Theorem 1 in Geweke (1981) then implies that

plim
θ0

1

T
WT (ΥT ) = G(θ

0)0F−1(θ0,Υ)G(θ0) (4)

coincides with Bahadur�s deÞnition of the approximate slope of this Wald test. Note that

(4) has the same form as the non-centrality parameter derived above, except that now

F(θ0,Υ) is no longer evaluated under the null. Once again, the expression for F(θ0,Υ)

simpliÞes when either θ is just identiÞed, or when ΥT is optimally chosen, in which case

the non-centrality parameter and/or approximate slope will achieve its maximum.

We can also base our tests on the restricted GMM estimator �θT (ΥT ), which minimises

JT (θ;ΥT ) over Θ∩{G(θ) = 0}. If �λ0T (ΥT ) are the Lagrange multipliers (LM) associated

with the constraints G(θ) = 0, we can deÞne a potentially suboptimal LM test of H0 as:

LMT (ΥT ) = T · �λ0T (ΥT )
−1Ξ−1(θ0,Υ)�λ

0
T (ΥT ),

Ξ(θ0,Υ) = [Q(θ0)H−1(θ0,Υ)Q0(θ0)]−1F(θ0,Υ)[Q(θ0)H−1(θ0,Υ)Q0(θ0)]−1.

Importantly, Property 18.2 in Gouriéroux and Monfort (1995) indicates that for any ΥT ,

LMT (ΥT ) −WT (ΥT )
p→ 0 as T → ∞ under the null and local alternatives. However,

such a relationship no longer holds under Þxed alternatives, even though LMT (ΥT ) also

diverges to inÞnity in that case.

It is also possible to deÞne the GMM analogue of the likelihood ratio test as

DMT (ΥT ) = T · {JT [�θT (ΥT );ΥT ]− JT [�θT (ΥT );ΥT ]}.

But like the overidentifying restriction test, this �distance metric� test will have an asymp-

totic χ2 distribution only ifΥT is optimally chosen, in which case it will be asymptotically

equivalent to the optimal versions of theWT and LMT tests under the null and sequences

of local alternatives (see e.g. Theorem 9.2 in Newey and MacFadden (1994)).

Finally, the following result on the asymptotic and sometimes numerical invariance of

GMM estimators of functions of the parameters of interest to linear transformations and

reparametrisations of the original moment conditions, will prove useful below:
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Lemma 1 Let �θT (ΥT ) = argminθ h̄
0
T (θ)ΥT h̄T (θ) denote a GMM estimator of the k× 1

vector of unknown parameter θ deÞned by the n ≥ k set of moment conditions E[h(xt;θ)]
=0. Further, let G(θ) denote a vector of r ≤ k continuously differentiable functions of
θ whose Jacobian matrix has full row rank in an open neighbourhood of θ0. Finally, let
�ρT (ΥNT ) = argminρ h̄

0
NT (ρ)ΥNT h̄NT (ρ) denote a GMM estimator of the k unknown

parameters ρ based on the transformed set of moment conditions E[hN (xt;ρ)] = 0,
where hN (xt;ρ) = A[P−1 (ρ)]h[xt;P−1 (ρ)] = A(θ)hO(xt;θ), A(θ) is an n × n ma-
trix of continuously differentiable functions of θ in an open neighbourhood of θ0 such that
rank[A(θ0)] = n, and P (.) is a regular transformation from θ to ρ over the same open
neighbourhood. If we assume that the standard regularity conditions that guarantee the
asymptotic normality of �θOT (ΥOT ) hold, then

1.
√
T{GN [�ρNT (ΥNT )] − G[�θT (ΥT )]} = op(1) if ΥN = A−10(θ0)ΥA−1(θ0), where

Υ−ΥT = op(1), ΥN −ΥNT = op(1) and GN(ρ) = G[P
−1(ρ)].

2. GN [�ρNT (ΥNT )] = G[�θT (ΥT )] for large enough T if A(θ) = A ∀θ and ΥNT =
A0−1ΥTA

−1.

3.2 Optimal GMM with a singular covariance matrix

Unfortunately, the previous deÞnitions of optimal GMM estimators and tests break

down when S(θ0) is singular. In this section, we obtain both the optimal GMM estimators

of θ and the optimal tests of H0 : G(θ) = 0 in those non-trivial situations in which the

covariance matrix of h(xt;θ) is singular along a manifold in Θ which includes θ0. The

exact nature of such a singularity, which is the relevant one for the spanning tests in

sections 4.2 and 5.1, can be fully characterised by the following three assumptions:

Assumption 1 Let Π (θ) denote a n×kª matrix of continuously differentiable functions
of θ, where 0 ≤ kª ≤ k. Then, Π0(θ)h(xt,θ) = 0 ∀xt if and only mª(θ) = 0, where
mª(θ) is a kª × 1 continuously differentiable transformation of θ such that the rank of
∂mª(θ)/∂θ0 is kª in an open neighbourhood of θ0.

Assumption 2 If kª > 0, then mª(θ0) = 0.

Assumption 3 rank[S(θ0)] = n− kª.

For the non-standard case of kª > 0, the Þrst assumption implicitly deÞnes the k⊕-

dimensional manifold in Θ over which the singularity in the contemporaneous covariance

matrix of h(xt,θ) takes place, where k⊕ = k− kª, while the second assumption says that
the true values of the parameters belong to that manifold. Finally, Assumption 3 ensures

that the singularity of S(θ0), when it exists, is fully characterised by Assumption 1.6

6Hence, we rule out trivial situations with �duplicated� moment conditions, in which some linear
combinations of h(xt,θ) whose coefficients do not depend on θ are singular. Given that in those cases
any HAC estimator of S(θ0), S̄T ( úθT ), will be singular in Þnite samples irrespective of the choice of Þrst-
step estimator úθT , the appropriate action is simply to eliminate the �duplicated� moment conditions,
which can be mechanically achieved by using as weighting matrix any generalised inverse of S̄T ( úθT ).
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For notational simplicity, but without loss of generality, we shall work with the alterna-

tive k⊕+kª parameters (θ0⊕,θ
0
ª) = [m

0
⊕(θ),m

0
ª(θ)] =m

0(θ), which we can always choose

to be a regular transformation on an open neighbourhood of θ0 in view of Assumptions 1

and 2 (see e.g. Fleming (1977, p. 143)). The GMM estimators of θ will then be obtained

from the estimators of θ⊕ and θª by means of the inverse transformation l[m(θ)] = θ. In

this context, our proposed solution for conducting optimal GMM estimation and inference

under singularity (or optimal GMMS for short) involves the following two steps:

a) replace the ordinary inverse of S(θ0), which cannot be deÞned when kª > 0, by

any of its generalised inverses, S−(θ0), and simultaneously

b) impose the parametric restrictions mª(θ) = θª = 0 by working with the smaller

vector of parameters θ⊕.

In this way, we effectively decrease both the number of parameters and the number of

moment conditions to avoid the singularity, but their difference remains the same.7

More speciÞcally, let

S(θ0) = [ P⊕(θ0) Pª(θ0) ]

 ∆⊕(θ0) 0

0 0

 P0⊕(θ0)
P0ª(θ

0)

 = P⊕(θ0)∆⊕(θ0)P0⊕(θ
0)

denote the spectral decomposition of S(θ0), where ∆⊕(θ0) is a positive deÞnite diagonal

matrix of order n− kª, so that all its generalised inverses will be of the form

S−(θ0) = [ P⊕(θ0) Pª(θ0) ]

 ∆−1
⊕ (θ

0) ∆⊕ª(θ0)

∆ª⊕(θ0) ∆ªª(θ0)

 P0⊕(θ0)
P0ª(θ

0)

 ,
with ∆⊕ª(θ0), ∆ª⊕(θ0) and ∆ªª(θ0) arbitrary (see e.g. Rao and Mitra (1971)). In

addition, let us deÞne the following set of moment conditions: h⊕(xt;θ⊕,θª|θ0)
hª(xt;θ⊕,θª|θ0)

 =
 P0⊕(θ0)h[xt, l(θ⊕,θª)]
P0ª(θ

0)h[xt, l(θ⊕,θª)]

 = P0(θ0)h[xt, l(θ⊕,θª)],
7In the unlikely situation of kª = k, the dimension of θ⊕ would be zero, which reßects the fact that

the manifold m(θ) = 0 collapses to the single point θ = θ0. As a result, we should be able recover the
true value of the parameters without any sampling variability. In contrast, if kª = 0, the dimension of
θª would be zero, which reßects the fact that S−(θ0) = S−1(θ0). As a result, we can estimate θ⊕ = θ
by means of the regular GMM methods discussed in the previous section.
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which is a full-rank linear transformation with constant coefficients of the original moment

conditions h(xt,θ). In this notation, the optimal GMMS criterion function is:

JT [l(θ⊕,0);S−(θ0)] = JT [l(θ⊕,0);S+(θ0)] + h̄0⊕T (θ⊕,0|θ0)∆⊕ª(θ0)h̄ªT (θ⊕,0|θ0)
+h̄0ªT (θ⊕,0|θ0)∆ª⊕(θ0)h̄0⊕T [l(θ⊕,0)|θ0] + h̄0ªT (θ⊕,0|θ0)∆ªª(θ0)h̄ªT (θ⊕,0|θ0),

JT [l(θ⊕,0);S+(θ0)] = h̄0⊕T (θ⊕,0|θ0)∆−1
⊕ (θ

0)h̄0⊕T [l(θ⊕,0)|θ0].

To keep the algebra simple, we initially use the Moore-Penrose inverse S+(θ0) in our dis-

cussion, although as argued below, the choice of S−(θ0) is asymptotically inconsequential.

Importantly, note that if we simply weighted the original moment conditions by S+(θ0)

without exploiting the restrictions implicit in θª = 0, the resulting estimators and testing

procedures would be generally suboptimal because they would give no weight to precisely

the kª linear combinations of h(xt,θ) estimable without error. In fact, it may well

happen that the transformed parameters θ⊕ and θª are not even identiÞed from the

reduced set of n−kª moment conditions E[h⊕(xt;θ⊕,θª|θ0)] = 0, because, for instance,
n − kª < k. After imposing the restriction θª = 0, on the other hand, these reduced

moment conditions will locally identify θ⊕ at θ0⊕, as the following result guarantees:

Proposition 1 Let h(xt;θ) denote a set of n continuously differentiable functions of the
k dimensional vector of parameters θ. If Assumptions 1 and 2 hold, and rank[D(θ0)] = k,
then rank[D⊕θ⊕(θ

0
⊕|θ0)] = k⊕, while rank[Dªθ⊕(θ

0
⊕|θ0)] = 0, where D(θ0) = E[Dt(θ)],

D⊕θ⊕(θ⊕|θ0) = E[D⊕θ⊕t(θ⊕|θ0)], Dªθ⊕(θ⊕|θ0) = E[Dªθ⊕t(θ⊕|θ0)],

Dt(θ) =
∂h(xt;θ)

∂θ0
,

D⊕θ⊕t(θ⊕|θ0) =
∂h⊕(xt;θ⊕,0|θ0)

∂θ0⊕
= P0⊕(θ

0)Dt[l(θ⊕,0)]Lθ⊕(θ⊕,0),

Dªθ⊕t(θ⊕|θ0) =
∂hª(xt;θ⊕,0|θ0)

∂θ0⊕
= P0ª(θ

0)Dt[l(θ⊕,0)]Lθ⊕(θ⊕,0),

L(θ⊕,θª) =
∂l(θ⊕,θª)
∂(θ0⊕,θ

0
ª)
= [ Lθ⊕(θ⊕,θª) Lθª(θ⊕,θª) ].

Similarly, we can also show that if we imposed the parametric restrictions θª = 0, but

used a weighting matrix such that Υ 6= S−(θ0), then the resulting estimators and testing
procedures would also be generally suboptimal. In this sense, our solution to the singular

GMM case can be regarded as the natural extension of the approach discussed in Judge et

al. (1985, section 12.5.2) in the context of a classical multivariate regression with a singular

residual covariance matrix, since they also reduce the number of equations by using the
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principal components of the multivariate regression residuals, as well as the number of

parameters by exploiting the parametric restrictions that give rise to the singularity.

If h(xt;θ) satisÞes the regularity conditions mentioned in the previous section, together

with Assumptions 1 and 2, then we can easily prove that those regularity conditions will

also be satisÞed by h⊕(xt;θ⊕,0|θ0) because the latter functions are a linear combination
of the former, and the transformation from θ to (θ⊕,θª) is regular over an open neigh-

bourhood of θ0. This fact, together with Proposition 1, allows us to derive the asymptotic

distribution of the infeasible unrestricted GMMS estimator of the transformed parameters

θ⊕, �θ⊕T [S+(θ0)] = argminθ⊕∈Θ⊕ JT [l(θ⊕,0);S
+(θ0)]. SpeciÞcally,

√
T{�θ⊕T [S+(θ0)]− θ0⊕} d→ N{0,V⊕[θ0,∆−1

⊕ (θ
0)]},

V⊕
£
θ0,∆−1

⊕ (θ
0)
¤
= [D0

⊕θ⊕(θ
0
⊕)∆

−1
⊕ (θ

0)D⊕θ⊕(θ
0
⊕)]

−1

= [L0⊕(θ
0
⊕,0)D

0(θ0)S+(θ0)D(θ0)L⊕(θ0⊕,0)]
−1.

We can also prove that regardless of the choice of generalised inverse S−(θ0),

√
T{�θ⊕T [S−(θ0)]− �θ⊕T [S+(θ0)]} = op(1),

where �θ⊕T [S−(θ0)] = argminθ⊕∈Θ⊕ JT [l(θ⊕,0);S
−(θ0)]. As shown by Proposition 1, the

intuitive reason is that there is no identifying information whatsoever about θ⊕ in the

moment conditions E[hª(xt;θ⊕,0|θ0)] = 0 because hª(xt;θ0⊕,0|θ0) = 0 ∀t.
Finally, we can use the standard delta method to show that the optimal �unre-

stricted� GMMS estimators of the parameters of interest, θ, which will be given by

l{�θ⊕T
£
S−(θ0)

¤
,0}, will have an asymptotically normal distribution, but with a singular

covariance matrix of rank k⊕. Intuitively, the reason is simply that for large enough T

l{�θ⊕T [S+(θ0)],0} = argmin
θ∈Θ

JT [θ;S
+(θ0)] s.t. mª(θ) = 0.

The following Proposition conÞrms our claimed optimality of l{�θ⊕T
£
S−(θ0)

¤
,0}:

Proposition 2 Let �θT (ΥT ) = argminθ∈Θ JT (θ;ΥT ) denote a GMM estimator of the
k×1 vector of unknown parameter θ deÞned by the n ≥ k moment conditions E[h(xt;θ)] =
0, which satisfy all the usual regularity conditions, together with Assumptions 1, 2 and 3.
Similarly, let �θ⊕T [S−(θ0)] = argminθ⊕∈Θ⊕ JT [l(θ⊕,0);S

−(θ0)]. Then l{�θ⊕T [S−(θ0)],0}
is asymptotically at least as efficient as �θT (ΥT ) regardless of ΥT .
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Assuming that k⊕ ≥ r, we can also deÞne the infeasible, Moore-Penrose-based, opti-
mal restricted GMMS estimator of θ as l{�θ⊕T [S+(θ0)],0}, where �θ⊕T [S+(θ0)] minimises
JT [l(θ⊕,0),S+(θ0)] over Θ⊕ ∩ {G⊕(θ⊕) = 0}, with G⊕(θ⊕) = G[l(θ⊕,0)]. Further, we

can easily show that l{�θ⊕T [S+(θ0)],0} is numerically equivalent for large enough T to
both argminθ∈Θ JT [θ;S+(θ0)] s.t. mª(θ) = 0 and G(θ) = 0, and an unrestricted GMMS

estimator of θ in an extended system which includes not only the n original moment con-

ditions E[h(xt,θ)] = 0, but also G(θ) = 0 as r additional singular �moment conditions�.

Therefore, we can adapt Proposition 2 to show that l{�θ⊕T [S+(θ0)],0} is asymptotically
at least as efficient as any other GMM estimator of θ which imposes the restrictions

G(θ) = 0, but which either does not impose the singularity restrictions mª(θ) = 0, or

does not use the optimal class of weighting matrices S−(θ0).

Finally, we can use �θ⊕T [S+(θ0)] and �θ⊕T [S+(θ0)] to deÞne optimal GMMS versions

of WT , LMT and DMT for the modiÞed null hypothesis H0 : G⊕(θ⊕) = 0. If we further

assume that rank[Q⊕(θ0⊕)] = r, whereQ⊕(θ⊕) = ∂G⊕(θ⊕)/∂θ0⊕, then we can easily prove

that those three optimal tests will be asymptotically equivalent to each other under the

null and sequences of local alternatives, being distributed as a central and a non-central χ2

with r degrees of freedom, respectively. Moreover, they will separately diverge to inÞnity

under Þxed alternatives.

In practice, the optimal GMMS approach that we have just described is not feasible

unless we know S−(θ0), but under standard regularity conditions, the asymptotics will

not change if we replace it by a consistent estimator. However, an estimator of S−(θ0)

must be chosen with some care when kª > 0 in order to avoid discontinuities in the

limit. The reason is the following: as we saw before, if úθT is an initial consistent esti-

mator of θ0, then we can easily compute a consistent estimator of S(θ0), S̄T ( úθT ) say,

by means of a HAC covariance matrix estimator based on h(xt; úθT ). But in general, we

will not consistently estimate S−(θ0) in singular cases if S̄T ( úθT ) has full rank for Þnite

T . Hence, a researcher who is unaware of the singularity of S(θ0) because her choice of

úθT is such that mª( úθT ) 6= 0, may well end up with seemingly optimal estimators and

testing procedures whose asymptotic distribution will be non-standard. For that reason,

we shall restrict our attention to those consistent estimators of θ0, θ̈T say, that satisfy

mª(θ̈T ) = 0. In this way, the rank of S̄T (θ̈T ) is guaranteed to be k⊕ in Þnite samples
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because Π0(θ̈T )h(xt, θ̈T ) = 0 ∀t.
In this respect, note that a Hansen, Heaton and Yaron (1996) continuously updated

criterion function of the form JT{l(θ⊕, 0); S̄−T [l(θ⊕,0)]} would be numerically invariant
to the choice of generalised inverse because P0ª[l(θ⊕,0)]h[xt, l(θ⊕,0)] = 0 ∀xt and ∀θ⊕.
From this perspective, S̄+T (θ̈T ) provides the two-step choice of S

−(θ0) that is closest to

such a continuously updated estimator.

Therefore, our feasible GMMS estimators will be based on the moment conditions

h⊕(xt;θ⊕,0|θ̈T ) = P̄0⊕T (θ̈T )h[xt, l(θ⊕,0)],

whose regular asymptotic covariance matrix, ∆⊕(θ0), can be consistently estimated as

∆̄T (θ̈T ), where P̄⊕T (θ̈T )∆̄T (θ̈T )P̄
0
⊕T (θ̈T ) provides the spectral decomposition of S̄T (θ̈T ).

Finally, it is worth mentioning that if the original moment conditions exactly identify

θ, our proposed GMMS approach is strictly speaking unnecessary as far as the unrestricted

estimators of θ are concerned, because JT [�θT (ΥT );ΥT ] = 0 for large enough T regard-

less of ΥT . The following result makes the relationship between the two unrestricted

estimators and the corresponding Wald tests explicit:

Lemma 2 Let �θT (ΥT ) = argminθ∈Θ JT (θ;ΥT ) denote a GMM estimator of the k × 1
vector of unknown parameter θ deÞned by the n = k exactly identiÞed moment conditions
E[h(xt;θ)] = 0, which satisfy all the usual regularity conditions, together with Assump-
tions 1, 2 and 3. Similarly, let �θ⊕T [S−(θ0)] = argminθ⊕∈Θ⊕ JT [l(θ⊕,0);S

−(θ0)]. Then

1.
√
T [�θT (ΥT ) − l{�θ⊕T [S−(θ0)],0}] = op(1) for any ΥT whose probability limit is a

positive deÞnite matrix Υ,

2. �θT (ΥT ) = l[�θ⊕T{S̄+T [�θT (ΥT )},0] for large enough T , where �θ⊕T{S̄+T [�θT (ΥT )} =
argminθ⊕∈Θ⊕ JT{l(θ⊕,0); S̄+T [�θT (ΥT )]}, if mª[�θT (ΥT )] = 0 and ΥT any positive
deÞnite matrix,

3. The Wald tests based on G⊕{�θ⊕T [S+(θ0)]} and G[�θT (ΥT )] will also be asymptoti-
cally equivalent if rank[Q⊕(θ0⊕)] = r, and

4. It is possible to deÞne asymptotically valid Wald test statistics based on G[�θT (ΥT )]
and G⊕[�θ⊕T{S̄+T [�θT (ΥT )}] which are also numerically identical for large enough T .

In contrast, the restricted estimators l{�θ⊕T [S+(θ0)],0} and �θT [ΥT ] will not be asymp-

totically equivalent in general in exactly identiÞed cases in view of Proposition 2, because

in effect the restrictionsG(θ) = 0 transform the original model into an overidentiÞed one.
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4 Representing portfolios tests for spanning

LetR1 andR2 denote the gross returns to two subsets ofN1 andN2 assets, respectively,

so that the dimension of the expanded set of returnsR = (R0
1,R

0
2)
0 is N = N1+N2, which

we treat as Þxed hereinafter in line with the existing literature. We want to compare the

SMVF and RMVF frontiers generated by R1 with the ones generated by the whole of R.

In general, when we also consider R2, the RMVF frontier will shift to the left because the

available risk-return trade-offs improve, while the SMVF frontier will rise because there

is more information in the data about the underlying SDF. However, this is not always

the case. In particular, we say that R1 spans the SMVF and/or RMVF generated from

R when the original and extended frontiers coincide.8 The purpose of this section is to

develop spanning tests based on the cost and mean RP�s described in section 2.

4.1 Uncentred cost and mean representing portfolios

Given that the cost and mean RP�s span both the SMVF and RMVF, a rather natural

way to test for spanning consists in studying whether these portfolios are common to

hR1i and hRi. In particular, if p∗1 and p+1 denote the cost and mean RP�s corresponding
to hR1i, where p∗1 = P (m| hR1i) = φ∗01R1, p+1 = P (1| hR1i) = φ+01 R1, φ

∗
1 = Γ

−1
11 +N1 and

φ+1 = Γ
−1
11 ν1, mean-variance spanning of R by R1 is equivalent to p∗ = p∗1 and p

+ = p+1 .

If hR1i and hRi only share the same mean RP, and a 6= 0, then the two RMVF�s

are tangent at the point that corresponds to the return associated with this portfolio. In

contrast, the two SMVF�s will have no common point, but they will share the asymptotes,

and the location of the global minimum (see Figures 1a and 1b). On the other hand, if

hR1i and hRi only share the same cost RP, then R∗ and p∗ will be the common elements
of the frontiers generated from R1 alone, and the ones generated from R (see Figures 2a

and 2b). Thus, if we add both conditions, the old and new frontiers will be equal.

In order to implement our econometric tests for spanning, it is convenient to write the

deÞnitions of p∗ and p+ in (2) in terms of the following moment conditions:

E

 RtR
0
tφ
+ −Rt

RtR
0
tφ
∗ − +N

 = E[hU(Rt;φ)] = 0, (5)

8A third, and last, possibility is that the original and extended frontiers touch at a single point.
Although it is common in the literature to refer to this situation as �intersection�, we prefer to use the
word �tangency� because the frontiers are never secant to each other, as the word �intersection� may
suggest. We discuss this case in detail in Peñaranda and Sentana (2004).
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where φ = (φ+0,φ∗0)0. In this context, spanning imposes the 2N2 homogeneous parametric

restrictions H0 : φ
+
2 = 0, φ

∗
2 = 0, where we have partition φ

+ and φ∗ conformably with

R1 andR2. Hence, we can test for spanning by using the trinity of GMM asymptotic tests

discussed in section 3.1. But since the moment conditions deÞning φ∗ and φ+ are exactly

identiÞed, the distance metric test will coincide with the overidentifying restrictions test.

In addition, all the tests can be made numerically identical by using a common estimator

of the asymptotic covariance matrix of
√
T h̄UT (φ

0), because both the moment conditions

and the restrictions to test are linear in the parameters (see Newey and West (1987)).

Such a linearity also implies that we can obtain simple closed-form solutions for the

unrestricted and restricted GMM estimators of φ. Given that the moment conditions

(5) are exactly identiÞed, the former is �φT = D̄
−1
UT · d̄T for large enough T , where d̄T =

(�ν 0T , +
0
N)

0, �νT = T−1
PT

t=1Rt, D̄UT = I2 ⊗ �ΓT and:

�ΓT =
1

T

TX
t=1

 R1tR
0
1t R1tR

0
2t

R2tR
0
1t R2tR

0
2t

 =

 �Γ11T �Γ021T
�Γ21T �Γ22T

 .
On the other hand, if we impose the null hypothesis on the moment conditions (5),

then we will be left with the overidentiÞed system:

E

 RtR
0
1tφ

+
1 −Rt

RtR
0
1tφ

∗
1 − +N

 = 0. (6)

As a result, the optimal restricted GMM estimator of φ from (6) will be �φ2T = 0 and

�φ1T [S̄
−1
UT (φ̄T )] =

[I2 ⊗ (�Γ11T , �Γ021T )]S̄−1UT (φ̄T )
I2 ⊗

 �Γ11T

�Γ21T


−1

×{[I2 ⊗ (�Γ11T , �Γ021T )]S̄−1UT (φ̄T )d̄T},

where I2⊗ (�Γ11T , �Γ021T ) is the sample analogue of the Jacobian of (6) with respect to φ1 =
(φ+01 ,φ

∗0
1 )
0, and S̄UT ( úφT ) is some HAC estimator of the optimal weighting matrix obtained

with a preliminary consistent estimator úφT . Although the choice of úφT does not affect

the asymptotic distribution of two-step GMM estimators up to Op(T−1/2) terms, there is

someMonte Carlo evidence suggesting that their Þnite sample properties can be negatively

affected by an arbitrary choice of initial weighting matrix such as the identity (see e.g.

Kan and Zhou (2001)). The following result justiÞes an obvious Þrst-step estimator:
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Lemma 3 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ,
and bounded fourth moments, then the linear combinations of the moment conditions in
(6) that provide the most efficient estimators of φ+1 and φ

∗
1 under H0 : φ

+
2 = 0, φ

∗
2 = 0

will be given by

E

µ
R1tR

0
1tφ

+
1 −R1t

R1tR
0
1tφ

∗
1 − +N1

¶
= E[hU1(Rt;φ)] = 0,

so that φ̄+1T = �Γ
−1
11T �ν1T and φ̄

∗
1T = �Γ

−1
11T +N1, where �ν1T = T

−1PT
t=1R1t.

Intuitively, this means that under those circumstances, the blocks involvingR1t exactly

identify the parameters φ∗1 and φ
+
1 , while the blocks corresponding toR2t provide the 2N2

overidentiÞcation restrictions to test. Although the elliptical family is rather broad (see

e.g. Fang, Kotz and Ng (1990)), and includes the multivariate normal and t distribution

as special cases, it is important to mention that φ̄+1T and φ̄
∗
1T will remain consistent under

H0 even if the assumptions of serial independence and ellipticity are not totally realistic

in practice, unlike the semiparametric estimators used by Vorkink (2003).

4.2 Centred cost and mean representing portfolios

As we discussed in section 2.1, we can deÞne an alternative pair of mean and cost

RP�s, p++ = R0Σ−1ν and p∗∗ = R0Σ−1+N , respectively, in terms of central moments in

the absence of a safe asset. Since these portfolios also span both SMVF and RMVF, we

can also test for spanning by checking that p++1 and p∗∗1 coincide with p++ and p∗∗.

The graphical implication of sharing the centred mean RP has already been explained

in section 4.1 in terms of R+ when a 6= 0, because p++ is proportional to p+ (see Figures
2a and 2b). In contrast, the reduced and expanded RMVF�s will share the minimum

variance return R∗∗ if p∗∗ = p∗∗1 , while the original and extended SMVF�s will share

mMV (0), which is the value at the origin (see Figures 3a and 3b). Hence, if we add both

conditions, it is once more clear that the original and expanded frontiers must be equal.

The use of central moments, though, implies that we must explicitly deÞne ν to

estimate Σ. The simplest way to do so is to add the moment conditions that exactly

identify these parameters. Hence, the extended set of moment conditions will be

E


Rt − ν

(Rt − ν)(Rt − ν)0ϕ+ −Rt

(Rt − ν)(Rt − ν)0ϕ∗ − +N

 = E
 hM(Rt;ν)

hC(Rt,ϕ,ν)

 = E [hE(Rt;ϕ,ν)] = 0, (7)
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where ϕ = (ϕ+0,ϕ∗0)0. Partitioning ϕ conformably with R1t and R2t, the parametric

restrictions to test become H0 : ϕ+2 = 0, ϕ
∗
2 = 0.

Although the approaches based on the uncentred and centred RP�s look similar, there

are three important differences between the moment conditions (5) in the previous section

and these ones. The Þrst two are that (7) is no longer linear in parameters, and that some

of those parameters can be regarded as �nuisance�. The third one, which is far less obvious

but has more serious consequences, is made explicit in the following result:

Proposition 3 LetΠE(ϕ,ν) = (ϕ
∗0,ϕ∗0,−ϕ+0)0. Then, Π0

E(ϕ,ν)hE (Rt;ϕ,ν) = 0 ∀Rt

if and only if mEª(ϕ,ν) = ϕ∗0ν −ϕ+0+N = ϕ+ª = 0.

Given that ϕ+0ª =mEª(ϕ0,ν0) is 0 in view of (2), Proposition 3 implies that the rank

of the asymptotic covariance matrix of
√
T h̄ET (ϕ

0,ν0), SE(ϕ0,ν0) say, is 3N − 1.
But since the above moment conditions are exactly identiÞed under the alternative

hypothesis, this singularity does not affect the unrestricted GMM estimators of ν and ϕ,

which will be given by �νT and �ϕT = D̄
−1
CϕT · d̄T , where D̄CϕT = I2 ⊗ �ΣT and

�ΣT =
1

T

TX
t=1

 (R1t − �ν1T )(R0
1t − �ν 01T ) (R1t − �ν1T )(R0

2t − �ν 02T )
(R2t − �ν2T )(R0

1t − �ν 01T ) (R2t − �ν2T )(R0
2t − �ν 02T )

 =
 �Σ11T �Σ021T
�Σ21T �Σ22T

 .
In addition, it is easy to prove that the joint asymptotic covariance matrix of �ϕ+2T and

�ϕ∗2T is not singular, despite the fact that the joint asymptotic distribution of �ϕT and �νT

will be so. Therefore, we can compute a Wald test based on those unrestricted estimators.

However, the singularity described in Proposition 3 does affect the optimal restricted

GMM estimator, which must be carefully deÞned in order to take into account the infor-

mation implicit in the relationship mE(ϕ
0,ν0) = 0. To do so, it is convenient to write

the overidentiÞed moment conditions under the null of spanning:

E


Rt − ν

(Rt − ν)(R1t − ν1)0ϕ+1 −Rt

(Rt − ν)(R1t − ν1)0ϕ∗1 − +N

 = 0. (8)

The optimal GMMS procedure in section 3.2 implies that we must Þrst reparametrise

hE(Rt;ϕ,ν), for instance in terms of ν⊕, ϕ+1ª, ϕ
+
1⊕ and ϕ

∗
1⊕, where ν⊕ = ν, ϕ+1ª =

ϕ∗01 ν1 − ϕ+01 +N1, ϕ+1⊕ contains the last N1 − 1 elements of ϕ+1 , and ϕ∗1⊕ = ϕ∗1. Then,

we should impose the singularity constraint ϕ+1ª = 0, and Þnally estimate the remaining
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parameters by using a consistent estimator of the Moore-Penrose inverse of SE(ϕ0,ν0),

which effectively eliminates the singular linear combination of hE(Rt;ϕ,ν). As discussed

in that section, though, in order to obtain a consistent estimator of S+E(ϕ
0,ν0), we need a

consistent estimator of SE(ϕ0,ν0) that is singular in Þnite samples. The following result

justiÞes an obvious Þrst-step estimator:

Lemma 4 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ,
and bounded fourth moments, then the linear combinations of the moment conditions in
(8) that provide the most efficient estimators of φ+1 and φ

∗
1 under H0 : ϕ

+
2 = 0, ϕ

∗
2 = 0

will be given by

E

 R1t − ν1
(R1t − ν1)(R1t − ν1)0ϕ+1 −R1t

(R1t − ν1)(R1t − ν1)0ϕ∗1 − +N1

 = E[hE1(Rt,ϕ,ν)] = 0,

so that ν̄1T = �ν1T , ϕ̄+1T = �Σ−111T �ν1T and ϕ̄
∗
1T = �Σ−111T +N1.

Intuitively, this means that under those circumstances, the blocks involvingR1t exactly

identify ν1, ϕ+1 and ϕ
∗
1, while the blocks corresponding to R2t provide the 2N2 testable

restrictions. But note again that ϕ̄+1T and ϕ̄
∗
1T will remain consistent under H0 even if

the assumptions of serial independence and ellipticity are not totally realistic in practice.

Note also that the Þrst-step estimator deÞned in Lemma 3 does indeed guarantee that

S̄E(ϕ̄T , �νT ) will be singular because the linear combination deÞned in Proposition 3 only

involves hE1(Rt;ϕ,ν) under the null of spanning, and ϕ̄+01T +N1 − ϕ̄∗01T �ν1T = 0.
Finally, given that the singularity described in Proposition 3 affects hE(Rt;ϕ,ν) but

not hC(Rt;ϕ,ν), and that �νT is the GMM estimator of the expected returns based on

the moment conditions E[hM(Rt;ν)] = 0 alone, an alternative approach that avoids the

singularity of SE(ϕ0,ν0) in this context would be to use a sequential GMM (SGMM)

estimator which replaces ν by �νT in hC(Rt;ϕ,ν) (see e.g. Ogaki (1993)). But since

DCν(ϕ
0,ν0) = E

·
∂hC(Rt;ϕ

0,ν0)

∂ν 0

¸
= E

 −(Rt − ν0)0ϕ+0IN − (Rt − ν0)ϕ+00
−(Rt − ν0)0ϕ∗0IN − (Rt − ν0)ϕ∗00

 = 0,
it is clear that

√
T [h̄CT (ϕ

0, �νT )− h̄CT (ϕ0,ν0)] p→ 0 as T →∞. Thus, in this particular
instance, it is not necessary to account for the sample variability in �νT in obtaining the

asymptotic covariance matrix of the unrestricted SGMM estimators, which numerically

coincide with the unrestricted GMMS estimators �ϕT . Hence, the Wald tests based on
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the two estimators will coincide too. In contrast, we would expect the restricted SGMM

estimators to be asymptotically less efficient than the optimal restricted GMMS estimators

in view of Proposition 2.

5 Two-point tests for spanning

The centred and uncentred RP�s constitute rather natural choices for testing for

mean-variance spanning. However, there are inÞnitely many more pairs of portfolios that

could be used for the same purposes, because the two fund spanning property of both

frontiers does not depend on the particular funds used. In this section, we shall analyse

arbitrary two-point tests for spanning in the RMVF and SMVF.

5.1 RMVF Tests

Building on Jobson and Korkie (1982), Gibbons, Ross and Shanken (1989) and Hu-

berman and Kandel (1987) showed that in mean-standard deviation space, the RMVF

generated by R1 and R coincide at the point of tangency with a ray that starts from

(0, c−1) if and only if the intercepts in the multivariate regression of (R2 − c−1+N2) on a
constant and (R1−c−1+N1) are all 0.9 Therefore, a natural way to test for spanning in the
RMVF is to test if there is simultaneous tangency at two points. SpeciÞcally, let c−1i and

c−1ii , with ci 6= cii, denote two arbitrary expected returns. Then, the null of spanning can
be written as H0 : a(ci) = 0, a(cii) = 0, where the regression intercepts a(ci) and a(cii)

are implicitly deÞned by the following exactly identiÞed 2N2(N1+1) moment conditions:

E



 1

R1t − c−1i +N1

⊗ [(R2t − c−1i +N2)− a(ci)−B(ci)(R1t − c−1i +N1)] 1

R1t − c−1ii +N1

⊗ [(R2t − c−1ii +N2)− a(cii)−B(cii)(R1t − c−1ii +N1)]


= E {hL[Rt; a(ci),b(ci),a(cii),b(cii)]} = 0. (9)

with b(c) = vec[B(c)]. But as pointed out by Marín (1996), the asymptotic covariance

matrix of the sample analogues of (9) is singular under the null. More explicitly:

9If we regard c−1 as the expected return of a zero-beta frontier portfolio orthogonal to the tangency
portfolio made up of elements of R1 only, then we can interpret the regression intercepts as the so-called
Jensen�s alphas in the portfolio evaluation literature. These coefficients should all be 0 if the tangency
portfolio of R1 is really mean-variance efficient with respect to R (see De Roon and Nijman (2001)).
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Proposition 4 Let

ΠL[a(ci),b(ci), a(cii),b(cii)]=
µ

Φ0−1(ci)⊗ IN2
−Φ0−1(cii)⊗ IN2

¶
, with Φ(c)=

µ
1 00

−c−1+N1 IN1

¶
.

Then, Π0
L[a(ci),b(ci),a(cii),b(cii)]hL[Rt; a(ci),b(ci),a(cii),b(cii)] = 0 ∀Rt

⇔mLª[a(ci),b(ci),a(cii),b(cii)] =

 a(cii)− a(ci)− c−1ii [B(cii)+N1 − +N2 ]+c−1i [B(ci)+N1 − +N2]
b(cii)− b(ci)

 = 0,
⇔ a(ci) = a+ c

−1
i f , a(cii) = a+ c

−1
ii f , and b(ci) = b(cii) = b = vec(B), (10)

where a is a N2 × 1 vector of parameters, B a N2 ×N1 matrix, and f = +N2 −B+N1.

Given thatmLª[a(ci),b(ci),a(cii),b(cii)] is 0 at the true values, Proposition 4 implies

that the rank of the asymptotic covariance matrix of h̄LT [a0(ci),b0(ci),a0(cii), b0(cii)]

is N2(N1 + 1) instead of 2N2(N1 + 1). In this case, though, it is possible to explicitly

characterise the optimal transformation of moments and parameters proposed in section

3.2 to deal with the singular linear combinations of hL[Rt;a
0(ci),b

0(ci),a
0(cii),b

0(cii)].

Proposition 5 The optimal GMM estimators of a(ci),b(ci),a(cii),b(cii) based on the
moment conditions (9) can be obtained through (10) from the optimal GMM estimators
of a and b based on the N2(N1 + 1) moment conditions

E

·µ
1
R1t

¶
⊗ (R2t − a−BR1t)

¸
= E[hH(Rt;a,b)] = 0. (11)

Therefore, it is not surprising that the unrestricted GMM estimators of a(ci),b(ci),

a(cii) and b(cii), which are well deÞned despite the singularity of (9) because these moment

conditions are exactly identiÞed, will be given by:

�BT (ci) = �BT (cii) = �Σ21T �Σ
−1
11T =

�BT ,

�aT (ci) = �aT + c
−1
i
�fT ,

�aT = �ν2T − �BT �ν1T ,
�aT (cii) = �aT + c

−1
ii
�fT ,

�fT = +N2 − �BT +N1 ,

where �aT and �bT are the unrestricted GMM estimators based on (11), which coincide

with the OLS estimators in the multivariate regression of R2 on a constant and R1.

Further, we can compute a Wald test of H0 : a(ci) = 0,a(cii) = 0 based on �aT (ci) and

�aT (cii) because their joint asymptotic covariance matrix is not singular despite the fact

that the joint asymptotic covariance matrix of �aT (ci), �bT (ci), �aT (cii) and �bT (cii) will be

so. But since �aT (ci) and �aT (cii) are a full-rank linear transformation of �aT and �fT with
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known coefficients, we can easily prove that such a Wald test is asymptotically equivalent

to the GMM-based Wald version of the Huberman and Kandel (1987) test discussed by

Ferson, Foerster and Kim (1993), which assesses whether H0 : a = 0, f = 0.

In fact, Huberman and Kandel (1987) derived a likelihood ratio test and a related F

test whose Þnite sample distribution is exact under the assumption that the distribution

of R2t given R1s (s = 1, . . . , T ) is multivariate normal with linear mean a + BR1t and

constant covariance matrix Ω = Σ22 −Σ21Σ−111Σ12.10 The same assumption also allowed
Kan and Zhou (2001) to theoretically compare the Þnite sample distributions of the Wald,

Lagrange multiplier and likelihood ratio versions of the Huberman and Kandel (1987)

testing procedure using results in Berndt and Savin (1977). The advantage of working

with a GMM framework, though, is that under fairly weak regularity conditions, the tests

are robust to departures from the assumption of i.i.d. Gaussian returns.

As for the optimal restricted GMMS estimators of a(ci), b(ci), a(cii) and b(cii)

based on (9), it follows from Proposition 5 that they can also be obtained through (10)

by minimising with respect to a and b the optimal norm of the sample analogue of

E[hH(Rt;a,b)] = 0 subject to the constraints a = 0 and f = +N2 − B+N1 = 0. As

described in section 6.2 of Campbell, Lo and MacKinlay (1997), a numerically equivalent

procedure is to minimise with respect to the elements of B2 the optimal norm of the

sample analogues of the following unrestricted set of moment conditions

E




1

R1at

R1bt-R1at+N1−1

⊗
 (R2t-R1at+N2)

−B2(R1bt-R1at+N1−1)


 = E[hL((Rt;b2)] = 0, (12)

for any choice of reference portfolio R1at, where we have partitioned B = (b1,B2) and

+N1 = (1, +
0
N1−1)

0 conformably with R1 = (R1a,R
0
1b)

0, and b2 = vec(B2). In practice, we

need an initial consistent estimator of b2 to calculate the optimal weighting matrix. Our

next lemma suggests some sensible ways of doing so:

Lemma 5 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix
Σ, bounded fourth moments, and coefficient of multivariate excess kurtosis κ < ∞, then
10Nevertheless, both Peñaranda (1999) and Kan and Zhou (2001) noticed a typo in the Huberman

and Kandel (1987) paper, whereby a square root is missing in the ratio of determinants of the residual
variances. Kan and Zhou (2001) also stress the fact that both the test statistic and the distribution to
use depend on whether N2 is equal or greater than 1.
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the linear combinations of the moment conditions (12) that provide the most efficient
estimators of b2 under H0 : a = 0, f = 0 will be given by

E

½·
(R1bt −R1at+N1−1)
+κ(ν1b − ν1a+N1−1)

¸
⊗
·

(R2t −R1at+N2)
−B2(R1bt −R1at+N1−1)

¸¾
= 0. (13)

Since ν and κ are unknown, we could set κ to 0, which is its value under Gaussianity, in

which case the Þrst-step estimator of B2 will come from the multivariate regression of (R2-

R1a+N2) on (R1b-R1a+N1−1). Alternatively, we could use the sample analogues of ν and κ

to obtain an IV estimator of B2 from (13).11 In either case, such Þrst-step estimators will

remain consistent under H0 even if those assumptions are not totally realistic in practice.

5.2 SMVF Tests

De Santis (1993, 1995) and Bekaert and Urias (1996) were the Þrst to develop two-

point GMM-based spanning tests in the SMVF. The starting point of their suggested

procedure is the pricing equation obtained by using elements of the SMVF as SDF�s:

E[RmMV (c)] = cov[R,mMV (c)] +E(R)E[mMV (c)] = +N ∀c. (14)

In this context, the null of spanning is simply mMV (c) = mMV
1 (c) for every c, where

mMV
1 (c) is the element of the SMVF for R1 for which E[mMV

1 (c)] = c. Therefore, we can

develop two-point GMM spanning tests based on the moment conditions:

E

 (Rt − ν)[ci + (Rt − ν)0β(ci)] + ciRt − +N
(Rt − ν)[cii + (Rt − ν)0β(cii)] + ciiRt − +N

 = E{hS[Rt;β(ci),β((cii),ν]} = 0,

where ci 6= cii are two non-negative scalars chosen by the researcher. Unfortunately, ν is
generally unknown, so that these moment conditions are not directly testable. Once more,

the simplest way to handle the estimation of ν would be to add the moment conditions

hM(Rt;ν) that exactly identify ν, as in (7). In particular, inference should be based on

E

 hM(Rt;ν)

hS[Rt;β(c
i),β(cii),ν]

 = E{hD[Rt;β(c
i),β(cii),ν]} = 0, (15)

where the restrictions to test become H0 : β2(ci) = 0, β2(cii) = 0, and where we have

partitioned β(c) = [β01 (c) ,β
0
2 (c)]

0 conformably with R1t and R2t.

11It is trivial to compute the sample analogue of the coefficient of multivariate excess kurtosis of any
random vector Rt, which is deÞned as κ = E[(Rt−ν)0Σ−1(Rt−ν)]2/[N(N+2)]−1 (see Mardia (1970)).
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However, it turns out that we can write the moment conditions hD[Rt;β(ci),β(cii),ν]

as a full rank linear transformation with known coefficients of the moment conditions (7)

that deÞne the cost RP. SpeciÞcally:

hS[Rt;β(ci),β(cii),ν] =

 −ci 1

−cii 1

⊗ IN
hC(Rt;ϕ,ν).

Hence, we can use Lemma 1 to show that these two-point SMVF tests are in all respects

equivalent to our centred RP tests irrespective of the validity of the null hypothesis. In

particular, the covariance matrix of hD[Rt;β(c
i),β(cii),ν] is singular too. Note, though,

that there are no Þnite values of ci and cii for which hD[Rt;β(ci),β(cii),ν] reduces to

hE(Rt;ϕ,ν), which reßects that p++ does not belong to the SMVF. In addition, depending

on the Þrst-stage estimators of β(ci) and β(cii), the values of ci and cii may numerically

inßuence the GMM tests based on (15).12

In fact, De Santis (1995) and Bekaert and Urias (1997) worked with the moments

E

 Rt[ci + (Rt − ν)0β (ci)]− +N
R[cii + (Rt − ν)0β (cii)]− +N

 = E{hB[Rt;β(ci),β(cii),ν]} = 0.

Nevertheless, since

hB[Rt;β(ci),β(cii),ν] =

 νβ0(ci) IN 0

νβ0(cii) 0 IN

 hM(Rt;ν)

hS[Rt;β(ci),β(cii),ν]

 ,
Lemma 1 can again be used to show that the difference between the two-point spanning

tests based on hB[Rt;β(ci),β(cii),ν] and hS[Rt;β(ci),β(cii),ν] converges in probability

to 0 as T → ∞ irrespective of the validity of the null hypothesis. In this context,

an advantage of working with hS[Rt;β(ci),β(cii),ν] instead of hB[Rt;β(ci),β(cii),ν] is

that sequential GMM can be applied without the need to make any adjustment to the

estimators of the asymptotic covariance of h̄ST [β(ci),β(cii), �νT ] in order to reßect the

sample variability in �νT for the reasons explained at the end of section 4.2.

More recently, Kan and Zhou (2001) have discussed an alternative two-point spanning

test for the SMVF frontier. SpeciÞcally, they suggest to use the expressions obtained in

section 2.2 to reparametrise mMV (c) in terms of α instead of c as:

mMV (α) = α+R0β[c(α)] = α+R0γ(α),
12The second part of Lemma 1 provides sufficient conditions for the equality of explicit estimators of

β(ci) and β(cii) obtained from hD[Rt;β(ci),β(cii),ν], and implicit estimators obtained from estimators
of ϕ based on (7) through the theoretical relationship β(ci) = ϕ∗ − c+i ϕ+.
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where c(α) = (α+a)/(1+b) and γ(α) = Γ−1(+N −αν) = φ∗−αφ+. Given the properties
of the SMVF, though, it is again clear that there will be spanning if and only if the above

condition is satisÞed for any two distinct α0s, which we shall call αi and αii. Therefore,

the moment conditions that Kan and Zhou (2001) analyse are

E

 Rt[αi +R
0
tγ(αi)]− +N

Rt[αii +R
0
tγ(αii)]− +N

 = E{hK[Rt;γ(αi),γ(αii)]} = 0, (16)

where αi 6= αii are two scalars chosen by the researcher. In this context, the null becomes
H0 : γ2(αi) = 0, γ2(αii) = 0. But like in the case of the tests based on two c0s, we

can also write these estimating functions as a full rank linear transformation with known

coefficients of the estimating functions that deÞne the uncentred RP. SpeciÞcally

hK [Rt;γ(αi),γ(αii)] =

 −αi 1

−αii 1

⊗ IN
hU (Rt;φ) .

Therefore, we can again use Lemma 1 to show that tests based on (16) would be equiva-

lent to our uncentred RP tests irrespective of the validity of the null hypothesis. However,

there is no Þnite value of αi and αii for which the moment conditions hK [Rt;γ(αi), γ(αii)]

reduce to hU (R,φ), which reßects that p+ does not belong to the SMVF either. Further,

depending on the Þrst-stage estimators of γ(αi) and γ(αii), the values of αi and αii may

numerically inßuence the GMM tests based on (16).13

For all these reasons, in what follows we shall not separately discuss the different

two-point SMVF tests, concentrating instead on the centred and uncentred RP tests.

6 Asymptotic comparisons of spanning tests

So far, we have presented three separate families of spanning tests: centred and un-

centred RP�s, and regression versions. In this section, we shall extensively compare them.

6.1 Equivalence of the parametric restrictions

As we have already seen, the parametric restrictions involved in the novel testing

procedures proposed in section 4 simply mean that the centred or uncentred cost and

mean RP�s of Rt do not depend on R2t. Given that the SMVF is spanned by either

13Lemma 1 also provides sufficient conditions for the numerical equality of explicit estimators of γ(αi)
and γ(αii) obtained from hK [Rt;γ(αi),γ(αii)], and implicit estimators obtained from estimators of φ
based on (5) through γ(α) = φ∗ − αφ+ (see footnote 29 in Kan and Zhou (2001) for an example).

26



pair of RP�s, it is straightforward to show that those restrictions are equivalent to the

parametric restrictions tested by De Santis (1993, 1995), Bekaert and Urias (1996), and

Kan and Zhou (2001), which amount to the hypothesis that the SMVF of Rt does not

depend on R2t. In turn, Ferson (1995) and Bekaert and Urias (1996) showed that these

SMVF parametric restrictions are equivalent to the restrictions tested by Huberman and

Kandel (1987), which can be interpreted as saying that each element ofR2t can be written

as a unit cost portfolio of R1t, plus an orthogonal arbitrage portfolio with zero mean.

These equivalences can be seen more formally if we write:

p+t = p
+
1t + (1 + b1)

−1a0Λ−1vt,

p∗t = p
∗
1t + (+N2 −C+N1)0Λ−1vt,

p++t = p++1t + (1 + b1)
−1a0Ω−1wt,

p∗∗t = p
∗∗
1t + (+N2 −B+0N1)Ω−1wt,

(17)

where vt = R2t −CR1t, C = Γ21Γ
−1
11 and Λ = Γ22 − Γ21Γ−111 Γ021 are related to the least

squares projection of R2 on hR1i, while wt = R2t − a − BR1t, B and Ω are related to

the projection of R2 on h1,R1i. From here, it immediately follows that

p+ = p+1 ⇔ p++ = p++1 ⇔ a = 0,

p∗ = p∗1 ⇔ +N2 = C+N1,

p∗∗ = p∗∗1 ⇔ +N2 = B+N1.

Further, if two of these parametric restrictions are satisÞed, so will be the third one, as

f = (+N2 −C+N1)+a1a/(1+b1).

6.2 Equivalence of the tests under the null and local alternatives

The fact that the restrictions to test are equivalent does not necessarily imply that

the corresponding GMM-based test statistics will be equivalent too. This is particularly

true in the case of the regression versions of the tests, in which the number of moment

and parameters involved is different, although the number of degrees of freedom is the

same. The purpose of this subsection is to Þll the gap in the literature by investigating the

asymptotic performance of the different optimal versions of all the previously discussed

GMM tests under the null and sequences of local alternatives. The following proposition,

which is one of the key results of our paper, provides a very precise answer:
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Proposition 6 The trinity of optimal asymptotic tests based on each of the following sets
of moment conditions and restrictions:

E[hU(Rt;φ)] = 0, H0 : φ
+
2 = 0,φ

∗
2 = 0,

E[hE(Rt;ϕ,ν)] = 0, H0 : ϕ
+
2 = 0,ϕ

∗
2 = 0,

E[hH(Rt;a,b)] = 0, H0 : a = 0, f = 0,

are asymptotically equivalent under the null and compatible sequences of local alternatives.

Therefore, there is no basis to prefer one test to the other from this perspective because

all the statistics asymptotically converge to exactly the same random variable. In this

respect, note that our equivalence result is valid as long as the asymptotic distributions

of the different tests are standard, which happens under fairly weak assumptions on the

distribution of asset returns, as we saw in section 3.1. Nevertheless, it is only valid under

the null of spanning, and alternatives arbitrarily close to it.

6.3 Relative Performance under Fixed Alternatives

We are going to use Bahadur�s deÞnition of asymptotic relative efficiency (ARE) of

two testing procedures as the ratio of their approximate slopes (AS), which we described

in section 3.1. Although WT , LMT and DMT are not necessarily equivalent in terms of

AS, except of course when they are numerically equivalent, for the sake of brevity we

shall only compare the approximate slopes of those versions of the Wald test statistics in

which the asymptotic covariance matrix of the restrictions evaluated at the unrestricted

parameter estimators has been computed by using the long-run variance of the centred

second moments under the alternative, as suggested by Hall (2000).

In principle, we can use (17) to obtain the required AS expressions, which indicate that

in general, the three families of spanning tests in Proposition 6 are not asymptotically

equivalent under Þxed alternatives. However, it is virtually impossible to compare the

different AS without making speciÞc assumptions about the true values of the parameters,

and/or the distribution of returns. In this respect, we can show that:

Lemma 6 If a = 0, so that R1 and R share the mean RP�s, then the ARE of the Wald
tests based on the centred and uncentred RP�s is 1 regardless of distributional assumptions.

Additional results can be obtained when returns are i.i.d. elliptical:

Lemma 7 If Rt is an i.i.d. elliptical random vector with bounded fourth moments, then
the AS of the Wald version of the regression test is at least as large as the AS of the Wald
version of the centred RP test regardless of the values of the parameters.
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In contrast, it is possible to Þnd parametric conÞgurations for which the AS of the un-

centred RP test is either bigger or smaller than the AS of the GMM version of the

Huberman-Kandel (1987) test. For instance, we can show that the uncentred RP test

is always asymptotically more powerful than the regression test when the distribution of

returns is i.i.d. normal and C+N1 = +N2 , so that R1 and R share the uncentred cost RP.

Although these results are fairly speciÞc, they can rationalise Monte Carlo results

obtained under the commonly made assumption that Rt is an i.i.d. multivariate normal

or multivariate t random vector (see e.g. Kan and Zhou (2001)).

7 Empirical Application

Although Euro notes and coins started to circulate on Jan. 1st, 2002, the third stage of

the European Monetary Union (EMU) began on Jan. 1st, 1999, when the exchange rates

of the participating currencies were irrevocably set. During these years, the European

Commission has envisaged the creation of EMU as a cornerstone to the realisation of a

Europe in which people, services, capital and goods can move freely. However, EMU is

not without its costs. SpeciÞcally, it is not clear a priori that the elimination of intra-

European exchange rate risk is necessarily beneÞcial for investors, given that it affects

their opportunities for diversiÞcation. In this section, we try to indirectly shed some

light on this issue by answering a related but simpler question: would the mean-variance

investment opportunity set of global investors who diversify their speculative investments

across the most important developed countries remain unaffected by not being able to

invest in the assets of several EMU members? We concentrate on the very short end

of the term structure, which is the only case in which a truly PanEuropean integrated

Þnancial market has been created under the form of an interbank money market.

Our data consists of US dollar prices of Eurodeposits for 1 week, as well as 1 and 3

months from Jan. 4th, 1984 to Dec. 27th, 1995 for Canada, Japan, Switzerland, the UK,

the US, Germany, Belgium, France and Italy,14 which we transform in weekly (Wednesday

to Wednesday) returns. The reason why we stop our sample a few years before the actual

14The Eurodeposit data comes from Datastream. The typical code is ECXXXYY, where XXX denotes
the currency and YY the term. SpeciÞcally, CAD stands for Canadian dollar, JAP for Japanese yen,
SWF for Swiss franc, UKP for British pound, USD for US dollar, WGM for Deutsche Mark, BFR for
Belgian franc, FFR for French franc and ITL for Italian lira. Similarly, 1W, 1M or 3M stand for 1-week,
1-month or 3-month rates, respectively. The exchange rate data are taken from the Bank of Spain.
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creation of EMU is to avoid biasing our results in favour of the null hypothesis by using

data over a period in which there was a rapid convergence of the short end of the term

structure of the likely candidate members towards German levels. In this respect, we

take Germany as our representative EMU country, and consider the effects on the mean-

variance frontiers of excluding from the asset base the other three EMU countries.

The three families of spanning tests are reported in Table 1a. SpeciÞcally, we have

computed the centred and uncentred RP tests introduced in section 4, together with the

GMM version of the regression test discussed in section 5.1. To keep the ratio of assets

to observations small, we have only used the 1-week and 3-month rates, although qualita-

tively similar results are obtained by also considering data on 1-month Eurodeposits. As

can been seen, our results are not sensitive either to the choice of test family, or weighting

matrix, and clearly reject the null hypothesis of spanning.15 In this respect, Table 1b

contains the uncentred RP tests on a country by country basis, which suggest that the

evidence against spanning seems to be much higher for Belgium or Italy than for France.

Therefore, we can fairly conÞdently argue that during the second half of the 1980�s,

and the Þrst half of the 1990�s, a global investor with speculative, short-term positions

was better off by investing not only in the money markets of Germany and other major

developed economies, but also in the Belgian, French and Italian money markets.

8 Conclusions

We have proposed a unifying approach to test for spanning in the return and stochas-

tic discount factor mean-variance frontiers, which is not tied down to the properties of

either frontier. SpeciÞcally, given that the uncentred cost and mean RP�s introduced by

Chamberlain and Rothschild (1983) span both frontiers, our testing procedure is based on

assessing if these two portfolios remain the same when we increase the number of assets

that we analyse. Since those RP�s are deÞned in terms of uncentred moment conditions,

GMM can be directly applied for testing without the need for nuisance parameters.

We have also proposed analogous spanning tests based on the centred cost and mean

15For illustrative purposes, we have computed the asymptotic slopes of the three testing families along
the lines of section 6.3, under the maintained assumption that returns are i.i.d. elliptical. If we replace
the Þrst and second population moments of returns, together with the coefficient of multivariate excess
kurtosis, by their sample counterparts, then we Þnd that the asymptotic slopes are .0762 and .0707 for
the uncentred and centred RP tests, respectively, and .0941 for the regression test.
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RP�s suggested by the same authors, which require the introduction of additional moment

conditions that deÞne mean returns as nuisance parameters. However, since this results

in an unusual GMM framework, we have extended the theory of optimal GMM inference

in Hansen (1982) to those non-trivial situations in which the estimating functions have a

singular covariance matrix along an implicit manifold in the parameter space that contains

the true value. For the beneÞt of practitioners, we have suggested sensible consistent

Þrst-step parameter estimators that can be used to obtain feasible versions of the optimal

GMM estimators with potentially better Þnite sample properties. The choice of Þrst-step

estimator is of the utmost importance in our singular GMM set-up to avoid asymptotic

discontinuities in the distributions of the estimators and testing procedures.

We have related our proposed tests to the existing ones, and showed that they can

be grouped in three families: our two RP tests, and the regression tests introduced by

Huberman and Kandel (1987). We have also proved that their parametric restrictions

are equivalent, and more importantly, that all the tests are asymptotically equivalent

under the null and compatible sequences of local alternatives. The latter result has been

obtained under fairly weak assumptions on the distribution of asset returns. In particular,

we do not require that they are i.i.d. Gaussian or elliptical random vectors. Moreover, we

have compared the asymptotic power of the three families of spanning tests against Þxed

alternatives by using Bahadur�s notion of asymptotic relative efficiency, and obtained some

speciÞc results for certain parameter conÞgurations and commonly made assumptions

on distributions. However, since our comparisons rely on asymptotic results, they have

little to say about the small sample performance of the different tests (see Bekaert and

Urias (1996) or Kan and Zhou (2001) for some Monte Carlo evidence on these issues).

Therefore, it would be useful to obtain higher-order expansions of all the test statistics,

which, however, are beyond the scope of this paper.

Finally, we have applied these procedures to the Eurodeposit market, with special em-

phasis on the recently created interbank money market for the Euro zone, and concluded

that the during the second half of the 80�s, and the Þrst half of the 90�s, a global investor

with speculative, short-term positions was better off by investing in the money markets

of Belgium, France and Italy, as well as Germany and other major developed countries.

There are three situations in which the structure of the RMVF and SMVF imply
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that spanning will be achieved if the original and expanded frontiers share a single risky

portfolio. This will happen when a safe asset is included in R1, only arbitrage portfolios

are available, and also when all expected returns are equal. For the sake of brevity,

these three special cases are separately discussed in a companion paper (see Peñaranda

and Sentana (2004)). For the same reason, our analysis has not involved unconditional

moments of order higher than the second, market frictions, or positivity restrictions on

the discount factor. The Þrst issue is studied in Snow (1991). Short-sales constraints

and transaction costs are dealt with by De Roon, Nijman, and Werker (2000). De Roon,

Nijman, and Werker (1997) also considered spanning under more general expected utility

functions (see also Gouriéroux and Monfort (2001)), as well as nontraded assets.

We have not discussed either spanning tests in the conditional versions of the RMVF

or SMVF (see Hansen and Richard (1987) and Gallant, Hansen and Tauchen (1990),

respectively). This issue is partly addressed in De Santis (1995), Bekaert and Urias

(1996), De Roon, Nijman, and Werker (1997) or Sentana (2004) by scaling returns with

instruments, which can be interpreted as the payoffs to managed portfolios. Alternative

partial approaches are discussed by Ferson, Foerster, and Keim (1993) and Cochrane

(2001) (see also De Roon and Nijman (2001)). Given that Hansen and Richard (1987)

derive conditional analogues to the centred and uncentred RP�s, our unifying approach

provides a rather natural and comprehensive way to test for spanning in those situations.

However, since the weights of the conditional mean and cost RP portfolios will generally

be functions of the relevant information set, the conditional analogues to our spanning

tests should be conditional moment tests, as opposed to the parametric restrictions tests

based on unconditional moments considered so far in the literature.

Finally, spanning tests are partly related to mutual fund separation. In fact, the only

additional restriction in a RMVF context is that the residual of the theoretical regression

of R2 on R1 must not only be orthogonal to R1, but also mean independent (see e.g.

Chamberlain (1983) or Ferson, Foerster, and Keim (1993)). However, testing for mean

independence also involves conditional moment restrictions, which is again qualitatively

different from a standard parametric test. Given the practical relevance of all these issues,

though, they constitute obvious avenues for further research.
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Appendix

A Proofs of Propositions
Proposition 1:

Given that P(θ0) is an orthogonal matrix, and m(θ) is regular in an open neighbour-

hood of θ0, so that rank[L(θ0⊕,0)] = k by the inverse function theorem, then it follows

that rank[D(θ0)] = rank[P0(θ0)D(θ0)L(θ0⊕,0)], which in turn equals

rank

 P0⊕(θ0)D(θ0)Lθ⊕(θ0⊕,0) P0⊕(θ
0)D(θ0)Lθª(θ

0
⊕,0)

P0ª(θ
0)D(θ0)Lθ⊕(θ

0
⊕,0) P0ª(θ

0)D(θ0)Lθª(θ
0
⊕,0)

 = k. (A1)

Now, Π0[l(θ⊕,0)]h[xt; l(θ⊕,0)] = 0 ∀t from Assumption 1. If we differentiate this

equation with respect to θ⊕, and evaluate the derivatives at θ0⊕, we will have

{h[xt; l(θ0⊕,0)]⊗ Ikª}
∂vec{Π0[l(θ0⊕,0)]}

∂θ⊕
+Π0(θ0)

∂h[xt; l(θ
0
⊕,0)]

∂θ⊕

= [h(xt;θ
0)⊗ Ikª ]

∂vec[Π0(θ0)]
∂θ0

L⊕(θ0⊕,0) +Π
0(θ0)

∂h(xt;θ
0)

∂θ0
L⊕(θ0⊕,0) = 0,

since θ0 = l(θ0⊕,0) from Assumption 2. If we take expectations of this expression, and

bearing in mind that E[h(xt;θ0)] = 0 by deÞnition of θ0, then we can easily show that

Π0(θ0)D(θ0)Lθ⊕(θ
0
⊕,0) = 0. Finally, given that Pª(θ

0)must be a full-column rank linear

transformation of Π(θ0) because P0ª(θ
0)h(xt;θ

0) = 0 ∀t, we can also show that

P0ª(θ
0)D(θ0)Lθ⊕(θ

0
⊕,0) = 0, (A2)

As a result, rank[P0⊕(θ
0)D(θ0)Lθ⊕(θ

0
⊕,0)] must indeed be k⊕ for (A1) to be true. ¤

Proposition 2:

Let us start by computing the joint asymptotic covariance matrix of
√
TD0(θ0)Υh̄T (θ0)

and
√
TL0θ⊕(θ

0
⊕,0)D

0(θ0)S−(θ0)h̄T (θ0), where irrespective of our choice of generalised

inverse, the second expression is equal to
√
TD0

⊕θ⊕(θ
0
⊕)∆

−1
⊕ (θ

0)P0⊕(θ
0)h̄T (θ

0) because

L0θ⊕(θ
0
⊕,0)D

0(θ0)S−(θ0) equals

[ L0θ⊕(θ
0
⊕,0)D

0(θ0)P⊕(θ0) L0θ⊕(θ
0
⊕,0)D

0(θ0)Pª(θ0) ]

 ∆−1
⊕ (θ

0) ∆⊕ª(θ0)

∆ª⊕(θ0) ∆ªª(θ0)


×
 P0⊕(θ0)
P0ª(θ

0)

 = [ D0
⊕θ⊕(θ

0
⊕,0) 0 ]

 ∆−1
⊕ (θ

0) ∆⊕ª(θ0)

∆ª⊕(θ0) ∆ªª(θ0)

 P0⊕(θ0)
P0ª(θ

0)

 ,
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and P0ª(θ
0)h[xt; l(θ

0
⊕,0)] = 0 ∀t in view of Assumptions 1 and 2. SpeciÞcally,

lim
T→∞

V

 √
TD0(θ0)Υh̄T (θ0)√

TD0
⊕θ⊕(θ

0
⊕)∆

−1
⊕ (θ

0)P0⊕(θ
0)h̄T (θ

0)

=
 D0(θ0)ΥS(θ0)ΥD(θ0)

D0
⊕(θ

0
⊕)∆

−1
⊕ (θ

0)P0⊕(θ
0)S(θ0)ΥD(θ0)

D0(θ0)ΥS(θ0)P⊕(θ0)∆−1
⊕ (θ

0)D⊕(θ0⊕)

D0
⊕θ⊕(θ

0
⊕)∆

−1
⊕ (θ

0)P0⊕(θ
0)S(θ0)P⊕(θ0)∆−1

⊕ (θ
0)D⊕θ⊕(θ

0
⊕)


=

 D0(θ0)ΥS(θ0)ΥD(θ0) D0(θ0)ΥD(θ0)L⊕(θ0⊕,0)

L0θ⊕(θ
0
⊕,0)D

0(θ0)ΥD(θ0) D0
⊕θ⊕(θ

0
⊕)∆

−1
⊕ (θ

0)D⊕θ⊕(θ
0
⊕)

 ,
because S(θ0) = P⊕(θ0)∆⊕(θ0)P0⊕(θ

0), and

D0(θ0)ΥS(θ0)P⊕(θ0)∆−1
⊕ (θ

0)D⊕θ⊕(θ
0
⊕) = D

0(θ0)ΥP⊕(θ0)P0⊕(θ
0)D(θ0)Lθ⊕(θ

0
⊕,0)

= D0(θ0)Υ[In −Pª(θ0)P0ª(θ0)]D(θ0)Lθ⊕(θ0⊕,0) = D0(θ0)ΥD(θ0)Lθ⊕(θ
0
⊕,0)

in view of (A2) and the orthogonality of P(θ0), which simultaneously guarantees that

P0(θ0)P(θ0) = P⊕(θ0)P0⊕(θ
0) +Pª(θ0)P0ª(θ

0) = In = P(θ
0)P0(θ0).

The delta method then implies that

L(θ0⊕,0)

 V⊕
£
θ0,∆−1

⊕ (θ
0)
¤
0

0 0

L0(θ0⊕,0)
will be the asymptotic covariance matrix of l

n
�θ⊕T

£
S−(θ0)

¤
,0
o
, where

V⊕
£
θ0,∆−1

⊕ (θ
0)
¤
=
£
D0
⊕θ⊕(θ

0
⊕)∆

−1
⊕ (θ

0)D⊕θ⊕(θ
0
⊕)
¤−1

= [L0θ⊕(θ
0
⊕)D

0(θ0)S−(θ0)D(θ0)Lθ⊕(θ
0
⊕)]

−1.

Similarly, the asymptotic covariance matrix of �θT (ΥT ) is

V(θ0,Υ) = H−1(θ0,Υ) · [D0(θ0)ΥS(θ0)ΥD(θ0)] ·H−1(θ0,Υ).

Hence, the difference between those two matrices will be positive semideÞnite if so is
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the matrix

D0(θ0)ΥS(θ0)ΥD(θ0)−H(θ0,Υ)L(θ0⊕,0)
 V⊕

£
θ0,∆−1

⊕ (θ
0)
¤
0

0 0


×L0(θ0⊕,0)H(θ0,Υ) = D0(θ0)ΥS(θ0)ΥD(θ0)

−D0(θ0)Υ[ D(θ0)Lθ⊕(θ
0
⊕,0) D(θ0)Lθª(θ

0
⊕,0) ]

 V⊕
£
θ0,∆−1

⊕ (θ
0)
¤
0

0 0


×
 L0θ⊕(θ0⊕,0)D0(θ0)

L0θª(θ
0
⊕,0)D

0(θ0)

ΥD(θ0) = D0(θ0)ΥS(θ0)ΥD(θ0)

−D0(θ0)ΥD(θ0)Lθ⊕(θ
0
⊕,0)[D

0
⊕θ⊕(θ

0
⊕)∆

−1
⊕ (θ

0)D⊕θ⊕(θ
0
⊕)]

−1L0θ⊕(θ
0
⊕,0)D

0(θ0)ΥD(θ0).

The result follows since this matrix is the asymptotic residual variance in the limiting

least squares projection of
√
TD0(θ0)Υh̄T (θ0) on

√
TL0θ⊕(θ

0
⊕,0)D

0(θ0)S−(θ0)h̄T (θ0). ¤

Proposition 3:

Trivial because Π0
E(ϕ,ν)hE(Rt;ϕ,ν) = ϕ

∗0ν −ϕ+0+N ∀t for any ν, ϕ+, and ϕ∗. ¤

Proposition 4:

The matrices Φ(c) are such that (1,R0
1t-c

−1+0N1)Φ
−10(c) = (1,R0

1t). As a result,

Π0
L [a(ci),b(ci),a(cii),b(cii)]hL [Rt;a(ci),b(ci),a(cii),b(cii)] will be

©£
Φ−1(ci)⊗IN2

¤
,
£−Φ−1(cii)⊗IN2¤ª



 1

R1t-c−1i +N1

⊗
 (R2t-c−1i +N2)− a(ci)
−B(ci)(R1t-c−1i +N1)

 1

R1t-c−1ii +N1

⊗
 (R2t-c−1ii +N2)− a(cii)
−B(cii)(R1t-c−1ii +N1)




=


 1

R1t

⊗
 a(cii)− a(ci) + c−1i [B(ci)+N1 − +N2 ]
−c−1ii [B(cii)+N1 − +N2] + [B(cii)−B(ci)]R1t

 .
Finally, it is trivial to see that such an expression will be equal to 0 ∀t regardless of ci

and cii if and only if the conditions in (10) simultaneously hold. ¤

Proposition 5:

If we use (10) to reparametrise a(ci),b(ci), a(cii) and b(cii) in terms of a and b, we

can write hL[Rt;a(ci),b(ci),a(cii),b(cii)] as Φ(ci)⊗ IN2
Φ(cii)⊗ IN2

hH(Rt;a,b) =


 Φ(ci) 0

0 Φ(cii)

⊗ IN2
 [+2 ⊗ hH(Rt; a,b)],
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where hH(Rt;a,b) is deÞned in (11). It is then straightforward to show that the asymp-

totic covariance matrix of
√
T h̄LT [a(ci),b(ci), a(cii),b(cii)] will be

 Φ(ci) 0

0 Φ(cii)

⊗ IN2
 [+2+02 ⊗ SH(a0,b0)]


 Φ0(ci) 0

0 Φ0(cii)

⊗ IN2
 ,

a generalised inverse of which is
 Φ−10(ci) 0

0 Φ−10(cii)

⊗ IN2

·
+2+

0
2

4
⊗ S−1H (a0,b0)

¸
 Φ−1(ci) 0

0 Φ−1(cii)

⊗ IN2
 .

Hence, it is clear that applying the optimal singular GMM approach developed in sec-

tion 3.2 to E{hL[Rt;a(ci),b(ci), a(cii),b(cii)]} = 0 is equivalent to applying the standard
optimal GMM approach to E[hH(Rt;a,b)] = 0. ¤

Proposition 6:

For simplicity of exposition, but without loss of generality, we shall focus on the Wald

versions of the different spanning tests in view of asymptotic equivalence of the Lagrange

multiplier and distance metric tests under the null and sequences of local alternatives in

the framework presented in section 3.

Let GU(φ) = [I2 ⊗ (0, IN2)0)]φ = QUφ, GC(ϕ) = [I2 ⊗ (0, IN2)]ϕ = QCϕ, and

GH(a,b) =

 1 00

0 −+N1

⊗ IN2
 a

b

+
 0

+N2

 = QH

 a

b

+ qH ,
so that the three null hypotheses can be written as GU(φ) = 0, GC(ϕ) = 0 and

GH(a,b) = 0, respectively.

In this notation, the Wald version of the uncentred RP spanning test will be based on

G0
U(�φT ) = (�φ

+0
2T , �φ

∗0
2T ) = [(�ν2T − �CT �ν1T )0, (+N2 − �CT +N1)0](I2 ⊗ �Λ−1T )

with �CT = �Γ21T �Γ−111T and �ΛT = �Γ22T − �Γ21T �Γ−111T �Γ021T , where the last expression has being
obtained after applying the partitioned inverse formula to (�φ

+0
T , �φ

∗0
T ) = (�ν

0
T , +

0
N)(I2⊗�Γ−1T ).

On the other hand, the Wald version of the centred RP spanning test is based on

GC(�ϕT ) =

 �ϕ+2T

�ϕ∗2T

 = (I2 ⊗ �Ω−1T )
 �aT

�fT

 =

 1 + �b1T 0

â1T 1

⊗ �Ω−1T �ΛT
GU(�φT )

= �ΨCTGU(�φT ),
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where the Þrst expression has been obtained after applying the partitioned inverse formula

to (�ϕ+0T , �ϕ
∗0
T ) = (�ν

0
T , +

0
N)(I2 ⊗ �Σ−1T ), while the last expression follows from the numerical

relationships �aT = (1+�b1T )(�ν2T − �CT �ν1T ) and �fT = (+N2 −CT +N1)+â1T (�ν2T − �CT �ν1T ),

with â1T = +0N1
�Σ−111T �ν1T and �b1T = �ν

0
1T
�Σ−111T �ν1T .

Finally, the Wald version of the regression spanning test is based on

GH(�aT , �bT ) =

 �aT

�fT

 = (I2 ⊗ �ΩT )GC(�ϕT ) =

 1 + �b1T 0

â1T 1

⊗ �ΛT
GU(�φT )

= �ΨHTGU(�φT ).

Hence, both GC(�ϕT ) and GH(�aT , �bT ) can be written as full-rank linear combinations

of GU(�φT ). However, since �ΨCT and �ΨHT depend on sample data, the three Wald tests

will not be numerically equal in general (cf. Lemma 1).

In this context, we can deÞne the different alternative hypothesis to be compatible if

GC(ϕ
0) = ΨCGU(φ

0) and GH(a
0,b0) = ΨHGU(φ

0), where

ΨC =

 1 + b1 0

a1 1

⊗Ω−1Λ
 = p lim

T→∞
�ΨCT (A3)

and

ΨH =

 1 + b1 0

a1 1

⊗Λ
 = p lim

T→∞
�ΨHT . (A4)

Then, given that we can always write

√
T [GC(�ϕT )−GC(ϕ

0)] =
√
T [�ΨCTGU(�φT )−ΨCGU(φ

0)]

= �ΨCT

√
T [GU(�φT )−GU(φ

0)] +
√
T (�ΨCT −ΨC)GU(φ

0)

regardless of the true values of the parameters, a straightforward application of Cramér�s

theorem implies that
√
T [GC(�ϕT )−ΨCδ/

√
T ] = ΨC

√
T [GU(�φT )−δ/

√
T ]+op(1) for the

case of compatible local alternatives of the formGU(φ) = δ/
√
T andGC(ϕ

0) = ΨCδ/
√
T .

Finally, we can use an analogous argument to show that
√
T [GH(�aT , �bT )−ΨHδ/

√
T ] =

ΨH

√
T [GU(�φT )− δ/

√
T ] + op(1) for the case of compatible local alternatives of the form

GU(φ) = δ/
√
T and GH(ϕ

0) = ΨHδ/
√
T . ¤
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B Proofs of Lemmata
Lemma 1:

Let �θAT (ΥAT ) = argminθ h̄
0
AT (θ)ΥNT h̄AT (θ) denote another GMM estimator of θ

based on the alternative set of moment conditions E[hA(xt;θ)] = 0, where hA(xt;θ) =

A(θ)h(xt;θ). Our assumptions on A(θ) guarantee that all the required regularity con-

ditions for the asymptotic normality of �θAT (ΥNT ) will hold if they hold for �θT (ΥT ).

Therefore, we will have that

√
T [�θAT (ΥNT )− θ0]− [D0

A(θ
0)ΥNDA(θ

0)]−1D0
A(θ

0)ΥN

√
T h̄AT (θ

0) = op(1)

and
√
T [�θT (ΥT )− θ0]− [D0(θ0)ΥD(θ0)]−1D0(θ0)Υ

√
T h̄T (θ

0) = op(1),

where D(θ) = E[∂h(xt;θ)/∂θ
0] and DA(θ) = E[∂hA(xt;θ)/∂θ

0].

Importantly, these results continue to be valid even if there is a linear combination of

h(xt;θ
0) that is 0 for all t.

But since
√
T h̄AT (θ

0)−A(θ0)√T h̄T (θ0) = op(1), and

DA(θ) = E[h(xt;θ)⊗ I]∂vec[A(θ)]∂θ0 +A(θ)D(θ),

so that DA(θ
0) = A(θ0)DO(θ

0) because E[hO(xt;θ
0)] = 0 by deÞnition of θ0, then we

will have that
√
T [�θAT (ΥNT )− �θT (ΥT )] = op(1).

Next, note that our assumptions on P(θ) ensure that the usual regularity conditions

for asymptotic normality of �ρNT (ΥNT ) will hold if they hold for �θAT (ΥNT ). Therefore,

we can easily show that

√
T [�ρNT (ΥNT )− ρ0]− {D0

N(ρ
0)ΥNDN(ρ

0)]−1D0
N(ρ

0)ΥN

√
T h̄NT (ρ

0) = op(1),

regardless of whether or not there is a linear combination of h(xt;θ0) that is 0 for all t.

If we then apply the standard delta method, we can show that both

√
T{GN [�ρNT (ΥNT )]−GN(ρ

0)}−QN(ρ
0)[D0

N(ρ
0)ΥNDN(ρ

0)]−1D0
N(ρ

0)ΥN

√
T h̄NT (ρ

0)

and

√
T{G[�θAT (ΥNT )]−G(θ0)}−Q(θ0)[D0

A(θ
0)ΥNDA(θ

0)]−1D0
A(θ

0)ΥN

√
T h̄AT (θ

0)
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will be op(1). But since
√
T h̄NT (ρ

0)−√T h̄AT [P−1 (ρ0)] is also op(1), and
∂hN (xt;ρ

0)

∂ρ0
=
∂hA[xt;P

−1 (ρ0)]
∂θ0

∂P−1 (ρ0)
∂ρ0

,

so that

DN(ρ
0) = DA[P

−1 ¡ρ0¢]∂P−1 (ρ0)
∂ρ0

,

and

QN(ρ
0) =

∂GN (ρ
0)

∂ρ0
=
∂G[P−1 (ρ0)]

∂θ0
∂P−1 (ρ0)
∂ρ0

,

the Þrst part follows because ρ0 = P
¡
θ0
¢
and ∂P−1 (ρ0) /∂ρ0 = [∂P

¡
θ0
¢
/∂θ0]−1 has full

rank.

To prove the second part, note that the sample Þrst-order conditions that deÞne

�θAT (ΥNT ) and �θ(ΥT ) are given by

D̄0
AT [�θAT (ΥNT )] ·ΥNT · h̄AT [�θAT (ΥNT )] = 0

and

D̄0
T [�θT (ΥT )] ·ΥT · h̄T [�θT (ΥT )] = 0,

respectively. But since

D̄0
AT [�θAT (ΥNT )] ·ΥNT · h̄AT [�θAT (ΥNT )] = D̄

0
T [�θAT (ΥNT )]A

0 ·ΥNT ·Ah̄T [�θAT (ΥNT )],

because of the chain rule for Jacobian matrices and the deÞnition of hA(xt;θ), then the

condition ΥNT = A
0−1ΥTA

−1 guarantees that �θT (ΥT ) will also satisfy the sample Þrst-

order conditions that deÞne �θAT (ΥNT ) for large enough T .

Finally, note that the sample Þrst-order conditions that deÞne �ρNT (ΥNT ) are

D̄0
NT [�ρNT (ΥNT )] ·ΥNT · h̄NT [�ρNT (ΥNT )] = 0.

But since

D̄0
NT [�ρNT (ΥNT )] ·ΥNT · h̄NT [�ρNT (ΥNT )]

=
∂P−10[�ρNT (ΥNT )]

∂ρ0
D̄0
AT{P−1[�ρNT (ΥNT )]} ·ΥNT · h̄AT [P−1[�ρNT (ΥNT )]},

because of the chain rule for Jacobian matrices and the deÞnition of hN(xt;ρ), then

P[�θAT (ΥNT )] = P[�θT (ΥT )] will satisfy the sample Þrst-order conditions that deÞne

�ρNT (ΥNT ). Finally, the result follows because GN{P[�θT (ΥT )]} = G[�θT (ΥT )] for large

enough T . ¤
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Lemma 2:

The Þrst part of this lemma follows immediately from the proof of Proposition 2 if

we note that in the exactly identiÞed case both D0(θ0)Υ and D0
⊕θ⊕(θ

0
⊕,0)∆

−1
⊕ (θ

0) are

full-rank square matrices of orders k and k⊕ respectively, and also that

h(xt;θ
0) = P(θ0)P0(θ0)h(xt;θ0) = P⊕(θ0)h⊕T (xt;θ0⊕,0)

because the singularity described in Assumption 1 is such that P0ª(θ
0)ht(xt;θ

0) = 0 ∀t by
virtue of Assumption 2. Hence, the asymptotic residual variance in the limiting projection

of
√
TD0(θ0)Υh̄T (θ0) on

√
TL0θ⊕(θ

0
⊕,0)D

0(θ0)S−(θ0)h̄T (θ0) will be identically 0.

Now, given that the original functions h(xt;θ) exactly identify θ, which in this case

requires Υ to have full rank, the unrestricted GMM estimator �θT (ΥT ) can be obtained

for large enough T by solving the non-linear equation system h̄T [�θT (ΥT )] = 0 regardless

of ΥT . For that reason, we shall refer to �θT (ΥT ) as �θT in what follows. If we make

the additional assumption that m⊕(�θT ) = 0, then the regularity of m(.) on an open

neighbourhood of θ0 together with the consistency of �θT imply that in sufficiently long

samples there will be a unique value of θ⊕, θ̈⊕T say, such that �θT = l(θ̈⊕T ,0), which in

turn implies that h̄T [l(θ̈⊕T ,0)] = 0 for large enough T .

The condition mª(�θT ) = 0 also implies that Π0(�θT )h(xt; �θT ) = 0 ∀t in view of

Assumption 1, and consequently, that S̄T (�θT ) has necessarily rank k⊕. Let

[ P̄⊕T (�θT ) P̄ªT (�θT ) ]

 ∆̄⊕T (�θT ) 0

0 0

 P̄0⊕T (�θT )
P̄0ªT (�θT )

 = P̄⊕T (�θT )∆̄⊕T (�θT )P̄0⊕T (�θT )

denote the spectral decomposition of this matrix. Since θ⊕ will also be exactly iden-

tiÞed from the transformed functions h⊕(xt;θ⊕,0|�θT ) = P̄0⊕(�θT )h[xt; l(θ⊕,0)] under

our assumptions, the feasible unrestricted GMMS estimator, �θ⊕T [S̄+T (�θT )], can be ob-

tained for large enough T by solving the non-linear equation system h̄⊕(�θ⊕T ,0|�θT ) =
P̄0⊕(�θT )h̄T [l{�θ⊕T [S̄+T (�θT )],0)}] = 0. But since we saw before that h̄T [l(θ̈⊕T ,0)] = 0 in

sufficiently long samples, �θ⊕T [S̄+T (�θT )] must be numerically equal to θ̈⊕T for large enough

T . In fact, the numerical equality between θ̈T and l{�θ⊕T [S̄+T (�θT ),0} will continue to hold
in this exactly identiÞed context if in the deÞnition of �θ⊕T [S̄+T (�θT )] we replace P̄⊕(�θT ) by

any matrix whose probability limit is such that none of its columns belong to the column

span of Π(θ0). For ease of notation, we refer to �θ⊕T [S̄+T (�θT )] as �θ⊕T in what follows.
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To prove the third part, we can apply the delta method to show that

√
T [G(�θT )−G(θ0)] = Q(θ0)D−1(θ0)

√
T h̄T (θ

0) + op (1)

= Q(θ0)D−1(θ0)P⊕(θ0)
√
TP0⊕(θ

0)h̄T (θ
0) + op (1) ,

and

√
T [G⊕(�θ⊕T )−G⊕(θ0⊕)] = Q⊕(θ0⊕)D

−1
⊕θ⊕(θ

0
⊕,0)

√
T h̄⊕T (θ0⊕,0) + op (1)

= Q(θ0)Lθ⊕(θ
0
⊕,0)

£
P0⊕(θ

0)D(θ0)L⊕(θ0⊕,0)
¤−1√

TP0⊕(θ
0)h̄T (θ

0) + op (1) .

Therefore, it is clear that

√
T [G(�θT )−G⊕(�θ⊕T )] = op(1)

⇔ Q(θ0)Lθ⊕(θ
0
⊕,0)

£
P0⊕(θ

0)D(θ0)Lθ⊕(θ
0
⊕,0)

¤−1 −Q(θ0)D−1(θ0)P⊕(θ0) = 0

⇔ Q(θ0)Lθ⊕(θ
0
⊕,0) = Q(θ

0)D−1(θ0)P⊕(θ0)P0⊕(θ
0)D(θ0)Lθ⊕(θ

0
⊕,0). (B1)

But the last condition is indeed satisÞed in view of (A2) and the orthogonality of P(θ0).

Finally, we can deÞne an asymptotically valid Wald test of H0 : G⊕(θ⊕) = 0 based

on �θ⊕T as

W⊕T=TG0
⊕(�θ⊕T )[Q⊕(�θ⊕T )D̄−1

⊕θ⊕T (
�θ⊕T |�θT )∆̄⊕T (�θT )D̄−10

⊕θ⊕(
�θ⊕T |�θT )Q0

⊕(�θ⊕T )]
−1G⊕(�θ⊕T ).

We can also deÞne an asymptotically valid Wald test of H0 : G(θ) = 0 based on �θT

as

WT = TG
0(�θT )[Q(�θT )D̄−1

T (
�θT )S̄T (�θT )D̄

−10
T (�θT )Q

0(�θT )]−1G(�θT ).

Given that we have deÞned G⊕(θ⊕) as G[l(θ⊕,0)], it follows from the second part of the

lemma that G(�θT ) = G⊕(�θ⊕T ) for large enough T . As a result, WT and W⊕T will be

numerically identical if the matrices deÞning the two quadratic forms are also numerically

identical. We can express those matrices as

Q(�θT )D̄T (�θT )
−1S̄T (�θT )D̄−10

T (�θT )Q
0(�θT )

= Q(�θT )D̄
−1
T (
�θT )P̄⊕T (�θT )∆̄⊕T (�θT )P̄0⊕T (�θT )D̄

−10
T (�θT )Q

0(�θT )

and

Q⊕(�θ⊕T )D̄−1
⊕θ⊕T (

�θ⊕T ,0|�θT )∆̄⊕T (�θT )D̄
0−1
⊕θ⊕(

�θ⊕T ,0)Q0
⊕(�θ⊕T ) =

Q(�θT )Lθ⊕(�θ⊕T ,0)[P̄
0
⊕T (�θT )D̄T (�θT )L(�θ⊕T )]−1∆̄⊕T (�θT )

×[L0θ⊕(�θ⊕T ,0)D̄T (�θT )
0P̄0⊕T (�θT )]

−1L0⊕(�θ⊕T ,0)Q
0(�θT ),
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respectively, where we have repeatedly used again the chain rule for Jacobian matrices.

Hence, both quadratic forms will be numerically equal for large enough T irrespective of

the value of ∆̄⊕T (�θT ) if and only if

Q(�θT )D̄
−1(�θT )P̄⊕T (�θT ) = Q(�θT )Lθ⊕(�θ⊕T ,0)

h
P̄0⊕T (�θT )D̄(�θT )Lθ⊕(�θ⊕T ,0)

i−1
.

Given that �θT = l(�θ⊕T ,0), an argument analogous to the one we used to prove (B1) allows

us to show that the above condition will indeed be satisÞed because (i) h̄T (�θT ) = 0, so

that Π0(�θT )D̄T (�θT )Lθ⊕(�θ⊕T ,0) = 0, and (ii) our choice of S̄T (�θT ) as an estimator of

S(θ0) guarantees that P̄ªT (�θT ) is a full column rank linear transformation of Π(�θT ). ¤

Lemma 3:

Let us re-order the estimating functions in (6) as
R1tR

0
tφ
+ −R1t

R1tR
0
tφ
∗ − +N1

R2tR
0
tφ
+ −R2t

R2tR
0
tφ
∗ − +N2

 =

 hU1(Rt;φ)

hU2(Rt;φ)

 .

We just need to check that the condition (C1) in Lemma C1 (see Appendix C below) is

satisÞed for k1ª = k2ª = 0, with the additional peculiarity that since the second block

of moment conditions contains no additional parameters in this case, we simply have

to check that the left hand side of (C1) is equal to 0. But since DU1 = I2 ⊗ Γ11, and
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DU2 = I2 ⊗ Γ21, it is easy to see that DU2D
−1
U1SU11(φ) will be equal to (1 + b)−1 [1 + κb (1 + b)−1]

a (1 + b)−1 κ

a (1 + b)−2 κ

[c− a2 (1 + b)−1] + κ ¡[c− a2 (1 + b)−1]− a2 (1 + b)−2¢
⊗ Γ21

+

 −2 (1 + b)−2 + ¡3b2 (1 + b)−2 − 5b (1 + b)−1 + 2¢κ
a (1 + b)−2 (2− 3κ)

a (1 + b)−2 (2− 3κ)
−2a2 (1 + b)−2 + {3a2 (1 + b)−2 − [c− a2 (1 + b)−1]}κ

⊗ Γ21Γ−111 ν1ν 01
+

 0 0

0 1 + 2κ

⊗ Γ21Γ−111 +N1+0N1
+

 0 (1 + b)−1 κ

(1 + b)−1 κ −2a (1 + b)−1 κ

⊗ Γ21Γ−111 ¡ν1+0N1 + +N1ν 01¢ ,
where SU11(φ) has been obtained from Lemma D1 in Appendix D below. Finally, since

ν2 = Γ21Γ
−1
11 ν1 and +N2 = Γ21Γ

−1
11 +N1 under the null of spanning, we will have that

DU2D
−1
U1SU11(φ

0) = SU21(φ
0), where SU21(φ) can also be obtained from Lemma D1. ¤

Lemma 4:

Let us begin again by re-ordering the estimating functions (8) as

R1t − ν1
(R1t − ν1)(Rt − ν)0ϕ+ −R1t

(R1t − ν1)(Rt − ν)0ϕ∗ − +N1
R2t − ν2

(R2t − ν2)(Rt − ν)0ϕ+ −R2t

(R2t − ν2)(Rt − ν)0ϕ∗ − +N2


=


hM1(R1t;ν1)

hC1(R1t;ϕ
+
1 ,ϕ

∗
1,ν1)

hM2(R2t;ν2)

hC2(Rt;ϕ
+
1 ,ϕ

∗
1,ν1,ν2)



=

 hE1(R1t;ϕ
+
1 ,ϕ

∗
1,ν1)

hE2(Rt;ϕ
+
1 ,ϕ

∗
1,ν1,ν2)

 ,
Once more, we have to check that condition (C1) in Lemma C1 is satisÞed under the

null hypothesis H0 : ϕ+2 = 0, ϕ
∗
2 = 0, where in this case θ = (ν1, ϕ

+0
1 , ϕ

∗0
1 )
0 and ρ = ν2.

To do so, we must Þrst orthogonalise the two blocks of moment conditions by regressing
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the second set of estimating functions evaluated at θ0 and ρ0 onto the Þrst one evaluated

at θ0. The regression coefficients, though, are not uniquely deÞned since the singularity

in hE(Rt;ϕ,ν) is conÞned to hE1 (Rt;θ) under H0. Nevertheless, it is easy to see that

g2(Rt;θ
0,ρ0), where g2(Rt;θ,ρ) = h2(Rt;θ,ρ)− (I3⊗B0)hE1(Rt;θ), will be orthogonal

to hE1
¡
Rt;θ

0
¢
because S21(θ

0,ρ0) = (I3 ⊗B0)S11(θ0). In this respect, note that B can
be interpreted as the coefficients in the multivariate regression of R2t − ν2 on R1t − ν1,
while (I2 ⊗B) can be interpreted as the coefficients in the multivariate regression of (R2t − ν2)(R1t − ν1)0ϕ+1 −R2t

(R2t − ν2)(R1t − ν1)0ϕ∗1 − +N2


on  (R1t − ν1)(R1t − ν1)0ϕ+1 −R1t

(R1t − ν1)(R1t − ν1)0ϕ∗1 − +N1

 .
The next step is to Þnd out the appropriate reparametrisation that exploits the singu-

larity in hE1 (Rt;θ), together with the Moore-Penrose inverses of the covariance matrices

of hE1
¡
Rt;θ

0
¢
and g2

¡
Rt;θ

0,ρ0
¢
. Given that the latter covariance matrix has full rank,

we should concentrate on the Þrst block. SpeciÞcally, we could work with the repara-

metrisation θ = l1(θ⊕,0) = ( ν 01⊕ ϕ+1ª ϕ+01⊕ ϕ∗01⊕ )
0, where ν1⊕ = ν1, ϕ+1⊕ contains

the last N1 − 1 elements of ϕ+1 , ϕ∗1⊕ = ϕ∗1, and ϕ+1ª = ϕ∗01 ν1 −ϕ+01 +N1 , together with the
non-singular set of moment conditions

h1⊕[Rt;θ⊕,θª] = P01⊕(θ
0)h1[Rt; l1(θ⊕,θª)],

g2⊕[Rt;θ⊕,θª,ρ] = P02(θ
0,ρ0)g2[Rt; l1(θ⊕,θª),ρ],

where P1⊕(θ0) are the eigenvectors associated with the non-zero eigenvalues of the as-

ymptotic covariance matrix of
√
T h̄1T

¡
θ0
¢
, while P2(θ

0,ρ0) contains all the eigenvectors

of the asymptotic covariance matrix of
√
T ḡ2T (θ

0,ρ0).

In view of Lemma C1, the condition for asymptotic equivalence between the optimal

GMMS estimators of θ based on E[h1 (Rt;θ)] = 0 alone, and the ones that also exploit

the information in E[h2 (Rt;θ,ρ)] = 0, is simply that

E

"
∂g2⊕

¡
Rt;θ

0
⊕,0,ρ

0
¢

∂θ0⊕

#
∈
*
E

"
∂g2⊕

¡
Rt;θ

0
⊕,0,ρ

0
¢

∂ρ0

#+
,

44



But since P2(θ
0,ρ0) has full rank, an equivalent condition in terms of the original moment

conditions and parameters is

E

"
∂h2

¡
Rt;θ

0,ρ0
¢

∂θ0
− (I3 ⊗B0)

∂h1
¡
Rt;θ

0
¢

∂θ0

#
L1θ⊕(θ

0
⊕,0) ∈

*
E

"
∂h2

¡
Rt;θ

0,ρ0
¢

∂ρ0

#+
,

where L1θ⊕(θ
0
⊕,0) = ∂l1(θ⊕,0)/∂θ

0
⊕. Tedious algebra then shows that

E

"
∂h2

¡
Rt;θ

0,ρ0
¢

∂θ0

#
=


0 0 0

0 Σ21 0

0 0 Σ21

 ,

E

"
∂h1

¡
Rt;θ

0
¢

∂θ0

#
=


−IN1 0 0

0 Σ11 0

0 0 Σ11

 ,
so that

E

"
∂h2

¡
Rt;θ

0,ρ0
¢

∂θ0
− (I3 ⊗B)

∂h1
¡
Rt;θ

0
¢

∂θ0

#
=


B 0 0

0 0 0

0 0 0

 .
In addition, since

L1θ⊕(θ
0
⊕,0) =


IN1 0 0

ϕ∗01

0

−+0N1−1
IN1−1

ν 01

0

0 0 IN1

 ,
then

E

"
∂h2

¡
Rt;θ

0,ρ0
¢

∂θ0
− (I3 ⊗B)

∂h1
¡
Rt;θ

0
¢

∂θ0

#
L⊕(θ0⊕,0) =


B 0 0

0 0 0

0 0 0

 ,
where the only change with respect to the previous expression is that the row dimen-

sion of the second row of blocks is reduced by one. Finally, the result follows because

E
£
∂h02

¡
Rt;θ

0,ρ0
¢
/∂ρ

¤
= ( −IN2 0 0 ). ¤

Lemma 5:

First of all, it is important to note that under the null hypothesis, the relationship

between the estimating functions hL(Rt;b2) and hH(Rt;a,b), where b2 = vec(B2), will
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be given by the following full rank linear transformation with constant coefficients

hL(Rt;b2) = (z⊗ IN2)hH(Rt; a,b),

z =


1 0 0

0 1 0

0 −+N1−1 IN1−1

 .
Hence, we will have that SL(b02) = (z⊗ IN2)SH(a0,b0)(z0⊗IN2) under H0, where the

expression for SH(a,b) is given in Lemma D3 below.

Similarly, the Jacobian of the moment conditions (12) will be

DL(b2) = −

z
 1 ν 01

ν1 Γ11




0

−+0N1−1
IN1−1

⊗ IN2
 .

As a result, D0
L(b2)S

−1
L (b2) will be equal to

−
( 0 −+N1−1 IN1−1 )

 1 ν 01

ν1 Γ11

 1 ν 01

ν1 (κ+ 1)Σ11 + ν1ν
0
1

−1z−1 ⊗Ω−1


= −

( 0 −+N1−1 I )

 1 0

κ(κ+ 1)−1ν1 (κ+ 1)−1IN1



1 0 0

0 1 0

0 +N1−1 IN1−1

⊗Ω−1


= −
n
(κ+ 1)−1[ κ (ν1b − ν1a+N1−1) 0 IN1−1 ]⊗Ω−1

o
.

which conÞrms that the optimal instrument is proportional to a constant translation of

R1b-R1a+N1−1. ¤

Lemma 6:

Using the notation of section 3.1, we can write the approximate slope of the Wald

version of the uncentred RP spanning test as G0
U(φ

0)F−1U (φ
0)GU(φ

0), where

FU(φ
0) = lim

T→∞
V {
√
T [GU(�φT )−GU(φ

0)]}.

However, it is more convenient to express this matrix as limT→∞ V [
√
T ḡUT (φ

0)], where

gU (Rt;φ) = QU(φ)D
−10
U (φ)hU (Rt;φ), so that

FU(φ
0) = QU(φ

0)D−10
U (φ0)SU(φ

0)D−1
U (φ

0)Q0
U(φ

0).
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But since

QU(φ
0)D−10

U (φ0) = [I2 ⊗ ( 0 IN2 )](I2 ⊗ Γ−1) = I2 ⊗ ( −Λ−1C Λ−1 ), (B2)

and

hU (Rt;φ) =

 Rt

¡
p+t − 1

¢
Rtp

∗
t − +N

 ,
we can write

gU (Rt;φ) =
£
I2 ⊗Λ−1

¤ vt
¡
p+t − 1

¢
vtp

∗
t − (+N2 −C+N1)

 .
We can proceed in the same manner with the centred RP test. Given that H0 does

not involve ν, and the Jacobian matrix is diagonal, the approximate slope of this test

reduces to G0
C(ϕ

0)F−1C (ϕ
0)GC(ϕ

0) = G0
U(φ

0)Ψ0
CF

−1
C (ϕ

0)ΨCGU(φ
0), where ΨC is given

by (A3). SpeciÞcally, we can interpret Ψ−1
C FC(ϕ

0)Ψ−10
C as limT→∞ V [

√
T ḡCT (ϕ

0)], where

gC (Rt;ϕ
0) = Ψ−1

C QCD
−10
C hC (Rt;ϕ

0). But since

QC(ϕ
0)D−10

C (ϕ0) = [I2 ⊗ ( 0 IN2 )](I2 ⊗Σ−1) = I2 ⊗ ( −Ω−1B Ω−1 ), (B3)

and

hC(Rt;ϕ
0) =

 (1 + b)Rt(p
+
t − 1)

(Rtp
∗
t − +N) + aRt(p

+
t − 1)

+

 b− (1 + b)p+t
a− p∗t − ap+t

⊗ ν


=

 1 + b 0

a 1

⊗ IN
 Rt(p

+
t − 1)

Rtp
∗
t − +N

−

 p+t − b(1 + b)−1
p∗t − a(1 + b)−1

⊗ ν



because of the relationships between centred RP and uncentred RP described in section

2.1, we eventually get

gC
¡
Rt;ϕ

0
¢
=

 1 + b1 0

a1 1

−1 1 + b 0

a 1

⊗Λ−1
 wt(p

+
t − 1)− (1 + b)−1a

wtp
∗
t − f + a(1 + b)−1a

 .
Finally, the approximate slope of the regression test will be

G0
H(a

0,b0)F−1H (a
0,b0)GH(a

0,b0) = G0
U(φ

0)Ψ0
HF

−1
H (a

0,b0)ΨHGU(φ
0),

where ΨH is given by (A4). Once more, we can interpret Ψ−1
H FH(a

0,b0)Ψ−10
H as the

asymptotic variance of
√
T ḡHT (a

0,b0)], where

gH
¡
Rt; a

0,b0
¢
= Ψ−1

H QH(a
0,b0)D−10

H (a0,b0)hH(Rt;a
0,b0).
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But since

QH(a
0,b0)D−10

H (a0,b0) =

 −1 00

0 +0N1

 1 ν 01

ν1 Γ11

−1

⊗ IN2


=

 −(1 + b1) ν 01Σ
−1
11

−a1 +0N1Σ
−1
11

⊗ IN2, (B4)

and hH(Rt;a
0,b0) = (1,R0

1t)
0 ⊗wt, we will end up with

gH(Rt; a
0,b0) = [I2 ⊗Λ−1]

 wt(p+1t − 1)
wtp

∗
1t

 .
Hence, we have expressed gU(Rt;φ

0), gC(Rt;ϕ
0) and gH(Rt; a

0,b0) as simple bilinear

functions of wt, p+t and p
∗
t , and their counterparts under the null, i.e. vt, p

+
1t and p

∗
1t,

respectively. The relationship between these random quantities is given by (17) together

with wt = vt − a(1− p+1t), Λ = Ω+ (1+b1)−1aa0, a=a1 + a0Ω−1f , and b=b1 + a0Ω−1a.
Finally, it is straightforward to see that gC(Rt;ϕ

0) = gU(Rt;φ
0) when a0 = 0. As a

result, the corresponding approximate slopes will be the same too. ¤

Lemma 7:

Given that H0 does not involve ν, and that the Jacobian matrix is diagonal, we can

treat the elements of ν as if they were known without loss of generality. If we combine

the expression (B3) for QC(ϕ
0)D−10

C (ϕ0) with the expression for SC(ϕ0) in Lemma D2

below, we end up with

FC(ϕ
0) = QC(ϕ

0)D−10
C (ϕ0)SC(ϕ

0)QC(ϕ
0)D−1

C (ϕ
0)Q0

C(ϕ
0)

=
h
I2 ⊗ ( −Ω−1B Ω−1 )

i
 1 + (κ+ 1)b (κ+ 1)a

(κ+ 1)a (κ+ 1)c

⊗Σ
+

 (2κ+ 1)νν 0 (κ+ 1)+Nν
0 + κν+0N

(κ+ 1)ν+0N + κ+Nν
0 (2κ+ 1)+N+

0
N


I2 ⊗

 −B0Ω−1
Ω−1


=

 1 + (κ+ 1)b (κ+ 1)a

(κ+ 1)a (κ+ 1)c

⊗Ω−1
+

 (2κ+ 1)ϕ+2 ϕ
+0
2 (κ+ 1)ϕ∗2ϕ

+0
2 + κϕ

+
2 ϕ

∗0
2

(κ+ 1)ϕ+2 ϕ
∗0
2 + κϕ

∗
2ϕ

+0
2 (2κ+ 1)ϕ∗2ϕ

∗0
2

 .
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Similarly, if we combine the expression for QH(a
0,b0)D−10

H (a0,b0) in (B1) with the

expression for SH in Lemma D3 (see again Appendix D), we end up with

FH(a
0,b0) = QH(a

0,b0)D−10
H (a0,b0)SH(a

0,b0)QH(a
0,b0)D−1

H (a
0,b0)Q0

H(a
0,b0)

=

 −(1 + b1) ν 01Σ
−1
11

−a1 +0N1Σ
−1
11

⊗ IN2
 1 ν 01

ν1 (κ+ 1)Σ11 + ν1ν
0
1

⊗Ω


×
 −(1 + b1) −a1

Σ−111 ν1 Σ−111 +N1

⊗ IN2
 =

 1 + (κ+ 1)b1 (κ+ 1)a1

(κ+ 1)a1 (κ+ 1)c1

⊗Ω.
In addition,

GC(ϕ) =

 ϕ+2

ϕ∗2

 = (I2 ⊗Ω−1)
 a

f

 = (I2 ⊗Ω−1)GH(a,b).

so that we can write

G0
H(a,b)F

−1
H (a,b)GH(a,b)−G0

C(ϕ)F
−1
C (ϕ)GC(ϕ)

= G0
H(a,b)F

−1
H (a,b)GH(a,b)−G0

H(a,b)(I2 ⊗Ω−1)F−1C (ϕ)(I2 ⊗Ω−1)GH(a,b)

= G0
H(a,b)[F

−1
H (a,b)− (I2 ⊗Ω−1)F−1C (ϕ)(I2 ⊗Ω−1)]GH(a,b).

Hence, a sufficient condition for the desired result would be that (I2⊗Ω)FC(ϕ)(I2⊗Ω)−
FH(a,b) is a positive semideÞnite matrix. But this difference is 1 + (κ+ 1)b (κ+ 1)a

(κ+ 1)a (κ+ 1)c

⊗Ω
+

 (2κ+ 1)aa0 (κ+ 1)fa0+ κaf 0

(κ+ 1)af 0 + κfa0 (2κ+ 1)ff 0


−
 1 + (κ+ 1)b1 (κ+ 1)a1

(κ+ 1)a1 (κ+ 1)c1

⊗Ω
= (κ+ 1)

 a0Ω−1a a0Ω−1f
a0Ω−1f f 0Ω−1f

⊗Ω
+

 (2κ+ 1)aa0 (κ+ 1)fa0+ κaf 0

(κ+ 1)af 0 + κfa0 (2κ+ 1)ff 0

 .
If we then pre-multiply this expression by (I2 ⊗ Ω−1/2), and post-multiply by its

transpose, we end up with (κ+ 1)(ûa0ûa)IN2 + (2κ+ 1)ûaûa
0 (κ+ 1)(ûa0ûf)IN2 + (κ+ 1)ûfûa

0
+ κûaûf

0

(κ+ 1)(ûa0ûf)IN2 + (κ+ 1)ûaûf
0
+ κûfûa

0
(κ+ 1)(ûf 0ûf)IN2 + (2κ+ 1)ûfûf

0


=

 N11 N12

N0
12 N22

 ,
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whereûa = Ω−1/2a andûf = Ω−1/2f . Given that for elliptical distributions κ ≥ −2/(N +2)
(see Appendix D), and that any spanning test involves at least two assets, then both

diagonal blocks are positive deÞnite because 2κ + 1 ≥ 0. Therefore, the whole matrix

N will be positive semideÞnite if and only if N22|1 = N22 −N0
12N

−1
11N12 is also positive

semideÞnite (We are grateful to Jan Magnus for suggesting this line of proof). But since

N−1
11 =

1

(κ+ 1)(ûa0ûa)
IN2 −

(2κ+ 1)

(κ+ 1)(3κ+ 2)(ûa0ûa)2
ûaûa0,

by virtue of the Woodbury formula, it follows that

(3κ+ 2)(ûa0ûa)2

(κ+ 1)
N22|1 = (3κ+ 2) [(ûa0ûa)2(ûf 0ûf)− (ûa0ûa)(ûa0ûf)2]IN2

−[(3κ+ 2)(ûa0ûa)(ûf 0ûf)− 4(2κ+ 1)(ûa0ûf)2]ûaûa0

+(5κ+ 2)(ûa0ûa)2(ûfûf
0
)− (5κ+ 2)(ûa0ûa)(ûa0ûf)(ûaûf 0 +ûfûa0).

Let us study the eigenvalues of N22|1. One is clearly 0 since N22.1ûa = 0, and another

one
4(κ+ 1)(2κ+ 1)

(3κ+ 2) (ûa0ûa)
[(ûa0ûa)(ûf 0ûf)− (ûa0ûf)2],

since

N22|1

Ã
ûf −ûa

0ûf
ûa0ûa
ûa

!
=
4(κ+ 1)(2κ+ 1)

(3κ+ 2)

"
ûf 0ûf − (ûa

0ûf)2

ûa0ûa

#Ã
ûf −ûa

0ûf
ûa0ûa
ûa

!
,

where the associated eigenvector is the residual of the Euclidean projection ofûf onto the

linear span ofûa. A third eigenvalue is

(κ+ 1)

(ûa0ûa)

h
(ûa0ûa)(ûf 0ûf)− (ûa0ûf)2

i
because for any vector y orthogonal to the linear span ofûa andûf

N22|1y = (κ+ 1)

"
ûf 0ûf − (ûa

0ûf)2

ûa0ûa

#
y.

But since the orthogonal complement to
D
ûa,ûf

E
is of dimension N2− 2, then there are no

further eigenvalues. Finally, since (ûa0ûa) (ûf 0ûf)−(ûa0ûf)2 ≥ 0 by virtue of the Cauchy-Schwartz
inequality, all the eigenvalues of N22|1 are non-negative, which implies that the matrix N

will be positive semideÞnite. ¤
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C A useful GMM result:

We extend to the singular case earlier results in Gouriéroux, Monfort and Renault

(1996) and Lezan and Renault (1999), which in turn nest Theorem 1 in Breusch et al.

(1999).

Lemma C1 Let h1(xt;θ) denote a set of n1 estimating functions for 0 < k1 ≤ n1 un-
known parameters θ, whose true values are implicitly deÞned by E[h1(xt;θ

0)] = 0, and
let h2(xt;θ,ρ) denote an additional set of n2 estimating functions that depend not only
on θ but also on some additional 0 ≤ k2 ≤ n2 unknown parameters ρ, whose true values
are implicitly deÞned by E[h2(xt;θ0,ρ0)] = 0. Let

S(θ0,ρ0) =

·
S11(θ

0) S021(θ
0,ρ0)

S21(θ
0,ρ0) S22(θ

0,ρ0)

¸
denote the joint asymptotic covariance matrix of [

√
T h̄01T (θ

0),
√
T h̄02T (θ

0,ρ0)]0, and fac-
torise it as·

In1 0
−S21(θ0,ρ0)S−11(θ0) In2

¸ ·
S11(θ

0) 0
0 S22|1(θ

0,ρ0)

¸ ·
In1 −S−011(θ0)S021(θ0,ρ0)
0 In2

¸
,

where S−11(θ
0) is some generalised inverse of S11(θ

0), and

S22|1(θ
0,ρ0) = S22(θ

0,ρ0)− S21(θ0,ρ0)S−11(θ0)S021(θ0,ρ0)

can be regarded as the asymptotic covariance matrix of
√
T ḡ2T (θ

0,ρ0), where

g2(xt;θ,ρ) = h2(xt;θ,ρ)− S21(θ0,ρ0)S−11(θ0)h1(xt;θ),
are some transformed estimating functions which are invariant to the choice S−11(θ

0). In
addition, let

Π (θ,ρ) =

·
Π11 (θ) Π12 (θ,ρ)
0 Π22 (θ,ρ)

¸
denote a (n1 + n2)× (k1ª + k2ª) matrix of continuously differentiable functions of θ and
ρ, with 0 ≤ k1ª ≤ k1 and 0 ≤ k2ª ≤ k2, such that·

Π0
11 (θ) 0

Π0
12 (θ,ρ) Π0

22 (θ,ρ)

¸ ·
h1(xt;θ

0)
g2(xt;θ,ρ)

¸
= 0 ∀xt ⇔

·
m1ª(θ)
m2ª(θ,ρ)

¸
=mª(θ,ρ) = 0,

where mª(θ,ρ) is a (k1ª + k2ª) continuously differentiable function of θ and ρ with

rank

·
∂mª(θ)
∂(θ0,ρ0)

¸
= (k1ª + k2ª)

in an open neighbourhood of (θ0,ρ0). Moreover, assume that mª(θ0,ρ0) = 0 if k1ª +
k2ª > 0, and that rank[S11(θ

0,ρ0)] = n1 − k1ª, rank[S22|1(θ0,ρ0)] = n2 − k2ª, so that
rank[S(θ0,ρ0)] = (n1+n2)−(k1ª+k2ª). Then, subject to the required regularity conditions,
the optimal GMM estimators of θ based on

E[h1(xt;θ)] = 0
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alone are asymptotically as efficient as the optimal GMM estimators that additionally use

E[h2(xt;θ,ρ)] = 0

if and only if
D2⊕θ⊕(θ

0,ρ0) ∈ D2⊕ρ⊕(θ
0,ρ0)

®
, (C1)

where

D2⊕θ⊕(θ
0
⊕,ρ

0
⊕) = P02⊕(θ

0,ρ0)D2θ(θ
0,ρ0)L1θ⊕(θ

0
⊕,0),

D2⊕ρ⊕(θ
0
⊕,ρ

0
⊕) = P02⊕(θ

0,ρ0)D2ρ(θ
0,ρ0)L2ρ⊕(θ

0
⊕,0,ρ

0
⊕,0),

P2⊕(θ0,ρ0)∆2⊕(θ0,ρ0)P02⊕(θ
0,ρ0) provides the spectral decompositions of S22|1(θ

0,ρ0),

D2θ(θ,ρ) = E

·
∂g2(xt;θ,ρ)

∂θ0

¸
= E

·
∂h2(xt;θ,ρ)

∂θ0

¸
− S21(θ0,ρ0)S−11(θ0)E

·
∂h1(xt;θ)

∂θ0

¸
,

D2ρ(θ,ρ) = E

·
∂g2(xt;θ,ρ)

∂ρ0

¸
= E

·
∂h2(xt;θ,ρ)

∂ρ0

¸
,


θ⊕
θª
ρ⊕
ρª

 =


m1⊕(θ)
m1ª(θ)
m2⊕(θ,ρ)
m2ª(θ,ρ)

 = · m1(θ)
m2(θ,ρ)

¸
=m(θ,ρ),

L1θ⊕(θ⊕,θª) =
∂l1(θ⊕,θª)

∂θ0⊕
,

L2ρ⊕(θ⊕,θª,ρ⊕,ρª) =
∂l2(θ⊕,θª,ρ⊕,ρª)

∂ρ0⊕
,

·
l1[m1(θ)]

l2[m1(θ),m2(θ,ρ)]

¸
=

µ
θ
ρ

¶
,

and hAi denotes the column space of the the matrix A.

Proof. : We know from Lemma 1 that E[g2(xt;θ,ρ)] = 0 can replace E[h2(xt;θ,ρ)] = 0

without loss of asymptotic efficiency. Given that
√
T ḡ2T (θ

0,ρ0) and
√
T h̄1T (θ

0) are

asymptotically orthogonal by construction, the discussion in section 3.2 implies that the

right way to exploit the potential singularities in both sets of moment conditions is to

estimate the parameters θ⊕ and ρ⊕ from the transformed moment conditions:

h1⊕(xt;θ⊕,0|θ0) = P01⊕(θ
0)h1[xt; l1(θ⊕,0)],

g2⊕(xt;θ⊕,0,ρ⊕,0|θ0,ρ0) = P02⊕(θ
0,ρ0)h2[xt; l1(θ⊕,0), l2(θ⊕,0,ρ⊕,0)],

where P1⊕(θ0)∆1⊕(θ0)P01⊕(θ
0) provides the spectral decomposition of S11(θ

0).
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Let �θ⊕T and �ρ⊕T denote the optimal GMM estimators of θ⊕ and ρ⊕ based on both

subsets of moment conditions. Similarly, let θ̄⊕T denote the optimal GMM estimator

based on the Þrst subset of moment conditions. Since we have transformed the poten-

tially singular problem in a non-singular one, under standard regularity conditions the

asymptotic variances of these estimators will be:

lim
T→∞

V

 √T (�θ⊕T − θ0⊕)√
T (�ρ⊕T − ρ0⊕)

 =

 D0

1⊕θ⊕(θ
0
⊕) D0

2⊕θ⊕(θ
0
⊕,ρ

0
⊕)

0 D0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)


×
 ∆−1

1⊕(θ
0) 0

0 ∆−1
2⊕(θ

0,ρ0))

 D1⊕θ⊕(θ
0
⊕) 0

D2⊕θ⊕(θ
0
⊕,ρ

0
⊕) D2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)


−1

,

and

lim
T→∞

V [
√
T (θ̄⊕T − θ0⊕)] = [D0

1⊕θ⊕(θ
0
⊕)∆

−1
1⊕(θ

0)D1⊕θ⊕(θ
0
⊕)]

−1.

Hence, we need to compare this last expression with limT→∞ V [
√
T (�θ⊕T − θ0⊕)], which is

given by:

{D0
1⊕θ⊕(θ

0
⊕)∆

−1
1⊕(θ

0)D1⊕θ⊕(θ
0
⊕) +D

0
2⊕θ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕θ⊕(θ
0
⊕,ρ

0
⊕)

−D0
2⊕θ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕ρ⊕(θ
0
⊕,ρ

0
⊕)[D

0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕ρ⊕(θ
0
⊕,ρ

0
⊕)]

−1

×D0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕θ⊕(θ
0
⊕,ρ

0
⊕)}−1.

Since both asymptotic covariance matrices are positive deÞnite, they will be equal if

and only if the matrix

D0
2⊕θ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕θ⊕(θ
0
⊕,ρ

0
⊕)−D0

2⊕θ⊕(θ
0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕ρ⊕(θ
0
⊕,ρ

0
⊕)

×[D0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕ρ⊕(θ
0
⊕,ρ

0
⊕)]

−1D0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)D2⊕θ⊕(θ
0
⊕,ρ

0
⊕)

is 0. But since we can interpret this matrix as the residual variance in the asymp-

totic least squares projection of D0
2⊕θ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)
√
T ḡ2⊕T (θ0⊕T ,0,ρ

0
⊕T ,0) onto

D0
2⊕ρ⊕(θ

0
⊕,ρ

0
⊕)∆

−1
2⊕(θ

0,ρ0)
√
T ḡ2⊕T (θ0⊕T ,0,ρ

0
⊕T ,0), it will be zero if and only if we can

write D2θ⊕(θ
0
⊕,ρ

0
⊕) as a linear combination of D2⊕ρ⊕(θ

0
⊕,ρ

0
⊕). ¤

D Covariance matrices of the sample moment condi-
tions under i.i.d. elliptical returns

Elliptical distributions are usually deÞned by means of the affine transformation Rt =

ν0+(Σ0)1/2ε◦t , where ε
◦
t is a spherically symmetric random vector of dimension N , which
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in turn is fully characterised in Theorem 2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut,

where ut is uniformly distributed on the unit sphere surface in RN , and et is a non-negative

random variable which is independent of ut. The variables et and ut are referred to as

the generating variate and the uniform base of the spherical distribution. Assuming that

E(e2t ) <∞, we can standardise ε◦t by setting E(e2t ) = N , so that E(ε◦t ) = 0, V (ε◦t ) = IN ,
E(Rt) = ν and V (Rt) = Σ. For instance, if et =

p
(υ0 − 2)ζt/ξt, ζt is a chi-square

random variable withN degrees of freedom, and ξt is an independent Gamma variate with

mean υ0 > 2 and variance 2υ0, then ε◦t will be distributed as a standardised multivariate

Student t random vector of dimension N with υ0 degrees of freedom, which converges to

a standardised multivariate normal as υ0 → ∞. If we further assume that E(e4t ) < ∞,
then the coefficient of multivariate excess kurtosis κ reduces to E(e4t )/N(N +2)− 1. For
instance, κ = 2/(υ0−4) in the Student t case, and κ = 0 under normality. In this respect,
note that since E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarzt inequality, with equality if

and only if et =
√
N so that ε◦t is proportional to ut, then κ ≥ −2/(N +2), the minimum

value being achieved in the uniformly distributed case.

Then, it is easy to combine the representation of elliptical distributions above with

the higher order moments of a multivariate normal vector in Balestra and Holly (1990)

to prove that the third and fourth moments of the elliptical distribution are given by

E(RR0 ⊗R) = (IN2 +KNN) (ν ⊗Σ) + vec (Γ)ν 0, (D1)

and

E(RR0 ⊗RR0) = (Σ⊗Σ) (IN2 +KNN) + (IN2 +KNN) (Σ⊗ νν 0) (IN2 +KNN)

+vec (Γ) vec (Γ)0 + κ
£
(Σ⊗Σ) (IN2 +KNN) + vec (Σ) vec (Σ)

0¤ , (D2)

respectively, where KNN is the commutation matrix studied in Magnus and Neudecker

(1988). Similarly, it is possible to show that the mean vector and covariance matrix of

the distribution of R2 conditional on R1 will be E(R2|R1) = ν2+Σ21Σ
−1
11 (R1− ν1) and

V (R2|R1) = Q[(R1 − ν1)0Σ−111 (R1 − ν1)] ·Ω, where Ω = Σ22 −Σ21Σ−111Σ021, and Q(.) is a
scalar function whose form depends on the member of the elliptical class (see again Fang,

Kotz and Ng (1990)). For instance, Q(.) is identically 1 in the multivariate normal case,

and affine in its argument for the Student t (see Zellner (1971, pp. 383-389)).
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The following three results exploit these properties to obtain closed form expressions

for the asymptotic covariance matrices of the sample moment conditions that appear in

the different testing procedures:

Lemma D1 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix
Σ, and bounded fourth moments, then the asymptotic covariance matrix of

√
T h̄UT

¡
φ0
¢
,

where hU(Rt;φ) is deÞned in (5), will be SU(φ
0), with:

SU(φ) =

½
(1 + b)−1 [1 + κb (1 + b)−1]

a (1 + b)−1 κ

a (1 + b)−2 κ
[c− a2 (1 + b)−1] + κ ¡[c− a2 (1 + b)−1]− a2 (1 + b)−2¢

¾
⊗ Γ

+

½ −2 (1 + b)−2 + ¡3b2 (1 + b)−2 − 5b (1 + b)−1 + 2¢κ
a (1 + b)−2 (2− 3κ)

a (1 + b)−2 (2− 3κ)
−2a2 (1 + b)−2 + {3a2 (1 + b)−2 − [c− a2 (1 + b)−1]}κ

¾
⊗ νν 0

+

µ
0 0
0 1 + 2κ

¶
⊗ +N+0N +

·
0 (1 + b)−1 κ

(1 + b)−1 κ −2a (1 + b)−1 κ
¸
⊗ (ν+0N + +Nν 0) .

Proof. Tedious but straightforward on the basis of (D1) and (D2). ¤

Lemma D2 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ,
and bounded fourth moments, then the asymptotic covariance matrix of

√
T h̄ET (ϕ

0,ν0),
where hE(Rt;ϕ,ν) is deÞned in (7), will be SE(ϕ0,ν0), with:

SE(ϕ,ν) =

 I −I 0
−I 1 + (κ+ 1)b (κ+ 1)a
0 (κ+ 1)a (κ+ 1)c

⊗Σ
+

 0 0 0
0 (2κ+ 1)νν 0 (κ+ 1)+Nν

0 + κν+0N
0 (κ+ 1)ν+0N + κ+Nν

0 (2κ+ 1)+N+
0
N

 ,
Proof. Tedious but straightforward on the basis of (D1) and (D2). ¤

Lemma D3 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ,
and bounded fourth moments, then the asymptotic covariance matrix of

√
T h̄HT (a

0,b0),
where hH(Rt;a,b) is deÞned in (11), will be SH(a0,b0), with:

SH(a,b) =

µ
1 ν 01
ν1 (κ+ 1)Σ11 + ν1ν

0
1

¶
⊗Ω.

Proof. First of all, we can apply the law of iterated expectations to show that

SH(a,b) = E{E[hH(Rt;a,b)|R1t]}

=

 E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]} E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]R0
1t}

E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]R1t} E{oR1t − ν1)0Σ−111 (R1t − ν1)]R1tR
0
1t}

⊗Ω.
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But since

V (R2t) = Σ22 = E [V (R2t|R1t)] + V [E (R2t|R1t)]

= E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]} ·Ω+BΣ11B0,

then it must be the case that E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]} = 1. Similarly, since

E {(R1t-ν1) · vec0 [(R2t-ν2)(R2t-ν2)0]}=E [(R1t-ν1) · E {vec0 [(R2t-ν2)(R2t-ν2)0] |R1t}]
= E[(R1t-ν1) · vec{Q[(R1t-ν1)0Σ−111 (R1t-ν1)] ·Ω+B(R1t-ν1)(R1t-ν1)0B0}] = 0

by the symmetry of elliptical random vectors, it must also be the case that

E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)](R1t − ν1)} = 0,

and consequently, that E[Q[(R1t − ν1)0Σ−111 (R1t − ν1)]R1t} = ν1.
Finally, since

E [(R2t − ν2)(R2t − ν2)0 ⊗ (R1t − ν1)(R1t − ν1)0]
= (κ+ 1)

£
(Σ22 ⊗Σ11) + (Σ21 ⊗Σ12)KN1,N2 + vec (Σ12) vec (Σ12)

0¤
= E {E [(R2t − ν2)(R2t − ν2)0|R1t]⊗ (R1t − ν1)(R1t − ν1)0}

= E[{Q[(R1t − ν1)0Σ−111 (R1t − ν1)] ·Ω
+B(R1t − ν1)(R1t − ν1)0B0}⊗ (R1t − ν1)(R1t − ν1)0]

= Ω⊗E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)] · (R1t − ν1)(R1t − ν1)0}
+(B⊗ IN1)E [(R1t − ν1)(R1t − ν1)0⊗(R1t − ν1)(R1t − ν1)0] (B0 ⊗ IN1)

= Ω⊗E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)] · (R1t − ν1)(R1t − ν1)0}
+(κ+ 1)

£
(BΣ12 ⊗Σ11) + (Σ21 ⊗Σ12)KN1,N2 + vec (Σ12) vec (Σ12)

0¤ ,
where we have repeatedly used expression (D2) for the fourth moments of an elliptical

vector, and the fact that

Σ =

 IN1 0

B IN2

 Σ11 0

0 Ω

 IN1 B0

0 IN2

 ,
it must be the case that E{Q[(R1t−ν1)0Σ−111 (R1t−ν1)]·(R1t−ν1)(R1t−ν1)0} = (κ+1)Σ11,
and consequently, that E{Q[(R1t − ν1)0Σ−111 (R1t − ν1)]R1tR

0
1t} = (κ+ 1)Σ11 + ν1ν 01. ¤
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Table 1a

Spanning Tests

All countries

Gross returns: 1 week and 3 months

p-values of the Uncentred Representing Portfolio (URP),

Centred Representing Portfolio (CRP), and Regression (Reg) versions

Weighting Matrix Lags URP CRP Reg

S 0 0.000 0.000 0.000

8 0.000 0.000 0.000

S0 0 0.000 0.000 0.000

8 0.000 0.000 0.001

Table 1b

Spanning Tests

Belgium (BE), France (FR) and Italy (IT)

Gross returns: 1 week and 3 months

p-values of the Uncentred Representing Portfolio (URP) version

Weighting Matrix Lags BE FR IT

S 0 0.000 0.399 0.000

8 0.000 0.460 0.000

S0 0 0.000 0.482 0.000

8 0.000 0.544 0.000
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Figure 2a: Stochastic discount factor mean-variance frontiers that
share the uncentred cost representing portfolio
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Figure 2b: Return mean-variance frontiers that share the uncentred
cost representing portfolio
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