
CENTRO DE ESTUDIOS
MONETARIOS Y FINANCIEROS

www.cemfi.es

February 2021

working paper
2102

Casado del Alisal 5, 28014 Madrid, Spain

Moment tests of
independent components

Dante Amengual
Gabriele Fiorentini

Enrique Sentana



sentana@cemfi.es
CEMFI

amengual@cemfi.es

Keywords: Covariance, co-skewness, co-kurtosis, finite normal mixtures, normality tests, pseudo 
maximum likelihood estimators, structural vector autoregressions.

Dante Amengual
CEMFI

Gabriele Fiorentini
Università di Firenze and RCEA
gabriele.fiorentini@unifi.it

Enrique Sentana

We propose simple specification tests for independent component analysis and structural vector
autoregressions with non-Gaussian shocks that check the normality of a single shock and the
potential cross-sectional dependence among several of them. Our tests compare the integer
(product) moments of the shocks in the sample with their population counterparts. Importantly, we
explicitly consider the sampling variability resulting from using shocks computed with consistent
parameter estimators. We study the finite sample size of our tests in extensive simulation
exercises and discuss some bootstrap procedures. We also show that our tests have non-
negligible power against a variety of empirically plausible alternatives.

CEMFI Working Paper No. 2102
February 2021

Moment tests of independent components

Abstract

JEL Codes: C32, C46, C52.



Acknowledgement

The first and third authors acknowledge financial support from the Spanish Ministry of Economy,
Industry & Competitiveness through grant ECO 2017-89689 and the Santander CEMFI Research
Chair.



1 Introduction

The literature on structural vector autoregressions (Svar) is vast. Popular identification

schemes include short- and long-run homogenous restrictions (see, e.g., Sims (1980) and Blan-

chard and Quah (1989)), sign restrictions (see, e.g., Faust (1998) and Uhlig (2005)), time-varying

heteroskedasticity (Sentana and Fiorentini (2001)) or external instruments (see, e.g., Mertens

and Ravn (2012), Stock and Watson (2018) or Dolado, Motyosvski and Pappa (2020)). Recently,

identification through independent non-Gaussian shocks has become increasingly popular after

Lanne, Meitz and Saikkonen (2017) and Gouriéroux, Monfort and Renne (2017). The signal

processing literature on Independent Component Analysis (Ica) popularised by Comon (1994)

shares the same identification scheme. Specifically, if in a static model the N × 1 observed

random vector y —the so-called signals or sensors—is the result of an affi ne combination of N

unobserved shocks ε∗ —the so-called components or sources—whose mean and variance we can

set to 0 and IN without loss of generality, namely

y = µ+Cε∗, (1)

then the matrix C of loadings of the observed variables on the latent ones can be identified (up

to column permutations and sign changes) from an i.i.d. sample of observations on y provided

the following assumption holds:1

Assumption 1: Identification
1) the N shocks in (1) are cross-sectionally independent,
2) at least N − 1 of them follow a non-Gaussian distribution, and
3) C is invertible.

Failure of any of the three conditions in Assumption 1 results in an underidentified model.

The best known counterexample is a multivariate Gaussian model for ε∗, in which we can

identify V (y) = CC′ but not C without additional structural restrictions despite the fact that

the elements of ε∗ are cross-sectionally independent. Intuitively, the problem is that any rotation

of the structural shocks ε∗∗ = Qε∗, where Q is an orthogonal matrix, generates another set of N

observationally equivalent, cross-sectionally independent shocks with standard normal marginal

distributions. A less well-known counterexample would be a non-Gaussian spherical distribution

for ε∗, such as the standardised multivariate Student t. In this case, the lack of identifiability of

C is due to the fact that ε∗ and ε∗∗ share not only their mean vector (0) and covariance matrix

(I), but also the same non-linear dependence structure.

The purpose of our paper is to propose simple to implement and interpret specification tests

that check the normality of a single element of ε∗ and the potential cross-sectional dependence
1The same result applies to situations in which dim(ε∗) ≤ dim(y) provided that C has full column rank.
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among several of them. In very simple terms, our tests compare the integer (product) moments

of the shocks in the sample with their population counterparts. Specifically, in the Gaussian tests

we compare the marginal third and fourth moments of a single shock to 0 and 3, respectively.

In turn, in the case of two or more shocks, we assess the statistical significance of their second,

third and fourth cross-moments, which should be equal to the product of the corresponding

marginal moments under independence. Many of these moments tests can be formally justified

as Lagrange multiplier tests against specific parametric alternatives (see e.g. Mencía and Sentana

(2012)), but in this paper we do not pursue this interpretation. Like Almuzara, Amengual and

Sentana (2019), though, we focus on the latent shocks rather than the observed variables in view

of the fact that the identifying Assumption 1 is written in terms of ε∗ rather than y.

If we knew the true values of µ and C, µ0 and C0 say, with rank(C0) = N , our tests would

be straightforward, as we could trivially recover the latent shocks from the observed signals

without error. In practice, though, both µ and C are unknown, so we need to estimate them

before computing our tests.

Although many estimation procedures for those parameters have been proposed in the lit-

erature (see, e.g., Moneta and Pallante (2020) and the references therein), in this paper we

consider the discrete mixtures of normals-based pseudo maximum likelihood estimators (PM-

LEs) in Fiorentini and Sentana (2020) for three main reasons. First, they are consistent for

the model parameters under standard regularity conditions provided that Assumption 1 holds

regardless of the true marginal distributions of the shocks. Second, they seem to be rather

effi cient, the rationale being that finite normal mixtures can provide good approximations to

many univariate distributions. And third, the influence functions on which they are implicitly

based correspond to the pseudo log-likelihood function scores, which we can easily compute in

closed-form. As we shall see, these influence functions play a very important role in adjusting

the asymptotic variances of the different tests we propose so that they reflect the sampling

variability resulting from computing the shocks with consistent but noisy parameter estimators.

In this respect, we derive computationally simple closed-form expressions for the asymptotic

covariance matrices of the sample moments underlying our tests under the relevant null adjusted

for parameter uncertainty. Importantly, we do so for not only for the static Ica model (1) but

also for a Svar, which is far more relevant in economics.

In many empirical finance applications of Svars, the number of observations is suffi ciently

large for asymptotic approximations to be reliable. In contrast, the limiting distributions of our

tests may be a poor guide for the smaller samples typically used in macroeconomic applications.

For that reason, we thoroughly study the finite sample size of our tests in several Monte Carlo
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exercises. We also discuss some bootstrap procedures that seem to improve their reliability. Fi-

nally, we show that our tests have non-negligible power against a variety of empirically plausible

alternatives in which the cross-sectional independence of the shocks no longer holds.

The rest of the paper is organised as follows. Section 2 discusses the model and the estimation

procedure. Then, we present our general moment tests in section 3, and particularise them to

assess normality and independence in section 4. Next, section 5 contains the results of our Monte

Carlo experiments. We present our conclusions and suggestions for further research in section

6, and relegate some technical material to several appendices.

2 Structural vector autoregressions

2.1 Model specification

Consider the following N -variate Svar process of order p:

yt = τ +
∑p

j=1Ajyt−j +Cε∗t , ε∗t |It−1 ∼ i.i.d. (0, IN ), (2)

where It−1 is the information set, C the matrix of impact multipliers and ε∗t the “structural”

shocks, which are normalised to have zero means, unit variances and zero covariances.

Let εt = Cε∗t denote the reduced form innovations, so that εt|It−1 ∼ i.i.d. (0,Σ) with

Σ = CC′. As we mentioned in the introduction, a Gaussian (pseudo) log-likelihood is only

able to identify Σ, which means the structural shocks ε∗t and their loadings in C are only

identified up to an orthogonal transformation. Specifically, we can use the so-called LQ matrix

decomposition2 to relate the matrix C to the Cholesky decomposition of Σ = ΣLΣ′L as

C = ΣLQ, (3)

where Q is an N × N orthogonal matrix, which we can model as a function of N(N − 1)/2

parameters ω by assuming that |Q| = 1.3 Notice that if |Q|=−1 instead, we can change the

sign of the ith structural shock and its impact multipliers in the ith column of the matrix C

without loss of generality as long as we also modify the shape parameters of the distribution of

ε∗it to alter the sign of all its non-zero odd moments.

In this context, Lanne, Meitz and Saikkonen (2017) show that statistical identification of both

the structural shocks and C (up to column permutations and sign changes) is possible under

2The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′Σ′L provides the QR
decomposition of the matrix C′, which is uniquely defined if we restrict the diagonal elements of ΣL to be positive
(see e.g. Golub and van Loan (2013) for further details).

3See section 9 of Magnus, Pijls and Sentana (2020) for a detailed discussion of three ways of explicitly para-
metrising a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on
N(N − 1)/2 Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called
Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix.
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the Ica identification Assumption 1, which we maintain in what follows. Popular examples of

univariate non-normal distributions are the Student t and the generalised error (or Gaussian)

distribution, which includes normal, Laplace and uniform as special cases, as well as symmetric

and asymmetric finite normal mixtures.

2.2 Pseudo maximum likelihood estimators

2.2.1 The criterion function

Let θ = [τ ′, vec′(A1), . . . , vec
′(Ap), vec

′(C)]′ = (τ ′,a′1, . . . ,a
′
p, c
′) = (τ ′,a′, c′) denote the

structural parameters characterising the first two conditional moments of yt. In addition, we

assume ε∗it|It−1 ∼ i.i.d. D(0, 1,%i), where %i is a qi×1 vector of variation-free shape parameters.

For simplicity of notation, though, we maintain that the univariate distributions of the shocks

belong to the same family. We can then collect all the shape parameters in the q × 1 vector

% = (%′1, . . . ,%
′
N )
′, with q =

∑
i qi, so that φ = (θ′,%′)′ is the [N + (p + 1)N2 + q] × 1 vector

containing all the model parameters.

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation t (t = 1, . . . , T ) will be

given by

lt(yt;φ) = − ln |C|+ ln f [ε∗t (θ);%] = − ln |C|+ ln f [ε∗1t(θ);%1] + . . .+ ln f [ε∗Nt(θ);%N ], (4)

where f [ε∗it(θ);%i] is the univariate log-likelihood function for the i
th structural shock, ε∗t (θ) =

C−1εt(θ), and εt(θ) = yt − τ −A1yt−1 − . . .−Apyt−p.

2.2.2 The score vector

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Fiorentini and Sentana

(2021) show that the scores can be written as

sθt(φ) = [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (5)

s%t(φ) = ert(φ), (6)

where

Zlt(θ) =


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N

C−1′, (7)
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Zst(θ) =


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN ⊗C−1′), (8)

elt(φ) = −
∂ ln f [ε∗t (θ);%]

∂ε∗
= −


∂f [ε∗1t(θ);%1]

∂ε∗1
...

∂f [ε∗Nt(θ);%N ]
∂ε∗N

 , (9)

est(φ) = −vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗′t (θ)

}

= −vec


1 +

∂ ln f [ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ) . . .
∂ ln f [ε∗1t(θ);%1]

∂ε∗1
ε∗Nt(θ)

...
. . .

...
∂ ln f [ε∗Nt(θ);%N ]

∂ε∗N
ε∗1t(θ) . . . 1 +

∂ ln f [ε∗Nt(θ);%N ]
∂ε∗N

ε∗Nt(θ)

 (10)

and

ert(φ) =
∂ ln f [ε∗t (θ);%]

∂%
=


∂ ln f [ε∗1t(θ);%1]

∂%1
...

∂ ln f [ε∗Nt(θ);%N ]
∂%N

 =


er1t(φ)
er2t(φ)
...

erN t(φ)

 (11)

by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

correspond to the underlying univariate densities.

2.2.3 The asymptotic distribution

For simplicity, we assume henceforth that the Svar model (2) generates a covariance sta-

tionary process.4 Consider the reparametrisation C = JΨ, where Ψ is a diagonal matrix whose

elements contain the scale of the structural shocks, while the columns of J, whose diagonal ele-

ments are normalised to 1, measure the relative impact of each of the structural shocks on all the

remaining variables. Proposition 3 in Fiorentini and Sentana (2020) shows that the parameters

ai = vec(Ai) and j = veco(J) are consistently estimated regardless of the true distribution.5

As a result, the pseudo true values of those parameters will coincide with the true ones, i.e.

ai∞ = ai0 and j∞ = j0. In contrast, τ and ψ = vecd(Ψ) will generally be inconsistently

estimated, so τ∞ 6= τ 0 and ψ∞ 6= ψ0.

Nevertheless, Fiorentini and Sentana (2020) prove that the unrestricted PMLEs of τ and ψ

4 If the autoregressive polynomial (IN −A1L− . . .−ApL
p) had some unit roots, yt would be a (co-) integrated

process, and the estimators of the conditional mean parameters would have non-standard asymptotic distributions,
as some of them would converge at the faster rate T . In contrast, the distribution of the ML estimators of the
conditional variance parameters would remain standard (see, e.g., Phillips and Durlauf (1986)).

5See Magnus and Sentana (2020) for some useful properties of the veco(.) and vecd(.) operators.
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which simultaneously estimate % will be consistent too when the univariate distributions used for

estimation purposes are discrete mixtures of normals, in which case θ∞ = θ0 and ε∗t (θ0) = ε
∗
t .

For that reason, in what follows we focus on the finite normal mixtures-based PMLEs of the

original parameters θ = (τ ′,a′, c′).

Still, the potential misspecification of this distributional assumption implies that the as-

ymptotic covariance matrix of the corresponding PMLEs must be based on the usual sandwich

formula. Let

A(φ∞;ϕ0) = −E[∂sφt(φ∞)/∂φ
′)|θ0,ϕ0] (12)

and

B(φ∞;ϕ0) = V [sφt(φ∞)|ϕ0] (13)

denote the (-) expected value of the log-likelihood Hessian and the variance of the score, respec-

tively, where %∞ are the pseudo true values of the shape parameters of the distributions of the

shocks assumed for estimation purposes, υ contains the potentially infinite-dimensional shape

parameters of the true distributions of the shocks, and ϕ = (θ,υ). The asymptotic distribution

of the pseudo ML estimators of φ, φ̂T , under standard regularity conditions will be given by

√
T (φ̂T − φ∞)→ N [0,A−1(φ∞;ϕ0)B(φ∞;ϕ0)A−1(φ∞;ϕ0)].

In what follows, we shall make extensive use of the detailed expressions for the conditional

expected value of the Hessian and covariance matrix of the score for finite normal mixtures-based

PMLEs in Amengual, Fiorentini and Sentana (2021).

3 Specification tests based on integer product moments

3.1 The influence functions

As we have stressed earlier, the parametric identification of the structural shocks ε∗t (θ) and

their impact coeffi cients C that appear in the Svar (2) critically hinges on the validity of the

identifying Assumption 1. As a consequence, it would be desirable that empirical researchers

estimating those models reported specification tests that would check those assumptions. Given

that rank failures in C will be inextricably linked to singular dynamic systems,6 we focus on

testing that at most one of the structural shocks is Gaussian and that all the structural shocks

are indeed independent of each other.

As is well known, stochastic independence between the elements of a random vector is equiv-

6The rationale is as follows. If rank(C0) < N , then rank[V (yt)] < N , and the same will be true of the sample
covariance matrix. Therefore, sampling variability plays no role in determining whether rank(C0) = N in model
(1). Exactly the same argument applies to the dynamic system (2).
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alent to the joint distribution being the product of the marginal ones. In turn, this factorisation

implies lack of correlation between not only the levels but also any set of single-variable measur-

able transformations of those elements. Thus, a rather intuitive way of testing for independence

without considering any specific parametric alternative can be based on individual moment

conditions of the form

mj[ε
∗
t (θ)] =

N∏
i=1

ε∗jiit (θ)−
N∏
i=1

E[ε∗jiit (θ0)], (14)

where j ={j1, ..., jN}, with ji ∈ Z0+, denotes the index vector characterising a specific product

moment. While the influence function in (14) will generally require the estimation of E[ε∗jiit (θ0)]

for some of the shocks, the constant term
∏N
i=1E[ε

∗ji
it (θ0)] is either 0 or 1 for the second, third

and fourth cross-moments we study in this paper in view of the standardised nature of the

shocks, so we do not need to worry about it. Amengual, Fiorentini and Sentana (2021) discuss

in detail how to deal with the estimation of the required E[ε∗jiit (θ0)] in the general case.

Although we have motivated (14) as the basis for our tests of independence, by setting all

the elements of j but one to 0, we can also use this expression to look at the marginal moments

of a single shock. In this paper, we focus on ji = 3 and 4 because most common departures from

normality of the shocks will be reflected in coeffi cients of skewness or kurtosis different from 0

and 3, respectively.

3.2 The moment tests

Let m[ε∗t (θ)] denote a K×1 vector containing a collection of influence functions mjk [ε
∗
t (θ)]

of the form (14) for different index vectors j1, . . . , jk, , . . . , jK . The following result, which spe-

cialises the general expressions in Newey (1985) and Tauchen (1985) to our context, derives the

asymptotic distribution of the scaled sample average ofm[ε∗t (θ)] when we evaluate the structural

shocks at the PMLEs θ̂T rather than at θ0:

Proposition 1 Under Assumption 1 and standard regularity conditions
√
T
1

T

∑T

t=1
m[ε∗t (θ̂T )]→ N [0,W(φ∞;ϕ0)],

where

W(φ∞;ϕ0) = V(φ∞;ϕ0) + J (φ∞;ϕ0)A−1(φ∞;ϕ0)B(φ∞;ϕ0)A−1(φ∞;ϕ0)J ′(φ∞;ϕ0)
+F(φ∞;ϕ0)A−1(φ∞,υ0)J ′(φ∞;ϕ0) + J (φ∞;ϕ0)A−1(φ∞;ϕ0)F ′(φ∞;ϕ0),

V(φ;ϕ) = V {m[ε∗t (θ)]|ϕ} ,

J (φ;ϕ) = E

{
∂m[ε∗t (θ)]

∂φ′

∣∣∣∣ϕ} ,
F(φ;ϕ) = cov

{
∂m[ε∗t (θ)]

∂φ′
, sφt(φ)

∣∣∣∣ϕ}
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and A(φ∞;ϕ0) and B(φ∞;ϕ0) are defined in (12) and (13), respectively.

In the next subsections, we provide detailed expressions for V(φ;ϕ), J (φ;ϕ) and F(φ;ϕ)

which exploit that the true shocks are cross-sectionally and serially independent under the null

hypothesis of correct specification of the static Ica model (1) or the dynamic Svar model (2).

3.2.1 Covariance across influence functions

Consider a generic element of the matrix cov{m[ε∗t (θ)],m′[ε∗t (θ)]|ϕ}, say

cov{mj[ε
∗
t (θ)],mj′ [ε

∗
t (θ)]|ϕ} = E{mj[ε

∗
t (θ)]mj′ [ε

∗
t (θ)]|ϕ} − E{mj[ε

∗
t (θ)]|ϕ}E{mj′ [ε

∗
t (θ)]|ϕ}.

If we exploit the cross-sectional independence of the shocks under the null hypothesis, which

implies that at the true values

E

(∏N

i=1
ε∗jiit

)
=
∏N

i=1
E(ε∗

ji

it ),

we obtain

cov{mj[ε
∗
t (θ0)],mj′ [ε

∗
t (θ0)]|ϕ0} =

∏N

i=1
E
[
ε
∗(ji+j′i)
it

]
−
∏N

i=1
E(ε∗jiit )E(ε

∗j′i
it ). (15)

3.2.2 The expected Jacobian

Straightforward application of the chain rule implies that

∂mj[ε
∗
t (θ)]

∂φ
=
∂mj[ε

∗
t (θ)]

∂ε′
∂εt(θ)

∂φ
.

On this basis, the following proposition characterises the expected Jacobian matrix for any j:

Proposition 2 Suppose that model (2) satisfies Assumption 1. Then, the expected Jacobian
matrix of mj[ε

∗
t (θ)] evaluated at the true values is given by

jjτ (%i∞,ϕ0) = E

[
∂mj[ε

∗
t (θ0)]

∂ε∗′
∂ε∗t (θ0)

∂τ ′

∣∣∣∣ϕ0] = −E [ ∂mj[ε
∗
t (θ0)]

∂ε∗′

∣∣∣∣ϕ0]C−10 ,

jjai(%i∞,ϕ0) = E

[
∂mj[ε

∗
t (θ0)]

∂ε∗′
∂ε∗t (θ0)

∂a′i

∣∣∣∣ϕ0] = −E [ ∂mj[ε
∗
t (θ0)]

∂ε∗′

∣∣∣∣ϕ0] [E(y′t−i∣∣ϕ0)⊗C−10
]

and

jjc(%i∞,ϕ0) = E

[
∂mj[ε

∗
t (θ0)]

∂ε∗′
∂ε∗t (θ0)

∂c′

∣∣∣∣ϕ0] = −E{ ∂mj[ε
∗
t (θ0)]

∂ε∗′
[
εt(θ0)⊗C−10

]∣∣∣∣ϕ0} .
As for ∂mj[ε

∗
t (θ)]/∂ε

∗′, if we denote all the distinct second, third and fourth moments by

m[ε∗t (θ)] =

 mcv[ε∗t (θ)]
mcs[ε∗t (θ)]
mck[ε∗t (θ)]

 =

 DN [ε
∗
t (θ)⊗ ε∗t (θ)]

TN [ε
∗
t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)]

QN [ε
∗
t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)]

 , (16)
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where DN , TN and QN are the duplication, triplication and quadruplication matrices, respec-

tively (see Meijer (2005) for details), the following lemma provides an easy way to compute all

those relevant quantities recursively:

Lemma 1 Let [ε∗t (θ)]
⊗k = ε∗t (θ)⊗ ε∗t (θ)⊗ ...⊗ ε∗t (θ)︸ ︷︷ ︸

k times

denote the kth order Kronecker power of

the N × 1 vector ε∗t (θ). Then, for any k ≥ 2

d{[ε∗t (θ)]⊗k} = {IN ⊗ [ε∗t (θ)]⊗k−1}dε∗t (θ) + [ε∗t (θ)⊗ IN ]d{[ε∗t (θ)]⊗k−1}.

A trivial —but useful —consequence of Lemma 1 that we will extensively use in our subsequent

analysis is:

Corollary 1 The differentials of the second, third and fourth powers of the structural shocks
will be

d[ε∗t (θ)⊗ ε∗t (θ)] = [IN ⊗ ε∗t (θ)]dε∗t (θ) + [ε∗t (θ)⊗ IN ]dε∗t (θ),

d[ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)] = [IN ⊗ ε∗t (θ)⊗ ε∗t (θ)]dε∗t (θ)
+{[IN2 ⊗ ε∗t (θ)][ε∗t (θ)⊗ IN ]}dε∗t (θ)
+[ε∗t (θ)⊗ ε∗t (θ)⊗ IN ]dε∗t (θ),

and

d[ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)] = [IN ⊗ ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)]dε∗t
+{[I2N ⊗ ε∗t (θ)⊗ ε∗t (θ)][ε∗t (θ)⊗ IN ]}dε∗t (θ)
+{[ε∗t (θ)⊗ ε∗t (θ)⊗ IN2 ][IN ⊗ ε∗t (θ)]}dε∗t (θ)
+[ε∗t (θ)⊗ ε∗t (θ)⊗ ε∗t (θ)⊗ IN ]dε∗t (θ).

3.2.3 The covariance with the score

Let `N denote a vector of N ones and I(.) the usual indicator function. The following

proposition provides the last ingredient of the adjusted covariance matrix in Proposition 1.

Proposition 3 Suppose that model (2) satisfies Assumption 1. Then, the covariance between
the influence function mj(·) and the pseudo log-likelihood scores evaluated at the (pseudo) true
values is given by

cov{mj[ε
∗
t (θ0)], sφt(φ∞)|ϕ0} = Fj(φ∞,ϕ0) = E[Fjt(φ∞,ϕ0)], (17)

where

Fjt(φ∞,ϕ0) =

 Fjl(%∞,υ0)Fjs(%∞,υ0)
Fjr(%∞,υ0)

 Z′lt(θ0) 0
Z′s(θ0) 0

0 Iq

 ,
Fjl(%∞,ϕ0) is a 1×N vector whose entries are such that for any i with ji > 0,

fjl(i)(%∞,ϕ0) = −cov
{
mj[ε

∗
t (θ0)],

∂ ln f [ε∗it(θ0);%i∞]

∂ε∗i

∣∣∣∣ϕ0}

9



and zero otherwise, Fjs(%∞,ϕ0) is a 1 × N2 vector whose entries are such that for any i with
ji > 0 and i′ with ji′ > 0

fjs(i,i′)(%∞,ϕ0) = −cov
{
mj[ε

∗
t (θ0)], I(i = i′) +

∂ ln f [ε∗it(θ0);%i∞]

∂ε∗i
ε∗i′t(θ0)

∣∣∣∣ϕ0}
and zero otherwise, and finally

Fjr(%∞,ϕ0) = F′jr(φ∞,ϕ0)`N ,

with Fjr(%∞,ϕ0) another block diagonal matrix of order N × q with typical block of size 1× qi,

fjr(i)(%∞,υ0) = cov

{
mj[ε

∗
t (θ0)],

∂ ln f [ε∗it(θ0);%i∞]

∂%′i

∣∣∣∣ϕ0}
and zero otherwise.

4 Particular cases

4.1 Testing normality

As we have mentioned before, we can use (14) to test the null hypothesis that a single

structural shock is Gaussian by comparing its third and fourth sample moments with 0 and

3, respectively, which are the population values of those moments under the null of normality.

Nevertheless, many authors (see, e.g., Bontemps and Meddahi (2005) and the references therein)

convincingly argue that it is generally more appropriate to look at the sample averages of the

third and fourth Hermite polynomials instead. In particular, one should consider H3(ε∗it) =

ε∗3it − 3ε∗it and H4(ε∗it) = ε∗4it − 6ε∗2it +3 rather than ε∗3it and ε∗4it only. The reason is that Hermite

polynomials have two main advantages. First, given that

∂H3(ε
∗
it)

∂ε∗i
= 3H2(ε

∗
it) and

∂H4(ε
∗
it)

∂ε∗i
= 4H3(ε

∗
it),

the results in Proposition 2 immediately imply that their expected Jacobians will be 0 under

the null of normality, so they are immune to the sampling uncertainty resulting from using

estimated shocks. Second, H3(ε∗it) and H4(ε
∗
it) are orthogonal under the Gaussian null, which

means that the joint test is simply the sum of two asymptotically independent components: one

for skewness and another one for kurtosis.

It turns out, though, that the usual implementation of the Jarque and Bera (1980) test,

which simply looks at the sample averages of ε∗3it (θ̂T ) and ε
∗4
it (θ̂T ), yields numerically the same

statistics as the tests based on the Hermite polynomials despite the fact that it ignores the terms

involving ε∗it and ε
∗2
it .

The intuition is as follows. Proposition 1 in Fiorentini and Sentana (2020) states that

the PMLEs of the unconditional mean and variance of a univariate finite mixture of normals

10



numerically coincide with the sample mean and variance (with denominator T ) of the observed

series. Given that the log-likelihood function (4) for any given values of a and j is effectively the

sum of N such univariate log-likelihoods with parameters that are variation-free, the estimated

shocks will be such that

1

T

∑T

t=1
ε∗it(θ̂T ) = 0 and

1

T

∑T

t=1
ε∗2it (θ̂T )− 1 = 0 ∀i (18)

regardless of the sample size. This property also has interesting implications for the independence

tests that we will consider in the next section because, in effect, each estimated shock will be

standardised in the sample.

4.2 Testing independence

At first sight, the arguments at the end of the previous section might suggest that the sample

covariances between the estimated shocks will also be 0 by construction. However, this is not

generally true. The finite normal mixture PMLEs guarantee the univariate standardisation of

each shock, but it does not imply their orthogonality in any given sample, unlike what would

happen with a Gaussian likelihood function in which enough a priori restrictions were imposed

on C to render the model exactly identified. Intuitively, the parameter values that maximise

(4) are trying to make the estimated shocks stochastically independent, not merely orthogonal

(see Herwartz (2018)).

For that reason, the first test for independence that we consider will be based on the second

cross-moment condition

E(ε∗itε
∗
i′t) = 0. (19)

In other words, we are simply assessing if the sample correlation between the ith and i′th esti-

mated shocks is significantly different from zero in the usual statistical sense.

Nevertheless, we can also go beyond linear dependence, and look at moments that charac-

terise the co-skewness across the structural shocks. These can be of two types:

E(ε∗2it ε
∗
i′t)− E(ε∗2it )E(ε∗i′t) = E(ε∗2it ε

∗
i′t) = 0 (20)

and

E(ε∗itε
∗
i′tε
∗
i′′t)− E(ε∗it)E(ε∗i′t)E(ε∗i′′t) = E(ε∗itε

∗
i′tε
∗
i′′t) = 0, (21)

depending on whether they involve two or three shocks.

Finally, we can also look at the different co-kurtosis among the shocks, which may involve a

11



pair of shocks, namely

E(ε∗2it ε
∗2
i′t)− E(ε∗2it )E(ε∗2i′t) = E(ε∗2it ε

∗2
i′t)− 1 = 0 (22)

and

E(ε∗3it ε
∗
i′t)− E(ε∗3it )E(ε∗i′t) = E(ε∗3it ε

∗
i′t) = 0, (23)

three shocks

E(ε∗2it ε
∗
i′tε
∗
i′′t)− E(ε∗2it )E(ε∗i′t)E(ε∗i′′t) = E(ε∗2it ε

∗
i′tε
∗
i′′t) = 0 (24)

and even four shocks

E(ε∗itε
∗
i′tε
∗
i′′tε
∗
i′′′t)− E(ε∗it)E(ε∗i′t)E(ε∗i′′t)E(ε∗i′′′t) = E(ε∗itε

∗
i′tε
∗
i′′tε
∗
i′′′t) = 0. (25)

Thus, we substantially expand the set of moments researchers can use to test for the inde-

pendence of the components relative to Hyvärinen (2013), who only suggested looking at the

co-kurtosis terms in (22). The above moment conditions also augment those considered by Lanne

and Luoto (2019), who focus on (19), (22) and (23), together with E(ε∗it) = 0 and E(ε
∗2
it ) = 1.

4.2.1 Covariance across influence functions

Next, we derive in detail the non-zero elements of the covariance matrix of the second, third

and fourth moments in (16).

It is easy to see that under the null hypothesis of independence, the only non-zero elements

of the covariance matrix of mcv[ε∗t (θ)] are

V (ε∗itε
∗
i′t) = 1.

In turn, in the case of mcs[ε∗t (θ)] and mck[ε∗t (θ)], the non-zero elements are

V (ε∗itε
∗
i′tε
∗
i′′t) = 1,

V (ε∗2it ε
∗
i′t) = E(ε∗4it ),

cov(ε∗2it ε
∗
i′t, ε

∗2
i′tε
∗
it) = E(ε∗3it )E(ε

∗3
i′t),

and

V (ε∗itε
∗
i′tε
∗
i′′tε
∗
i′′′t) = 1,

V (ε∗2it ε
∗
i′tε
∗
i′′t) = E(ε∗4it ),

V (ε∗3it ε
∗
i′t) = E(ε∗6it ),

V (ε∗2it ε
∗2
i′t) = E(ε∗4it )E(ε

∗4
i′t)− 1,

12



cov(ε∗2it ε
∗
i′tε
∗
i′′t, ε

∗2
i′tε
∗
itε
∗
i′′t) = E(ε∗3it )E(ε

∗3
i′t),

cov(ε∗3it ε
∗
i′t, ε

∗2
it ε
∗2
i′t) = E(ε∗5it )E(ε

∗3
i′t),

cov(ε∗3it ε
∗
i′t, ε

∗2
it ε
∗2
i′t) = E(ε∗5it )E(ε

∗3
i′t),

cov(ε∗2it ε
∗
i′tε
∗
i′′t, ε

∗2
i′tε
∗
itε
∗
i′′t) = E(ε∗3it )E(ε

∗3
i′t),

cov(ε∗2it ε
∗2
i′t, ε

∗2
it ε
∗2
i′′t) = E(ε∗4it )− 1,

cov(ε∗2it ε
∗
i′′t, ε

∗2
i′tε
∗
i′′t) = 1,

respectively, which can be consistently estimated from ε∗t (θ̂T ) under standard regularity condi-

tions.

Finally, the non-zero covariance terms across the different elements of mcv(ε∗t ), mcs(ε∗t ) and

mck(ε∗t ) are

cov(ε∗itε
∗
i′t, ε

∗2
it ε
∗
i′t) = E(ε∗3it ),

cov(ε∗itε
∗
i′t, ε

∗3
it ε
∗
i′t) = E(ε∗4it ),

cov(ε∗itε
∗
i′t, ε

∗2
it ε
∗2
i′t) = E(ε∗3it )E(ε

∗3
i′t),

cov(ε∗2it ε
∗
i′t, ε

∗3
it ε
∗
i′t) = E(ε∗5it ),

cov(ε∗2it ε
∗
i′t, ε

∗3
i′tε
∗
it) = E(ε∗3it )E(ε

∗4
i′t), and

cov(ε∗2it ε
∗
i′t, ε

∗2
it ε
∗2
i′t) = E(ε∗4it )E(ε

∗3
it ).

4.2.2 The expected Jacobian

Straightforward calculations allow us to show that the expected Jacobian of the covariances

across shocks in (19) will be given by

jjτ (%i∞,ϕ0) = 0, jjak(%i∞,ϕ0) = 0 and jjc(%i∞,ϕ0) = −(e′i′ ⊗ ci.0 )− (e′i ⊗ ci
′.
0 ),

where ei is the ith canonical vector and ci. denotes the ith row of C−1.

Analogously, for the third cross-moments in (20), we will have

jjτ (%i∞,ϕ0) = −ci
′.
0 , jjak(%i∞,ϕ0) = −[E(y

′
t−k|ϕ0)⊗ci

′.
0 ] and jjc(%i∞,ϕ0) = −E(ε∗3it )(e′i⊗ci

′.
0 ),

while for those in (21) we get

jjτ (%i∞,ϕ0) = 0, jjak(%i∞,ϕ0) = 0 and jjc(%i∞,ϕ0) = 0.

In turn, for the fourth moments in (22), we will have

jjτ (%i∞,ϕ0) = 0, jjak(%i∞,ϕ0) = 0 and jjc(%i∞,ϕ0) = −2(e′i ⊗ ci.0 + e′i′ ⊗ ci
′.
0 ),
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while for (23) we get

jjτ (%i∞,ϕ0) = −E(ε∗3it )ci
′.
0 , jjak(%i∞,ϕ0) = −E(ε

∗3
it )[E(y

′
t−k|ϕ0)⊗ ci

′.
0 ]

and

jjc(%i∞,ϕ0) = −3(e′i′ ⊗ ci.0 )− E(ε∗4it )(e′i ⊗ ci
′.
0 ).

Similarly, the expected Jacobian of (24) involves

jjτ (%i∞,ϕ0) = 0, jjak(%i∞,ϕ0) = 0 and jjc(%i∞,ϕ0) = −(e′i′ ⊗ ci
′′.
0 )− (e′i′′ ⊗ ci

′.
0 ).

Finally, when we look at (25), we unsurprisingly end up with

jjτ (%i∞,ϕ0) = 0, jjak(%i∞,ϕ0) = 0 and jjc(%i∞,ϕ0) = 0.

4.2.3 The covariance with the score

As we have seen before, we need to explicitly compute the expressions in Proposition 3 to

obtain (17). Fortunately, some of those expressions simplify considerably for the cross-moments

we use to test independence. Intuitively, the reason is that the independence of the shocks

implies that when j is such that ji = 1, we will have

E

[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε
∗ji′
i′t ε

∗ji′′
i′′t

]
= 0

and

E

[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗itε
∗ji′
i′t ε

∗ji′′
i′′t

]
= −E(ε∗ji′i′t )E(ε

∗ji′′
i′′t )

for i 6= i′, i′′.

As a result, (17) will be zero for the second moments E(ε∗itε
∗
i′t), except for fjs(i,i′)(%i∞,ϕ0),

which will be 1 when i′ 6= i.

In addition, if we exploit the independence between i and i′ and the fact that E(ε∗2i′t) = 1,

we can easily prove that the only non-zero covariance elements for the co-skewness influence

functions E(ε∗2it ε
∗
i′t) will be

fjl(i′)(%∞,ϕ0) = 1, fjs(i,i′)(%∞,ϕ0) = −E
[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗2it

]
, fjs(i′,i)(%∞,ϕ0) = E(ε∗3it ),

fjs(i′,i′)(%∞,ϕ0) = −E
[
∂ ln f(ε∗i′t;%i∞)

∂ε∗i′
ε∗2i′t

]
and fjr(i′)(%∞,υ0) = E

[
∂ ln f(ε∗it;%i∞)

∂%′i
ε∗it

]
,

while all of them are zero for E(ε∗itε
∗
i′tε
∗
i′′t).

Similarly, we can also prove that for the co-kurtosis influence functions E(ε∗2it ε
∗2
i′t), the only
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non-zero terms are

fjl(i)(%∞,ϕ0) = −E
[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗2it

]
, fjs(i,i)(%∞,ϕ0) = −E

[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗3it

]
,

fjs(i,i′)(%∞,ϕ0) = −E
[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗2it

]
and fjr(i′)(%∞,υ0) = E

[
∂ ln f(ε∗it;%i∞)

∂%′i
ε∗it

]
.

In turn, we end up with

fjl(i′)(%∞,ϕ0) = E(ε∗3it ), fjs(i,i′)(%∞,ϕ0) = −E
[
∂ ln f(ε∗it;%i∞)

∂ε∗i
ε∗3it

]
,

fjs(i′,i)(%∞,ϕ0 = E(ε∗3it ), fjs(i′,i′)(%∞,ϕ0) = −E[ε∗3it ]E
[
∂ ln f(ε∗i′t;%i′∞)

∂ε∗i′
ε∗2i′t

]
and

fjr(i′)(%∞,υ0) = E(ε∗3it )E

[
∂ ln f(ε∗i′t;%i′∞)

∂%′i′
ε∗i′t

]
for the covariances of the co-kurtosis terms E(ε∗3it ε

∗
i′t) with the scores.

In contrast, the only non-zero covariance of the co-kurtosis influence functions E(ε∗itε
∗
i′tε
∗2
i′′t)

with the scores will be fjs(i,i′)(%∞,ϕ0) = 1 when i
′ 6= i.

Finally, all the covariances of the scores with E(ε∗itε
∗
i′tε
∗
i′′tε
∗
i′′′t) will be 0 too.

5 Monte Carlo analysis

In this section, we assess the finite sample size and power of the normality and independence

tests discussed in section 4 by means of an extensive Monte Carlo simulation exercise. In

addition, we provide some evidence on the effects that dependence across shocks induces on the

estimators of the impact multipliers.

5.1 Design and computational details

For the sake of brevity, we focus on the bivariate case, but provide relevant insights that

can be extrapolated to general mulvariate designs. Specifically, we generate samples of size T

from the following bivariate static process(
y1t
y2t

)
=

(
τ1
τ2

)
+

(
c11 c12
c21 c22

)(
ε∗1t
ε∗2t

)
with τ1 = 1, τ2 = −1, c11 = 1, c12 = .5, c21 = 0 and c22 = 2. Nevertheless, our PML

estimation procedure does not exploit the restriction that the loading matrix of the shocks is

upper triangular. We consider both T = 250, which is realistic in most macro applications with

monthly or quarterly data, and T = 1, 000, which is representative of financial applications with
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daily data.

5.1.1 Estimation details

To estimate the parameters of the model above, we assume that ε∗1t and ε∗2t follow two

serially and cross-sectionally independent standardised discrete mixture of two normals, or ε∗it ∼

DMN(δi,κi, λi) for short, so that

ε∗it =

{
N [µ∗1(%i), σ

∗2
1 (%i)] with probability λi

N [µ∗2(%i), σ
∗2
2 (%i)] with probability 1− λi

(26)

with

µ∗1(%i) = δi(1− λi),

µ∗2(%i) = −δiλi,

σ∗21 (%i) =
1− λi(1− λi)δ2i
λi + (1− λi)κi

,

σ∗22 (%i) = κiσ∗21 (%i),

and %i = (δi,κi, λi)′. Hence, we can interpret κi as the ratio of the two variances and δi as the

parameter that regulates the distance between the means of the two underlying components.7

As a consequence, the contribution of observation t to the pseudo log-likelihood function (4)

will be

l[ε∗it(θ);%i] = ln{λi · φ[ε∗it(θ);µ∗1(%i), σ∗21 (%i)] + (1− λi) · φ[ε∗it(θ);µ∗2(%i), σ∗22 (%i)]},

where φ(ε;µ, σ2) denotes the probability density function of a Gaussian random variable with

mean µ and variance σ2 evaluated at ε. Importantly, we maximise the log-likelihood with respect

to the two elements of τ , the four elements of C and the six shape parameters subject to the

nonlinear constraint δ2i < λ−1i (1 − λi)
−1, which we impose to guarantee the strict positivity

of σ∗21 (%i). Without loss of generality, we also restrict κi ∈ (0, 1] as a way of labelling the

components, which in turn ensures the strict positivity of σ∗22 (%i). Finally, we require λi ∈ (0, 1)

to avoid degenerate mixtures.8

We maximise the log-likelihood subject to these three constraints on the shape parameters

using a derivative-based quasi-Newton algorithm, which converges quadratically in the neigh-

bourhood of the optimum. To exploit this property, we start the iterations by obtaining consis-

tent initial estimators of τ andC, τFICA andCFICA say, using the FastICA algorithm of Gävert,

7We can trivially extend this procedure to three or more components if we replace the normal random variable
in the first branch of (26) by a k-component normal mixture with mean and variance given by µ∗1(%) and σ

∗2
1 (%),

respectively, so that the resulting random variable will be a (k+1)-component Gaussian mixture with zero mean
and unit variance.

8Effectively, we impose κi ∈ [κ, 1] with κ = .0001, and λi ∈ [λ, λ] with λ = .001 and λ = .999.
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Hurri, Särelä, and Hyvärinen.9 In addition, we obtain initial values of the shape parameters of

each shock by performing 20 iterations10 of the expectation maximisation (EM) algorithm in

Dempster, Laird and Rubin (1977) on each of the elements of ε∗t,F ICA = C
−1
FICA (yt − τ̄FICA).

As we mentioned in section 2.2, Assumption 1 only guarantees the identification of C up

to sign changes and column permutations. Although in empirical applications a researcher

would carefully chose the appropriate ordering and interpretation of the structural shocks, this

leeway may have severe consequences when analysing Monte Carlo results. For that reason, we

systematically choose a unique global maximum from the different observationally equivalent

permutations and sign changes of the columns of the matrix C using the selection procedure

suggested by Ilmonen and Paindaveine (2011) and adopted by Lanne, Meitz and Saikkonen

(2017). In addition, we impose that diag(C) is positive by simply changing the sign of all the

elements of the relevant columns. Naturally, we apply the same changes to the shape parameters

estimates and the sign of δi.

5.1.2 DGPs under the null and the alternative

The three bivariate DGPs for the standardised shocks that we consider under the null of

independence are:

dgp 1: Independent discrete mixtures of two normals with kurtosis coeffi cient 4 and skewness

coeffi cients equal to .5 and −.5, respectively. In other words, ε∗1t ∼ DMN(−.859, .386, 1/5)

and ε∗2t ∼ DMN(.859, .386, 1/5).

dgp 2: A normal distribution and the first discrete mixture of normals in dgp 1, i.e. ε∗1t ∼ N(0, 1)

and ε∗2t ∼ DMN(−.859, .386, 1/5).

dgp 3: A Student t with 10 degrees of freedom (and kurtosis coeffi cient equal to 4), and an

asymmetric t with kurtosis and skewness coeffi cients equal to 4.10 and −.54, respectively,

so that β = −1.354 and ν = 18.718 in the notation in Mencía and Sentana (2012).

The left panels of Figures 1a—c display the density functions of these distributions over a

range of ±4 standard deviations with the standard normal as a benchmark, while the right

panels zoom in on the left-tail.

In turn, under the alternative of cross-sectionally dependent shocks we simulate from the

following three standardised joint distributions:

9See Hyvärinen (1999) and https://research.ics.aalto.fi/ica/fastica/ for details on the FastICA package.
10As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down

significantly as it gets close to the optimum. After some experimentation, we found that 20 iterations achieves
the right balance between CPU time and convergence of the parameters.
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dgp 4: Bivariate Student t with 6 degrees of freedom.

dgp 5: Bivariate asymmetric t with skewness vector β = −5`2 and degrees of freedom parameter

ν = 16 (see Mencía and Sentana (2012) for details).

dgp 6: Bivariate mixture of two zero-mean normal vectors with covariance matrices

Ω1 =

(
1/[λ+ κ1(1− λ)] 0

0 1/[λ+ κ2(1− λ)]

)
,

Ω2 =

(
κ1/[λ+ κ1(1− λ)] 0

0 κ2/[λ+ κ2(1− λ)]

)
,

which we denote by DMNLL(κ1,κ2, λ) (see Lanne and Lütkepohl (2010) for details).

Specifically, we set κ1 = 0.1, κ2 = 0.2 and λ = 1/5.

The left panels of Figures 2 display the joint densities for these distributions, while their

contours are presented in the right panels.

To gauge the finite sample size and power of our proposed independence tests, we generate

20, 000 samples for each of the designs under the null and 5000 for those under the alternative.

Additionally, we evaluate the small sample size and power of the normality tests presented in

section 4.1 using the results from the simulation designs dgp 2 (null), and dgp 1 and dgp 3

(alternative).

5.1.3 Bootstrap procedures

To improve the finite sample reliability of the testing procedures we have described in

sections 4.1 and 4.2, we consider simple bootstrap procedures.

In the case our tests for independence, for each Monte Carlo sample, we can easily generate

another Nboot bootstrap samples of size T that impose the null with probability approaching 1 as

T increases as follows.11 First, we generate NT draws Ris from a discrete uniform distribution

between 1 and T , which we then use to construct

ỹs = τ̂T + ĈT ε̃
∗
s,

11To see this, notice that under the null,

E
(∏N

i=1
ε̃∗jiis

)
=
∏N

i=1
E(ε∗

ji

is ),

while under the alternative,

E
(∏N

i=1
ε̃∗jiis

)
=
T − 1
T

∏N

i=1
E(ε∗

ji

is ) +
1

T
E
(∏N

i=1
ε∗jiis

)
where the second term in the right hand side accounts for the probability of sampling contemporaneous residuals
in a sample of size T . Clearly, the second expression converges to the first one as T goes to infinity.
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where ε̃∗is = ε̂∗iRis and ε̂
∗
t = ε∗t (θ̂T ) = Ĉ−1T (yt − τ̂T ) are the estimated residuals in any given

sample.

As for the normality tests, whose null hypothesis is that a single shock ε∗it is Gaussian, we

adopt a partially parametric resampling scheme in which the draws of the ith shock ε̃∗is are

independently drawn from a N(0, 1) distribution while the draws for the remaining shocks ε̃∗js

(j 6= i) are obtained nonparametrically as in the previous paragraph.

Although these bootstrap procedures are simple and fast for any given sample, they quickly

become prohibitively expensive in a Monte Carlo exercise. For this reason, we often rely on

the warp-speed method of Giacomini, Politis and White (2013). Nevertheless, we explicitly

evaluate the performance of the standard bootstrap in a couple of designs to assess whether the

performance of the warp-speed approach is representative.

5.2 Simulation results

5.2.1 Testing normality

As mentioned earlier, failure of the second condition in Assumption 1 results in an under-

identified model. For that reason, it is of the utmost importance to test the normality of each

structural shock, in the hope that one only fails to reject the null at most once.

Table 1 reports Monte Carlo rejection rates of the tests proposed in section 4.1 for dgp 1, 2

and 3. As can be seen, the null of normality is correctly rejected most of the time when it does

not hold, even in samples of length 250. The only possible exception is the skewness component

of the Jarque-Bera test when applied to the symmetric Student t shock in dgp 3. Given that

the population third moment is zero in this case, the only source of power is the fact that the

sample variability of H3 is larger for this shock than its theoretical value under Gaussianity.

On the other hand, the first three rows of panel dgp 2, which is the only one with a Gaussian

shock, show that the normality tests tend to be oversized at the usual nominal levels, especially

for samples of length 250. For that reason, we have generated another 10, 000 samples of length

T = 250 under dgp 2 in which we generate NBoot = 399 bootstrap samples at each Monte Carlo

replication, as described in section 5.1.3. In addition, we store the first of these 399 samples to

check the reliability of the warp-speed bootstrap procedure.

Table 2 shows that the standard bootstrap version of our tests is very accurate for both the

third and fourth moment tests. The warp-speed version performs comparably well, although it

seems to be somewhat less accurate.12

12Given 10,000 Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels, respectively.
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5.2.2 Testing independence

In Tables 3 (T = 250) and 4 (T = 1, 000) we report the Monte Carlo rejection rates of the

tests we have proposed in section 4.2 under the null of independence. Specifically, we look at

the second, third and fourth moment individual tests in mcv[ε∗t (θ)], mcs[ε∗t (θ)] and mck[ε∗t (θ)],

and also at the joint tests for the two co-skewness moments, the three co-kurtosis moments,

and the combined six moments, including the correlation between the shocks. The left panels of

those tables report rejection rates using asymptotic critical values while the right panels show

the warp-speed bootstrap-based ones.13

We can see in Table 3 some small to moderate finite sample size distortion when T = 250,

although in most cases they are corrected by the warp-speed bootstrap. The only exception

seems to be dgp 2, which displays a small sample size distortion even with this procedure.

Given that in this design there is only one non-Gaussian shock, a plausible explanation is that

the identification of C may be weaker, a conjecture we will revisit in the next section. For

this reason, we have performed additional simulation exercises with the standard bootstrap

procedure (with 399 samples) for both dgp 2 and dgp 3. The results in Table 5 clearly show

that the usual bootstrap version of the tests, which is the relevant one in empirical applications,

has much better size properties.

As expected, finite sample sizes improve considerably for T = 1, 000, when even the empirical

rejection rates based on asymptotic critical values become generally very close to the nominal

ones. Indeed, the bootstrap versions of the tests seem unnecessary for this sample size.

Next, we assess the power of the independence tests for T = 250 and T = 1, 000 in Tables 6

and 7, respectively. In this respect, we find that the power of our tests against dgp 4 is disap-

pointingly low. A possible explanation is that when the true joint distribution is a symmetric

Student t, the dependence between the components is mostly visible in the tails of the distribu-

tion.14 On the other hand, power is mostly coming from the co-skewness component (20) in the

case of the joint asymmetric t. Still, the test based on the covariance of the shocks (19) is also

very powerful. Finally, the co-kurtosis test based on (22) is the most powerful single moment

test under the Lanne and Lütkepohl (2010) alternative in dgp 6, with the joint tests that include

this moment inheriting its power. Nevertheless, the test based on the second moment (19) also

has non-negligible power in this case.

In summary, although the rejection rates naturally depend on the type of departure from the

13 In all our i.i.d. desings, the individual moment tests converge in distribution to a χ21 random variable, and
the joint ones to χ22, χ

2
3 and χ

2
6 variables, respectively.

14 In Amengual, Fiorentini and Sentana (2021), we propose moment tests based on non-linear transformations
of the shocks which may have more power in this context.
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null and the specific influence function used for testing, the joint test that considers all moments

at once seems to be a winner regardless of the sample size.

5.3 Structural parameters estimates

Table 8 reports summary statistics for the Monte Carlo distribution of the PMLEs of the

structural parameters. The first thing we would like to highlight is when one of the shocks is

Gaussian, the sampling variability and the finite sample bias are noticeably larger than when

both shocks are non-Gaussian but independent, which is in line with the conjecture we expressed

in the previous section. Still, even in that case the biases are usually small and often negligible.

In addition, the Monte Carlo standard deviations of the estimators in Panel B are roughly half

those in Panel A, as one would expect.

The situation is completely different when the true shocks are cross-sectionally dependent.

Failure of condition 2 in the Assumption 1 results into significant biases, mostly in the off-

diagonal terms of the impact multiplier matrix. In fact, the Monte Carlo variance of these

estimators seems to increase with the sample size. In this respect, it is important to remember

that the elements of the C matrix are no longer point identified when the joint distribution of

the true shocks is either a symmetric or asymmetric Student t. This is confirmed by the fact

that the bias of the estimators is lower for dgp 6, in which the rotations of the shocks are not

observationally equivalent (see Lanne and Lütkepohl (2010)).

6 Conclusions and directions for further research

Given that the parametric identification of the structural shocks and their impact coeffi cients

C in the Svar (2) critically hinges on the validity of the identifying restrictions in Assumption 1,

it would be desirable that empirical researchers estimating those models reported specification

tests that checked those assumptions to increase the empirical credibility of their findings. For

that reason, in this paper we propose simple specification tests for independent component

analysis and structural vector autoregressions with non-Gaussian shocks that check the normality

of a single shock and the potential cross-sectional dependence among several of them. Our

tests compare the integer (product) moments of the shocks in the sample with their population

counterparts. Importantly, we explicitly consider the sampling variability resulting from using

shocks computed with consistent parameter estimators. We study the finite sample size of our

tests in extensive simulation exercises and discuss some bootstrap procedures. We also show

that our tests have non-negligible power against a variety of empirically plausible alternatives.

As we mentioned in the introduction, there are many estimators for the parameters of the
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static Ica model (1) in addition to the discrete mixture of normals-based PMLEs we have

considered in this paper. For example, even within the same likelihood framework, Fiorentini

and Sentana (2020) discuss two other consistent estimators of the conditional mean and variance

parameters of the Svar in (2):

1. The two-step procedure of Gouriéroux, Monfort and Renne (2017), which first estimates

the reduced form parameters τ , a and σL = vec(ΣL) by equation-by-equation OLS, and

then the N(N − 1)/2 free elements ω of the orthogonal rotation matrix Q in (3) mapping

structural shocks and reduced form innovations by non-Gaussian PML.

2. The two-step estimator in Fiorentini and Sentana (2019), which replaces the inconsistent

non-Gaussian PMLEs of τ and ψ by the sample means and standard deviations of pseudo

standardised shocks computed using âT and ̂T .

Although the specifications tests that we have proposed in this paper could also be applied to

shocks computed on the basis of these alternative estimators, the asymptotic covariance matrices

that take into account their sampling variability will differ from the ones we have derived in this

paper. Given that some researchers may prefer to use one of those two-step estimation methods,

obtaining computationally simple expressions for the adjusted covariance matrix would provide

a valuable addition to our results.

In fact, the moment conditions that we consider for testing independence could form the basis

of a GMM estimation procedure for the model parameters θ along the lines of Lanne and Luoto

(2019), although with a larger set of third and fourth cross-moments. The overidentification

restrictions tests obtained as a by product of this procedure could be used as a specification test

of the assumed independence-like restrictions.

Our tests for normality tackle a single shock at a time. Although we could in principle

combine two or more of those tests, the implicit joint null hypothesis would violate the sec-

ond identification condition in Assumption 1. The asymptotic distribution of such joint tests

constitutes a very interesting topic for further research. In addition, we could also study the

probability of finding N − 1 rejections of the univariate normality tests in those circumstances.

Another important research topic would be the limiting behaviour of the PMLEs of θ when

Assumption 1 does not hold, either because two or more of the shocks are Gaussian or because

they are not independent.

Finally, while the integer product moment tests for independence that we have considered

are very intuitive, they may have little power against alternatives in which the dependence is

mostly visible in certain regions of the domain of the random shocks. With this in mind, in
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Amengual, Fiorentini and Sentana (2021) we study moment tests that look at the product of

non-linear transformations of the shocks, such as I(qαi ≤ εit ≤ qωi), where qαi and qωi the α and

ω quantiles of the marginal distribution of the ith shock (with 0 ≤ α < ω ≤ 1), I(kli ≤ εit ≤ kui),

where kli < kui and some fixed values, or indeed εitI(kli ≤ εit ≤ kui). Extending this approach

in such a way that it leads to a consistent test of independence constitutes another promising

research avenue.
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Appendices

A Proofs

Proposition 1

Under standard regularity conditions (see e.g. Newey and McFadden (1994)), we can lin-

earise the vector of influence functions underlying our tests around θ0 so that

√
T
1

T

T∑
t=1

m[ε∗t (θ̂T )] =
√
T
1

T

T∑
t=1

m[ε∗t (θ0)] +
1

T

T∑
t=1

∂m[ε∗t (θ0)]

∂θ

√
T (θ̂T−θ0) + op(1)

=
√
T
1

T

T∑
t=1

m[ε∗t (θ0)] + J (φ∞;ϕ0)
√
T (θ̂T−θ0) + op(1).

But since
√
T (θ̂T−θ0) = A−1(φ∞;ϕ0)

√
T
1

T

T∑
t=1

sφt(φ0) + op(1),

we can combine both expressions to write

√
T
1

T

T∑
t=1

m[ε∗t (θ̂T )] =
√
T
1

T

T∑
t=1

m[ε∗t (θ0)] + J (φ∞;ϕ0)A−1(φ∞;ϕ0)
√
T
1

T

T∑
t=1

sφt(φ0) + op(1),

whence the asymptotic distribution in the proposition follows. �

Proposition 2

Fiorentini and Sentana (2021) prove in their Appendix D that

∂ε∗t (θ)

∂θ′
= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z

′
st(θ)},

which in our case reduces to

∂ε∗t (θ)

∂θ′
= −C−1

(
IN y′t−1 ⊗ IN . . . y′t−p ⊗ IN 0N×N2

)
−[ε∗′t (θ)⊗ IN ](IN ⊗C−1)

(
0N2×N 0N2×N2 . . . 0N2×N2 IN2

)
in view of (7) and (8). Therefore, it immediately follows that

∂ε∗t (θ)

∂τ ′
= −C−1 and

∂ε∗it(θ)

∂τ ′
= −ci.,

where

C−1 =


c1.

...
ci.

...
cN.

 .
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Similarly,

∂ε∗t (θ)

∂a′j
= −(y′t−j ⊗C−1) and

∂ε∗it(θ)

∂a′j
= −(y′t−j ⊗ ci.) for j = 1, ..., p.

Finally,
∂ε∗t (θ)

∂c′
= −[ε∗′t (θ)⊗C−1] and

∂ε∗it(θ)

∂c′
= −[ε∗′t (θ)⊗ ci.].

If we combine these expressions with the fact that

∂mj[ε
∗
t (θ)]

∂ε∗i
= I(ji > 0)

ji
ε∗it

N∏
i′=1

ε∗it
ji′ ,

we obtain the desired results. �

Lemma 1

The result follows immediately from the product rule for differentials (see section 9.14 in

Magnus and Neudecker (2019)) after exploiting the fact that K1N = KN1 = IN and

vec(Am×n ⊗Bp×q) = (In ⊗Kqm ⊗ Ip)[vec(Am×n)⊗ vec(Bp×q)]

= {In ⊗ [(Kqm ⊗ Ip)[Im ⊗ vec(Bp×q)]}vec(Am×n)

= {[(In ⊗Kqm)[vec(Am×n)⊗ Iq]⊗ Ip}vec(Bp×q), (A1)

(see section 3.7 in Magnus and Neudecker (2019)). �

Corollary 1

To save space, let ε∗t = ε
∗
t (θ). The differential of mcv(ε∗t ), d(ε

∗
t ⊗ ε∗t ), follows directly from

Lemma 1.

This lemma also implies that the differential of mcs(ε∗t ) will be

d(ε∗t ⊗ ε∗t ⊗ ε∗t ) = [d(ε∗t ⊗ ε∗t )⊗ ε∗t ] + (ε∗t ⊗ ε∗t ⊗ dε∗t )

= (dε∗t ⊗ ε∗t ⊗ ε∗t ) + (ε∗t ⊗ dε∗t ⊗ ε∗t ) + (ε∗t ⊗ ε∗t ⊗ dε∗t )

Expression (A1) then yields

(dε∗t ⊗ ε∗t ⊗ ε∗t ) = {(K1N ⊗ IN2)[IN ⊗ vec (ε∗t ⊗ ε∗t )]}vec(dε∗t )

= (IN ⊗ ε∗t ⊗ ε∗t )dε∗t ,
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(ε∗t ⊗ dε∗t ⊗ ε∗t ) = {(K1N2 ⊗ IN )[IN2 ⊗ vec(ε∗t )]vec(ε∗t ⊗ dε∗t )

= [IN2 ⊗ vec(ε∗t )]vec(ε∗t ⊗ dε∗t )

= [IN2 ⊗ vec(ε∗t )]{(1⊗K1N )[vec(ε
∗
t )⊗ 1]vec(dε∗t )

= [(IN2 ⊗ ε∗t )(ε∗t ⊗ IN )]dε∗t

and

(ε∗t ⊗ ε∗t ⊗ dε∗t ) = {(1⊗K1N2)[vec (ε∗t ⊗ ε∗t )⊗ 1]⊗ IN}vec(dε∗t )

= (ε∗t ⊗ ε∗t ⊗ IN )dε
∗
t

because K1N = KN1 = IN .

Finally, Lemma 1 implies that the differential of mck(ε∗t ) will be

d (ε∗t ⊗ ε∗t ⊗ ε∗t ⊗ ε∗t ) = [d(ε∗t ⊗ ε∗t ⊗ ε∗t )⊗ ε∗t ] + (ε∗t ⊗ ε∗t ⊗ ε∗t ⊗ dε∗t )

= (dε∗t ⊗ ε∗t ⊗ ε∗t ⊗ ε∗t ) + (ε∗t ⊗ dε∗t ⊗ ε∗t ⊗ ε∗t )

+(ε∗t ⊗ ε∗t ⊗ dε∗t ⊗ ε∗t ) + (ε∗t ⊗ ε∗t ⊗ ε∗t ⊗ dε∗t ).

Once again, expression (A1) yields

(dε∗t ⊗ ε∗t ⊗ ε∗t ⊗ ε∗t ) = {1⊗ (K1N ⊗ IN3)[IN ⊗ vec(ε∗t ⊗ ε∗t ⊗ ε∗t )]vec(dε∗t )

= (IN ⊗ ε∗t ⊗ ε∗t ⊗ ε∗t )dε∗t ,

(ε∗t ⊗ dε∗t ⊗ ε∗t ⊗ ε∗t ) = {1⊗ (K1N2 ⊗ IN2)[IN2 ⊗ vec(ε∗t ⊗ ε∗t )]vec(ε∗t ⊗ dε∗t )

= (I2N ⊗ ε∗t ⊗ ε∗t )(ε∗t ⊗ IN )dε∗t ,

(ε∗t ⊗ ε∗t ⊗ dε∗t ⊗ ε∗t ) = [{(1⊗K1N2)[vec(ε∗t ⊗ ε∗t )⊗ 1]} ⊗ I2N ]vec(dε
∗
t ⊗ ε∗t )

= (ε∗t ⊗ ε∗t ⊗ IN2)[1⊗ {(K1N ⊗ IN )[IN ⊗ vec(ε∗t )]}]vec(dε∗t )

= (ε∗t ⊗ ε∗t ⊗ IN2)(IN ⊗ ε∗t )dε∗t

and

(ε∗t ⊗ ε∗t ⊗ ε∗t ⊗ dε∗t ) = [{(1⊗K1N3)[vec (ε∗t ⊗ ε∗t ⊗ ε∗t )⊗ 1]} ⊗ IN ]vec(dε∗t )

= (ε∗t ⊗ ε∗t ⊗ ε∗t ⊗ IN )dε∗t ,

as desired. �
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Proposition 3

The general expression (17) follows directly from the definition of the scores for θ and %

in (5) and (6) and the law of iterated expectations after exploiting the fact that mj[ε
∗
t (θ0)],

elt(φ∞), elt(φ∞) and ert(φ∞) are i.i.d. processes with zero mean under our assumptions.

In turn, the more detailed expressions exploit the cross-sectional independence of the shocks.

For example, consider

Fjl(%∞,υ0) = cov

mj(ε
∗
t ),

 ∂ ln f(ε∗1t;%∞)/∂ε
∗
1

...
∂ ln f(ε∗Nt;%∞)/∂ε

∗
N


∣∣∣∣∣∣∣θ0,υ0

 .

It is clear that row i will be zero if ji = 0 because of the cross-sectional independence of the

shocks and the fact that E[∂ ln f(ε∗it;%∞)/∂ε
∗
i |θ0,υ0] = 0.

The same argument applies to the remaining blocks. �

B Univariate discrete mixtures of normals

B.1 Moments

The parameters δ, κ and λ of the two-component Gaussian mixture we consider in section

5 determine the higher order moments of ε∗t through the relationship

E(ε∗jt |%) = λE(ε∗jt |st = 1;%) + (1− λ)E(ε
∗j
t |st = 2;%),

where st ∈ {1, 2} is a Bernoulli random variable with Pr(st = 1) = λ. Specifically,

E(ε∗t |st = k;%) = µ∗k(%),

E(ε∗2t |st = k;%) = µ∗2k (%) + σ
∗2
k (%),

E(ε∗3t |st = k;%) = µ∗3k (%) + 3µ
∗
k(%)σ

∗2
k (%),

E(ε∗4t |st = k;%) = µ∗4k (%) + 6µ
∗2
k (%)σ

∗2
k (%) + 3σ

∗4
k (%).

Given that E(ε∗t |%) = 0 and E(ε∗2t |%) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coeffi cients will be given by

E(ε∗3it |%) = −
δ(λ− 1)λ[δ2{λ[2 + λ(κ − 1)]− κ}+ 3(κ − 1)]

κ + (1− λ)κ
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and

E(ε∗4it |%) =
3λ− 2δ2(3 + δ2)λ3 + (6δ2 + 8δ4)λ4 − 9δ4λ5 + 3δ4λ6

[λ+ (1− λ)κ]2

+
2δ2(1− λ)λ[3− (1− λ)λ{6 + δ2[2− 3(1− λ)λ]}]κ

[λ+ (1− λ)κ]2

+
(1− λ){3− δ2(λ− 1)2λ[6 + δ2(−1 + 3λ2)]}κ2

[λ+ (1− λ)κ]2 .

B.2 Score with respect to %

Regarding the specific elements that appear in (9) and (10), we have

∂ ln f [ε∗it(θ);%i]

∂ε∗it
= − 1

f [ε∗it(θ);%i]

{
λi
φ1it[ε

∗
it(θ)− µ∗1(%i)]
σ∗21 (%i)

+ (1− λi)
φ2it[ε

∗
it(θ)− µ∗2(%i)]
σ∗22 (%i)

}
= −

{
λiw1it

[ε∗it(θ)− µ∗1(%i)]
σ∗21 (%i)

+ (1− λi)w2it
[ε∗it(θ)− µ∗2(%i)]

σ∗22 (%i)

}
,

where we have defined the posterior probabilities of shock i being drawn from component j at

time t as wjit = φ[ε∗it(θ);µ
∗
j (%i), σ

∗2
j (%i)]/f [ε

∗
it(θ);%i] to shorten the expressions (see Boldea and

Magnus (2009)).

As for the derivatives with respect to the shape parameters in (11), we have

erit(φ) =

[
∂ ln f [ε∗it(θ);%i]

∂δi
,
∂ ln f [ε∗it(θ);%i]

∂κi
,
∂ ln f [ε∗it(θ);%i]

∂λi

]′
,

with

∂ ln f [ε∗it(θ);%i]

∂δi
= λi(1− λi)

×
{
w1it

(
δiλi

σ∗21 (%i)[κi + (1− λi)κi]
− [1 + δi(1− λi)εit]
1− δ2iλi(1− λi)

[εit − µ∗1(%i)]
σ∗21 (%i)

)
+ w2it

(
δi(1− λi)κi

σ∗22 (%i)[κi + (1− λi)κi]
− [1 + δi(1− λi)εit]
1− δ2iλi(1− λi)

[ε2t − µ∗2(%i)]
σ∗22 (%i)

)}
,

∂ ln f [ε∗it(θ);%i]

∂κi
=

λi(1− λi)
2[κi + (1− λi)κi]

×
[{
−w1it

{
[εit − µ∗1(%i)]2

σ∗21 (%i)
− 1
}
+

w2it
[κi + (1− λi)κi]κi

{
[εit − µ∗2(%i)]2

σ∗22 (%i)
− 1
}]

,
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and

∂ ln f [ε∗it(θ);%i]

∂λi
= w1it

(
1 +

λ{1− κ + δ2[λ2(κ − 1) + κ − 2λκ]}
2[1− δ(1− λ)λ}[λ(1− κ) + κ]

)
−w2it

(
1− (1− λ){1− κ + δ

2[λ2(κ − 1) + κ − 2λκ]}
2[1− δ2(1− λ)λ][λ(1− κ) + κ]

)
+w1it

[εit − µ∗1(%i)]λ
2[1− δ2(1− λ)λ]2

× {δ[1 + 3λ(−1 + κ)− 3κ]

−δ3(λ− 1)[λ(κ − 1)− κ] + εit(κ − 1) + εitδ2[λ2(1− κ)− κ + 2λκ]}

+w2it
[εit − µ∗2(%i)](1− λ)
2[1− δ2(1− λ)λ]2κ

{εit(κ − 1 + δ2[λ2 − κ + 2λκ − λ2κ)]

+(δ[2δ2λ2(1− κ) + δ2λ3(κ − 1)− 2κ + λ(3 + δ2)κ − 3λ]}.

The second derivatives of the log-density with respect to the shape parameters can be derived

using the chain rule for second derivatives from the expressions in Boldea and Magnus (2009),

who obtain them in terms of λ, µ∗j (%i) and σ∗2j (%i) (j = 1, 2). The precise expressions are

available on request.
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Table 1: Monte Carlo size and power of normality tests.

Asymptotic critical values
Sample size T = 250 Sample size T = 1, 000

Nominal size 10% 5% 1% 10% 5% 1%

dgp 1 —Shocks: ε∗1t DMN & ε∗2t DMN
H3(ε

∗
1t) 84.36 78.73 64.33 99.94 99.85 99.55

H4(ε
∗
1t) 70.53 64.07 51.13 99.28 98.69 96.72

H3(ε
∗
1t) & H4(ε

∗
1t) 86.54 81.92 71.58 99.97 99.94 99.88

H3(ε
∗
2t) 85.14 79.63 65.82 99.91 99.86 99.60

H4(ε
∗
2t) 70.86 64.31 51.46 99.39 98.87 96.84

H3(ε
∗
2t) & H4(ε

∗
2t) 87.34 82.88 72.26 99.98 99.97 99.88

dgp 2 —Shocks: ε∗1t normal & ε∗2t DMN
H3(ε

∗
1t) 14.06 8.11 2.59 11.03 5.96 1.32

H4(ε
∗
1t) 12.34 6.93 2.95 10.38 5.32 1.38

H3(ε
∗
1t) & H4(ε

∗
1t) 13.51 8.38 3.96 10.56 5.76 1.67

H3(ε
∗
2t) 82.86 77.34 63.90 99.93 99.88 99.50

H4(ε
∗
2t) 70.34 63.87 51.09 99.26 98.79 96.80

H3(ε
∗
2t) & H4(ε

∗
2t) 85.58 81.05 70.91 99.95 99.94 99.90

dgp 3 —Shocks: ε∗1t asymmetric t & ε∗2t Student t
H3(ε

∗
1t) 84.93 79.50 65.37 99.98 99.92 99.76

H4(ε
∗
1t) 58.58 52.38 42.24 95.10 93.04 87.73

H3(ε
∗
1t) & H4(ε

∗
1t) 82.72 77.21 65.27 99.97 99.91 99.69

H3(ε
∗
2t) 33.97 25.62 14.52 36.43 28.41 16.68

H4(ε
∗
2t) 60.68 54.21 42.13 96.98 95.35 90.70

H3(ε
∗
2t) & H4(ε

∗
2t) 60.83 54.14 42.38 95.77 93.85 88.56

Notes: Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DMN denotes discrete
mixture of two normals. Details on the data generating processes: dgp 1, ε∗1t ∼ DMN(−.859, .386, 1/5)
and ε∗2t ∼ DMN(.859, .386, 1/5); dgp 2, ε∗1t ∼ N(0, 1) and ε∗2t ∼ DMN(−.859, .386, 1/5); and dgp 3,
ε∗1t ∼ At(−1.354, 18.718) and ε∗2t ∼ t(10) (see Mencía and Sentana (2012) for details). Asymptotic critical
values: H3(·) ∼ χ21, H4(·) ∼ χ21 and H3(·) & H4(·) ∼ χ22.
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Table 3: Monte Carlo size of independence moment tests: Sample size T = 250.

Asymptotic critical Warp-speed bootstrap
values critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 1 —Shocks: ε∗1t DMN & ε∗2t DMN
E(ε∗1tε

∗
2t) 7.11 3.28 0.46 9.88 5.13 0.85

E(ε∗21t ε
∗
2t) 9.62 4.71 0.97 9.86 4.82 0.60

E(ε∗1tε
∗2
2t ) 8.49 4.03 0.69 9.12 4.40 0.72

E(ε∗31t ε
∗
2t) 7.42 3.74 0.90 9.51 4.88 1.06

E(ε∗1tε
∗3
2t ) 7.22 3.49 0.88 9.28 4.50 0.99

E(ε∗21t ε
∗2
2t ) 6.80 3.26 1.14 9.63 4.51 1.01

Co-skewness 8.93 4.60 1.04 9.41 4.58 0.64
Co-kurtosis 6.48 3.69 1.44 9.06 4.61 1.09
Joint test 6.84 4.00 1.47 8.79 4.25 0.92

dgp 2 —Shocks: ε∗1t normal & ε∗2t DMN
E(ε∗1tε

∗
2t) 6.76 2.92 0.36 9.43 4.29 0.56

E(ε∗21t ε
∗
2t) 7.10 3.12 0.43 7.40 3.15 0.39

E(ε∗1tε
∗2
2t ) 9.98 5.04 0.92 9.50 4.53 0.60

E(ε∗31t ε
∗
2t) 6.41 2.77 0.42 8.40 3.84 0.56

E(ε∗1tε
∗3
2t ) 8.29 3.98 0.69 10.06 5.15 1.00

E(ε∗21t ε
∗2
2t ) 7.15 3.04 0.64 10.17 5.01 0.84

Co-skewness 8.06 3.78 0.58 7.75 3.31 0.36
Co-kurtosis 5.90 2.93 0.80 8.70 4.21 0.78
Joint test 5.40 2.81 0.89 7.34 3.33 0.64

dgp 3 —Shocks: ε∗1t asymmetric t & ε∗2t Student t
E(ε∗1tε

∗
2t) 6.86 3.19 0.60 9.38 4.66 0.90

E(ε∗21t ε
∗
2t) 10.24 5.51 1.31 9.98 4.88 0.78

E(ε∗1tε
∗2
2t ) 8.53 4.06 0.78 8.39 3.90 0.60

E(ε∗31t ε
∗
2t) 7.22 3.54 0.87 10.03 4.99 1.09

E(ε∗1tε
∗3
2t ) 7.13 3.54 0.78 9.39 4.59 0.96

E(ε∗21t ε
∗2
2t ) 7.03 3.67 1.15 9.86 5.13 0.92

Co-skewness 9.22 4.87 1.17 8.71 4.12 0.57
Co-kurtosis 6.58 3.89 1.43 9.80 4.80 1.00
Joint test 7.34 4.31 1.60 8.67 4.30 0.95

Notes: Monte Carlo empirical rejection rates of independence tests; 20,000 replications. DMN
denotes discrete mixture of two normals. Details on the data generating processes: dgp 1,
ε∗1t ∼ DMN(−.859, .386, 1/5) and ε∗2t ∼ DMN(.859, .386, 1/5); dgp 2, ε∗1t ∼ N(0, 1) and ε∗2t ∼
DMN(−.859, .386, 1/5); and dgp 3, ε∗1t ∼ At(−1.354, 18.718) and ε∗2t ∼ t(10) (see Mencía and Sen-
tana (2012) for details). We present the asymptotic distribution of the test statistics in section 5.2.2 and
describe the sampling procedure we use to implement Giacomini, Politis and White (2013)’s warp-speed
bootstrap in section 5.1.3.
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Table 4: Monte Carlo size of independence moment tests: Sample size T = 1, 000.

Asymptotic critical Warp-speed bootstrap
values critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 1 —Shocks: ε∗1t DMN & ε∗2t DMN
E(ε∗1tε

∗
2t) 9.53 4.67 1.10 10.24 5.10 1.20

E(ε∗21t ε
∗
2t) 9.92 4.96 1.05 10.57 5.64 1.28

E(ε∗1tε
∗2
2t ) 10.17 5.00 1.12 10.42 5.38 1.22

E(ε∗31t ε
∗
2t) 9.78 4.96 1.21 10.42 5.14 1.20

E(ε∗1tε
∗3
2t ) 9.22 4.88 1.31 10.14 5.17 1.24

E(ε∗21t ε
∗2
2t ) 8.98 4.48 1.13 9.74 5.01 0.91

Co-skewness 9.76 5.08 1.29 10.58 5.59 1.44
Co-kurtosis 9.00 4.98 1.78 10.43 5.26 1.05
Joint test 9.50 5.29 1.81 10.77 5.58 1.27

dgp 2 —Shocks: ε∗1t normal & ε∗2t DMN
E(ε∗1tε

∗
2t) 9.26 4.47 0.90 10.76 5.25 0.81

E(ε∗21t ε
∗
2t) 9.77 4.79 0.91 9.98 4.84 0.89

E(ε∗1tε
∗2
2t ) 10.23 5.47 1.11 10.37 5.46 0.95

E(ε∗31t ε
∗
2t) 9.03 4.55 0.81 9.92 4.93 0.87

E(ε∗1tε
∗3
2t ) 9.71 4.92 0.99 10.66 5.29 1.00

E(ε∗21t ε
∗2
2t ) 9.24 4.50 0.90 10.03 5.21 1.08

Co-skewness 9.79 5.08 1.03 10.09 5.10 0.83
Co-kurtosis 8.45 4.38 1.15 10.34 5.04 0.83
Joint test 8.52 4.37 1.15 10.35 4.97 0.87

dgp 3 —Shocks: ε∗1t asymmetric t & ε∗2t Student t
E(ε∗1tε

∗
2t) 9.34 4.64 1.06 11.16 5.73 1.34

E(ε∗21t ε
∗
2t) 10.15 5.23 1.33 10.87 5.46 1.24

E(ε∗1tε
∗2
2t ) 9.08 4.32 0.90 9.41 4.67 0.94

E(ε∗31t ε
∗
2t) 9.14 4.84 1.26 10.37 5.31 1.33

E(ε∗1tε
∗3
2t ) 9.29 4.75 1.23 10.73 5.34 1.19

E(ε∗21t ε
∗2
2t ) 8.65 4.30 1.29 10.02 5.10 1.11

Co-skewness 9.30 4.92 1.21 9.87 5.15 1.05
Co-kurtosis 8.69 5.05 1.88 10.61 5.68 1.47
Joint test 8.98 5.27 1.93 10.85 5.79 1.31

Notes: Monte Carlo empirical rejection rates of independence tests; 20,000 replications. DMN
denotes discrete mixture of two normals. Details on the data generating processes: dgp 1,
ε∗1t ∼ DMN(−.859, .386, 1/5) and ε∗2t ∼ DMN(.859, .386, 1/5); dgp 2, ε∗1t ∼ N(0, 1) and ε∗2t ∼
DMN(−.859, .386, 1/5); and dgp 3, ε∗1t ∼ At(−1.354, 18.718) and ε∗2t ∼ t(10) (see Mencía and Sen-
tana (2012) for details). We present the asymptotic distribution of the test statistics in section 5.2.2 and
describe the sampling procedure we use to implement Giacomini, Politis and White (2013)’s warp-speed
bootstrap in section 5.1.3.
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Table 6: Monte Carlo power of independence moment tests: Sample size T = 250.

Asymptotic critical Warp-speed bootstrap
values critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 4 —Joint Student t
E(ε∗1tε

∗
2t) 6.90 3.32 0.68 10.80 5.36 1.28

E(ε∗21t ε
∗
2t) 9.80 5.10 1.10 11.42 6.16 1.22

E(ε∗1tε
∗2
2t ) 10.02 5.12 1.04 10.94 5.88 1.12

E(ε∗31t ε
∗
2t) 8.50 4.84 1.40 11.86 6.00 1.50

E(ε∗1tε
∗3
2t ) 8.92 5.18 1.70 11.80 6.66 1.84

E(ε∗21t ε
∗2
2t ) 12.04 8.18 3.64 15.02 11.26 3.68

Co-skewness 9.98 5.06 1.26 11.64 5.60 1.38
Co-kurtosis 11.82 7.84 4.10 16.22 9.66 3.20
Joint test 11.80 8.08 4.44 15.12 9.32 3.34

dgp 5 —Joint asymmetric t
E(ε∗1tε

∗
2t) 16.00 9.18 3.44 19.90 12.60 4.58

E(ε∗21t ε
∗
2t) 25.38 16.34 6.54 25.12 16.06 4.56

E(ε∗1tε
∗2
2t ) 19.64 12.54 4.58 20.54 12.80 4.56

E(ε∗31t ε
∗
2t) 14.46 9.68 3.52 16.94 11.02 3.56

E(ε∗1tε
∗3
2t ) 14.14 9.02 3.52 17.90 11.44 4.88

E(ε∗21t ε
∗2
2t ) 15.42 10.84 5.60 18.80 13.16 5.12

Co-skewness 23.80 16.08 6.16 23.90 15.06 3.94
Co-kurtosis 16.56 11.82 5.98 21.20 13.70 5.50
Joint test 17.92 11.88 5.80 20.22 11.88 4.28

dgp 6 —Lanne and Lütkepohl (2010)’s mixture
E(ε∗1tε

∗
2t) 37.12 28.50 15.64 39.78 29.00 14.76

E(ε∗21t ε
∗
2t) 25.26 17.34 7.80 26.44 18.16 6.50

E(ε∗1tε
∗2
2t ) 28.00 20.26 9.50 29.44 20.22 7.54

E(ε∗31t ε
∗
2t) 28.48 21.00 10.92 30.90 20.48 7.46

E(ε∗1tε
∗3
2t ) 34.60 26.26 15.26 36.22 25.14 9.14

E(ε∗21t ε
∗2
2t ) 64.14 54.88 38.18 70.82 61.12 26.42

Co-skewness 33.16 24.48 13.32 35.06 23.58 7.72
Co-kurtosis 62.02 53.98 39.84 64.72 49.34 20.26
Joint test 67.02 58.78 43.84 67.02 52.42 22.28

Notes: Monte Carlo empirical rejection rates of independence tests; 5,000 replications. Details on the data
generating processes: dgp 4, joint Student t: (ε∗1t, ε

∗
2t) ∼ t(0, I2, 6); dgp 5, (ε∗1t, ε∗2t) ∼ At(0, I2,−5`2, 16)

(see Mencía and Sentana (2012) for details); and dgp 6, (ε∗1t, ε
∗
2t) ∼ DMNLL(.1, .2, 1/5) (see section 5.1.2

for details). We present the asymptotic distribution of the test statistics in section 5.2.2 and describe the
sampling procedure we use to implement Giacomini, Politis and White (2013)’s warp-speed bootstrap in
section 5.1.3.
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Table 7: Monte Carlo power of independence moment tests: Sample size T = 1, 000.

Asymptotic critical Warp-speed bootstrap
values critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 4 —Joint Student t
E(ε∗1tε

∗
2t) 15.72 10.04 2.82 17.36 11.26 3.30

E(ε∗21t ε
∗
2t) 16.02 9.10 2.86 16.32 9.82 2.86

E(ε∗1tε
∗2
2t ) 15.74 9.44 2.90 15.98 9.74 3.18

E(ε∗31t ε
∗
2t) 18.68 12.44 5.42 20.94 13.02 4.96

E(ε∗1tε
∗3
2t ) 19.30 12.42 4.94 20.14 12.78 4.48

E(ε∗21t ε
∗2
2t ) 54.78 44.52 27.08 57.74 46.76 26.12

Co-skewness 18.26 11.22 3.76 18.82 11.34 3.72
Co-kurtosis 46.92 38.26 23.36 50.08 40.38 18.28
Joint test 44.50 35.36 21.40 48.50 37.06 16.22

dgp 5 —Joint asymmetric t
E(ε∗1tε

∗
2t) 84.52 81.52 75.24 84.94 81.72 74.14

E(ε∗21t ε
∗
2t) 69.28 64.76 56.38 69.78 65.38 55.58

E(ε∗1tε
∗2
2t ) 98.72 98.28 96.98 98.72 98.24 96.62

E(ε∗31t ε
∗
2t) 56.36 50.28 40.08 57.54 50.08 39.96

E(ε∗1tε
∗3
2t ) 65.62 59.52 48.36 66.02 59.62 45.64

E(ε∗21t ε
∗2
2t ) 88.42 84.16 74.32 90.48 85.66 67.64

Co-skewness 100.00 100.00 99.90 100.00 100.00 99.78
Co-kurtosis 87.32 83.16 74.40 88.00 82.36 66.22
Joint test 100.00 99.94 99.58 100.00 99.94 98.42

dgp 6 —Lanne and Lütkepohl (2010)’s mixture
E(ε∗1tε

∗
2t) 58.22 51.60 39.84 59.78 52.52 39.84

E(ε∗21t ε
∗
2t) 29.00 20.16 9.72 29.88 20.50 9.12

E(ε∗1tε
∗2
2t ) 33.28 24.64 12.68 32.74 23.92 12.02

E(ε∗31t ε
∗
2t) 46.70 38.44 26.34 47.42 37.76 23.24

E(ε∗1tε
∗3
2t ) 55.76 48.12 34.64 57.80 48.02 28.78

E(ε∗21t ε
∗2
2t ) 99.98 99.86 99.28 99.98 99.88 98.52

Co-skewness 40.46 30.70 16.82 40.76 29.68 14.82
Co-kurtosis 99.80 99.58 98.22 99.80 99.36 94.46
Joint test 99.48 99.08 97.64 99.42 98.68 92.22

Notes: Monte Carlo empirical rejection rates of independence tests; 5,000 replications. Details on
the data generating processes: dgp 4, joint (standardised) Student t: (ε∗1t, ε

∗
2t) ∼ t(0, I2, 6); dgp 5,

(ε∗1t, ε
∗
2t) ∼ At(0, I2,−5`2, 16) (see Mencía and Sentana (2012) for details); and dgp 6, (ε∗1t, ε∗2t) ∼

DMNLL(.1, .2, 1/5) (see section 5.1.2 for details). We present the asymptotic distribution of the test
statistics in section 5.2.2 and describe the sampling procedure we use to implement Giacomini, Politis
and White (2013)’s warp-speed bootstrap in section 5.1.3.
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Figure 1: Univariate densities of the independent shocks

Figure 1a: Discrete location-scale mixture of normals
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Figure 1b: Symmetric Student t
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Figure 1c: Asymmetric t
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Notes: Dashed lines represent the standard normal distribution. Figure 1a plots a standardised discrete
mixture of two normals with skewness and kurtosis coeffi cients of −.5 and 4, respectively (with parameters
δ = −.859, κ = .386 and λ = 1/5); Figure 1b plots a standardised symmetric Student t with the same
kurtosis (i.e. 10 degrees of freedom); while Figure 1c plots a standardised asymmetric t with skewness
and kurtosis as the one in Figure 1a (i.e. with β = −1.354 and ν = 18.718, see Mencía and Sentana
(2012) for details).
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Figure 2: Densities and contours of the bivariate distributions under the alternative hypotheses

Figure 2a: Standardised Student t density Figure 2b: Contours of a standardised Student
t density
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Figure 2c: Standardised asymmetric t density Figure 2d: Contours of a standardised asymmetric
t density
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Figure 2e: Standardised Lanne and Lütkepohl Figure 2f: Contours of a standardised Lanne and
(2010)’s mixture of normals density Lütkepohl (2010)’s mixture of normals density
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Notes: Figures 2a—b plot a bivariate Student t with 6 degrees of freedom; Figures 2c—d a standardised
bivariate asymmetric t with β = −5`N and ν = 16 (see Mencía and Sentana (2012) for details); while
Figures 1e—f plot plot a standardised mixture of two bivariate normals with joint mixing Bernoulli with
λ = 1/5 and scale parameters κ1 = .1 and κ2 = .2 (see section 5.1.2 and Lanne and Lütkepohl (2010)
for details).
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