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1 Introduction

Much of the growing literature on tactical and strategic asset allocation1 is based on

a Gaussian vector autoregressive (VAR) model for returns and predictors, which provides

a simple way of modelling time-varying investment opportunities in terms of changing

interest rates and risk premia. Optimal portfolios are then computed for a chosen utility

function once the estimation of the VAR parameters has taken place. Campbell et al.

(2003) and Lynch (2001) are recent, well-known examples of this approach. These authors

conduct classical estimation procedures, and take the resulting parameter estimates as

if they were equal to the true parameters. In contrast, other authors explicitly take

parameter uncertainty into account by means of Bayesian procedures. Specifically, Kandel

and Stambaugh (1996), Stambaugh (1999) and Barberis (2000) study portfolio selection

based on Bayesian VAR. This second approach will be the benchmark in this paper.

Unfortunately, the portfolio advice these methods generate may be misleading if the

assumed Gaussian VAR does not provide an accurate description of the distribution of

returns. The computation of an optimal portfolio requires the whole distribution, not only

first and second moments of returns, unless some restrictions are imposed on investors’

preferences. In addition, a joint distribution of several assets is required for portfolio

advice. For that reason, in this paper we evaluate the joint density forecasts of US

monthly excess returns on stocks and bonds that such models generate for the post-war

period. The monthly frequency is chosen as the link between the usual high and low

rebalancing frequencies of tactical and strategic asset allocations respectively.

To the best of our knowledge, the existing literature has not evaluated the accuracy of

density forecasts. Instead, the modelling efforts have been made in two different directions.

One is the nonparametric approach advocated in Brandt (1999) and Aït-Sahalia and

Brandt (2001), who derive the optimal portfolio choice without a statistical model. The

other direction is to explicitly deal with model uncertainty by means of Bayesian model

averaging. Such an approach has been followed for instance by Avramov (2002) and

Cremers (2002), who limit the model uncertainty to the choice of predictors by taking as

given a Gaussian linear model.

This paper tries to complement both these approaches by confronting the density
1See for instance Brennan et al. (1997) for their definition and comparison.

1



forecast properties of a particular model with the real data. Specifically, our evaluation

procedure involves out-of-sample checks of real-time density forecasting rules against real-

izations of returns.2 The main tool is the probability integral transform (PIT) advocated

in Diebold et al. (1998), which is defined as the cumulative distribution function of the

density forecast evaluated at the actual realization. If the forecasting model is correct,

the PIT should be uniformly and independently distributed over time.

Since investment opportunities might change in more complex ways than the normal

VAR allows for, it is not surprising that richer models are also considered in the litera-

ture. For instance, Markov-switching VARs have been used to capture the asymmetric

behaviour of returns in different market phases (see e.g. Pérez-Quirós and Timmermann

(2000, 2001) and Chauvet and Potter (2001), as well as Ang and Bekaert (2002), who

study its portfolio implications in an international context). In this respect, we find that

an investor who rebalances her portfolio monthly can rely on the standard VAR model,

which seems to provide a reasonable description of the data. We also find that richer

models do not improve the quality of the density forecasts, and they are more difficult to

implement.

Finally, we address two important issues for asset allocation: time-variation in risk

premia and parameter uncertainty. Both questions were also studied by Barberis (2000),

but only in terms of their portfolio choice implications. In contrast, our paper focuses

directly on their density forecast implications, which seem to be robust across different

models.

Specifically, we estimate two versions of each model, with constant and time-varying

risk premia. It is clear that models with or without time variation in risk premia imply

very different density forecasts and this translates into significant effects in portfolio choice

as it is well known in the literature. However, the PIT shows that the quality of both

forecasts cannot be ranked in general. With respect to constant risk premia, time-varying

premia worsen the forecast evaluation for stocks but improve for bonds. Nevertheless, the

PIT shows a common feature in stocks and bonds: constant risk premia tend to produce

over-pessimistic forecasts.
2Evaluation of density forecasts is a very active area nowadays and it is not only useful for asset

allocation, but also in other contexts. This is clear in modern models of financial risk such as the
Value-at-Risk, where quantiles are computed.
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We also consider two forecasting rules for each estimated model: the Bayesian predic-

tive distribution and a plug-in rule. The latter one is easier to compute than the former,

but it may not properly account for parameter uncertainty. However, we show that the

fully Bayesian approach and the plug-in forecasting rule yield similar monthly density

forecasts so that an investor could avoid the complexity of the former.

The rest of the paper is organised as follows. Section 2 contains a description of the

data. Section 3 explains the computation of density forecasts in a Bayesian framework, as

well as their evaluation. Section 4 defines and applies the standard normal model, while

section 5 is devoted to nonlinear dynamics, and specifically Markov-switching models.

Finally, section 7 concludes. Details about simulation-based methods and each model

implementation are gathered in the appendix.

2 Data Description: Excess Returns and Predictors

US monthly nominal data from January 1954 to December 2001 are taken from CRSP,

giving 576 observations. Monthly data is the usual frequency in the previously referred

literature on asset allocation. The post-war sample period is used to conform with the

period after the Fed-Treasury accord and the presidential election in 1952 after which the

Fed stopped pegging interest rates. This fundamentally changed the process of the nom-

inal interest rates. The chosen period for the out-of-sample check of the density forecasts

starts with the forecast of January 1975, which gives 324 observations for that check. This

period represents enough observations, 252, without letting too few observations for the

first estimation. During this period, there was a sharp change in the monetary policy in

the U.S. Specifically, Volcker arrived at the Fed in October 1979 and followed a tighter

monetary policy by means of monetary aggregate controls that increased the volatility of

interest rates. Therefore, it is an interesting period for forecast evaluation.

Traditional assets can be roughly divided into three classes: stocks, bonds, and cash.

This paper focuses on excess returns from a stock index and a bond index to keep the

analysis simple. In the computation of excess stock returns (ESR), returns are based on

the value weighted stock index of the NYSE, NASDAQ and AMEX markets including

dividends. The returns are converted into continuously compounded rates in monthly

percentage. The other ingredient is the 1-month T-bill return from the US Treasury
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and Inflation Series (CTI). Again, the series is converted into continuously compounded

rates in monthly percentage. Finally, the excess stock return eSt is given by the difference

between both returns.

A huge fall can be observed in October 1987 in Panel A of Figure 1 as well as a

less important fall in August 1998 due to the Russian financial crisis. Apart form that,

no sharp changes exist as in the series of bonds. In Table 1, Panel A, there are some

descriptive statistics of the stock and bond excess returns for the whole data period and

for the two periods given by the out-of-sample check.

(Table 1)

The period from January 1954 to December 1974 corresponds to the first estimation

period while the period form January 1975 to December 2001 corresponds to the out-

of-sample check. First, the statistics for the whole period are explained. The mean is

0.49%, while the standard deviation is 4.35%, which gives an annualized Sharpe ratio of

about 0.4. The coefficient of skewness is -0.77 and the one of kurtosis 2.93, that is, there

is asymmetry to the left and fat tails. The Jarque-Bera test rejects the hypothesis of

normality with a p-value of 0.00. To approximate the temporal dependence in the series,

the autocorrelograms of powers of the demeaned series are shown in Panels B and C of

Figure 1. The level does not show autocorrelation, while it can be found only marginally

in the second power for the first lag (a p-value of 0.04) even in terms of the Ljung-Box

test, see Panel B in Table 1. Regardless, the correlation in the square will be much clearer

for bonds.

The period that is left for the out-of-sample check, January 1975 to December 2001,

shows a much higher mean and kurtosis than the previous period, while the standard

deviation is only slightly higher. The negative skewness also increases. Noteworthy, there

is not autocorrelation in the first and second powers during the last period, while the

correlation of the square is clear in the first period.

Excess bond returns (EBR) are computed from returns of the 5 year bond from the US

Treasury and Inflation Series (CTI), which are converted into continuously compounded

rates in monthly percentage. Finally, the excess bond return eBt is given by the difference

between that return and the continuously compounded 1-month T-bill return.

The time series, Panel A in Figure 2, shows a huge increase in the volatility at the
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beginning of the 80’s due to the commented Fed experiment. An increase in volatility

during the first half of the 70’s exists due to the OPEC oil crises, but is much less sharp.

The mean is 0.10%, while the standard deviation is 1.49%, see Panel A in Table 1, which

gives an annualized Sharpe ratio of about 0.2, half the ratio of stocks. The skewness is 0.07

and the kurtosis 4.12, there is asymmetry of the opposite sign to stocks and even fatter

tails. The Jarque-Bera test rejects the hypothesis of normality with a p-value of 0.000.

As it can be seen in Figure 2, Panels B and C, the level of the series shows autocorrelation

at the first lag, the p-value is 0.00. There is a clear dependence in the second power with

zero p-values at any lag in terms of the Ljung-Box test, see Panel B in Table 1.

In the out-of-sample period, the mean is much higher while the skewness is no longer

positive. The standard deviation and the kurtosis also increase, specially the former. As

opposed to the case of stocks, bonds show a higher autocorrelation in the first and second

powers during the second period, especially in the level.

Let us turn to predictors now. In our context, they are state variables for risk premia.

These variables are in general related to the business cycle and are very persistent. The

most popular predictors can be classified into two categories. On the one hand, yield vari-

ables such as the dividend price ratio and the price earning ratio are common predictors

of stock returns. The dividend yield is one of the predictors that are used in this paper,

since it is the most popular for stocks. The dividend yield is studied, for instance, in

Fama and French (1988, 1989) and Campbell and Shiller (1988), and its predictive power

comes from mean reversion in stock returns. On the other hand, interest rates such as

the term premium, the short term rate and the default premium are used as predictors of

stock returns, and of bond returns too. The first variable measures the slope in the term

structure of interest rates and is used in this paper. The term premium is analysed, for

instance, in Fama and French (1989) and Campbell and Shiller (1991).

The dividend yield is derived from the previous value weighted index of stocks with-

out dividends and the corresponding return with dividends, summing up previous year

dividends. The dividend yield is often computed using the sum of last year dividends to

avoid seasonality. Finally, the logarithm is taken. It can be seen in Panel A of Figure 3

that it is a highly persistent variable.

The term premium is defined as the difference between the continuously compounded

monthly yield of a 5 year zero coupon bond, taken form the Fama-Bliss discount bond
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yields, and the yield of the 1-month risk free asset, obtained from the risk-free rates file.

Note that it is computed as a yield spread, not as an excess return. This series, see Panel

B in Figure 3, is also persistent but not as much as the divided yield.

These four series, two excess returns and two predictors, will be stacked together in a

vector,

yt =

⎛⎝ et

zt

⎞⎠ , t = 1, ..., T,

where et and zt are 2 × 1 vectors containing the excess returns and the predictors. We

will study several models for the dynamics of that vector, with the Bayesian VAR as the

baseline model.

Such data are similar to Campbell et al. (2003) but at a different frequency and

using less variables. Their chosen frequencies are quarterly and annual since they focus

on strategic asset allocation, but the usual frequency in other related papers is monthly

data. They use two additional variables, since they model time-variation in both short-

term interest rates and risk premia. They add the real short-term rate as a return and the

nominal short-term rate as a predictor. Given that the paper estimates and evaluates more

complex models, those variables are not included and we focus on risk premia. Brennan

et al. (1997) also use stocks, bonds, and bills as their investment set. In a similar spirit,

they use the dividend price ratio, and short and long-term interest rates as the predictors.

Lynch (2001) uses the dividend price ratio and the long-short yield spread as predictors,

but his returns correspond to stock portfolios sorted by size and book-to-market ratios.

On the other hand, Barberis (2000) uses only the stock excess return and the dividend

yield.

3 Computation and Evaluation of Joint Density Fore-
casts

This section develops the basic tools of our work. Let us introduce some notation

first. p (·) will represent density or mass depending on the associated random variable

and P (·) will be the corresponding cumulative distribution function (CDF). Ep(·) [·]means

expectation with respect to p (·). Regime-switching VARs introduce a latent variable

that will be denoted by st. In addition, xT = {xt}Tt=1 represents a time series with T
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observations and θ is a vector of parameters.

In the following, we have in mind an investor that rebalances her portfolio at the same

frequency as our data. The monthly frequency is chosen as the link between the usual

high and low rebalancing frequencies of tactical and strategic asset allocations respec-

tively. An optimal portfolio is usually obtained through dynamic programming and the

corresponding Bellman equation requires the density forecast p
¡
yT+1 | yT

¢
to compute

the expected continuation value of any portfolio choice. Each model defines a different

distribution for yT+1 and therefore a possibly different portfolio advice. That portfolio

advice may be misleading if the estimated p
¡
yT+1 | yT

¢
is not an accurate description of

returns and predictors. For that reason, this paper evaluates if a particular model gives

a an accurate distribution when faced against data.

Tactical asset allocation computes an optimal portfolio for a short-term investor, while

strategic asset allocation does it for a long-term investor. Both portfolios might be dif-

ferent and their difference is called hedging demand. The main role of that difference is

hedging against changing investment opportunities, which is irrelevant for a short-term

investor. The hedging demand is driven by the dependence structure between returns

and predictors and that is why the whole p
¡
yT+1 | yT

¢
is necessary for strategic asset

allocation. On the other hand, p
¡
eT+1 | yT

¢
is enough for tactical asset allocation.

Empirical results such as the ones in Ang and Bekaert (2002) and Brandt (1999) show

that the hedging demand component of a long-term portfolio choice is not very impor-

tant in practice. Therefore, we can focus on the evaluation of returns density forecasts

p
¡
eT+1 | yT

¢
to simplify the analysis.

3.1 Computation of Joint Density Forecasts

We will compute density forecasts p
¡
yT+1 | yT

¢
at a given point in time T from statis-

tical models that define p
¡
yT+1 | yT ,θ,sT+1

¢
and dynamics of the unobservable variable

sT+1. This latent variable does not show up in the Gaussian VAR but we will describe a

general framework that embeds all the relevant models. The joint distribution of the first

two entries of yT+1, p
¡
eT+1 | yT

¢
, is the object of interest.

A Bayesian model is constructed with a prior and a likelihood, which jointly define a
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posterior for the parameters as3

p
³
θ | yT

´
∝ p (θ) p

¡
yT | θ

¢
.

The support of the posterior will be denoted by Θ. We use proper priors since they

are necessary with regime-switching models, but those priors will not be too informative.

In addition, the priors of some parameters will be centred at their maximum likelihood

estimators. This type of priors is known as sample priors and has been used by Kandel

and Stambaugh (1996) and Avramov (2002) for instance.

We rely on simulation-based methods to get a simulated sample {θi}Ii=1 that approxi-

mates the posterior distribution. The basis of the estimation of each model will be a Gibbs

sampler jointly with data augmentation. The Gibbs sampler is very popular among the

Markov Chain Monte Carlo (MCMC) methods4 and will be used here. If we can construct

a block structure for the parameters such that we can draw from the posterior of each

block conditional on the rest of the blocks, then this structure defines a Markov chain that

converges to the desired posterior. Data augmentation is a useful tool when we cannot

sample from the posterior of θ, but we know how to do it from the posterior of
¡
θ,sT

¢
by adding latent variables sT to the sampler. In addition, we can usually implement it in

terms of a Gibbs sampler. One block would be given by the parameters and the other by

the latent variables. The practical implementation of these methods is developed in the

appendix.

Once we have the parameters’ posterior, we can turn to the computation of density

forecasts. We implement two ways of linking both objects. Both forecasting rules start

from a Bayesian estimation of the model, but only one is fully Bayesian when computing

the density forecast.

In some models, we will find latent variables that should be integrated out to work

with Gaussian distributions. Specifically, these latent variables are discrete and take only

two values, st = 1, 2. The Gibbs sampler approximates p
¡
θ, sT | yT

¢
and we can use its

output to approximate

pI
³
yT+1| yT

´
= Ep(θ,sT |yT )

⎡⎣X
sT+1

p
¡
sT+1 | yT ,θ,sT

¢
p
³
yT+1| yT ,θ, sT+1

´⎤⎦ , (1)

3The estimation of every model is going to be conditional on an initial observation y0 which is omitted
from the expressions for simplicity.

4See Chib and Greenberg (1996) and the references therein.
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where the parameters θ and the latent variables are integrated out. This will be named

integrated density forecast and shows how to take into account estimation risk by means

of the posterior. We have used that p
³
yT+1| yT ,θ, sT+1

´
= p

³
yT+1| yT ,θ, sT+1

´
and

p
¡
sT+1 | yT ,θ, sT

¢
= p

¡
sT+1 | yT ,θ, sT

¢
in the models that will be estimated. The ap-

pendix shows how to approximate (1).

The second forecasting rule is much easier to compute. We only use the posterior

mean of the parameters

θ̄ = Ep(θ|yT ) [θ] , s̄T = Ep(sT |yT ) [sT ] ,

not the whole posterior distribution, and simply plug-in this estimators to get a density

forecast

pP
³
yT+1| yT

´
=
X
sT+1

p
¡
sT+1 | yT , θ̄,s̄T

¢
p
³
yT+1| yT ,θ, sT+1

´
.

This will be named plug-in density forecast. The performance of both approaches will

be compared to study if the complexity of the first approach improves the accuracy of

density forecasts.

It is trivial to compute pI
³
eT+1| yT

´
and pP

³
eT+1| yT

´
from pI

³
yT+1| yT

´
and

pP
³
yT+1| yT

´
respectively. We will compute the mean, standard deviation, and the

coefficients of skewness and kurtosis of density forecasts to get an idea of their shape.

They require the first four central moments, which can be expressed in terms of noncentral

moments. If the particular random variable is normally distributed then the noncentral

moments have well known formulas. The density forecasts are not Gaussian, but we can

still use those formulas due to the data augmentation approach in the Bayesian estimation.

The noncentral moments of a density forecast can be easily expressed as

EpI(yT+1|yT )

h¡
eST+1

¢ki
= (2)

Ep(θ,sT |yT )

⎡⎣X
sT+1

p
¡
sT+1 | yT ,θ, sT

¢
Ep(yT+1|yT ,θ,sT+1)

h¡
eST+1

¢ki⎤⎦ ,
for the case of stocks and for a particular power k, which can be approximated with the

MCMC output. The Gibbs output gives draws from p
¡
θ, sT | yT

¢
so that we only have to

average the corresponding computations. p
³
yT+1| yT ,θ, sT+1

´
is normal in every model

and therefore the corresponding moment is easy to compute, while p
¡
sT+1 | yT ,θ, sT

¢
is
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discrete and therefore easy to integrate. The counterparts for the plug-in rule do not

integrate with respect to p
¡
θ, sT | yT

¢
but evaluate at the corresponding posterior means

EpP (yT+1|yT )

h¡
eST+1

¢ki
=
X
sT+1

p
¡
sT+1 | yT , θ̄, s̄T

¢
Ep(yT+1|yT ,θ̄,sT+1)

h¡
eST+1

¢ki
. (3)

3.2 Evaluation of Joint Density Forecasts

We turn to the evaluation of pP
¡
eT+1 | yT

¢
and pI

¡
eT+1 | yT

¢
after showing their

computation. In that respect, we will follow the approach in Diebold et al. (1998),

jointly with formal tests such as the ones in Wallis (2003). The evaluation is based on

the probability integral transform (PIT), which is defined as the density forecast’s CDF

evaluated at the final realization. Let us think for a moment in a particular scalar random

variable x with conditional density p (xt+1 | xt), then the PIT is

dt+1 = P
¡
xt+1 | xt

¢
,

and this transformation is uniform and independent over time

dt+1
iid∼ U (0, 1) ,

assuming a nonsingular Jacobian and continuous partial derivatives in this transformation.

This property was developed by Rosenblatt (1952) and it has a clear application in density

forecast evaluation as Diebold et al. (1998) show.5 If our density forecast is an accurate

description of the true conditional density then its corresponding PIT should be uniformly

distributed and independent over time. That is, there should not be a tendency to more

or less likely realizations of returns, nor patterns along time of this likeliness.6

The PIT is very convenient since we can summarize the performance of a density

forecast in only one number. However, our evaluation of interest is a joint distribution

and there is not a similar property for the PIT of a joint distribution. Fortunately,

Diebold et al. (1998) show how to extend their approach from univariate to multivariate
5This application of the PIT was already commented in Dawid (1984) in his “prequential approach”

to forecasting and it was applied in Shephard (1994) and Kim et al. (1998) too.
6Care must be taken when going from conclusions about PIT’s marginal and dynamic behaviour to

conclusions about the corresponding return’s marginal and dynamic behaviour since they are not linked
in general. Nevertheless, failures in PIT’s uniformity and independence may suggest directions of model
improvement that can be checked once implemented.
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density forecasts by means of studying the PITs of marginal and conditional univariate

distributions.7

The implementation of this method is as follows. The sample period T = 1, ..., T ∗∗

is split in two parts. The first part, T = 1, ..., T ∗, is used for a first estimation and

the second one, T = T ∗ + 1, ..., T ∗∗, is added observation by observation to the first

part to estimate recursively the model and construct one-period ahead density forecastsn
pP
³
eT+1| yT

´oT ∗∗−1
T ∗

and
n
pI
³
eT+1| yT

´oT ∗∗−1
T ∗

. We evaluate the corresponding CDFs

at the realizations of returns for that period {eT+1}T
∗∗−1

T ∗ to compute the PITs. Specifi-

cally, T ∗ is December 1974 and therefore the out-of-sample check starts with the forecast

of January 1975. There are 324 observations of the previous objects while 252 data ob-

servations are left for the first estimation in the recursive procedure.

Bayesian inference implies an updating of density forecasts after each new observation.

Therefore the posterior used in each density forecast is not frozen at the first period

estimation and we use a rolling approach instead. However, we will only update the

parameters’ posterior quarterly instead of monthly since the output is similar and much

computing time is saved.

The next stage is to compare both series to evaluate the forecasts. There are two excess

returns to predict and therefore four PITs to compute. Recall yT+1 =
¡
e0T+1, z

0
T+1

¢0
and

eT+1 =
¡
eST+1, e

B
T+1

¢0
so that we can compute

df,ST+1 = P
f
¡
eST+1 | yT

¢
, f = I, P,

d
f,B|S
T+1 = P

f
¡
eBT+1 | yT , eST+1

¢
,

and similarly df,BT+1 and d
f,S|B
T+1 .

Two ways of computing density forecasts will be studied. The fully Bayesian approach

was called the integrated rule and its corresponding PITs can be computed as

dI,ST+1 = Ep(θ,sT |yT )

⎡⎣X
sT+1

p
¡
sT+1 | yT ,θ, sT

¢
P
¡
eST+1 | yT ,θ, sT+1

¢⎤⎦ , (4)

d
I,B|S
T+1 = Ep(θ,sT |yT ,eST+1)

⎡⎣X
sT+1

p
¡
sT+1 | yT ,θ, sT

¢
P
¡
eST+1 | yT ,eST+1,θ, sT+1

¢⎤⎦ ,
7See for instance Diebold, Hahn, and Tay (1999) and Clements and Smith (2000) for an empirical

application of this method.
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where P
¡
eST+1 | yT ,θ, sT+1

¢
and P

¡
eST+1 | yT ,eST+1,θ, sT+1

¢
are normal CDFs and there-

fore easy to compute. The appendix shows how to approximate those expectations using

the Gibbs output.

On the other hand, the PITs of the plug-in rule are easily computed as

dP,ST+1 =
X
sT+1

p
¡
sT+1 | yT , θ̄, s̄T

¢
P
¡
eST+1 | yT , θ̄, sT+1

¢
, (5)

d
P,B|S
T+1 =

X
sT+1

p
¡
sT+1 | yT , θ̄, s̄T

¢
P
¡
eST+1 | yT ,eST+1, θ̄, sT+1

¢
.

The PIT’s properties imply that if density forecasts are accurate then there are 6 time

series should be independent and identically uniform for each forecasting rule,

df,St+1, df,Bt+1, d
f,S|B
t+1 , d

f,B|S
t+1 ,³

df,St+1, d
f,B|S
t+1

´
,
³
df,Bt+1, d

f,S|B
t+1

´
iid∼ U (0, 1) .

Therefore, if the evaluation is based on the PITs then we compute only 4 numbers for

each density forecast. In our empirical application, the performance of df,S|Bt+1 , d
f,B|S
t+1 and³

df,Bt+1, d
f,S|B
t+1

´
is similar to df,St+1, d

f,B
t+1 and

³
df,St+1, d

f,B|S
t+1

´
, respectively. Therefore, we only

show tables and figures concerning df,St+1, d
f,B
t+1, and

³
df,St+1, d

f,B|S
t+1

´
.

There are two features to test for each time series, uniformity and independence and we

will use graphs and tests. I will show the CDF and correlograms of the PITs.8 They will

be shown jointly with the 5% critical value of a Kolmogorov-Smirnov test. Unfortunately,

that may not be very useful for evaluation of density forecasts. For instance, this test

has low power against a bad description of the tails of the distribution since it focuses

mainly on the median. Because of that, other tests such as Kupier and Anderson-Darling

are computed, which have more power against bad performance in the tails. They will

be named empirical distribution function (EDF) tests and the critical values of the three

tests will be taken from Stephens (1974).

All of these tests share the independence assumption as a maintained hypothesis. So

we should look at them after studying the independence of the corresponding time series.

The independence of the PIT can be checked with correlograms of different powers, for

instance
³
df,St+1 − d̄f,S

´
and

³
df,St+1 − d̄f,S

´2
, where d̄f,S is the corresponding time series

8The uniformity of the PIT can be checked by means of a histogram too but histograms can be
misleading as they depend on the number of bins that are used.
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mean, jointly with the corresponding Barlett confidence intervals. The Ljung-Box statistic

is also computed to show a joint tests of different lags.

Finally, we compute the tests proposed by Wallis (2003).9 We apply them to PITs

instead of density forecasts themselves since the latter option would require the storage of

a huge number of computations. He develops three likelihood ratio tests:10 unconditional

coverage, independence and conditional coverage. The null of the first test is i.i.d. unifor-

mity against i.i.d. sampling from any other distribution, while in the second test we face

any i.i.d. distribution against a first order Markov chain with unknown distribution. The

final test collapses the previous tests in a joint test and its null hypothesis is i.i.d. unifor-

mity against a first order Markov chain with unknown distribution. We have to choose a

particular number of bins to divide the support of the PIT in the implementation of these

tests. In that respect, we show results for 3 and 4 bins.

4 Gaussian VAR

We mentioned that much of the growing literature on tactical and strategic asset

allocation is based on Gaussian vector autoregressions (VARs) of returns and predictors.

Campbell et al. (2003) and Lynch (2001) are well-known examples of this approach using

classic inference. They take the corresponding parameter estimates as if they were equal

to the true parameters. In contrast, other authors explicitly take parameter uncertainty

into account by means of Bayesian inference. Kandel and Stambaugh (1996), Stambaugh

(1999) and Barberis (2000) study portfolio selection based on Bayesian VAR. The latter

approach will be the benchmark model in this paper.

A VAR is a simple way of introducing time-varying risk premia. Homoskedasticity is

often assumed and therefore the model does not show time-varying investment opportu-

nities in terms of volatility. We will study if this particular model is a good description

of stock and bond excess returns.
9Another approach is proposed in Berkowitz (2001) but it shows very low p-values for all models in

general, and therefore it does not help much to draw conclusions. This happens also in Clements and
Smith (2000) and they interpret it as higher sensitivity to outliers.
10In the same spirit as the interval forecast tests in Christoffersen (1998).
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4.1 Econometric Model

Recall that yt is a 4 × 1 vector composed by two excess returns and two predictors.

The likelihood of this model is given by a Gaussian VAR,

yt= a+Byt−1+ut, (6)

ut |
¡
yt−1,θ

¢
∼ N (0,Σ) , (7)

where a is a 4 × 1 vector of intercepts, B is a 4 × 4 matrix of slope coefficients and ut
represents the innovations, which are independent and normal. The vector θ represents

the model parameters and it will be defined later. Cross-sectional residual correlation

is allowed to take into account feed-back between returns and predictors, but residual

homoskedasticity and independence over time are assumed.

The main role of a VAR in the context of asset allocation is modeling time-varying

risk premia. Two versions of this model will be estimated and evaluated to study the

empirical relevance of that time variation: One with a time-varying conditional mean and

another with a constant mean. The latter version imposes the following restrictions on

the general model

B =

⎛⎝ 0 0

Bze Bzz

⎞⎠ , (8)

where B has been partitioned in terms of et and zt.

We will use compact notation for the VAR intercepts and slopes. Specifically,

Π =

⎛⎝ a0

B0

⎞⎠ , π = vec (Π) ,

where the vector π is 20× 1 for the unrestricted version of the model and 12× 1 for the

restricted version. The model parameters to estimate are

θ = {π,Σ} ,

while the likelihood is

p
¡
yT | θ

¢
=

TY
t=1

p
¡
yt| yt−1,θ

¢
,
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where each p
¡
yt| yt−1,θ

¢
is normal. To close the model, the priors are

π ∼ N
µ
π
−
,C
−

¶
,

Σ ∼ IW
µ
ν
−
,S
−

¶
,

where IW (·) denotes the inverse Wishart distribution.11 These priors are informative

for continuity with regime switching models where they are needed. We do not restrict

the eigenvalues of B to the interior of the unit circle. We should restrict the VAR if we

believe that our model is the true data generating process, since we expect stationary

returns and predictors. But if the true data generating process is different, for instance

a Markov-switching model, then it may be the case that the estimation of this simple

VAR shows nonstationarity although the process is really stationary. More details about

the implementation of the model such as specific prior values and corresponding Gibbs

sampler can be found in the appendix.

In terms of density forecasts, we can directly rely on normal distributions. Since

yT+1|
¡
yT ,θ

¢
∼ N (a+ByT ,Σ) ,

we have that

eST+1 |
¡
yT ,θ

¢
∼ N

³
aS+

¡
bS
¢0
yT ,σ

SS
´
,

where aS is the corresponding entry in a,
¡
bS
¢0
is the corresponding row in B, and σSS

is the corresponding entry in Σ. In addition,

eBT+1 |
¡
yT ,eST+1,θ

¢
∼ N

Ã
aB+

¡
bB
¢0
yT +

σSB

σSS
uST+1,σ

BB −
¡
σSB

¢2
σSS

!
,

where the notation is similar to the previous expression. The distributions of eBT+1 |¡
yT ,θ

¢
and eST+1 |

¡
yT ,eBT+1,θ

¢
are defined in a similar way. The required moments can

be computed following (2) and (3), while the PITs are described in (4) and (5).

4.2 Estimation and Evaluation

We show the empirical results of the model in two dimensions. First, the estimation

is shown for the first and last estimation periods to interpret the model and compare it
11The parametrization is such that if X ∼ IW (ν,S), where X is a d× d positive definite matrix, then

E (X) = S−1/ (ν − d− 1). This is equivalent to X−1 ∼W (ν,S) with E
¡
X−1

¢
= νS.
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to existing results. Second, the evaluation of density forecasts is shown for a recursive

estimation starting at the forecast of January 1975.

4.2.1 Real-Time Model Estimation

Table 2 shows part of the estimation of the two model versions. Specifically, tables

and corresponding comments are focused on the posterior mean of some parameters.

The estimation is shown for the first and last estimation periods, defined by data up to

December 1974 and November 2001.

(Table 2)

The following comments also explain additional results that are not shown in tables.

For instance, comments on significance of parameters are based on the comparison of

posterior means and standard deviations, although the latter are not displayed in the

tables. The posterior distributions of conditional mean parameters are very close to a

normal distribution in general.

In the case of stocks, both predictors contribute with a positive coefficient to the

conditional mean, as it is found in the literature. But the dividend yield cannot be

regarded as significant in the last estimation. It is well known that the dividend yield

has lost part of its predictive power during the second half of the 90’s. The lagged bond

return, which is not shown in the table, has a significant positive coefficient in both

estimations. The constant mean version shows a positive mean that is only significant

in the last estimation. If we turn to bonds, the dividend yield coefficient changes sign.

But the last value cannot be regarded as significant and therefore it has lost predictive

power for bonds too. On the other hand, the term premium has a positive coefficient in

both estimations, as it is usual in the literature, but only the last estimation is significant.

Both lagged excess returns, which are not shown in the table, have a significant coefficient

in the last estimation, negative for the stock and positive for the bond. The intercept in

the constant mean version is not significant in both estimations. In fact, it is negative in

some periods. A well-known feature is that predictors are almost single persistent AR(1)s.

This is also found here. During the last years, the estimated value of the autoregressive

coefficient of the dividend yield has increased and got closer to 1.

In terms of residual variances of excess returns, there is an increase from one period
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to the other in the covariance, which is positive, and both variances. The covariance

suffers a huge increase in the first estimation years and then becomes more stable. The

bond variance increases sharply in the beginning and then falls smoothly. The correlation,

computed at the posterior mean values of covariances and variances, has increased from

0.04 to 0.15 in the predictable mean version. The residual covariance between the ESR

and the dividend yield is always negative and decreasing. This sign is found in the

literature and it is a signal of mean-reversion in stocks. The residual covariance between

the EBR and the term premium changes sign form negative to positive and finally becomes

negative again. Campbell et al. (2003) found a positive residual covariance, which would

be a signal of mean-aversion in bonds, but its value was low. The residual variances in

the constant mean version do not show a huge increase with respect to the predictable

version. This is expected as the classical R2 using predictors is low in monthly predictive

regressions.

4.2.2 Evaluation of Joint Density Forecasts

The density forecasts from each version of this model are shown in Figures 4 and 5. In

the case of stocks and predictable mean version, Panels A and B in Figure 4, the standard

deviation increases a little bit around 1987. The mean is unstable around the end of the

70’s and the beginning of the 80’s, where it is usually negative. The mean is also usually

negative during the second half of the 80’s. The coefficients of asymmetry and kurtosis

are close to zero all the time, see Panels C and D in Figure 4. The EBR density forecast

shows an increase in the standard deviation around 1980. The mean is negative around

1979 and 1980, and during the second half of the 90’s. The coefficients of asymmetry and

kurtosis are also close to zero all the time.

The constant mean version of the model shows a much more stable mean as it can

be expected, see Figure 5. It is positive for ESR, Panel A, but has a negative period

for EBR during the first half of the 80’s, Panel C. Given the big difference between both

versions of density forecasts, they will imply different portfolio choices as it is found in

the literature.12

The corresponding time series means of mean, standard deviation, and coefficients of
12See for instance Barberis (2000), although he focuses on long-term buy-and-hold strategies and re-

balancing at frequencies lower than 1 year.
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asymmetry and kurtosis are 0.67, 4.14, -0.00, and 0.02, respectively, for the ESR’s density

forecasts with predictable mean. The corresponding EBR’s values are 0.13, 1.45, 0.00 and

0.02. In the case of the constant mean version, the values are 0.45, 4.26, -0.00, and 0.02

for ESR, and 0.04, 1.47, -0.00, and 0.02 for EBR. The main difference between both sets

of forecasts is that the time series mean of the latter is lower for both assets. But at this

stage we do not know if this is due to over-optimism using predictors or over-pessimism

with a constant mean. The study of the PITs will help us to answer this question.

PITs’ time series show the following features. In the predictable mean version, ESR’s

PIT is inversely related to the evolution of the conditional mean. That relationship is not

so clear for EBR’s PIT. In the case of ESR, the constant mean version shows a similar

pattern but it seems less variable and systematic.

Some PIT’s diagnostics from the predictable mean version are displayed in Figure 6.

The CDFs do not show a significant departure form uniformity, while the correlograms

exhibit a failure in terms of the second power of the EBR’s PIT, see Panel B. This is

confirmed by the numbers in Table 3.

(Table 3)

Panel A shows the sample distribution is close to uniform.13 In Panel B, the ESR’s

PIT does not exhibit correlation, but the EBR’s PIT shows more correlation. The level

shows correlation at the first lag, but it is clear in the second power from the second lag.

The EDF tests do not show a significant departure from uniformity, see Panel C in Table

3. The statistics are shown with ∗ if it is significant at 5%, ∗∗ if it is significant at 2.5%,

and ∗ ∗ ∗ if it is significant at 1%. However, the Wallis test, Panel D, gives some concern

for ESR with 3 bins, the conditional coverage p-value is 0.01, while has an independence

p-value of 0.02 with 4 bins. The joint PIT inherits the correlation in the second power of

the EBR and the bad performance of ESR in the Wallis test, mainly in the case of the

independence test.

We describe now the corresponding graphical diagnostics for PITs from the constant

mean version. In terms of CDFs, they seem to worsen with respect to the predictable

version. The CDF is bellow the 45 degrees line, which may be due to a higher mean. Panel

A in Table 3 shows that the means of the PITs are around 0.52, while the predictable
13The corresponding four parameters for a uniform distribution are 0.50, 0.29, 0.00, and −1.20.

18



mean versions had a mean of around 0.51. The main difference is that the asymmetry

doubles its negative value in the constant mean version. Now we see that the right tail

is too thick and the left tail too thin in the constant mean PITs. We commented that

time series means of the density forecasts were lower for the case of constant mean and we

wondered if that was due to over-pessimistic forecasts. The PIT now provides the answer.

In terms of correlograms, the level correlation in ESR increases, but the second power

correlation decreases. This is confirmed by numbers in Panel B of Table 3. The level

correlation of EBR increases at the first lag. The EDF tests worsen, Panel C in Table 3,

with Anderson-Darling rejected at the 2.5% in the case of joint PIT. Wallis improves for

ESR, Panel D, but worsens for EBR because of the independence test. The joint PIT has

lower p-values than before. However, there are no rejections at the 2.5%.

We studied the difference between time series of PITs from both versions. The pre-

dictable mean version gives lower PITs in general until the beginning of the 90’s, 1993 for

ESR and 1995 for EBR. This is due to a higher mean in its density forecasts. Then the

tendency changes and it usually gives higher PITs because it predicted negative returns.

Apart from the mean, the rest of features of the forecasts are similar. The correlation

between the PITs ranges from 0.94 to 0.97.

The previous results are based on integrated forecasting rules but a plug-in rule was

also evaluated. The difference between time series of PITs from both forecasting rules is

low and not systematic for the predictable version, with higher volatility during unstable

periods, mainly the beginning of the 80’s and the last years. The difference is small in

the case of the constant mean version, as it can be expected since the conditional version

drives many of the results. All evaluation tests give similar results when applied to both

forecasting rules. The correlation between corresponding PITs is 1. Correlations between

4 moments of density forecasts that are computed in this paper are also 1 or very close.

The parameter uncertainty per se is not able to create a significant amount of asymmetry

or kurtosis at the monthly frequency. Stambaugh (1999) and Barberis (2000) show that

estimation risk might be important in asset allocation but only at much lower frequencies.

In summary, we have shown the following relevant results for an investor who rebal-

ances her portfolio monthly. The performance of the PITs from the normal VAR is good

in general, so it can be used to compute optimal asset allocations. There is only a failure

in the dependence of the second power of the EBR’s PIT. On the other hand, it is not
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clear if constant or time-varying risk premia give better forecasting performance. With

respect to constant risk premia, time-varying premia worsen the forecast evaluation for

stocks but improve for bonds. Nevertheless, the PIT shows a common feature in stocks

and bonds: constant risk premia tend to produce over-pessimistic forecasts. Finally, using

the integrated or the plug-in forecasting rules does not matter so the investor can avoid

the complexity of the former.

5 Markov-Switching VAR

The previous model was mainly concerned with time-variation in risk premia. Now we

study models that add time-varying risk by enriching the Gaussian VAR. This can be done

with GARCH, stochastic volatility, or regime-switching models. Hamilton and Susmel

(1994) explore ARCH versus regime-switching effects in variance with U.S. monthly data.

They conclude that ARCH effects are not very important at the monthly frequency after

taking into account regime-switching.

In addition, a clear asymmetry is found in asset correlations during bull and bear

markets. See for instance the case of stocks in Ang and Chen (2002). Regime-switching

models are well suited to separate the asymmetric behaviour of returns in different states

as it is pointed out in Ramchad and Susmel (1998) and Ang and Bekaert (2002), who also

apply these models to asset allocation.

For both reasons, we will estimate and evaluate a Markov-switching model.14 We will

check the robustness of results through alternative regime-switching models at the end of

this section.

5.1 Econometric Model

A Markov-switching VAR introduces an unobserved discrete variable that follows a

Markov chain and whose outcome defines the values of the vector of VAR parameters.

The Markov chain represents persistence in economic regimes and differentiates this model

from a simple Gaussian mixture. Unobservability of the state is a convenient approach to

make real-time forecasts.
14Hamilton (1989) developed the reference Markov-switching model, while Kim and Nelson (1998)

showed its implementation in a Bayesian framework to macroeconomic indicators. Pérez-Quirós and
Timmermann (2000, 2001), Chauvet and Potter (2001), and Bansal and Zhou (2002) are some examples
in finance.
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Only two regimes are allowed, so that the regime variable st can take only two values,

say 1 or 2. The unobservable regime follows a binary Markov chain,

p
¡
st | st−1,yt−1,θ

¢
= p (st | st−1,θ) , (9)

p (st = j | st−1 = i,θ) = pij, i, j = 1, 2.

The specific model that we will estimate and evaluate can be expressed with the same

VAR as (6), i.e. the conditional mean parameters are kept constant in both regimes,15

plus a different distribution of the perturbation. Instead of (7), now we have

ut |
¡
yt−1, st = j,θ

¢
∼ N

¡
0,Σj

¢
, j = 1, 2 (10)

where the distribution of ut is expressed conditional on the regime. This is our way of

introducing time-varying risk. The vector θ represents the model parameters and its

specific components will be shown later.

OurMarkov-switching VAR has 4 variables, but it is not usual to find this type of VARs

with more than 2 or 3 variables. For instance, Pérez-Quirós and Timmermann (2000,

2001) apply the model to 1 or 2 series of stock returns, without introducing predictors’

dynamics. Ang and Bekaert (2001) apply it to 3 returns (short-term rate, bonds and

stocks) but their only predictor is one of the returns, the short term rate. We will show

that the joint modelling of returns and predictors is crucial in the identification of regimes.

Two versions of this model will be estimated and evaluated again, facing time-varying

against constant risk premia. The case of constant risk premia is defined with the same

restrictions on B as in the Gaussian model (8).

The parameters to estimate are now

θ = {(p11, p22) ,π, (Σ1,Σ2)} ,

and the likelihood is

p
¡
yT | θ

¢
=

TY
t=1

X
st

p
¡
st | yt−1,θ

¢
p
¡
yt| yt−1,θ, st

¢
,

15This model does not allow asymmetry in returns. A model with switches in the conditional mean
was estimated in a previous version of this paper and there was not a clear evidence of switching in any
parameter.
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where p (st | yt−1,θ) is given by the filter in Hamilton (1989) and the component p
¡
yt| yt−1,θ, st

¢
is Gaussian. The priors have the following structure,

p11 ∼ B
µ
n11
−
, n12
−

¶
, p22 ∼ B

µ
n22
−
, n21
−

¶
,

π ∼ N
µ
π
−
,C
−

¶
,

Σ1 ∼ IW
µ
ν1
−
,S1
−

¶
, Σ2| Σ1 ∼ TIWI(σ2,11>σ1,11)

µ
ν2
−
,S2
−

¶
where B (·, ·) means a beta distribution16 and TIWI(·) (·, ·) is a truncated inverse Wishart

with I (·) defining the truncation region. The prior of Σ2 given Σ1 is truncated to region

where the first entry of Σ2 is higher that the first entry of Σ1. The priors on p11 and

p22 are independent, but the priors on Σ1 and Σ2 are defined jointly to identify the

regimes during the MCMC. Informative priors are needed with these type of models

because it could be the case that some regimes are not visited in some iterations of the

Gibbs sampler. More details about the implementation of the model such as specific prior

values and corresponding Gibbs sampler can be found in the appendix.

In terms of density forecasts, latent variables imply that we cannot directly rely on

normal distributions. Nevertheless, we are back to the Gaussian world conditioning on

the latent variables. Since

yT+1 |
¡
yT ,θ, sT+1 = j

¢
∼ N

¡
a+ByT ,Σj

¢
,

we have that

eST+1 |
¡
yT ,θ, sT+1 = j

¢
∼ N

³
aS+

¡
bS
¢0
yT ,σ

SS
j

´
,

where aS is the corresponding entry in a,
¡
bS
¢0
is the corresponding row in B, and σSSj

is the corresponding entry in Σj. In addition,

eBT+1 |
¡
yT , eST+1,θ, sT+1 = j

¢
∼ N

Ã
aB+

¡
bB
¢0
yT +

σSBj
σSSj

uST+1,σ
BB
j −

¡
σSBj

¢2
σSSj

!
.

The distributions of eBT+1 |
¡
yT ,θ, sT+1 = j

¢
and eST+1 |

¡
yT ,eBT+1,θ, sT+1 = j

¢
are

defined in a similar way. The required moments can be computed following (2) and (3),

while the PITs are described in (4) and (5).
16The parametrization is such that if x ∼ B (α,β) then E (x) = α/ (α+ β).
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5.2 Estimation and Evaluation

We show again the empirical results of the model in two dimensions, estimation of

parameters and evaluation of real-time density forecasts.

5.2.1 Real-Time Model Estimation

Table 4 shows posterior means of some parameters of the two model versions. Again,

the estimation is shown for first and last estimation periods, December 1974 and November

2001, and there will be comments that refer to some computations that are not shown in

tables.

(Table 4)

The values of transition probabilities imply persistent regimes. Both regimes are simi-

larly persistent in the first estimation, but the high-volatility regime persistence decreases

in the last estimation. The persistence of the low-volatility regime decreases at the be-

ginning but afterwards increases so that ends at a similar level, while the other regime

persistence is decreasing along the whole period. The posterior means for the predictable

mean version would imply a steady state probability for the low-volatility regime that

goes from 0.51 to 0.77 during the data period.

The values of conditional mean parameters are similar to the Gaussian VAR model.

Perhaps it is strange to see now a negative intercept for bonds in the first estimation of

the constant mean version, but it is not significant.

In terms of residual variances, recall that our only identifying assumption was that

the second regime had a higher first entry. The rest of entries are left unrestricted and

the model identifies a high-volatility regime for both assets. In the first estimation, stocks

approximately double its variance form one regime to the other. Bond variance is ap-

proximately eight times higher, but its values are much lower than stock’s ones. The

covariance is not really significant in both regimes. In the second estimation, switching is

about three times for stocks and six times for bonds. All the values are higher than the

first estimation, especially the high-volatility regime. The stock variance has increased

along the sample period in both regimes. The bond variance in the first regime grows

smoothly in general but suffers a jump at the beginning of the 90’s. The corresponding

second regime variance jumps at the beginning of the 80’s and the 90’s.

23



About covariances, only the low-volatility regime one can be regarded as significantly

positive. In fact, the corresponding correlations in each regime, computed at posterior

means of parameters, are 0.19 versus 0.12 for the predictable mean version. The first

regime covariance starts at a negative value but becomes positive and grows very soon,

while the second regime covariance begins growing and becomes stable afterwards. About

residual covariances between returns and predictors, the covariance between ESR and

dividend yield is negative in both regimes and both periods. In the final estimation, this

covariance turns to be about three times more negative in the high-volatility regime. On

the other hand, the covariance between EBR and term premium is negative in the first

regime, but the sign is not clear in the second. The high-volatility regime covariance is

significantly positive in the constant mean version.

Finally, the probability of the high-volatility regime from last estimation can be seen

in Panel A of Figure 7, jointly with the NBER recession index. The high-volatility regime

is usually associated with recessions and that is a noteworthy contribution of this paper.

This model identifies regimes that are closely related to the business cycle without using

macroeconomic variables such as GDP and/or time-varying transition probabilities. For

instance, Pérez-Quirós and Timmermann (2000, 2001) introduce that variation as depen-

dence of transition probabilities on the composite leading indicator. We do not need that

model because we work with a joint VAR of excess returns and predictors, not with a

VAR of excess returns only.

5.2.2 Evaluation of Joint Density Forecasts

Density forecasts from each model version are shown in Figures 8 and 9. The case

of stocks and predictable mean version is displayed in Panels A and B of Figure 8. The

standard deviation shows more action now, while the mean shows a bit lower variation.

The coefficient of asymmetry is still close to zero all the time, but the coefficient of kurtosis

varies through time and increases during the 90’s. The EBR density forecast changes more

compared to the Gaussian VAR, see Panels C and D of Figure 8. There is more variation

in the standard deviation compared to the mean, while the mean shows smaller peaks.

The coefficient of asymmetry is again close to zero all the time, but kurtosis now changes

very sharply and is higher than ESR’s kurtosis. The constant mean version of the model,

Figure 9, does not need additional comments.
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In terms of numbers, the time series means of mean, standard deviation, and coeffi-

cients of asymmetry and kurtosis are 0.71, 4.20, -0.00, and 0.36, respectively, for ESR’s

density forecasts with predictable mean. The corresponding EBR’s values are 0.10, 1.48,

0.00 and 1.97. In the case of the constant mean version, values are 0.48, 4.32, -0.00, and

0.47 for ESR, and 0.01, 1.50, -0.00, and 2.01 for EBR. The main difference between both

versions of forecasts is that the time series mean is lower for both assets. Therefore, the

previous result found for the Gaussian VAR model is not specific to that model. In both

versions, the main difference with the previous Gaussian VAR forecasts is the increase in

kurtosis, especially in EBR. The correlation between means from the predictable mean

version of both models is around 0.99 for ESR, and around 0.85 for EBR. These values are

similar for other two regime-switching models that were also evaluated. They are briefly

commented at the end of this section.

Now we turn to the study of PITs. The time series of PITs do not show many

differences with respect to the Gaussian VAR. The correlation between corresponding

PITs from each model is 1 for ESR and around 0.97-0.98 for EBR. Again, these values

are similar for the additional regime-switching models that were also evaluated. If we

compute the time series of differences of PITs from the predictable mean versions of both

models then we can see a similar pattern to the difference between the predictable and

constant mean versions of the Gaussian model. That time series exhibits a negative value

before the 90’s in general and a positive value afterwards. In fact, the difference between

PITs can also be related with the difference in mean of density forecasts. Regardless, the

constant mean version shows a lower difference, there is a higher range for EBR again,

and does not have a clear sign.

Figure 10 shows some PITs’ graphical diagnostics from the predictable mean version.

The CDFs do not show a significant departure form uniformity, although the EBR in

Panel B looks worse that the Gaussian VAR. It has a fatter right tail, which translates

also into the joint PIT in Panel C. The noteworthy feature is the lack of correlation in the

second power of EBR, although there is still some in the joint PIT. We commented there

is not a direct relation between marginal and dynamic properties of PITs and returns,

but in this case a richer specification of the conditional variance of returns has removed

the correlation in the second power of the corresponding PIT.

The corresponding numbers and tests can be found in Table 5. Panel A shows some
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descriptive statistics that are close to its uniform counterparts, while Panel B shows the

commented lack of second power correlation in EBR. EDF tests of EBR, Panel C, worsen

with respect to Gaussian VAR, specifically the Kuiper test of the joint PIT is rejected at

the 2.5%. The Wallis test, Panel D, shows a p-value of only 0.001 for ESR with 4 bins due

to the independence test. EBR’s p-values decrease, mainly due to the uniformity test.

The unconditional coverage p-value for EBR with 4 bins is only 0.012.

(Table 5)

The corresponding graphical diagnostics of PITs from the constant mean version are

as follows. In terms of CDFs they seem to worsen with respect to the predictable version.

The correlograms do not require additional comments. Table 5 shows the corresponding

tests too. First, looking at Panel A, PITs mean from the constant mean version is a bit

higher and its asymmetry is more negative, as it was the case in the Gaussian VAR model.

Therefore, this feature of PITs is not specific to the normal model. EDF tests worsen,

Panel C, with Anderson-Darling rejected at 1% in the case of EBR and joint PIT. Wallis

improves for ESR, Panel D, but worsens for EBR leading to a clear rejection with 4 bins.

The joint PIT has lower p-values than before, with rejections of conditional coverage at

1%.

In terms of comparing time series of PITs from the two versions, results are similar to

the Gaussian VAR. In terms of comparing corresponding PITs from the two forecasting

rules, there is not a big difference. One of the new features in the Markov-switching model

is kurtosis. The correlation between kurtosis of both forecasting rules is 1 too.

To summarise, we have shown the following relevant results for an investor that rebal-

ances her portfolio monthly. The main difference with density forecasts from the Gaussian

VAR is an increase in kurtosis, specially for bonds. The Markov-switching model has re-

moved the dependence in the second power of EBR’s PIT, but has worsen other dimensions

with respect to the Gaussian VAR such as uniformity of EBR’s PIT. This fact reinforces

the previous statement that the Gaussian VAR model can be used to compute optimal

asset allocations, being much easier to implement. Finally, the relation between PITs

from two risk premia versions and the relation between PITs from two forecasting rules

are common to the Gaussian and Markov-switching models.

26



5.3 Alternative Regime-Switching Models

Two alternative regime-switching models were evaluated, which may be called inde-

pendent-switching and predictor-switching modes. The former is an independent mixture

of two regimes and therefore it may be seen as a restricted version of the Markov-switching

model. It only introduces fat tails with respect to the Gaussian model. On the other hand,

the predictor-switching model defines directly mixture weights as functions of predictors

by means of a normal CDF. These functions avoid filtering an unobservable regime. Both

models are much easier to estimate than a Markov-switching model so it is interesting to

study their performance.

Their corresponding results are not shown to shorten the extension of the paper,17

apart from their probabilities of the high-volatility regime in Figure 7. The independent-

switching model identifies regimes that are not closely related to the business cycle. The

behaviour of the probabilities in the predictor-switching model lies in between the other

two regime-switching models. That is, they are not as smooth as the Markov-switching

ones but are closer to the business cycle than in the independent-switching case. The

main difference with the previous models is that the end of the sample is labelled as a low

volatility regime although it is a recession for the NBER index. This is due to the strong

dividend yield effect in that probability.

These additional two models create higher kurtosis than the Markov-switching in gen-

eral. However, kurtosis decreases during the 90’s in the predictor-switching model because

of dividend yieldb4s evolution. The evaluation of these models is worse than the previous

ones in general. Both models fail to give a uniform PIT in the case of bonds, with too

many realizations on both tails of density forecasts. The predictor-switching model is able

to improve dynamics of second powers of bonds’ PIT.

After the evaluation of these additional models, we can conclude that previous advices

about density forecasts are robust enough. The Gaussian VAR model can be used to

compute optimal asset allocations and the complexity of a fully Bayesian approach can

be avoided.
17They are available upon request from the author.
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6 Conclusions

Much of the growing literature on tactical and strategic asset allocation is based on

a Gaussian vector autoregression (VAR) of returns and predictors. Unfortunately, the

portfolio advice from that literature may be misleading if the estimated Gaussian VAR is

not an accurate description of the distribution of returns. For that reason, in this paper we

evaluate its joint density forecasts of US monthly excess returns of stocks and bonds during

the post-war period. The evaluation method relies on the probability integral transforms

(PITs) of the density forecasts. If the model accurately describes the distribution of

returns then the PITs should be uniform and independent over time.

We show that an investor who rebalances her portfolio monthly can rely on the stan-

dard VAR model since it provides a reasonable description of the data. Richer models

do not improve the quality of density forecasts and they are more difficult to implement.

The Markov-switching VAR increases the kurtosis of density forecasts, especially in the

case of bonds, but does not improve the evaluation results in general. On the other hand,

a noteworthy feature of its estimation is that the regime variable tracks the business cycle

without the introduction of macroeconomic variables.

The accuracy of the Gaussian VAR explains why the portfolio choices in Brandt (1999),

which do not rely in a statistical model of returns, are close to the portfolios computed

using a Gaussian VAR model. For instance, in the case of models with time-varying risk

premia, the correlation of the PITs is 1 for the stocks and approximately 0.98 for bonds.

This is mainly driven by the correlation in risk premia, approximately 0.99 for stocks and

0.85 for bonds.

In addition, two important issues for asset allocation are addressed: time-variation

in risk premia and parameter uncertainty. The conclusions about both issues are robust

across different models. In terms of time variation in risk premia, versions of models

with or without that time variation imply very different density forecasts, translating into

significant effects in portfolio choice as it is well known. However, it is not clear if constant

or time-varying risk premia give better forecasting performance. With respect to constant

risk premia, time-varying premia worsen the forecast evaluation for stocks but improve

for bonds. Nevertheless, the PIT shows a common feature in stocks and bonds: constant

risk premia tend to produce over-pessimistic forecasts.
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When we study the relevance of parameter uncertainty, the fully Bayesian approach

and the plug-in forecasting rule give similar density forecasts. This uncertainty does

not create much asymmetry or kurtosis in the forecasts. In fact, he correlation between

the corresponding descriptive statistics of forecasts and PITs are close to 1. Therefore,

an investor that rebalances monthly could avoid the complexity of the fully Bayesian

approach.

Although we have relied on particular returns and predictors, we could extend our work

to study other returns, predictors and/or countries. For instance, one could analyse port-

folios constructed through size and book-to-market criteria as in Lynch (2001). It would

also be interesting to introduce a short-term interest rate and its corresponding time-

variation. Additionally, it might be worth to evaluate GARCH and stochastic volatility

models. Chacko and Viceira (2003) study asset allocation under the latter.

The results of this paper are relevant mainly for an investor that rebalances her port-

folio each month and has a short-term perspective. But it may be the case that the

investor’s rebalancing frequency is lower and/or her investment horizon is longer, and

such extensions can be incorporated in the current evaluation method. The first issue can

be handled by using returns and density forecasts at lower frequencies while he second

issue requires the evaluation of the joint density forecast of returns and predictors. The

analysis of rebalancing at lower frequencies might be more interesting since existing em-

pirical results show that the hedging demand component of a long-term portfolio choice

is not very important in practice.

Finally, another interesting avenue for future research would be the application of

our evaluation methodology to Bayesian models where priors are obtained from an asset

pricing model. Pástor (2000), Pástor and Stambaugh (2000), Tan and Zhou (2004), and

Avramov (2003) study portfolio choice in that context.
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Appendix

A MCMC Implementation

The initial condition of the MCMC is taken from the maximum likelihood estimator

(MLE) of the parameters. The first model is a Gaussian VAR and its MLE is easy to

compute. The Markov-switching model introduces latent variables and its MLE is com-

puted using the EM algorithm. The corresponding Gibbs samplers draw
©
θi, s

T
i

ªI
i=1
from

the posterior p
³
θ,sT | yT

´
, where we are discarding the first

©
θi, s

T
i

ªI∗
i=1

draws for con-

vergence reasons. The convergence of all chains was checked and did not show problems.

In the case of the Gaussian VAR, we run 101000 iterations in the computation of the pos-

terior distribution and burn the first 1000. Given its computational cost, we run 51000

iterations and burn the first 1000 for the Markov-switching model.

We can compute the different objects of interest from Gibbs output. For instance, the

density forecast (1) at any point yT+1 can be approximated by

pI
³
yT+1| yT

´
' 1

I

IX
i=1

⎡⎣X
sT+1

p
¡
sT+1 | yT ,θi,sT,i

¢
p
³
yT+1| yT ,θi, sT+1

´⎤⎦ .
The approximation error can be computed from standard time series methods. Expec-

tations in the computation of PITs in (4).are approximated by the corresponding sample

mean from the Gibbs output. For instance,

dI,ST+1 '
1

I

IX
i=1

X
sT+1

p
¡
sT+1 | yT ,θi, sT,i

¢
P
¡
eST+1 | yT ,θi, sT+1

¢
.

The conditional PIT is computed under the approximation p
³
θ,sT | yT , eST+1

´
' p

³
θ,sT | yT

´
so that we can use directly Gibbs output.

B Gaussian VAR

The specific values of the prior hyperparameters are as follows.18 We choose π
−
= 0

and C
−
=100I, where I is the corresponding identity matrix. Therefore, the prior on π is

not very informative. On the other hand, the prior on Σ will be computed from its MLE
18Each modelb4s priors are available upon request from the author.
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at the first estimation period, up to December 1974. Specifically,

ν
−
= T

−
, S

−
=

µ
T
−
Σ̂

¶−1
,

where T
−
= 25 ' T/10. This prior represents a small sample centred at the MLE.

We use a small approximation in the computations since we do not reestimate the

model monthly. We do it each quarterly, that is, if we use p
³
θ | yT

´
at period T then we

use the approximations p
³
θ | yT+1

´
' p

³
θ | yT

´
and p

³
θ | yT+2

´
' p

³
θ | yT

´
in the

following two periods. Afterwards, we estimate p
³
θ | yT+3

´
and the previous procedure

is repeated again. This does not represent a significant change in the final computations

and it really decreases the required time for the recursive out-of-sample check.

Let us define some notation before describing the Gibbs sampler of this model. Defin-

ing

xt =

⎛⎝ 1

yt−1

⎞⎠ ,
we can write the sample data in matrix notation at a particular point in time T as

Y = XΠ+U,

where Y is T × 4 and X is T × 5. The following notation will be convenient too,

y = vec (Y) , eX= I4⊗X,
where I4 is the identity matrix of order 4. In the case of constant risk premia, the matrixeX takes the form

eX =
⎛⎝ I2⊗`T 0

0 I2⊗X

⎞⎠
where `T is a T × 1 vector of ones.

The Gibbs sampler that we use to approximate the posterior distributions is based on

the following conditional posteriors of parameter blocks.

• Sampling π:

Since the likelihood implies the following kernel for π

p
¡
yT | θ

¢
∝ exp

½
−1
2

³
y−eXπ´0V−1 ³y−eXπ´¾ ,

V−1 = Σ−1⊗IT ,
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we can sample π as

π |
¡
yT ,Σ

¢
∼ N

¡
π̄, C̄

¢
,

π̄ = C̄

∙
C
−
−1π
−
+
³eX´0V−1y¸ ,

C̄ =

∙
C
−
−1 +

³eX´0V−1 eX¸−1 .
Obviously, this is only a compact way of expressing the terms, because the dimension

of V−1 would make it infeasible. In the case of a predictable mean, the computations are

much easier.

• Sampling Σ:

The corresponding kernel from the likelihood can be expressed as

p
¡
yT | θ

¢
∝
¯̄
Σ−1

¯̄T
2 exp

½
−1
2
tr
¡
Σ−1U0U

¢¾
,

which implies the conditional posterior

Σ |
¡
yT ,π

¢
∼ IW

¡
ν̄, S̄

¢
,

ν̄ = ν
−
+ T, S̄ =

∙
S
−
−1 +U0U

¸−1
,

U = Y −XΠ.

C Markov-Switching VAR

We choose nij
−
= 1, for all i and j, and π

−
−

= 0 and C
−
=100I. On the other hand, the

prior on Σ1 and Σ2 will be computed from its MLE of each version of the model for the

first estimation period, up to December 1974,

νj
−
= T

−
, Sj

−
=

µ
T
−
Σ̂j

¶−1
, j = 1, 2,

where T
−
= 25 again.

We reestimate the model quarterly. If we use p
¡
θ, sT | yT

¢
at period T then we use

approximations at T + 1 and T + 2 to take advantage of the Gibbs from T and decrease
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the number of required computations. We use the exact expression (2) at T , but we use

EpI(yT+2|yT+1)

h¡
eST+2

¢ki
=

Ep(θ,sT |yT+1)

⎡⎣X
sT+1

p (sT+1 | θ, sT )
X
sT+2

p (sT+2 | θ, sT+1)Ep(yT+2|yT+1,θ,sT+2)
h¡
eST+2

¢ki⎤⎦
at period T + 1, where the only approximation is p

¡
θ, sT | yT

¢
' p

¡
θ, sT | yT+1

¢
. The

sums over regimes can be directly computed by means of powers of the transition proba-

bilities matrix. A similar computation is applied at period T +2. Afterwards, we estimate

p
¡
θ, sT+3 | yT+3

¢
and the previous procedure is repeated again. We evaluate the previous

expressions at the corresponding posterior means in the case of the plug-in rule.

The estimation is based on Kim and Nelson (1998), where data augmentation with

regimes sT is the key element to return to the Gaussian world. The Gibbs sampler that

we use to approximate the posterior distributions is based on the following conditional

posteriors of parameter blocks.

• Sampling sT :

The sample regimes are drawn following Carter and Khon (1994) and Shephard (1994)

who advocate the use of a multimove sampler instead of a singlemove one. The required

distribution is

p
¡
sT | yT

¢
∝ p

¡
sT | yT

¢ T−1Y
t=1

p
¡
st | yt, st+1

¢
,

p
¡
st = j | yt, st+1

¢
∝ p

¡
st = j | yt

¢
p (st+1 | st = j)

where θ has been suppressed from all the conditioning sets for ease of notation. To

implement that sampler, we must run the filter developed by Hamilton (1989) before to

compute p (st | yt).

• Sampling (p11, p22):

The sampler of probabilities is based on

p
¡
p11, p22 | yT , sT ,π, (Σ1,Σ2)

¢
= p

¡
p11, p22 | sT

¢
∝ p (p11, p22) p

¡
sT | p11, p22

¢
.
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Therefore, we can draw p11 from

p11 |
¡
yT , sT ,π, (Σ1,Σ2)

¢
∼ B (n̄11, n̄12) ,

n̄11 = n11
−
+ n11, n̄12 = n12

−
+ n12,

where nij is the number of transitions from st = i to st+1 = j. This distribution ignores

the dependence of p (s1 | p11, p22) on transition probabilities and focuses on p (st | st−1),

which is a small approximation that greatly simplifies the computations.

Given the independence of priors, by a similar argument,

p22 |
¡
yT , sT ,π, (Σ1,Σ2)

¢
∼ B (n̄22, n̄21)

n̄22 = n22
−
+ n22, n̄21 = n21

−
+ n21.

• Sampling π:

By means of regimes, the likelihood can be decomposed as

exp

½
−1
2

³
y1−eX1π

´0
V−11

³
y1−eX1π

´¾
exp

½
−1
2

³
y2 − eX2π

´0
V−12

³
y2 − eX2π

´¾
,

which implies that the conditional posterior is

π |
¡
yT , sT , (p11, p22) , (Σ1,Σ2)

¢
∼ N

¡
π̄, C̄

¢
,

π̄ = C̄

∙
C
−
−1π
−
+
³eX1

´0
V−11 y1 +

³eX2

´0
V−12 y2

¸
,

C̄ =

∙
C
−
−1 +

³eX1

´0
V−11 eX1 +

³eX2

´0
V−12 eX2

¸−1
.

• Sampling (Σ1,Σ2):

The distribution of ut given sT is

ut | st = j iid∼ N
¡
0,Σj

¢
, j = 1, 2,

conditioning on the rest of parameters and the data.

This sampler requires dividing data by means of regime variable st = 1 and 2. We can

define Uj= Yj−XjΠ, j = 1, 2, for data that are assigned to regime j in one particular

iteration of the Gibbs sampler. This splits the likelihood information for each regime’s
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parameters in each regime. If all realizations of regimes are equal in a particular iteration,

the other regime’s parameters are sampled directly from the prior.

The residual variance in the first regime is sampled as

Σ1 |
¡
yT , sT , (p11, p22) ,π

¢
∼ IW

¡
ν̄1, S̄1

¢
,

ν̄1 = ν1
−
+ T1, S̄1 =

∙
S1
−
−1 +U0

1U1

¸−1
,

and the variance in the second regime follows a truncated distribution given the previous

draw

Σ2 |
¡
yT , sT , (p11, p22) ,π,Σ1

¢
∼ TIWI(σ2,11>σ1,11)

¡
ν̄2, S̄2

¢
,

ν̄2 = ν2
−
+ T2, S̄2 =

∙
S2
−
−1 +U0

2U2

¸−1
.

The truncated inverseWishart is sampled using an accept-reject method via the inverse

Wishart.
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D Tables

Table 1. Descriptive Statistics of Excess Stock and Bond Returns.

Descriptive statistics are shown for three periods. The first estimation period, 252

observations, the out-of-sample period, 324 observations, and the whole period. Each

series’ distribution is described by its mean, standard deviation, and its coefficients of

skewness and kurtosis. Finally, its dynamic properties are described by Ljung-Box test’s

p-values of level and second power of demeaned series. This test is shown for 1, 3, and 6

lags.

1954/01-1974/12 1975/01-2001/12 1954/01-2001/12

ESR EBR ESR EBR ESR EBR

Panel A. Descriptive Statistics.

Mean 0.347 0.011 0.608 0.169 0.494 0.100

Stan. Deviation 4.053 1.176 4.572 1.692 4.351 1.489

Coef. of Skewness -0.423 0.076 -0.971 -0.001 -0.772 0.068

Coef. of Kurtosis 0.865 3.013 3.873 3.515 2.928 4.118

Panel B. Ljung-Box Test. P-values of 1, 3, and 6 Lags.

Level 1 0.043 0.753 0.403 0.004 0.079 0.003

3 0.151 0.953 0.331 0.008 0.252 0.008

6 0.022 0.410 0.392 0.015 0.310 0.041

Second Power 1 0.000 0.139 0.557 0.015 0.041 0.000

3 0.000 0.031 0.946 0.000 0.065 0.000

6 0.000 0.001 0.998 0.000 0.188 0.000

39



Table 2. Gaussian VAR Estimation. Posterior Means of some Parameters.

The Gaussian VAR is defined by (6) and (7). Posterior means of some parameters

are shown for estimations at December 1974 and November 2001. Results are shown at

each date for time-varying and constant risk premia versions of the model. In the former

version, first parameters are slopes of excess stock return (ESR) and excess bond return

(EBR) with respect to dividend yield (DY) and term premium (TP). In the latter version,

intercepts are shown. Finally, residual variances and covariances of ESR and EBR are

shown.
1974/12 2001/11

Time-varying Constant Time-varying Constant

Π ESR,DY 2.620 0.333 0.827 0.485

ESR,TP 1.052 0.478

EBR,DY 0.897 0.012 -0.008 0.102

EBR,TP 0.196 0.192

Σ ESR,ESR 15.169 16.716 18.333 19.104

ESR,EBR 0.166 0.324 0.944 1.130

EBR,EBR 1.382 1.410 2.105 2.240
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Table 3. PITs of Gaussian VAR.

The model is defined by (6) and (7). Three PITs are studied for two versions of the

model. Panel A shows four descriptive statistics of each PIT. Panel B studies each PIT’s

autocorrelation by means of Ljung-Box test. Panel C shows some empirical distribution

function (EDF) tests. Finally, Panel D shows Wallis tests of unconditional coverage (UC),

independence (IN), and conditional coverage (CC).

Time-varying Constant

ESR EBR Joint ESR EBR Joint

Panel A. Descriptive Statistics.

Mean 0.506 0.508 0.505 0.524 0.523 0.522

Stan. Deviation 0.299 0.286 0.291 0.285 0.286 0.285

Coef. of Skewness -0.074 -0.051 -0.047 -0.181 -0.116 -0.137

Coef. of Kurtosis -1.308 -1.110 -1.202 -1.155 -1.090 -1.121

Panel B. Ljung-Box Test. P-values of 1, 3, and 6 Lags.

Level 1 0.375 0.030 0.293 0.834 0.006 0.012

3 0.221 0.186 0.289 0.865 0.049 0.077

6 0.046 0.228 0.082 0.668 0.102 0.128

Second Power 1 0.890 0.092 0.135 0.251 0.087 0.025

3 0.172 0.000 0.000 0.081 0.000 0.000

6 0.023 0.000 0.000 0.001 0.000 0.000

Panel C. EDF Tests. Statistic and Significance.

Kolmogorov-Smir. 0.875 0.761 0.643 1.273 0.995 1.384∗

Kuiper 1.520∗ 1.163 1.120 1.700∗ 1.288 1.787∗

Anderson-Darling 1.039 0.996 1.158 1.929∗ 1.933∗ 3.274∗∗

Panel D. Wallis Tests. P-values of UC, IN, and CC.

3 Bins UC 0.046 0.796 0.292 0.294 0.213 0.156

IN 0.034 0.154 0.025 0.099 0.029 0.137

CC 0.011 0.309 0.034 0.115 0.031 0.098

4 Bins UC 0.587 0.972 0.826 0.116 0.381 0.056

IN 0.018 0.536 0.447 0.230 0.035 0.355

CC 0.039 0.768 0.634 0.128 0.049 0.131
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Table 4. Markov-Switching VAR Estimation. Posterior Means of Some

Parameters.

The Markov-switching VAR model is defined by (6), (10), and (9). Posterior means

of some parameters are shown for estimations at December 1974 and November 2001.

Results are shown at each date for time-varying and constant risk premia versions of the

model. First, transition probabilities are shown. In the time-varying risk premia version,

first parameters are slopes of excess stock return (ESR) and excess bond return (EBR)

with respect to dividend yield (DY) and term premium (TP). In the second version,

intercepts are shown. Finally, residual variances and covariances of ESR and EBR are

shown for each regime.

1974/12 2001/11

Time-varying Constant Time-varying Constant

p11 0.932 0.939 0.951 0.943

p22 0.928 0.937 0.838 0.838

Π ESR,DY 2.791 0.339 0.677 0.600

ESR,TP 0.965 0.383

EBR,DY 0.370 -0.050 -0.052 0.083

EBR,TP 0.155 0.190

Σ1 ESR,ESR 11.367 12.000 13.470 12.934

ESR,EBR -0.321 -0.315 0.726 0.719

EBR,EBR 0.352 0.345 1.036 1.030

Σ2 ESR,ESR 20.251 22.655 36.058 38.133

ESR,EBR 0.762 1.063 1.750 2.364

EBR,EBR 2.665 2.690 5.936 5.921
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Table 5. PITs of Markov-Switching VAR.

The model is defined by (6), (10), and (9). Three PITs are studied for two versions

of the model. Panel A shows four descriptive statistics of each PIT. Panel B studies

each PIT’s autocorrelation by means of Ljung-Box test. Panel C shows some empirical

distribution function (EDF) tests. Finally, Panel D shows Wallis tests of unconditional

coverage (UC), independence (IN), and conditional coverage (CC).

Time-varying Constant

ESR EBR Joint ESR EBR Joint

Panel A. Descriptive Statistics.

Mean 0.504 0.518 0.509 0.522 0.536 0.528

Stan. Deviation 0.299 0.304 0.301 0.288 0.305 0.296

Coef. of Skewness -0.068 -0.089 -0.071 -0.182 -0.148 -0.158

Coef. of Kurtosis -1.341 -1.343 -1.330 -1.205 -1.329 -1.267

Panel B. Ljung-Box Test. P-values of 1, 3, and 6 Lags.

Level 1 0.169 0.003 0.120 0.988 0.001 0.006

3 0.258 0.028 0.302 0.875 0.013 0.050

6 0.090 0.097 0.245 0.719 0.040 0.103

Second Power 1 0.950 0.752 0.584 0.426 0.613 0.183

3 0.212 0.305 0.063 0.168 0.630 0.124

6 0.020 0.397 0.009 0.004 0.629 0.007

Panel C. EDF Tests. Statistic and Significance.

Kolmogorov-Smir. 0.965 1.259 1.282 1.242 1.601∗ 1.782∗∗

Kuiper 1.632∗ 1.817∗ 2.013∗∗ 1.717∗ 1.798∗ 2.009∗∗

Anderson-Darling 1.023 1.828∗ 1.957∗ 1.676∗ 3.982∗∗∗ 4.107∗∗∗

Panel D. Wallis Tests. P-values of UC, IN, and CC.

3 Bins UC 0.137 0.068 0.120 0.133 0.006 0.002

IN 0.033 0.238 0.054 0.547 0.253 0.265

CC 0.025 0.092 0.035 0.311 0.015 0.007

4 Bins UC 0.118 0.011 0.012 0.079 0.006 0.006

IN 0.012 0.372 0.280 0.062 0.003 0.043

CC 0.008 0.051 0.039 0.028 0.000 0.003
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E Figures

Panel A. ESR
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Figure 1. Time Series and Correlograms of Excess Stock Return. Panel A

shows ESR’s time series in monthly percentage. Panel B shows autocorrelation in the

series’ level from 1st to 12th lag jointly with 5% critical values (dotted lines). Panel C

shows autocorrelation in the second power of demeaned series.

Panel A. EBR.
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Figure 2. Time Series and Correlograms of Excess Bond Return. Panel A

shows EBR’s time series in monthly percentage. Panel B shows autocorrelation in series’

level from 1st to 12th lag jointly with 5% critical values (dotted lines). Panel C shows

autocorrelation in the second power of demeaned series.
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Panel A. Dividend Yield.
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Figure 3. Time Series of Predictors. Panel A shows dividend yield’s time series.

Panel B shows term premium’s time series.
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Panel B. ESR Coef. of Skew. and Kur.
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Figure 4. Density Forecasts from Gaussian VAR with Time-Varying Risk

Premia. Panel A shows ESR’s mean and standard deviation (thick line). Panel B

shows ESR’s coefficients of asymmetry and kurtosis (thick line). Panel C shows EBR’s

mean and standard deviation (thick line). Panel D shows EBR’s coefficients of

asymmetry and kurtosis (thick line).
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Figure 5. Density Forecasts from Gaussian VAR with Constant Risk Premia.

Panel A shows ESR’s mean and standard deviation (thick line). Panel B shows ESR’s

coefficients of asymmetry and kurtosis (thick line). Panel C shows EBR’s mean and

standard deviation (thick line). Panel D shows EBR’s coefficients of asymmetry and

kurtosis (thick line).
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Panel A. ESR.
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Panel B. EBR.
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Panel C. Joint.
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Figure 6. CDF and Correlograms of PITs from Gaussian VAR with

Time-Varying Risk Premia. The left figure in each panel is a particular PIT’s CDF

(thick line) jointly with Kolmogorov-Smirnov 5% critical values. Both figures on the

right show autocorrelation in level (top figure) and second power of demeaned PIT from

1st to 12th lag jointly with 5% critical values (dotted lines). Panel A shows those figures

for ESR’s PIT df,St+1, Panel B for EBR’s PIT d
f,B
t+1, and Panel C for joint PIT³

df,St+1, d
f,B|S
t+1

´
.
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Panel B. Independent-switching Model.
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Panel C. Predictor-switching Model.
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Figure 7. Probability of High-Volatility Regime and NBER Recession Index.

Shaded regions are labelled as recessions by NBER. Probabilities are taken from last

estimation, November 2001, of each model’s time-varying risk premia version. Panel A

shows probability from Markov-switching VAR, Panel B from Independent-switching

VAR, and Panel C from Predictor-switching VAR.
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Panel A. ESR Mean and Stan. Dev.
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Figure 8. Density Forecasts from Markov-Switching VAR with Time-Varying

Risk Premia. Panel A shows ESR’s mean and standard deviation (thick line). Panel B

shows ESR’s coefficients of asymmetry and kurtosis (thick line). Panel C shows EBR’s

mean and standard deviation (thick line). Panel D shows EBR’s coefficients of

asymmetry and kurtosis (thick line).
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Figure 9. Density Forecasts from Markov-Switching VAR with Constant

Risk Premia. Panel A shows ESR’s mean and standard deviation (thick line). Panel B

shows ESR’s coefficients of asymmetry and kurtosis (thick line). Panel C shows EBR’s

mean and standard deviation (thick line). Panel D shows EBR’s coefficients of

asymmetry and kurtosis (thick line).
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Panel A. ESR.
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Figure 10. CDF and Correlograms of PITs from Markov-Switching VAR

with Time-Varying Risk Premia. The left figure in each panel is a particular PIT’s

CDF (thick line) jointly with Kolmogorov-Smirnov 5% critical values. Both figures on

the right show autocorrelation in level (top figure) and second power of demeaned PIT

from 1st to 12th lag jointly with 5% critical values (dotted lines). Panel A shows those

figures for ESR’s PIT df,St+1, Panel B for EBR’s PIT d
f,B
t+1, and Panel C for joint PIT³

df,St+1, d
f,B|S
t+1

´
.
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