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1 Introduction

Empirical studies with financial data suggest that returns distributions are leptokurtic even

after controlling for volatility clustering effects. This feature has important practical conse-

quences for standard risk management measures such as Value at Risk and recently proposed

systemic risk measures such as Conditional Value at Risk or Marginal Expected Shortfall (see

Adrian and Brunnermeier (2016) and Acharya et al. (2017), respectively), which could be

severely mismeasured by assuming normality. As a result, empirical researchers often specify a

parametric leptokurtic distribution, which then they use to estimate their models by maximum

likelihood (ML). The dominant commercially available econometric packages have responded to

this practice by offering ML procedures that estimate the parameters of the conditional means,

variances and covariances of the observed series either jointly with the parameters characterising

the shape of the assumed distribution or allowing the user to fix these to some sensible values.

Specifically, Eviews and Stata support Student t and Generalised Error distributions (GED)

in univariate models (see the Arch sections of IHS Global Inc (2015) and StataCorp LP (2015)),

while Stata additionally allows for Student t innovations in multivariate ones (see the March

section of StataCorp LP (2015)).

An additional non-trivial benefit of these procedures is that they deliver (weakly) more

effi cient estimators of the mean and variance parameters, especially if the shape parameters

can be fixed to their true values. The problem with non-Gaussian ML estimators, though, is

that they often achieve those effi ciency gains under correct specification at the risk of returning

inconsistent parameter estimators under distributional misspecification (see e.g. Newey and

Steigerwald (1997)). This is in marked contrast with the generally ineffi cient Gaussian pseudo-

maximum likelihood (PML) estimators advocated by Bollerslev and Wooldridge (1992) among

many others, which remain root-T consistent for the mean and variance parameters irrespective

of the degree of asymmetry and kurtosis of the conditional distribution of the observed variables,

so long as the first two moments are correctly specified and the fourth moments are bounded.

If researchers were only interested in the first two conditional moments of the data, the semi-

parametric (SP) estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost

(1999) would provide an attractive solution because they are not only consistent but also attain

full effi ciency for a subset of the parameters, as shown by Linton (1993), Drost and Klaassen

(1997), Drost, Klaassen and Werker (1997) and Sun and Stengos (2006) in several univariate

time series examples. Unfortunately, SP estimators suffer from the curse of dimensionality when

the number of series involved, N , is moderately large, which severely limits their use in multi-

variate models. Another possibility would be the spherically symmetric semiparametric (SSP)
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methods considered by Hodgson and Vorkink (2003) and Hafner and Rombouts (2007), which

are also partially effi cient while retaining univariate rates for their nonparametric part regardless

of N . However, asymmetries in the true distribution will again contaminate these estimators.

In a companion paper (Fiorentini and Sentana (2018)), we characterise the mean and vari-

ance parameters that distributionally misspecified ML estimators can consistently estimate, and

provide simple closed-form consistent estimators for the rest. Francq, Lepage and Zakoïan

(2011) and Fan, Qi and Xiu (2014) have also proposed alternative consistent estimators for

univariate Garch models without mean, which are asymptotically equivalent to ours in that

context. Nevertheless, many empirical researchers will continue to rely on the estimators that

the econometric software packages provide. For that reason, it would be desirable that they

would routinely complement their empirical results with some formal indication of the validity

of the parametric assumptions they make for estimation purposes.

There are several ways to do so. One possibility is to nest the assumed distribution within

a more flexible parametric family in order to conduct a Lagrange Multiplier (LM) test of the

nesting restrictions. This is the approach in Mencía and Sentana (2012), who use the generalised

hyperbolic family as nesting distribution for the multivariate Student t. An alternative procedure

would be an information matrix test that compares some or all of the elements of the expected

Hessian and the variance of the score. But when an empirical researcher relies on standard

software for calculating some estimators of θ and their asymptotic standard errors, a more

natural approach to testing the distributional specification would be to compare those estimators

on a pairwise basis using simple Durbin-Wu-Hausman (DWH) tests. As is well known, the

traditional version of these tests can refute the correct specification of a model by exploiting

the diverging properties under misspecification of a pair of estimators of the same parameters.

In this paper, we take this idea one step further and propose an extension of the DWH tests

which simultaneously compares three or more estimators. We also explore several important

issues related to the practical implementation of these tests, including its two score versions,

their numerical invariance to reparametrisations and their application to subsets of parameters.

To design powerful and reliable tests, though, we first need to study the consistency and

effi ciency properties of the different estimators involved. In particular, we need to figure out the

rank of the difference between the corresponding asymptotic covariance matrices under the null

of correct specification to select the right number of degrees of freedom. We also need to take

into account that some parameters continue to be consistently estimated under the alternative of

incorrect distributional specification. Otherwise our tests will use up degrees of freedom without

providing any power gains.
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Importantly, we find that the parameters that continue to be consistently estimated by the

parametric estimators under distributional misspecification are those which are effi ciently es-

timated by the semiparametric procedures. In contrast, the remaining parameters, which will

be inconsistently estimated by distributionally misspecified parametric procedures, the semi-

parametric procedures can only estimate with the effi ciency of the Gaussian PML estimator.

Therefore, we will focus our tests on the comparison of the estimators of this second group of

parameters, for which the usual effi ciency - consistency trade off is of first-order importance.

The inclusion of means and the explicit coverage of multivariate models make our proposed

tests useful not only for Garch models but also for dynamic linear models such as Vars or mul-

tivariate regressions, which remain the workhorse in empirical macroeconomics and asset pricing

contexts. This is particularly relevant in practice because researchers are increasingly acknowl-

edging the non-normality of many macroeconomic variables (see Lanne, Meitz and Saikkonen

(2017) and the references therein for recent examples of Var models with non-Gaussian innova-

tions). Obviously, our approach also applies in cross-sectional models with exogenous regressors,

as well as in static ones. Another important feature of our analysis is that we explicitly look

at the unrestricted ML procedure that jointly estimates the shape parameters, as well as the

Gaussian PML, SP, SSP and restricted ML estimators considered in the existing literature.

The rest of the paper is organised as follows. In section 2, we provide a quick revision of

DWH tests and derive several new results which we use in our subsequent analysis. Then, in

section 3 we present the five different likelihood-based estimators that we have mentioned, and

derive our proposed specification tests, paying particular attention to their degrees of freedom

and power. A Monte Carlo evaluation of those tests can be found in section 4. Finally, we

present our conclusions in section 5. Proofs and auxiliary results are gathered in appendices.

2 Durbin-Wu-Hausman tests

2.1 Wald and two score versions

As we mentioned in the introduction, DWH tests exploit the diverging behaviour under

the alternative of two estimators for the same parameters to test the correct specification of

the model under the null. The standard calculation of DWH tests, though, requires the prior

computation of those two estimators. In a likelihood context, however, Theorem 5.2 of White

(1982) implies that an asymptotically equivalent test can be obtained by evaluating the scores

of the restricted model at the ineffi cient but consistent parameter estimator (see also Reiss

(1983) and Ruud (1984), as well as Davidson and MacKinnon (1989)). Theorem 2.5 in Newey

(1985) shows that the same equivalence holds in situations in which the estimators are defined
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by moment conditions. In fact, it is possible to derive not just one but two asymptotically

equivalent score versions of the DWH test by evaluating the influence functions that give rise to

each of the estimators at the other estimator, as explained in section 10.3 of White (1994). The

following proposition spells out those equivalences:

Proposition 1 Let θ̂T and θ̃T denote two root-T consistent, asymptotically Gaussian, GMM

estimators of θ based on the average influence functions m̄T (θ) and n̄T (θ) and the weighting

matrices S̃mT and S̃nT , respectively. Then, under standard regularity conditions

T (θ̃T − θ̂T )′∆−(θ̃T − θ̂T )− Tm̄′T (θ̃T )SmJm(θ0)Ψ
−
mJ ′m(θ0)Smm̄T (θ̃T ) = op(1)

and T (θ̃T − θ̂T )′∆−(θ̃T − θ̂T )− T n̄′T (θ̂T )SnJn(θ0)Ψ
−
nJ ′n(θ0)Snn̄T (θ̂T ) = op(1),

where − denotes a generalised inverse, ∆, Ψm andΨn are the limiting variances of
√
T (θ̃T−θ̂T ),

J ′m(θ0)Sm
√
Tm̄T (θ̃T ) and J ′n(θ0)Sn

√
T n̄T (θ̂T ), respectively, which are such that

∆ =
[
J ′m(θ0)SmJm(θ0)

]−1
Ψm

[
J ′m(θ0)SmJm(θ0)

]−1
=

[
J ′n(θ0)SnJn(θ0)

]−1
Ψn

[
J ′n(θ0)SnJn(θ0)

]−1
,

with Jm(θ) = plim
T→∞

∂m̄T (θ)/∂θ′, Jn(θ) = plim
T→∞

∂n̄T (θ)/∂θ′,

Sm = plim
T→∞

S̃mT , Sn = plim
T→∞

S̃nT ,

and rank
[
J ′m(θ0)SmJm(θ0)

]
= rank

[
J ′n(θ0)SnJn(θ0)

]
= p = dim(θ).

An intuitive way of re-interpreting the asymptotic equivalence between the original Wald-

type version of the DWH test and the two alternative score versions is to think of the lat-

ter as Wald-type tests based on two convenient reparametrisations of θ obtained through

the population version of the first order conditions that give rise to each estimator, namely

πm(θ) = J ′m(θ)SmE[mt(θ)] and πn(θ) = J ′n(θ)SnE[nt(θ)]. While these new parameters are

equal to 0 when evaluated at the pseudo-true values of θ implicitly defined by the exactly

identified moment conditions J ′m(θm)SmE[mt(θm)] = 0 and J ′n(θn)SnE[nt(θn)] = 0, respec-

tively, πm(θn) and πn(θm) are not necessarily so, unless the correct specification condition

θm = θn = θ0 holds.1

Proposition 1 implies the choice between the three versions of the DWH test must be based

on either computational ease, numerical invariance or finite sample reliability. We will revisit

these issues in sections 2.2 and 4.
1A related analogy arises in indirect estimation, in which the asymptotic equivalence between the score-based

methods proposed by Gallant and Tauchen (1996) and the parameter-based methods in Gouriéroux, Monfort and
Renault (1993) can be intuitively understood if we regard the expected values of the scores of the auxiliary model
as a new set of auxiliary parameters that summarises all the information in the original parameters (see Calzolari,
Fiorentini and Sentana (2004) for further details and a generalisation).
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Consider a sequence of local alternatives such that

√
T (θ̃T − θ̂T ) ∼ N(θm − θn,∆).

As is well known, the asymptotic distribution any of the DWH statistics above is chi-square with

r= rank(∆) degrees of freedom and non-centrality parameter (θm−θn)′∆−(θm−θn) (see e.g.

Hausman (1978) or Holly (1987)), which reduces to a central χ2r under the null hypothesis that

both sets of moments are correctly specified. As a result, the local power of a DWH test will be

increasing in the limiting discrepancy between the two estimators, and decreasing in both the

number and magnitude of the non-zero eigenvalues of ∆.

Knowing the right number of degrees of freedom is particularly important for employing

the correct distribution under the null. Unfortunately, some obvious consistent estimators of

∆ might lead to inconsistent estimators of ∆−.2 In fact, they might not even be positive

semidefinite in finite samples. We will revisit these issues in sections 3.4 and 3.6.

2.2 Numerical invariance to reparametrisations

Suppose we decide to work with an alternative parametrisation of the model for convenience

or ease of interpretation. For example, we might decide to compare the logs of the estimators

of a variance parameter rather than their levels. We can then state the following result:

Proposition 2 Consider a homeomorphic, continuously differentiable transformation π(.) from
θ to a new set of parameters π, with rank [∂π′ (θ) /∂θ] = p = dim(θ) when evaluated at θ0, θ̂T
and θ̃T . Let π̂T = arg minπ∈Π m̄

′
T (π)S̃mT m̄T (π) and π̃T = arg minπ∈Π n̄

′
T (π)S̃nT n̄T (π), where

mt(π) = mt[θ(π)] and nt(π) = nt[θ(π)] are the influence functions written in terms of π, with
θ(π) denoting the inverse mapping such that π[θ(π)] = π. Then,

1. The Wald versions of the DWH tests based on θ̃T − θ̂T and π̃T − π̂T are numerically
identical if the mapping is affi ne, so that π = Aθ + b, with A and b known and |A| 6= 0.

2. The score versions of the tests based on m̄T (θ̃T ) and m̄T (π̃T ) are numerically identical if

Ψ∼mT =

[
∂θ(π̃T )

∂π′

]−1
Ψ∼mT

[
∂θ′(π̃T )

∂π

]−1
,

where Ψ∼mT and Ψ∼mT , are consistent estimators of the generalised inverses of the limiting
variances of J ′m(θ0)Sm

√
Tm̄T (θ̃T ) and J ′m(θ0)Sm

√
T m̄T (π̃T ), respectively.

3. An analogous result applies to the score versions based on n̄T (θ̂T ) and n̄T (π̂T ).

These numerical invariance results, which extend those in sections 17.4 and 22.1 of Ruud

(2000), suggest that the score-based tests might be better behaved in finite samples than their

“Wald”counterpart. We will provide some simulation evidence on this conjecture in section 4.
2A trivial non-random example of discontinuities is the sequence 1/T , which converges to 0 while (1/T )− = T

diverges. Theorem 1 in Andrews (1987) provides conditions under which a quadratic form based on a generalised
inverse of a weighting matrix converges to a chi-square distribution.
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2.3 Subsets of parameters

In some well-known examples, generalised inverses can be avoided by working with a subset

of parameters. In particular, if the two estimators of the last p2 elements of θ, θ̂2T and θ̃2T ,

share the same asymptotic distribution, then comparing θ̂1T and θ̃1T is analogous to using a

generalised inverse with the entire parameter vector (see Holly and Monfort (1986) for further

details). But there may be other reasons for focusing on a subset. For example, if the means of

the asymptotic distributions of θ̂2T and θ̃2T coincide both under the null and the alternative,

then a DWH test involving these parameters will result in a waste of degrees of freedom, and

thereby a loss of power.

The following result provides a useful interpretation of the two score versions asymptotically

equivalent to a Wald-style DWH test that compares θ̂1T and θ̃1T :

Proposition 3 Define

m̄⊥1T (θ,Sn) = J ′1m(θ)Smm̄T (θ)− J ′1m(θ)SmJ2m(θ)[J ′2m(θ)SmJ2m(θ)]−1J ′2m(θ)Smm̄T (θ),

n̄⊥1T (θ,Sn) = J ′1n(θ)Snn̄T (θ)− J ′1n(θ)SnJ2n(θ)[J ′2n(θ)SnJ2n(θ)]−1J ′2n(θ)Snn̄T (θ)

as two sets of p1 transformed sample moment conditions, where

Jm(θ) =
[
J1m(θ) J2m(θ)

]
=
[

plimT→∞ ∂m̄T (θ)/∂θ′1 plimT→∞ ∂m̄T (θ)/∂θ′2
]
,

Jn(θ) =
[
J1n(θ) J2n(θ)

]
=
[

plimT→∞ ∂n̄T (θ)/∂θ′1 plimT→∞ ∂n̄T (θ)/∂θ′2
]
.

Then,
T (θ̃T − θ̂T )′∆−11(θ̃T − θ̂T )− Tm̄⊥′T (θ̃T )Ψ−

m⊥1
m̄⊥′T (θ̃T ) = op(1)

and
T (θ̃1T − θ̂1T )′∆−11(θ̃1T − θ̂1T )− T n̄⊥′1T (θ̂T )Ψ−

n⊥1
n̄⊥1T (θ̂T ) = op(1),

where ∆11, Ψm⊥1
and Ψn⊥1

are the limiting variances of
√
T (θ̃1T − θ̂1T ),

√
Tm̄⊥1T (θ̃T ,Sm) and

√
T n̄⊥1T (θ̂T ,Sn), respectively, which are such that

∆11 =
[
J ′m(θ0)SmJm(θ0)

]11
Ψm⊥1

[
J ′m(θ0)SmJm(θ0)

]11
=

[
J ′n(θ0)SnJn(θ0)

]11
Ψn⊥1

[
J ′n(θ0)SnJn(θ0)

]11
,

with 11 denoting the diagonal block corresponding to θ1 of the relevant inverse.

Intuitively, we can understand m̄⊥1T (θ,Sn) and n̄⊥1T (θ,Sn) as moment conditions that exactly

identify θ1, but with the peculiarity that

plim
T→∞

∂m̄⊥1T (θ,Sn)

∂θ′2
= plim

T→∞

∂n̄⊥1T (θ,Sn)

∂θ′2
= 0,

which makes them asymptotically immune to the sample variability in the estimators of θ2.

When J ′1m(θ)SmJ2m(θ) = J ′1n(θ)SnJ2n(θ) = 0, the above moment tests will be asymptoti-

cally equivalent to tests based on J ′1m(θ)Sm
√
Tm̄T (θ̃T ) and J ′1n(θ)Sn

√
T n̄T (θ̂T ), respectively,

but in general these will not be the case.
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2.4 Multiple simultaneous comparisons

All applications of DWH tests we are aware of compare two estimators of the same underlying

parameters. However, as we shall see in section 3.2, there are situations in which three or more

estimators are available. In those circumstances, it might not be entirely clear which pair of

estimators researchers should focus on.

Ruud (1984) highlighted a special factorisation structure whereby different pairwise compar-

isons give rise to asymptotically equivalent tests. He illustrated his result with three classical

examples: (i) full sample vs first subsample vs second subsample in Chow tests; (ii) GLS vs

within-groups vs between-groups in panel data; and (iii) Tobit vs probit vs truncated regres-

sions. Unfortunately, though, Ruud’s (1984) factorisation structure does not apply in our case.

In general, the best pairwise comparison, in the sense of having maximum power against a

given sequence of local alternatives, would be the one with the highest non-centrality parameter

among those tests with the same number of degrees of freedom.3 But in practice, a researcher

might not be able to make the required calculations without knowing the nature of the departure

from the null. In those circumstances, a sensible solution would be to simultaneously compare

all the alternative estimators. Such a generalisation of the DWH test is conceptually straight-

forward, but it requires the joint asymptotic distribution of the different estimators involved.

There is one special case in which this simultaneous test takes a particularly simple form:

Proposition 4 Let θ̂
j
T , j = 1, . . . , J denote an ordered sequence of J root-T consistent, asymp-

totically Gaussian estimators of θ such that their joint asymptotic covariance matrix adopts the
following form: 

Ω1 Ω1 . . . Ω1 Ω1

Ω1 Ω2 . . . Ω2 Ω2
...

...
. . .

...
...

Ω1 Ω2 . . . ΩJ−1 ΩJ−1
Ω1 Ω2 . . . ΩJ−1 ΩJ

 . (1)

Then the simultaneous DWH tests that compares all J estimators can be decomposed as the sum
of J − 1 consecutive pairwise DWH tests, which are asymptotically mutually independent under
the null of correct specification and sequences of local alternatives.

Therefore, the asymptotic distribution of the simultaneous DWH test will be a non-central

chi-square with degrees of freedom and non-centrality parameters equal to the sum of the degrees

of freedom and non-centrality parameters of the consecutive pairwise DWH tests. Moreover, the

asymptotic independence of the tests implies that in large samples, the probability that at least

one pairwise test will reject by chance under the null will be 1 − (1 − α)J−1, where α is the

significance level of each pairwise test.
3Ranking tests with different degrees of freedom is also straightforward but more elaborate (see Holly (1987)).
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Positive semidefiniteness of the covariance structure in (1) implies that one can rank (in the

usual positive semidefinite sense) the asymptotic variance of the J estimators as

ΩJ ≥ ΩJ−1 ≥ . . . ≥ Ω2 ≥ Ω1,

so that the sequence of estimators follows a decreasing effi ciency order. Nevertheless, (1) goes

beyond this ordering because it effectively implies that the estimators behave like Matryoshka

dolls, with each one being “effi cient”relative to all the others below. Therefore, Proposition 4

provides the natural multiple comparison generalisation of Lemma 2.1 in Hausman (1978).

An example of the covariance structure (1) arises in the context of sequential, general to spe-

cific tests of nested parametric restrictions (see Holly (1987) and section 22.6 of Ruud (2000)).

More importantly for our purposes, the same structure also arises naturally in the compari-

son of parametric and semiparametric likelihood-based estimators of multivariate, conditionally

heteroskedastic, dynamic regression models.

3 Application to non-Gaussian likelihood estimators

3.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yt, is typically assumed to be generated as:

yt = µt(θ) + Σ
1/2
t (θ)ε∗t ,

µt(θ) = µ(It−1;θ),
Σt(θ) = Σ(It−1;θ),

where µ() and vech [Σ()] areN×1 andN(N+1)/2×1 vector functions describing the conditional

mean vector and covariance matrix known up to the p× 1 vector of parameters θ, It−1 denotes

the information set available at t − 1, which contains past values of yt and possibly some

contemporaneous conditioning variables, and Σ
1/2
t (θ) is some particular “square root”matrix

such that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ). Throughout the paper, we maintain the assumption that

the conditional mean and variance are correctly specified, in the sense that there is a true value

of θ, say θ0, such that
E(yt|It−1) = µt(θ0)
V (yt|It−1) = Σt(θ0)

}
.

We also maintain the high level regularity conditions in Bollerslev andWooldridge (1992) because

we want to leave unspecified the conditional mean vector and covariance matrix in order to

achieve full generality. Primitive conditions for specific multivariate models can be found for

example in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution of ε∗t . In

appendix B we study the general case. In view of the options that the dominant commercially
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available econometric software companies offer to their clients, though, in the main text we

study the situation in which a researcher makes the assumption that, conditional on It−1, the

distribution of ε∗t is independent and identically distributed as some particular member of the

spherical family with a well defined density, or ε∗t |It−1;θ,η ∼ i.i.d. s(0, IN ,η) for short, where η

denotes q additional shape parameters which effectively characterise the distribution of ςt = ε∗′t ε
∗
t

(see appendix A.1 for a brief introduction to spherically symmetric distributions).4 The most

prominent example is the standard multivariate normal, which we denote by η = 0 without loss

of generality. Another important example favoured by empirical researchers is the standardised

multivariate Student t with ν degrees of freedom, or i.i.d. t(0, IN , ν) for short. As is well known,

the multivariate t approaches the multivariate normal as ν →∞, but has generally fatter tails.

For that reason, we define η as 1/ν, which will always remain in the finite range [0, 1/2) under

our assumptions. Obviously, in the univariate case, any symmetric distribution, including the

GED (also known as the Generalised Gaussian distribution), is spherically symmetric too.5

For illustrative purposes, we consider the following two empirically relevant examples through-

out the paper:

Univariate GARCH-M: Let rMt denote the excess returns to the market portfolio. Drost

and Klaassen (1997) proposed the following model for such a series:

rMt = µt(θ) + σt(θ)ε∗t ,
µt(θ) = τσt(θ),

σ2t (θ) = ω + αr2Mt−1 + βσ2t−1(θ).

 (2)

The conditional mean and variance parameters are θ′ = (τ , ω, α, β). Importantly, this model

nests the one considered by Francq, Lepage and Zakoïan (2011) and Fan, Qi and Xiu (2014)

when τ = 0.

Multivariate market model: Let rt denote the excess returns on a vector of N assets traded

on the same market as rMt. A very popular model is the so-called market model

rt = a + brMt + Ω1/2ε∗t . (3)

The conditional mean and variance parameters are θ′ = (a′,b′,ω′), where ω = vech(Ω) and

Ω = Ω1/2Ω
′1/2.

3.2 Likelihood-based estimators

Let LT (φ) denote the pseudo log-likelihood function of a sample of size T for the general

model discussed in section 3.1, where φ = (θ′,η′)′ are the p + q parameters of interest, which

we assume variation free. We consider up to five different estimators of θ:
4Nevertheless, Propositions 10, 14, A2 and A3 already deal explicitly with the general case, while Propositions

6, 7, 8 and 9 continue to be valid without sphericity. As explained below, the same applies to Proposition 5.
5See Gillier (2005) for a spherically symmetric multivariate version of the GED.
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1. Restricted ML (RML): θ̂T (η̄)

which is such that

θ̂T (η̄) = arg max
θ∈Θ

LT (θ, η̄).

It effi ciency can be characterised by the θ,θ block of the information matrix, Iθθ(φ0), provided

that η̄ = η0. Therefore, we can interpret Iθθ(φ0) as the restricted parametric effi ciency bound.

2. Joint or Unrestricted ML (UML): θ̂T

which is obtained as

(θ̂T , η̂T ) = arg max
φ∈Φ

LT (θ,η).

This is characterised by the feasible parametric effi ciency bound

P(φ0) = Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0). (4)

3. Spherically symmetric semiparametric (SSP): θ̊T

which restricts ε∗t to have an i.i.d. s(0, IN ,η) conditional distribution, but does not impose

any additional structure on the distribution of ςt = ε∗′t ε
∗
t . This estimator is usually computed

by means of one BHHH iteration of the spherically symmetric effi cient score starting from

a consistent estimator.6 Associated to it we have the spherically symmetric semiparametric

effi ciency bound S̊(φ0).

4. Unrestricted semiparametric (SP): θ̈T

which only assumes that the conditional distribution of ε∗t is i.i.d.(0, IN ). It is also typically

computed with one BHHH iteration starting from a consistent estimator, but this time based on

the effi cient score. Associated to it we have the usual semiparametric effi ciency bound S̈(φ0).

5. Gaussian Pseudo ML (PML): θ̃T = θ̂T (0)

which imposes η = 0 even though the true conditional distribution of ε∗t might be neither normal

nor spherical. As is well known, the effi ciency bound for this estimator is given by

C−1(φ0) = A(φ0)B−1(φ0)A(φ0),

where A(φ0) is the expected Gaussian Hessian and B(φ0) the variance of the Gaussian score.

In appendix A, we provide further details on these five estimators and their effi ciency bounds.
6Hodgson, Linton and Vorkink (2002) also consider alternative estimators that iterate the semiparametric

adjustment until it becomes negligible. However, since they have the same first-order asymptotic distribution, we
shall not discuss them separately.
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3.3 Covariance relationships

The next proposition provides the asymptotic covariance matrices of the different estimators

presented in the previous section, and of the scores on which they are based:

Proposition 5 If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with bounded fourth moments, then

lim
T→∞

V


√
T

T

T∑
t=1


sθt(φ0)

sθ|ηt(φ0)
s̊θt(φ0)
s̈θt(φ0)

sθt(θ0,0)


 =


Iθθ(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

P(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̊(φ0) S̊(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̈(φ0) S̈(φ0) S̈(φ0) S̈(φ0) A(φ0)
A(φ0) A(φ0) A(φ0) A(φ0) B(φ0)

 , (5)

and

lim
T→∞

V


√
T


θ̂T (η0)− θ0
θ̂T − θ0
θ̊T − θ0
θ̈T − θ0
θ̃T − θ0



=

I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0)

I−1θθ (φ0) P−1(φ0) P−1(φ0) P−1(φ0) P−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̊−1(φ0) S̊−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) S̈−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) C(φ0)

. (6)

Therefore, the five estimators have the Matryoshka doll covariance structure in (1), with each

estimator being “effi cient” relative to all the others below. A trivial implication of this result

is that one can unsurprisingly rank (in the usual positive semidefinite sense) the “information

matrices”of those five estimators as follows:

Iθθ(φ0) ≥ P(φ0) ≥ S̊(φ0) ≥ S̈(φ0) ≥ C−1(φ0). (7)

We would like to emphasise that Proposition 5 remains valid when the distribution of ε∗t

conditional on It−1 is not assumed spherical, provided that we cross out the terms corresponding

to the SSP estimator θ̊T (see appendix B for further details). Therefore, the approach we develop

in the next section can be straightforwardly extended to test the correct specification of any

maximum likelihood estimator of multivariate conditionally heteroskedastic dynamic regression

models. Such an extension would be important in practice because while the assumption of

sphericity might be realistic for foreign exchange returns, it seems less plausible for stock returns.

3.4 Multiple simultaneous comparisons

Five estimators allow up to ten different possible pairwise comparisons, and it is not obvious

which one researchers should focus on. If they only paid attention to the asymptotic covariance

matrices of the differences between those ten combinations of estimators, expression (7) suggests

that they should focus on adjacent estimators. However, the number of degrees of freedom and

the diverging behaviour of the estimators under the alternative hypothesis also play a very

important role, as we discussed in section 2.1.
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Nevertheless, we also saw in section 2.4 that there is no reason why researchers should choose

just one such pair. In fact, the covariance structure in Proposition 5 combined with Proposition

4 implies that DWH tests of multiple simultaneous comparisons are extremely simple because

non-overlapping pairwise comparisons give rise to asymptotically independent test statistics.

Although in principle one could compare all five estimators, researchers may choose to dis-

regard θ̈T − θ̃T because both the semiparametric estimator and the Gaussian estimator are

consistent for θ0 regardless of the conditional distribution, at least as long as the iid assumption

holds. For the same reason, they will also disregard θ̊T − θ̃T if they maintain the assumption

of sphericity. In practice, the main factor for deciding which estimators to compare is likely to

be computational ease. For that reason many empirical researchers might prefer to compare

only the three parametric ones included in standard software packages even though increases in

power might be obtained under the maintained assumption of iid innovations by comparing θ̈T

instead of θ̃T with θ̊T , θ̂T and θ̂T (η̄). The next proposition provides detailed expressions for

the different ingredients of the DWH test statistics described in Proposition 1 when we compare

the unrestricted ML estimator of θ with its Gaussian PML counterpart

Proposition 6 If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
fied, then under the null of correct specification of the conditional distribution of yt

lim
T→∞

V [
√
T (θ̃T − θ̂T )] = C(φ0)− P−1(φ0),

lim
T→∞

V [
√
T s̄′θ|ηT (θ̃T ,η0)] = P(φ0)C(φ0)P(φ0)− P(φ0)

and
lim
T→∞

V [
√
T s̄′θT (θ̂T ,0)] = B(φ0)−A(φ0)P−1(φ0)A(φ0),

where s̄θ|ηT (θ̃T ,η0) is the sample average of the unrestricted parametric effi cient score for θ
evaluated at the Gaussian PML estimator θ̃T , while s̄θT (θ̂T ,0) is the sample average of the
Gaussian PML score evaluated at the unrestricted parametric ML estimator θ̂T .

The next proposition provides the analogous expressions for the different ingredients of the

DWH test statistics in Proposition 1 when we compare the restricted ML estimator of θ which

fixes η to η̄ with its unrestricted counterpart, which simultaneously estimates these parameters.

Proposition 7 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of yt

lim
T→∞

V {
√
T [θ̂T − θ̂T (η̄)]} = P−1(φ0)− I−1θθ (φ0) = I−1θθ (φ0)Iθη(φ0)Iηη(φ0)I ′θη(φ0)I−1θθ (φ0),

lim
T→∞

V [
√
T s̄θT (θ̂T , η̄)] = Iθθ(φ0)P−1(φ0)Iθθ(φ0)− Iθθ(φ0) = Iθη(φ0)Iηη(φ0)I ′θη(φ0)

and

lim
T→∞

V {
√
T s̄′θ|ηT [θ̂T (η̄), η̄]} = P(φ0)− P(φ0)I−1θθ (φ0)P(φ0)

= Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)I−1ηη (φ0)I ′θη(φ0),
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where
Iηη(φ0) = [Iηη(φ0)− I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)]

−1,

s̄θT (θ̂T , η̄) is the sample average of the restricted parametric score evaluated at the unrestricted
parametric ML estimator θ̂T and s̄θ|ηT (θ̃T , η̄) is the sample average of the unrestricted para-
metric effi cient score for θ evaluated at the restricted parametric ML estimator θ̂T (η̄).

The comparison between the unrestricted and restricted parametric estimators of θ can be

regarded as a test of H0 : η = η̄. However, it is not necessarily asymptotically equivalent to the

Wald, LM and Likelihood Ratio (LR) tests of the same hypothesis. In fact, a straightforward

application of the results in Holly (1982) implies that these four tests will be equivalent if and

only if rank[Iθη(φ0)] = q = dim(η), in which case we can show that the LM test and the

s̄θ|ηT [θ̂T (η̄), η̄] version of our DWH test numerically coincide. But Proposition A1 implies that

in the spherically symmetric case

Iθη(φ0) = Ws(φ0)msr(η0),

which in turn implies that rank[Iθη(φ0)] is one at most. Intuitively, the reason is that the

dependence between the conditional mean and variance parameters θ and the shape parameters

η effectively hinges on a single parameter in the spherically symmetric case, as explained in

Amengual, Fiorentini and Sentana (2013). Therefore, this pairwise DWH test can only be

asymptotically equivalent to the classical tests of H0 : η = η̄ when q = 1 and msr(η0) 6= 0, the

Student t constituting an important example.

More generally, the asymptotic distribution of the DWH test under a sequences of local

alternatives for which η0T = η̄ + η̃/
√
T will be a non-central chi-square with rank[Iθη(φ0)]

degrees of freedom and non-centrality parameter

η̃′I ′θη(φ0)I−1θθ (φ0)[I−1θθ (φ0)Iθη(φ0)Iηη(φ0)Iθη(φ0)I−1θθ (φ0)]
−I−1θθ (φ0)Iθη(φ0)η̃, (8)

while the asymptotic distribution of the trinity of classical tests will be a non-central distribution

with q degrees of freedom and non-centrality parameter

η̃′[Iηη(φ0)− I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)]
−1η̃.

Therefore, the DWH will have zero power in those directions in which Iθη(φ0)η̃ = 0 but more

power than the classical tests in some others (see Hausman and Taylor (1981), Holly (1982) and

Davidson and MacKinnon (1989) for further discussion).

3.5 Subsets of parameters

As in section 2.3, we may be interested in focusing on a parameter subset either to avoid

generalised inverses or to increase power. In fact, we show in sections 3.6 and 3.7 that both
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motivations apply in our context. The next proposition provides detailed expressions for the dif-

ferent ingredients of the DWH test statistics in Proposition 3 when we compare the unrestricted

ML estimator of a subset of the parameter vector with its Gaussian PML counterpart.

Proposition 8 If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
fied, then under the null of correct specification of the conditional distribution of yt

lim
T→∞

V [
√
T (θ̃1T − θ̂1T )] = Cθ1θ1(φ0)− Pθ1θ1(φ0),

lim
T→∞

V [
√
T s̄θ1|θ2ηT (θ̃T ,η0)] = [Pθ1θ1(φ0)]−1Cθ1θ1(φ0)[Pθ1θ1(φ0)]−1 − [Pθ1θ1(φ0)]−1

and

lim
T→∞

V [
√
T s̄θ1|θ2T (θ̂T ,0)] = [Aθ1θ1(φ0)]−1[Cθ1θ1(φ0)− Pθ1θ1(φ0)][Aθ1θ1(φ0)]−1,

where

s̄θ1|θ2ηT (θ,η)= s̄θ1T (θ,η)−
[
Iθ1θ2(φ0)Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)
I ′θ2η(φ0) Iηη(φ0)

]−1[
s̄θ2T (θ,η)
s̄ηT (θ,η)

]
, (9)

Pθ1θ1(φ0)=

{
Iθ1θ1(φ0)−

[
Iθ1θ2(φ0)Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)
I ′θ2η(φ0) Iηη(φ0)

]−1[I ′θ1θ2(φ0)
I ′θ1η(φ0)

]}−1
,

while

s̄θ1|θ2T (θ,0) = s̄θ1T (θ,0)−Aθ1θ2(φ0)A−1θ2θ2(φ0)̄sθ2T (θ,0),

Aθ1θ1(φ0) = [Aθ1θ1(φ0)−Aθ1θ2(φ0)A−1θ2θ2(φ0)A
′
θ1θ2(φ0)]

−1.

The analogous result for the comparison between the unrestricted and restricted ML esti-

mator of a subset of the parameter vector is as follows:

Proposition 9 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of yt

lim
T→∞

V {
√
T [θ̂1T − θ̂1T (η̄)]} = Pθ1θ1(φ0)− Iθ1θ1(φ0),

lim
T→∞

V [
√
T s̄θ1|θ2T (θ̂T , η̄)] = [Iθ1θ1(φ0)]−1Pθ1θ1(φ0)[Iθ1θ1(φ0)]−1 − [Iθ1θ1(φ0)]−1

and

lim
T→∞

V {
√
T s̄′θ1|θ2ηT [θ̂T (η̄), η̄]} = [Pθ1θ1(φ0)]−1 − [Pθ1θ1(φ0)]−1Iθ1θ1(φ0)[Pθ1θ1(φ0)]−1,

where s̄θ1|θ2ηT (θ,η) is defined in (9),

s̄θ1|θ2T (θ, η̄) = s̄θ1T (θ, η̄)− Iθ1θ2(φ0)I−1θ2θ2(φ0)̄sθ2T (θ, η̄),

Iθ1θ1(φ0) = [Iθ1θ1(φ0)− Iθ1θ2(φ0)I−1θ2θ2(φ0)I
′
θ1θ2(φ0)]

−1.

In practice, we must replace A(φ0), B(φ0) and I(φ0) by consistent estimators to make all the

above tests operational. To guarantee the positive semidefiniteness of their weighting matrices,

we will follow Ruud’s (1984) suggestion and estimate all those matrices as sample averages of
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the corresponding conditional expressions in Propositions A1 and A2 evaluated at a common

estimator of φ, such as the restricted MLE [θ̂T (η̄),η̄], its unrestricted counterpart φ̂T , or the

Gaussian PML θ̃T coupled with the sequential ML or method of moments estimators of η in

Amengual, Fiorentini and Sentana (2013), the latter being such that B(θ,η) remains bounded.7

In addition, in computing the three versions of the tests we exploit the theoretical relationships

between the relevant asymptotic covariance matrices in Propositions 8 and 9 so that the required

generalised inverses are internally coherent.

In what follows, we will simplify the presentation by concentrating on Wald versions of

DWH tests, but all our results can be readily applied to their two asymptotically equivalent

score versions by virtue of Propositions 1 and 3.

3.6 Choosing the correct number of degrees of freedom

Propositions 6 and 7 establish the asymptotic variances involved in the calculation of simul-

taneous DWH tests, but they do not determine the correct number of degrees of freedom that

researchers should use. In fact, there are cases in which two or more estimators are equally

effi cient for all the parameters. In particular, there is one instance in which all the degrees of

freedom are equal to 0, namely when the true conditional distribution is Gaussian. In that case,

the PML estimator is obviously fully effi cient, which implies that the other estimators of θ must

also be effi cient in view of (7).8 More formally,

Proposition 10 1. If ε∗t |It−1;φ0 is i.i.d. N(0, IN ), then

It(θ0,0) = V [st(θ0,0)|It−1;θ0,0] =

[
V [sθt(θ0,0)|It−1;θ0,0] 0

0′ Mrr(0)

]
,

where

V [sθt(θ0,0)|It−1;θ0,0] = −E [hθθt(θ0,0)|It−1;θ0,0] = At(θ0,0) = Bt(θ0,0).

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 < ∞, and Zl(φ0) 6= 0, then S̈(φ0) = Iθθ(φ0)
only if η0 = 0.

The first part of this proposition, which generalises Proposition 2 in Fiorentini, Sentana and

Calzolari (2003), implies that θ̂T suffers no asymptotic effi ciency loss from simultaneously esti-

mating η when η0 = 0. In turn, the second part, which generalises Result 2 in Gonzalez-Rivera

and Drost (1999) and Proposition 6 in Hafner and Rombouts (2007), implies that normality is

the only such instance within the spherical family.

7Unfortunately, DWH tests that involve the Gaussian PMLE will not work properly with unbounded fourth
moments, which violates one of the assumptions of Proposition A2.

8As we mentioned before, the restricted ML estimator θ̂T (η̄) is effi cient provided that η̄ = η0, which in this
case requires that the researcher must correctly impose normality.
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For practical purposes, this result indicates that one should not use any DWH test, includ-

ing those in Propositions 6 and 7, to test for normality or when one suspects that the true

distribution is Gaussian because the test statistics might become numerically unstable in that

case. Unfortunately, one cannot simply compare the relevant covariance matrices because the

estimated versions of A(φ0), B(φ0) and P(φ0) will not coincide unless we evaluate them at

η = 0 using their theoretical expressions. In this regard, it is worth remembering that un-

der normality, the unrestricted ML estimator η̂T of the reciprocal of degrees of freedom of a

multivariate Student t will be 0 approximately half the time only (see Fiorentini, Sentana and

Calzolari (2003)).

There are other non-Gaussian distributions for which some but not all of the differences will

be 0. In particular,

Proposition 11 If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with −2/(N + 2) < κ0 <∞, and Ws(φ0) 6=
0, then S̊(φ0) = Iθθ(φ0) only if ςt|It−1;φ0 is i.i.d. Gamma with mean N and variance N [(N +
2)κ0 + 2].

This proposition, which generalises the univariate results in Gonzalez-Rivera (1997), implies

that the SSP estimator θ̊T can be fully effi cient only if ε∗t has a conditional Kotz distribution (see

Kotz (1975)). This distribution nests the multivariate normal for κ = 0, but it can also be either

platykurtic (κ < 0) or leptokurtic (κ > 0). Although such a nesting provides an analytically

convenient generalisation of the multivariate normal that gives rise to some interesting theoretical

results,9 the density of a leptokurtic Kotz distribution has a pole at 0, which is a potential

drawback from an empirical point of view.

For practical purposes, Proposition 11 implies that DWH tests based on
√
T [θ̂T − θ̂T (η̄)],

√
T (̊θT − θ̂T ) and

√
T [̊θT − θ̂T (η̄)] might also become numerically unstable when the true dis-

tribution is a non-Gaussian Kotz. Although the problem would be easy to detect in comparing

the restricted and unrestricted ML estimators if one uses the theoretical expressions for comput-

ing Iθθ(φ) and P(φ), the same is not necessarily true in comparisons involving the spherically

symmetric estimator, unless one exploits the properties of the Kotz distribution in estimating

S̊(φ0) on the basis of (A27).

Proposition 11 provides a suffi cient condition for the information matrix to be block diagonal

between the mean and variance parameters θ on the one hand and the shape parameters η on

the other. However, it is not necessary:

Proposition 12 If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) 0, and Ws(φ0) 6= 0, then P(φ0) = Iθθ(φ0)
only if msr(η0) = 0.

9For example, we show in the proof of Proposition 10 that Iθθ(φ) = S̈(φ) in univariate models with Kotz
innovations in which the conditional mean is correctly specified to be 0. In turn, Francq and Zakoïan (2010) show
that Iθθ(φ) = C(φ) in those models under exactly the same assumptions.
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In this case, the DWH test considered in Proposition 7 will have no power to detect mis-

specification because it will converge to 0 asymptotically. This is confirmed by the fact that its

non-centrality parameter in (8) will be identically 0 in those circumstances. Once again, though,

numerical problems might arise if the estimated value of Iθη is not identically 0.

Finally, Proposition 5 in Fiorentini and Sentana (2018) illustrates a very different reason for

the DWH test considered in Proposition 6 to be degenerate. Specifically, they show that if one

uses a Student t log-likelihood function for estimating θ but the true distribution is such that

κ < 0, then
√
T (θ̃T − θ̂T ) = op(1).10

There are also other more subtle but far more pervasive situations in which some, but not

all elements of θ can be estimated as effi ciently as if η0 were known (see also Lange, Little

and Taylor (1989)), a fact that would be described in the semiparametric literature as partial

adaptivity. Effectively, this requires that some elements of sθt(φ0) be orthogonal to the relevant

tangent set after partialling out the effects of the remaining elements of sθt(φ0) by regressing the

former on the latter. Partial adaptivity, though, often depends on the model parametrisation.

The following reparametrisation provides a general suffi cient condition in multivariate dynamic

models under sphericity:

Reparametrisation 1 A homeomorphic transformation rs(.) = [r′sc(.), r
′
si(.)]

′ of the mean and
variance parameters θ into an alternative set ϑ = (ϑ′c, ϑ

′
i)
′, where ϑi is a positive scalar, and

rs(θ) is twice continuously differentiable with rank [∂r′s (θ) /∂θ] = p in a neighbourhood of θ0,
such that

µt(θ) = µt(ϑc),
Σt(θ) = ϑiΣ

◦
t (ϑc)

}
∀t. (10)

Expression (10) simply requires that one can construct pseudo-standardised residuals

ε◦t (ϑc) = Σ
◦−1/2
t (ϑc)[yt − µ◦t (ϑc)]

which are i.i.d. s(0, ϑiIN ,η), where ϑi is a global scale parameter, a condition satisfied by most

static and dynamic models.

Such a reparametrisation is not unique, since we can always multiply the overall scale pa-

rameter ϑi by some scalar positive smooth function of ϑc, k(ϑc) say, and divide Σ◦t (ϑc) by the

same function without violating (10) or redefining ϑc. Although it is by no means essential, a

particularly convenient normalisation would be such that

E[ln |Σ◦t (ϑc)||φ0] = k ∀ϑc. (11)

For the examples in section 3.1, reparametrisation 1 is as follows:

10As Fiorentini and Sentana (2018) explain, this result is valid not only for the Student t, but also for other
log-likelihood functions in which the shape parameters are inequality restricted.
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Univariate GARCH-M: We can write model (2) as

rMt = µt(ϑc) + ϑ
1/2
i σ◦t (ϑc)ε

∗
t ,

µt(ϑc) = δσ◦t (ϑc),
σ◦2t (ϑ) = 1 + γr2Mt−1 + βσ◦2t−1(ϑc).


The transformed conditional mean and variance parameters are ϑ′c = (δ, γ, β) and ϑi, whose

relationship to the original ones is τ = ϑ
−1/2
i δ, α = ϑiγ and ω = ϑi.

Imposing (11) in this model is tricky because we need to obtain

E
{

ln
[
(1− β)−1 + γ

∑∞

j=0
r2Mt−1−j

]}
as a function of ϑc, which is probably best computed by numerically quadrature.

Multivariate market model: We can write model (3) as

rt = a + brMt + ϑiΩ
◦1/2($)ε∗t .

The transformed conditional mean and variance parameters are ϑ′c = (a′,b′,$′) and ϑi, where

$ contains N(N + 1)/2− 1 elements. Following Amengual and Sentana (2010), we can impose

(11) with ϑi = |Ω|1/N and Ω◦($) = Ω/|Ω|1/N so as to ensure that |Ω◦($)| = 1 (see Appendix

A.5 in Fiorentini and Sentana (2018) for explicit parametrisations that achieve this goal).

The next proposition generalises and extends earlier results by Bickel (1982), Linton (1993),

Drost, Klaassen and Werker (1997) and Hodgson and Vorkink (2003):

Proposition 13 1. If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) and (10) holds, then:

(a) the spherically symmetric semiparametric estimator of ϑc is ϑi-adaptive,

(b) If ϑ̊T denotes the iterated spherically symmetric semiparametric estimator of ϑ, then
ϑ̊iT = ϑiT (̊ϑcT ), where

ϑiT (ϑc) =
1

N

1

T

T∑
t=1

ς◦t (ϑc), (12)

ς◦t (ϑc) = [yt − µt(ϑc)]′Σ◦−1t (ϑc)[yt − µt(ϑc)], (13)

(c) rank
[
S̊(φ0)− C−1(φ0)

]
≤ dim(ϑc) = p− 1.

2. If in addition condition (11) holds at ϑc0, then:

(a) Iϑϑ(φ0),P(φ0), S̊(φ0), S̈(φ0) and C(φ0) are block-diagonal between ϑc and ϑi.

(b)
√
T (̊ϑiT − ϑ̃iT ) = op(1), where ϑ̃

′
T = (ϑ̃

′
cT , ϑ̃iT ) is the Gaussian PMLE of ϑ, with

ϑ̃iT = ϑiT (ϑ̃cT ).

This proposition provides a saddle point characterisation of the asymptotic effi ciency of

the spherically symmetric semiparametric estimator of ϑ, in the sense that in principle it can
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estimate p−1 parameters as effi ciently as if we fully knew the true conditional distribution of the

data, including its shape parameters, while for the remaining scalar parameter it only achieves

the effi ciency of the Gaussian PMLE.

The main implication of Proposition 13 for our proposed tests is that while the maximum

rank of the asymptotic variance of
√
T (ϑ̃T − ϑ̊T ) will be p − 1, the asymptotic variances of

√
T [ϑ̂T − ϑ̂T (η̄)],

√
T (̊ϑT − ϑ̂T ) and indeed

√
T [̊ϑT − ϑ̂T (η̄)] will have rank one at most. In fact,

we can show that once we exploit the rank deficiency of the relevant matrices in the calculation of

generalised inverses, the DWH tests based on
√
T (ϑ̃cT − ϑ̊cT ),

√
T [ϑ̂iT − ϑ̂iT (η̄)],

√
T (̊ϑiT − ϑ̂iT )

and
√
T [̊ϑiT − ϑ̂iT (η̄)] coincide with the analogous tests for the entire vector ϑ, which in turn

are asymptotically equivalent to tests that look at the original parameters θ.

It is also possible to find an analogous result for the unrestricted semiparametric estimator,

but at the cost of restricting further the set of parameters that can be estimated in a partially

adaptive manner:

Reparametrisation 2 A homeomorphic transformation rg(.) = [r′gc(.), r
′
gim(.), r′gic(.)]

′ of the
mean and variance parameters θ into an alternative set ψ = (ψ′c,ψ

′
im,ψ

′
ic, )
′, where ψim is N×1,

ψic = vech(Ψic), Ψic is an unrestricted positive definite symmetric matrix of order N and rg(θ)
is twice continuously differentiable in a neighbourhood of θ0 with rank

[
∂r′g (θ0) /∂θ

]
= p, such

that
µt(θ) = µ�t (ψc) + Σ

�1/2
t (ψc)ψim

Σt(θ) = Σ
�1/2
t (ψc)ΨicΣ

�1/2′
t (ψc)

}
∀t. (14)

This parametrisations simply requires the pseudo-standardised residuals

ε�t (ψc) = Σ
�−1/2
t (ψc)[yt − µ�t (ψc)] (15)

to be i.i.d. with mean vector ψim and covariance matrix Ψic.

Again, (14) is not unique, since it continues to hold with the same ψc if we replace Ψic by

K−1/2(ψc)ΨicK
−1/2′(ψc) and ψim by K−1/2(ψc)ψim− l(ψc), and adjust µ

�
t (ψc) and Σ

�1/2
t (ψc)

accordingly, where l(ψc) and K(ψc) are a N × 1 vector and a N ×N positive definite matrix of

smooth functions of ψc, respectively. A particularly convenient normalisation would be:

E
[
∂µ�′t (ψc)/∂ψc ·Σ

�−1/2
t (ψc)

∣∣∣φ0] = 0

E
{
∂vec[Σ

�1/2
t (ψc)]/∂ψc ·

[
IN ⊗Σ

�−1/2′
t (ψc)

]∣∣∣φ0} = 0

 . (16)

For the examples in section 3.1, reparametrisation 2 is as follows:

Univariate GARCH-M: We can write model (2) as

rMt = ψimµ
�
t (ψc) + ψ

1/2
ic σ�t (ψc)ε

∗
t ,

µ�t (ψc) = σ�t (ψc),
σ�t (ψc) = 1 + γr2Mt−1 + βσ�2t−1(ϑc).


19



The new conditional mean and variance parameters are ψ′c = (γ, β), ψim and ψic, whose rela-

tionship to the original ones is τ = ψ
1/2
ic ψim, α = ψicγ and ω = ψic.

Multivariate market model: We can write model (3) as

rt = ψim + brMt + Ψ
1/2
ic ε

∗
t .

The new conditional mean and variance parameters are ψc = b, ψim and ψic = vech(Ψic).

The next proposition generalises and extends Theorems 3.1 in Drost and Klaassen (1997)

and 3.2 in Sun and Stengos (2006):

Proposition 14 1. If ε∗t |It−1;θ,% is i.i.d. D(0, IN ,%), and (14) holds, then

(a) the semiparametric estimator of ψc, ψ̈cT , is ψi-adaptive, where ψi = (ψ′im,ψ
′
ic)
′.

(b) If ψ̈T denotes the iterated semiparametric estimator of ψ, then ψ̈imT = ψimT (ψ̈cT )
and ψ̈icT = ψicT (ψ̈cT ), where

ψimT (ψc) =
1

T

T∑
t=1

ε�t (ψc), (17)

ψicT (ψc) = vech

{
1

T

T∑
t=1

[ε�t (ψc)−ψimT (ψc)] [ε�t (ψc)−ψimT (ψc)]
′
}
. (18)

(c) rank
[
S̈(φ0)− C−1(φ0)

]
≤ dim(ψc) = p−N(N + 3)/2.

2. If in addition condition (16) holds at ψc0, then

(a) Iψψ(φ0),P(φ0), S̈(φ0) and C(φ0) are block diagonal between ψc and ψi.

(b)
√
T (ψ̃iT − ψ̈iT ) = op(1), where ψ̃

′
T = (ψ̃

′
cT , ψ̃

′
iT ) is the Gaussian PMLE of ψ, with

ψ̃imT = ψimT (ψ̃
′
cT ) and ψ̃icT = ψicT (ψ̃

′
cT ).

This proposition provides a saddle point characterisation of the asymptotic effi ciency of the

semiparametric estimator of θ, in the sense that in principle it can estimate p − N(N + 3)/2

parameters as effi ciently as if we fully knew the true conditional distribution of the data, while

for the remaining parameters it only achieves the effi ciency of the Gaussian PMLE.

The main implication of Proposition 14 for our purposes is that while the DWH test based

on
√
T (ψ̃T − ψ̈T ) will have a maximum of p−N(N + 3)/2 degrees of freedom, those based on

√
T [ψ̂T −ψ̂T (η̄)],

√
T (ψ̈T −ψ̂T ) and

√
T [ψ̈T −ψ̂T (η̄)] will have N(N+3)/2 at most. As before,

we can show that once we exploit the rank deficiency of the relevant matrices in the calculation

of generalised inverses, DWH tests based on
√
T (ψ̃cT −ψ̈cT ),

√
T [ψ̂iT −ψ̂iT (η̄)],

√
T (ψ̈iT −ψ̂iT )

and
√
T [ψ̈iT − ψ̂iT (η̄)] are identical to the analogous tests based on the entire vector ψ, which

in turn are asymptotically equivalent to tests that look at the original parameters θ.
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3.7 Maximising power

As we discussed in section 2.1, the local power of a pairwise DWH test depends on the

difference in the pseudo-true values of the parameters under misspecification relative to the

difference between the covariance matrices under the null. But in Fiorentini and Sentana (2018)

we show that the parameters that are effi ciently estimated by the semiparametric procedures

continue to be consistently estimated by the parametric ML estimators under distributional

misspecification. In contrast, the remaining parameters, which the semiparametric procedures

can only estimate with the effi ciency of the Gaussian PML estimator, will be inconsistently

estimated by distributionally misspecified parametric procedures.

Specifically, Proposition 1 in Fiorentini and Sentana (2018) states that in the situation

discussed in Proposition 13, ϑc will be consistently estimated when the true distribution of the

innovations is spherical but different from the one assumed for estimation purposes, while ϑi

will be inconsistently estimated.11 Therefore, we will maximise power in those circumstances if

we base our DWH tests on the overall scale parameter ϑi exclusively.

Similarly, Proposition 3 in Fiorentini and Sentana (2018) states that in the context of Propo-

sition 14, ψc will be consistently estimated when the true distribution of the innovations is i.i.d.

but different from the one assumed for estimation purposes, while ψim and ψic will be inconsis-

tently estimated.12 Consequently, we will maximise power in that case if we base our DWH tests

on the mean and covariance parameters of the pseudo standardised residuals ε�t (ψc) in (15).

4 Monte Carlo evidence

In this section, we assess the finite sample size and power of our proposed DWH tests in

the univariate and multivariate examples that we have been considering by means of extensive

Monte Carlo simulation exercises. In both cases, we evaluate the three asymptotically equivalent

versions of the tests in Propositions 8 and 9. To simplify the presentation, we denote the Wald-

style test that compares parameter estimators by DWH1, the test based on the score of the

more effi cient estimator evaluated at the less effi cient one by DWH2 and, finally, the second

score-based version of the test by DWH3.

Univariate GARCH-M: We consider first the univariate Garch-M model (2) analysed in

Drost and Klaassen (1997). As we have already seen, this model can also be written in terms

of ϑc = (β, γ, δ)′ and ϑi, where γ = α/ω, δ = τω1/2 and ϑi = ω (reparametrisation 1) or

11See Figure 1 in Fiorentini and Sentana (2018) for the inconsistency in estimating ϑi in model (3) under
distributional misspecification.
12See Figures 2A-B in Fiorentini and Sentana (2018) for the inconsistencies in estimating ψim and ψic in model

(2) under distributional misspecification.
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ψc = (β, γ)′, ψim and ψic, where γ = α/ω, ψim = τω1/2 and ψic = ω (reparametrisation 2).

Random draws of ε∗t are obtained from four different distributions: two standardised Student

t with ν = 12 and ν = 8 degrees of freedom, a standardised symmetric fourth-order Gram-

Charlier expansion with an excess kurtosis of 3.2, and another standardised Gram-Charlier

expansion with skewness and excess kurtosis coeffi cients equal to -0.9 and 3.2, respectively. For

a given distribution, random draws are obtained with the NAG library G05DDF and G05FFF

functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate

20,000 samples of length 2,000 (plus another 100 for initialisation) with β = 0.85, α = 0.1,

τ = 0.05 and ω = 1, which means that δ = ψim = 0.05, γ = 0.1 and ϑi = ψic = 1. These

parameter values ensure the strict stationarity of the observed process. Under the null, the

large number of Monte Carlo replications implies that the 95% percent confidence bands for

the empirical rejection percentages at the conventional 1%, 5% and 10% significance levels are

(0.86, 1.14), (4.70, 5.30) and (9.58, 10.42), respectively.

We estimate the model parameters three times: first by Gaussian PML and then by max-

imising the log-likelihood function of the Student t distribution with and without fixing the

degrees of freedom parameter to 12. We initialise the conditional variance processes by setting

σ21 to ω(1 + γr2M )/(1−β), where r2M = 1
T

∑T
1 r

2
Mt provides an estimate of the second moment of

rMt. The Gaussian, unrestricted Student t and restricted Student t log-likelihood functions are

maximised with a quasi-Newton algorithm implemented by means of the NAG library E04LBF

routine with the analytical expressions for the score vector and conditional information matrix

in Fiorentini, Sentana and Calzolari (2003).

Table 1 displays the Monte Carlo medians and interquartile ranges of the estimators. The

results broadly confirm the theoretical predictions in terms of bias and relative effi ciency. It

is worth noticing that the bias of the restricted (unrestricted) Student t maximum likelihood

estimators of the scale parameter is negative (positive) when the log-likelihood is misspecified,

which suggests that our tests will have good power for pairwise comparisons involving this para-

meter, at least for the distributions considered in the exercise. In turn, the location parameter

estimators are biased only when the true distribution is asymmetric.

Table 2 contains the empirical rejections rates of the three pairwise tests in Propositions 8

and 9, together with the corresponding threesome tests. When comparing the restricted and

unrestricted ML estimators, we also compute the LR test of the null hypothesisH0 : η = η̄. As we

mentioned in section 3.4, the asymptotically equivalent LM test of this hypothesis is numerically

identical to the corresponding DWH3 test because dim(η) = 1. Hence, we obtain exactly the

same statistic whether we compare the entire parameter vector θ or the scale parameter ϑi only.
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When the true distribution of the standardised innovations is a Student t with 12 degrees of

freedom, the empirical rejections rates of all tests should be equal to their nominal sizes. This

is in fact what we found except for the DWH1 and DWH2 tests that compare the restricted

and unrestricted ML estimators and scores, which are rather liberal and reject the null roughly

10% more often than expected. A closer inspection of those cases revealed that even though

the small sample variance of both estimators is well approximated by the variance of their

asymptotic distributions, the Monte Carlo distribution of their difference is highly leptokurtic,

so the resulting critical values are larger than those expected under normality. In contrast, the

DWH3 test, which in this case is invariant to reparametrisation,13 seems to work very well.

When the true distribution is a standardised Student t with ν = 8, only the tests involving

the restricted ML estimators that fix the number of degrees of freedom to 12 should show some

power. And indeed, this is what the second panel of Table 2 shows, with DWH3 having the best

raw (i.e. non-size adjusted) power, and the LR ranking second. In turn, the threesome tests

suffer a slight loss power relative to the pairwise tests that compare the two ML estimators.

Finally, the empirical rejection rates of the tests that compare the unrestricted ML and PML

estimators are close to their significance levels.

For the symmetric and asymmetric standardised Gram-Charlier expansions, most tests show

power close or equal to one. The only exceptions are the DWH1 and DWH2 versions of the tests

comparing the unrestricted ML and PML estimators. Overall, the DWH3 version our proposed

tests seems to outperform the two other versions.

In addition, we find almost no correlation between the DWH tests that compare the re-

stricted and unrestricted ML estimators and the one that compare the Gaussian PMLE with

the unrestricted MLE, as expected from Propositions 4 and 5. This confirms that the distrib-

ution of the simultaneous test can be well approximated by the distribution of the sum of the

two pairwise DWH tests.

Multivariate market model: In our second exercise, we consider the multivariate market

model (3). In this case, we can write it in terms of ϑ′c = (a′,b′,$′) and ϑi, with ϑi = |Ω|1/N and

Ω◦($) = Ω/|Ω|1/N (reparametrisation 1) or ψc = b, ψim = a and ψic = vech(Ψic) = vech(Ω)

(reparametrisation 2).

We consider four standardised multivariate distributions for ε∗t , including two multivariate

Student t with ν = 12 and ν = 8 degrees of freedom, a discrete scale mixture of two normals

(DSMN) with mixing probability 0.2 and variance ratio 10, and an asymmetric, location-scale

13Proposition 2 implies that the score tests will be numerically invariant to reparametrisations if the Jacobian
used to recompute the conditional expected values of the Hessian matrices At and It and the conditional covariance
matrix of the scores Bt are evaluated at the same parameter estimators as the Jacobian involved in recomputing
the scores with respect to the transformed parameters by means of the chain rule.
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mixture (DLSMN) with the same parameters but a difference in the mean vectors of the two

components δ = .5`N , where `N is a vector of N ones (see Amengual and Sentana (2010)

and appendix A.2, respectively, for further details). For each distribution, we generate 20,000

samples of dimension N = 3 and length T = 500 with a = .112`3, b = `3 and Ω = D1/2RD1/2,

with D = 3.136 I3 and the off diagonal terms of the correlation matrix R equal to 0.3. Finally,

in each replication we generate the strongly exogenous regressor rMt as an i.i.d. normal with an

annual mean return of 7% and standard deviation of 16%.

Table 3 displays the Monte Carlo medians and interquartile ranges of the estimators for

several representative parameters in addition to the global scale parameter ϑi = |Ω|1/N . Specif-

ically, we exploit the exchangeability of our design to pool the results of all the elements of

the vectors of intercepts a and slopes b, and the “vectors” of residual covariance parameters

vecd(Ω◦), vecl(Ω◦), vecd(Ω) and vecl(Ω). Once again, the results are in line with the theo-

retical predictions. Moreover, the biases of the restricted and unrestricted Student t maximum

likelihood estimators of the global scale parameter have opposite signs, as in the univariate case.

Finally, the location parameters are only biased in the asymmetric distribution simulations.

Therefore, we expect tests that involve the intercepts to increase power in that case, but to

result in a waste of degrees of freedom otherwise.

Table 4 show the results of the size and power assessment of our proposed DWH tests. As

in the previous example, the DWH3 version of the test appears to be the best one here too,

although not uniformly so. When we compare restricted and unrestricted MLE, all versions

of the DWH test perform very well both in terms of size and power despite the fact that the

number of parameters involved is much higher now (three intercepts, three variances and three

covariances). On the other hand, the tests that compare PMLE and unrestricted MLE show

some small sample size distortions, which nevertheless disappear in simulations with larger

sample lengths not reported here.

When the distribution is asymmetric, the DWH2 versions of the test that focus on the scale

parameter are powerful but not extremely so, the rationale being that they are designed to

detect departures from the Student t distribution within the spherical family. In contrast, when

we simultaneously compare a and vech(Ω), power becomes virtually 1 at all significance levels.

Once again, we find little correlation between the statistics that compare the restricted and

unrestricted ML estimators and the ones that compare the Gaussian PMLE with the unrestricted

MLE, as expected from Propositions 4 and 5. This confirms that we can safely approximate the

distribution of the simultaneous test by the distribution of the sum of the two pairwise tests.
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5 Conclusions

We propose an extension of the Durbin-Wu-Hausman specification tests which simultane-

ously compares three or more likelihood-based estimators of the parameters of general multivari-

ate dynamic models with non-zero conditional means and possibly time-varying variances and

covariances. We also explore several important issues related to the practical implementation of

these tests, including the different versions, their numerical invariance to reparametrisations and

their application to subsets of parameters. By explicitly considering a multivariate framework

with non-zero conditional means we are able to cover many empirically relevant applications be-

yond univariate Arch models. In particular, our results apply to conditionally homoskedastic,

dynamic linear models such as Vars or multivariate regressions, which remain the workhorse in

empirical macroeconomics and asset pricing contexts.

We focus most of our discussion on the comparison of the three estimators offered by the

dominant commercial econometric packages, namely, the Gaussian PML estimator, as well as

ML estimators based on a non-Gaussian distribution, which either jointly estimate the additional

shape parameters or fix them to some plausible values. Nevertheless, we also consider two semi-

parametric estimators, one of which imposes the assumption that the standardised innovations

follow a spherical distribution. For that reason, in the main text we particularise our results to

log likelihood functions for spherical distributions, postponing the general case to Appendix B.

But to design powerful and reliable tests, we first need to study the consistency and effi ciency

properties of the different estimators involved. In particular, we need to figure out the rank of

the difference between the corresponding asymptotic covariance matrices under the null of cor-

rect specification to select the right number of degrees of freedom. Consequently, we discuss

several situations in which some of the estimators are equally effi cient for some of the parame-

ters. More specifically, we show that in the spherical case the SSP estimator is adaptive for all

but one global scale parameter in an appropriate reparametrisation of the model. We also show

that when the conditional distribution is not only leptokurtic or platykurtic but also potentially

asymmetric, the general SP estimator is adaptive for a more restricted set of parameters in

an alternative reparametrisation, which covers the slope coeffi cients of many conditionally ho-

moskedastic multivariate regression models, including Vars. Importantly, we prove that both

semiparametric estimators share a saddle point effi ciency property: they are as ineffi cient as the

Gaussian PMLE for the parameters that they cannot estimate adaptively.

We also take into account that some parameters remain consistently estimated under the

alternative of incorrect distributional specification. Otherwise our tests will use up degrees of

freedom without providing any power gains. In this regard, the results of Fiorentini and Sentana
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(2018) imply that the parameters that are effi ciently estimated by the semiparametric proce-

dures continue to be consistently estimated by the parametric estimators under distributional

misspecification. In contrast, the remaining parameters, which the semiparametric procedures

can only estimate with the effi ciency of the Gaussian PML estimator, will be inconsistently

estimated by distributionally misspecified parametric procedures. For that reason, we focus our

tests on the comparison of the estimators of this second group of parameters, for which the usual

effi ciency - consistency trade off is of first-order importance.

Although our proposed tests apply to any multivariate conditionally heteroskedastic dynamic

regression model, in our Monte Carlo experiments we study in detail two empirically relevant

examples: a univariate Garch-M and a multivariate market model. We find that while many

of our proposed tests work quite well, both in terms of size and power, some versions show

noticeable size distortions in small samples. Since we have a fully specified model under the null,

parametric bootstrap versions might be worth exploring. Nevertheless, we find very accurate

sizes for one of the score versions of the test that compares the restricted and unrestricted

ML estimators, which we show is not only invariant to reparametrisations but also numerically

identical to the LM test of the null hypothesis that the shape parameter chosen by the researcher

is correct. In addition, we find an almost null correlation between the statistics that compare

the restricted and unrestricted ML estimators and the ones that compare the Gaussian PMLE

with the unrestricted MLE, which confirms that the distribution of our proposed simultaneous

tests can be approximated by the distribution of the sum of the two pairwise DWH tests.

An interesting extension of our Monte Carlo analysis would look at the power of our tests in

models with time-varying shape parameters (see Fiorentini and Sentana (2010) for some limited

results) or misspecified first and second moment dynamics.

Perhaps more interestingly, one could extend our theoretical results to a broad class of

models for which a pseudo log-likelihood function belonging to the linear exponential family

leads to consistent estimators of the conditional mean parameters (see Gouriéroux, Monfort and

Trognon (1984a)). For example, one could use a DWH test to assess the correct distributional

specification of Lanne’s (2006) multiplicative error model for realised volatility by comparing his

ML estimator based on a two-component Gamma mixture with the Gamma-based consistent

pseudo ML estimators in Engle and Gallo (2006). Similarly, one could also use the same approach

to test the correct specification of the count model for patents in Hausman, Hall and Griliches

(1984) by comparing their ML estimator, which assumes a Poisson model with unobserved

gamma heterogeneity, with the consistent pseudo ML estimators in Gouriéroux. Monfort and

Trognon (1984b)). All these extensions constitute interesting avenues for further research.
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Appendix

A Proofs and auxiliary results

A.1 Some useful results on spherical distributions

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,

we can standardise ε◦t by setting E(e2t ) = N , so that E(ε◦t ) = 0, V (ε◦t ) = IN . Specifically, if ε◦t

is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
√

(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4t ) < ∞, then the coeffi cient of multivariate excess kurtosis,

κ0, which is given by E(e4t )/[N(N + 2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε◦t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
′ ⊗ ε◦t ) = 0, (A1)

E(ε◦tε
◦
t
′⊗ε◦tε◦t ′) =E[vec(ε◦tε

◦
t
′)vec′(ε◦tε

◦
t )] = (κ0+1)[(IN2 +KNN )+vec (IN ) vec′ (IN )]. (A2)

A.2 Standardised two component mixtures of multivariate normals

Consider the following mixture of two multivariate normals

εt ∼
{
N(µ1,Σ1) with probability λ,
N(µ2,Σ2) with probability 1− λ.

Let dt denote a Bernoulli variable which takes the value 1 with probability λ and 0 with

probability 1 − λ. As is well known, the unconditional mean vector and covariance matrix of

the observed variables are:

E(εt) = E[E(εt|dt)] = λµ1 + (1− λ)µ2,

V (εt) = V [E(εt|dt)] + E[V (εt|dt)] = λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2.
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Therefore, this random vector will be standardised if and only if

λµ1 + (1− λ)µ2 = 0,

λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2 = I.

Let us initially assume that µ1 = µ2 = 0 but that the mixture is not degenerate, so that

λ 6= 0, 1. Let Σ1LΣ′1L and Σ2LΣ′2L denote the Cholesky decompositions of the covariance

matrices of the two components. Then, we can write

λΣ1 + (1− λ)Σ2 = Σ1L[λIN + (1− λ)Σ−11LΣ2LΣ′2LΣ−1′1L ]Σ′1L = Σ1L(λIN + KLK′L)Σ′1L,

where KL =
√

1− λΣ−11LΣ2L remains a lower triangular matrix. Given that IN = e1e1 +

. . . + eNeN , where ei is the ith vector of the canonical basis, the Cholesky decomposition of

λIN + KLK′L, say JLJ′L, can be computed by means of N rank-one updates that sequentially

add
√
λei
√
λe′i for i = 1, . . . , N . The special form of those vectors can be effi ciently combined

with the usual rank-one update algorithms to speed up this process (see e.g. Sentana (1999) and

the references therein). In any case, the elements of JL will be functions of λ and the N(N+1)/2

elements in KL. If we then choose Σ1L = J−1L , we will guarantee that λΣ1 + (1 − λ)Σ2 = IN .

Therefore, we can achieve a standardised two-component mixture of two multivariate normals

with 0 means by drawing with probability λ one random variable from a distribution with

covariance matrix J−1′L J−1L , and with probability 1−λ from another distribution with covariance

matrix (1− λ)−1KLK′L.

Let us now turn to the case in which the means of the components are no longer 0. The

zero unconditional mean condition is equivalent to µ1 = (1 − λ)δ and µ2 = −λδ, so that δ

measures the difference between the two means. Thus, the unconditional covariance matrix will

be λ(1 − λ)δδ′ + IN after imposing the restrictions on Σ1 and Σ2 in the previous paragraph.

Once again, the Cholesky decomposition of this matrix is very easy to obtain because it can be

regarded as a positive rank-one update of the identity matrix, whose decomposition is trivial.

Thus, we can parametrise a standardised mixture of two multivariate normals, which usually

involves 2N mean parameters, 2N(N+1)/2 covariance parameters and one mixing parameter, in

terms of the N mean difference parameters in δ, the N(N +1)/2 relative variance parameters in

KL and the mixing parameter λ, the remaining N mean parameters and N(N +1)/2 covariance

ones freed up to target any unconditional mean vector and covariance matrix.

Mencía and Sentana (2009) explain how to standardise Bernoulli location-scale mixtures

of normals, which are a special case of the two component mixtures we have just discussed

in which Σ2 = κΣ1. Straightforward algebra confirms that the standardisation procedure

described above simplifies to the one they provide in their Proposition 1.
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A.3 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(η) + g(ςt,η)] denote the assumed conditional density of ε∗t given It−1 and the

shape parameters, where c(η) corresponds to the constant of integration, g(ςt,η) to its kernel

and ςt = ε∗′t ε
∗
t . Ignoring initial conditions, the log-likelihood function of a sample of size T for

those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ), where

lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], dt(θ) = ln |Σ−1/2t (θ)| is the Jacobian, ςt(θ) = ε∗′t (θ)ε∗t (θ),

ε∗t (θ) = Σ
−1/2
t (θ)εt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), Σt(θ), c(η) and

g [ςt(θ),η] are differentiable, then

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (A3)

while

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (A4)

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN ),

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
[
ε∗t (θ)ε∗′t (θ)

]
}, (A5)

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ),

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′t (θ)⊗Σ

−1/2′
t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (A6)

est(θ,η) = vec
{
δ[ςt(θ),η] · ε∗t (θ)ε∗′t (θ)−IN

}
, (A7)

and

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (A8)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation

purposes. Importantly, while both Zdt(θ) and edt(φ) depend on the specific choice of square

root matrix Σ
1/2
t (θ), sθt(φ) does not, a property that inherits from lt(φ). As we shall see in

Appendix B, this result is not generally true for non-spherical distributions.

Obviously, sθt(θ,0) reduces to the multivariate normal expression in Bollerslev andWooldridge

(1992), in which case:

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)−IN ]

}
.
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Assuming further twice differentiability of the different functions involved, we will have that

the Hessian function ht(φ) = ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′ will be

hθθt(φ) =
∂2dt(θ)

∂θ∂θ′
+
∂2g [ςt(θ), η]

(∂ς)2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′
+
∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ′
, (A9)

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η′, (A10)

hηηt(φ) = ∂2c(η)/∂η∂η′ + ∂2g [ςt(θ),η] /∂η∂η′,

where

∂2dt(θ)/∂θ∂θ′=2Zst(θ)Z′st(θ)-
1

2

{
vec′

[
Σ−1t (θ)

]
⊗ Ip

}
∂vec

{
∂vec′ [Σt(θ)] /∂θ

}
/∂θ′, (A11)

∂2ςt(θ)/∂θ∂θ′ = 2Zlt(θ)Z′lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗′t (θ)]Z′st(θ) + 4Zlt(θ)[ε∗′t (θ)⊗ IN ]Z′st(θ)

+4Zst(θ)[ε∗t (θ)⊗ IN ]Z′lt(θ)− 2[ε∗′t (θ)Σ
−1/2′
t (θ)⊗Ip]∂vec[∂µ

′
t(θ)/∂θ]∂θ′

−{vec′[Σ−1/2t (θ)ε∗t (θ)ε∗′t (θ)Σ
−1/2′
t (θ)]⊗ Ip}∂vec{∂vec′[Σt(θ)]/∂θ}/∂θ′.

Note that ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ′ and ∂2ςt(θ)/∂θ∂θ′ depend on the dynamic model specifica-

tion, while ∂2g(ς, η)/(∂ς)2, ∂2g(ς, η)/∂ς∂η′ and ∂g(ς, η)/∂η∂η′ depend on the specific spherical

distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

expressions for δ(ςt,η), c(η), g(ςt,η) and its derivatives in the multivariate Student t case,

Amengual and Sentana (2010) for the Kotz distribution (see Kotz (1975)) and discrete scale

mixture of normals, and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

A.4 Asymptotic distribution under correct specification

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′dt(φ), ert(φ)]′

evaluated at φ0 follows a vector martingale difference, and therefore, the same is true of the score

vector st(φ). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be
√
T (φ̂T − φ0)→ N

[
0, I−1(φ0)

]
, where I(φ0) =

E[It(φ0)|φ0],

It(φ) = V [st(φ)|It−1;φ] = Zt(θ)M(φ)Z′t(θ) = −E [ht(φ)|It−1;φ] ,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
, (A12)

andM(φ) = V [et(φ)|φ]. In particular, Crowder (1976) requires: (i) φ0 is locally identified and

belongs to the interior of the admissible parameter space, which is a compact subset of Rp+q; (ii)

the Hessian matrix is non-singular and continuous throughout some neighbourhood of φ0; (iii)

there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(φ); and (iv) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+q, where

E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0.
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As for θ̃T (η̄), assuming that η̄ coincides with the true value of this parameter vector, the

same arguments imply that
√
T [θ̃T (η̄) − θ0] → N

[
0, I−1θθ (φ0)

]
, where Iθθ(φ0) is the relevant

block of the information matrix.

Proposition 1 in Fiorentini and Sentana (2007), which generalises Propositions 3 in Lange,

Little and Taylor (1989), 1 in Fiorentini, Sentana and Calzolari (2003) and 5.2 in Hafner and

Rombouts (2007), provides detailed expressions forM(φ). We reproduce it here to facilitate its

comparison to Proposition B5:

Proposition A1 If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

 Mll(η) 0 0
0 Mss(η) Msr(η)
0 M′sr(η) Mrr(η)

 , (A13)

Mll(η) = mll(η)IN , (A14)

Mss(η) = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ), (A15)

Msr(η) = vec(IN )msr(η), (A16)

mll(η) = E
[
δ2(ςt,η)

ςt
N

∣∣∣η] = E

[
2∂δ(ςt,η)

∂ς

ςt
N

+ δ(ςt,η)

∣∣∣∣η] ,
mss(η) =

N

N + 2

{
1 + V

[
δ(ςt,η)

ςt
N

∣∣∣η]} =
N

N + 2
E

[
2∂δ(ςt,η)

∂ς

( ςt
N

)2∣∣∣∣η]+ 1,

msr(η) = E
{[
δ(ςt,η)

ςt
N
− 1
]
e′rt(φ)

∣∣∣φ} = −E
[
ςt
N

∂δ(ςt,η)

∂η′

∣∣∣∣η] .
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t, while the expressions for the Kotz distribution and the DSMN are

given in Amengual and Sentana (2010) (The expression for mss(κ) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (Nκ+ 2)/[(N + 2)κ+ 2]).

As for I(φ0), while it is relatively straightforward to obtain closed-form expressions in con-

ditionally homoskedastic, dynamic linear models such as multivariate regressions or Vars (see

e.g. Amengual and Sentana (2010)), it is virtually impossible to do so in dynamic conditionally

heteroskedastic models, as one has to resort to numerical or Monte Carlo integration methods to

compute the required expected values (see e.g. Engle and Gonzalez-Rivera (1991) and Gonzalez-

Rivera and Drost (1999)). Nevertheless, see Fiorentini and Sentana (2010, 2015) for closed-form

expressions in the context of tests for univariate or multivariate conditional homoskedasticity,

respectively.

A.5 Gaussian pseudo maximum likelihood estimators

An important special case of restricted ML estimator arises when η̄ = 0, in which case θ̃T (0)

coincides with the Gaussian PML estimator θ̃T . Unlike what happens with other values of η̄,

θ̃T remains root-T consistent for θ0 under correct specification of µt(θ) and Σt(θ) even though
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the true conditional distribution of ε∗t |It−1;φ0 is neither Gaussian nor spherical, provided that

it has bounded fourth moments. The proof is based on the fact that in those circumstances,

the pseudo log-likelihood score, sθt(θ,0), is also a vector martingale difference sequence when

evaluated at θ0, a property that inherits from

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)− IN ]

}
.

Importantly, this property is preserved even when the standardised innovations, ε∗t , are not

stochastically independent of It−1.

The asymptotic distribution of the PML estimator of θ is stated in the following result, which

specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i.i.d. innovations

with shape parameters ρ:

Proposition A2 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

1. If ε∗t |It−1;ϕ is i.i.d.D(0, IN ,ρ) with tr[K(ρ)]<∞, where ϕ = (θ′,ρ′)′, then
√
T (θ̃T−θ0)→

N [0, Cθθ(θ0,0;ϕ0)] with

Cθθ(θ,0;ϕ) = A−1θθ (θ,0;ϕ)Bθθ(θ,0;ϕ)A−1θθ (θ,0;ϕ),

Aθθ(θ,0;ϕ) = −E [hθθt(θ,0)|ϕ] = E [Aθθt(θ,0;ϕ)|ϕ] ,

Aθθt(θ,0;ϕ) = −E[hθθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(0)Z′dt(θ),

Bθθ(θ,0;ϕ) = V [sθt(θ,0)|ϕ] = E [Bθθt(θ,0;ϕ)|ϕ] ,

Bθθt(θ,0;ϕ) = V [sθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(ρ)Z′dt(θ),

and

K(ρ) =V [edt(θ,0)| It−1;ϕ] =

[
IN Φ(ρ)

Φ(ρ) Υ(ρ)

]
, (A17)

where
Φ(ρ) = E[ε∗t vec

′(ε∗tε
∗′
t )|ϕ]

Υ(ρ) = E[vec(ε∗tε
∗′
t − IN )vec′(ε∗tε

∗′
t − IN )|ϕ]

depend on the multivariate third and fourth order cumulants of ε∗t , so that Φ(0) = 0 and
Υ(0) = (IN2 + KNN ) if we use ρ = 0 to denote normality.

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,ρ0) with κ0 <∞, then (A17) reduces to

K (κ) =

[
IN 0
0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
, (A18)

which only depends on the true distribution through the population coeffi cient of multivari-
ate excess kurtosis

κ = E(ς2t |η)/[N(N + 2)]− 1. (A19)
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A.6 Semiparametric estimators

As is well known, a single scoring iteration without line searches that started from θ̃T and

some root-T consistent estimator of η, say η̃T , would suffi ce to yield an estimator of φ that

would be asymptotically equivalent to the full-information ML estimator φ̂T , at least up to

terms of order Op(T−1/2). Specifically,(
θ̌T − θ̃T
η̌T − η̃T

)
=

[
Iθθ(φ0) Iθη(φ0)
I ′θη(φ0) Iηη(φ0)

]−1
1

T

T∑
t=1

[
sθt(θ̃T , η̃T )

sηt(θ̃T , η̃T )

]
.

If we use the partitioned inverse formula, then it is easy to see that

θ̌T − θ̃T =
[
Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)

]−1
× 1

T

T∑
t=1

[
sθt(θ̃T , η̃T )− Iθη(φ0)I−1ηη (φ0)sηt(θ̃T , η̃T )

]
= Iθθ(φ0)

1

T

T∑
t=1

sθ|ηt(θ̃T , η̃T ),

where

Iθθ(φ0) = [Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)]
−1

and

sθ|ηt(θ0,η0) = sθt(θ0,%0)− Iθη(φ0)I−1ηη (φ0)sηt(θ0,%0) (A20)

is the residual from the unconditional theoretical regression of the score corresponding to θ,

sθt(φ0), on the score corresponding to η, sηt(φ0). The residual score sθ|ηt(θ0,η0) is sometimes

called the unrestricted parametric effi cient score of θ, and its variance, P(φ0), the marginal

information matrix of θ, or the unrestricted parametric effi ciency bound. In this respect, note

that Iθθ(φ0), which is the inverse of P(φ0), coincides with the first block of I−1(φ0), and

therefore it gives us the asymptotic variance of the feasible ML estimator, θ̂T . In contrast,

I−1θθ (φ0) would give us the asymptotic variance of the restricted ML estimator θ̃T (η̄), provided

of course that we could fix the shape parameters η to their true values.

In the spherically symmetric case, we can easily prove that (A20) and (4) reduce to

sθ|ηt(θ0,η0) = Zdt(θ0)edt(φ0)−Ws(φ0) ·
[
msr(η0)M−1rr (η0)ert(φ0)

]
(A21)

and

P(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

[
msr(η0)M−1rr (η0)m

′
sr(η0)

]
, (A22)

respectively, where

Ws(φ0) = Zd(φ0)[0
′, vec′(IN )]′ = E[Zdt(θ0)|φ0][0′, vec′(IN )]′

=E

{
1

2
∂vec′ [Σt(θ0)] /∂θ·vec[Σ−1t (θ0)]

∣∣∣∣φ0}=E[Wst(θ0)|φ0]=−E {∂dt(θ)/∂θ|φ0} . (A23)
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It is worth noting that the last summand of (A20) coincides with Zd(φ0) times the theoret-

ical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally

orthogonal to edt(θ0,0) from Lemma 3 in Appendix A.7. Such an interpretation immediately

suggests alternative estimators of θ that replace a parametric assumption on the shape of the

distribution of the standardised innovations ε∗t by nonparametric or semiparametric alternatives.

In this section, we shall consider two such estimators.

The first one is fully nonparametric, and therefore replaces the linear span of ert(φ0) by

the so-called unrestricted tangent set, which is the Hilbert space generated by all the time-

invariant functions of ε∗t with bounded second moments that have zero conditional means and

are conditionally orthogonal to edt(θ0,0). The next proposition, which generalises the univariate

results of Gonzalez-Rivera and Drost (1999) and Propositions 3 and 4 in Hafner and Rombouts

(2007) to multivariate models in which the conditional mean vector is not identically zero,

describes the resulting semiparametric effi cient score and the corresponding effi ciency bound:

Proposition A3 If ε∗t |It−1;θ,% is i.i.d. D(0, IN ,%) with density function f(ε∗t ;%), where %
contains some shape parameters and % = 0 denotes normality, such that both its Fisher infor-
mation matrix for location and scale,

Mdd (θ,%) = V [edt(θ,%)|It−1;θ,%]

= V

{[
elt(θ,%)
est(θ,%)

]∣∣∣∣θ,%} = V

{[
−∂ ln f [ε∗t (θ);%]/∂ε∗

−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗′t (θ)}

]∣∣∣∣θ,%}
and the matrix of third and fourth order central moments K (%) are bounded, then the semipara-
metric effi cient score will be given by:

s̈θt(φ) = Zdt(θ,%)edt(θ,%0)− Zd(θ,%)
[
edt(θ,%)−K (0)K+(%)edt(θ,0)

]
, (A24)

while the semiparametric effi ciency bound is

S̈(φ) = Iθθ(θ,%)− Zd(θ,%)
[
Mdd(θ,%)−K (0)K+(%)K (0)

]
Z′d(θ,%), (A25)

where + denotes Moore-Penrose inverses and Iθθ(θ,%) = E [Zdt(θ)Mdd(θ,%)Z′dt(θ)|θ,%].

In practice, however, f(ε∗t ;%) has to be replaced by a nonparametric estimator, which suffers

from the curse of dimensionality. For this reason, Hodgson and Vorkink (2003), Hafner and

Rombouts (2007) and other authors have suggested to limit the admissible distributions to

the class of spherically symmetric ones. As a consequence, the restricted tangent set in this

case becomes the Hilbert space generated by all time-invariant functions of ςt(θ0) with bounded

second moments that have zero conditional means and are conditionally orthogonal to edt(θ0,0).

The next proposition, which amends and extends Proposition 9 in Hafner and Rombouts (2007),

provides the resulting spherically symmetric semiparametric effi cient score and the corresponding

effi ciency bound:
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Proposition A4 When ε∗t |It−1,φ is i.i.d. s(0, IN ,η) with −2/(N + 2) < κ0 < ∞, the spheri-
cally symmetric semiparametric effi cient score is given by:

s̊θt(φ0) =Zdt(θ0)edt(φ0)−Ws(φ0)

{[
δ[ςt(θ0),η0]

ςt(θ0)

N
−1

]
− 2

(N+2)κ0+2

[
ςt(θ0)

N
−1

]}
, (A26)

while the spherically symmetric semiparametric effi ciency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
. (A27)

Once again, edt(φ) has to be replaced in practice by a semiparametric estimate obtained

from the joint density of ε∗t . However, the spherical symmetry assumption allows us to obtain

such an estimate from a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding

in this way the curse of dimensionality.

A.7 Lemmata

Lemma 1 Let θ̂T = arg minθ∈Θ m̄′T (θ)S̃mT m̄T (θ) denote the GMM estimator of θ over the
parameter space Θ based on the average influence functions m̄T (θ) and weighting matrix S̃mT ,
and consider a homeomorphic and continuously differentiable transformation π(.) from the orig-
inal parameters θ to a new set of parameters π, with rank [∂π′ (θ) /∂θ] evaluated at θ̂T equal to
p = dim(θ). If θ̂T ∈ int(Θ), then

θ̂T = θ(π̂T ),

π̂T = π(θ̂T ),

and
m̄′T (π̂T )S̃mT m̄T (π̂T ) = m̄′T (θ̂T )S̃mT m̄T (θ̂T ),

where θ(π) is the inverse mapping such that π[θ(π)] = π, m̄T (π) = m̄T [θ(π)] are the average
influence functions written in terms of π, and π̂T = arg minπ∈Π m̄

′
T (π)S̃mT m̄T (π).

Proof. The interior solution assumption implies that the sample first-order condition charac-

terising θ̂T is
∂m̄′T (θ̂T )

∂θ
S̃mT m̄T (θ̂T ) = 0, (A28)

while the corresponding condition for π̂T will be

∂m̄′T (π̂T )

∂π
S̃mT m̄T (π̂T ) =

∂θ′(π̂T )

∂π

∂m̄′T [θ(π̂T )]

∂θ
S̃mT m̄T [θ(π̂T )] = 0 (A29)

by the chain rule for derivatives. Given that rank
[
∂θ′ (π) /∂π

]
evaluated at π(θ̂T ) is p in

view of our assumption on the rank of the direct Jacobian ∂π′ (θ) /∂θ by virtue of the inverse

mapping theorem, the above equations imply that θ̂T = θ(π̂T ), whence the other two results

trivially follow. �
This result confirms the numerical invariance of the GMM criterion to reparametrisations

when the weighting matrix remains the same, a condition satisfied by the most popular choices,
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including the identity matrix, as well as the unconditional sample variance of the influence

functions and its long-run counterpart when the initial estimators at which those matrices are

evaluated satisfy πi = π(θi). Obviously, in exactly identified contexts, such as the one implicitly

arising in maximum likelihood estimation, in which the usual suffi cient identification condition

rank{E[∂mt (θ0) /∂θ
′]} = p holds, the weighting matrix becomes irrelevant, at least in large

samples, which allows us to replace the first order conditions (A28) and (A29) by m̄T (θ̂T ) = 0,

and m̄T (π̂T ) = 0, respectively. Aside from this change, the results of the lemma continue to

hold.

Lemma 2 Let ς denote a scalar random variable with continuously differentiable density func-
tion h(ς;η) over the possibly infinite domain [a, b], and let m(ς) denote a continuously differen-
tiable function over the same domain such that E [m(ς)|η] = k(η) <∞. Then

E [∂m(ς)/∂ς|η] = −E [m(ς)∂ lnh(ς;η)/∂ς|η] ,

as long as the required expectations are defined and bounded.

Proof. If we differentiate

k(η) = E [m(ς)|η] =

∫ b

a
m(ς)h(ς;η)dς

with respect to ς, we get

0 =

∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)

∂h(ς;η)

∂ς
dς=

∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)h(ς;η)

∂ lnh(ς;η)

∂ς
dς,

as required. �

Lemma 3 If ε∗t |It−1;θ0,%0 is i.i.d. D(0, IN ,%) with density function f(ε∗t ;%), where % = 0
denotes normality, then

E
{

edt(θ,0)
[
e′dt(θ,%), e′rt(θ,%)

]∣∣ It−1;θ,%} = [K (0) |0]. (A30)

Proof. We can use the conditional analogue to the generalised information matrix equality (see

e.g. Newey and McFadden (1994)) to show that

E
{

sθt(θ,0)
[
s′θt(θ,%), s′%t(θ,%)

]∣∣ It−1;θ,%} = −E
{[

∂sθt(θ,0)

∂θ′

∣∣∣∣ ∂sθt(θ,0)

∂%′

]∣∣∣∣ It−1;θ,%}
= −E { [hθθt(θ; 0)|0]| It−1;θ,%} = [At(φ)|0]

irrespective of the conditional distribution of ε∗t , where we have used the fact that sθt(θ,0) does

not vary with % when regarded as the influence function for θ̃T . Then, the required result follows

from the martingale difference nature of both edt(θ0,0) and et(θ0,%0). �
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Proposition 1

Assuming that θ0 belongs to the interior of its admissible parameter space, the estimators

of θ will be characterised with probability tending to 1 by the first order conditions

∂m̄′T (θ̂T )

∂θ
S̃mT m̄T (θ̂T ) = 0, (A31)

∂n̄′T (θ̃T )

∂θ
S̃nT n̄T (θ̃T ) = 0. (A32)

By analogy, θm and θn will be the pseudo-true values of θ implicitly defined by the exactly

identified moment conditions

J ′m(θm)SmE[mt(θm)] = 0

and

J ′n(θn)SnE[nt(θn)] = 0.

Under the null hypothesis that both sets of moments are correctly specified, we will have that

θm = θn = θ0.

The Wald version of the DWH test is based on the difference between θ̃T and θ̂T . Un-

der standard regularity conditions (see e.g. Newey and McFadden (1994)), first-order Taylor

expansions of (A31) and (A32) around θ0 imply that

√
T (θ̂T − θ0) = −

[
J ′m(θ0)SmJm(θ0)

]−1 J ′m(θ0)Sm
√
Tm̄T (θ0) + op(1),

√
T (θ̃T − θ0) = −

[
J ′n(θ0)Sn(θ0)Jn(θ0)

]−1 J ′n(θ0)Sn
√
T n̄T (θ0) + op(1). (A33)

Therefore,

√
T (θ̃T − θ̂T ) =

{
[J ′m(θ0)SmJm(θ0)]

−1 J ′m(θ0)Sm − [J ′n(θ0)SnJn(θ0)]
−1 J ′n(θ0)Sn

}
×
[ √

Tm̄T (θ0)√
T n̄T (θ0)

]
+ op(1). (A34)

On the other hand, the first score version of the DWH test is as a test of the moment

restrictions

J ′m(θn)SmE[mt(θn)] = 0. (A35)

If we knew θn, it would be straightforward to test whether (A35) holds. But since we do not

know it, we replace it by its consistent estimator θ̃T , which satisfies (A32). To account for the

sampling variability that this introduces under the null, we can use again a first-order Taylor

expansion of the sample version of (A35) evaluated at θ̃T around θ0. Given the assumed root-T
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consistency of θ̃T for θ0, we can write this expansion as

J ′m(θ̃T )Sm
√
Tm̄T (θ̃T ) = J ′m(θ0)Sm

√
Tm̄T (θ0) + Jm(θ0)Sm

√
T (θ̃T − θ0) + op(1)

=J ′m(θ0)Sm
√
Tm̄T (θ0)

−[J ′m(θ0)SmJm(θ0)]
[
Jn(θ0)Sn(θ0)J ′n(θ0)

]−1J ′n(θ0)Sn
√
T n̄T (θ0)+op(1) (A36)

in view of (A33).

But a comparison between (A36) and (A34) makes clear that

√
T (θ̃T − θ̂T ) =

[
J ′m(θ0)SmJm(θ0)

]−1
[J ′m(θ0)Sm

√
Tm̄T (θ̃T )] + op(1), (A37)

which confirms that the Wald and score versions of the test are asymptotically equivalent because

rank[J ′n(θ0)SnJn(θ0)] = dim(θ) in first-order identified models. Given that m̄T (θ) and n̄T (θ)

are exchangeable, the second equivalence condition trivially holds too. �

Proposition 2

The Wald-type version of the Hausman test for the original parameters is computed in

practice as

T (θ̃T − θ̂T )′∆∼T (θ̃T − θ̂T ), (A38)

where ∆∼T denotes a consistent estimator of a generalised inverse of ∆, i.e. the asymptotic

covariance matrix of
√
T (θ̃T−θ̂T ), which does not necessarily coincide with a generalised inverse

of a consistent estimator of ∆ because of the potential discontinuities of generalised inverses.

Given the assumed regularity of the reparametrisation, we can apply the delta method to show

that the asymptotic covariance matrix of
√
T (π̃T − π̂T ) will be

∂θ′(π0)

∂π
∆
∂θ(π0)

∂π′
,

which in turn implies that we can use[
∂θ(π̇T )

∂π′

]−1
∆∼T

[
∂θ′(π̇T )

∂π

]−1
as a consistent estimator of its generalised inverse provided that π̇T is a consistent estimator of

π0. Therefore, the Wald-type version of the Hausman test for the original parameters can be

computed as

T (π̃T − π̂T )′
[
∂θ(π̇T )

∂π′

]−1
∆∼T

[
∂θ′(π̇T )

∂π

]−1
(π̃T − π̂T ). (A39)

Lemma 1 states the numerical invariance of GMM estimators and criterion functions to repara-

metrisations when the weighting matrix remains the same. In particular, it implies that

π̃T − π̂T = r(θ̃T )− r(θ̂T ).
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In general, though, one would expect (A38) and (A39) to differ. However, when the mapping

from θ to π is affi ne, the Jacobian of the inverse transformation is the constant matrix A−1,

which yields

T (π̃T − π̂T )′A′−1∆∼TA−1(π̃T − π̂T ) = T (θ̃T − θ̂T )′∆∼T (θ̃T − θ̂T ),

as required.

Let us now look at one of the score versions of the DWH test in terms of the original para-

meters, the other one being entirely analogous. We saw in the proof of the previous proposition

that the first-order condition for θ̂T is (A31). Therefore, we can compute the alternative DWH

test in practice as

Tm̄′T (θ̃T )S̃mT
∂m̄T (θ̃T )

∂θ′
Ψ∼mT

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ). (A40)

Lemma 1 implies that m̄T (π) = m̄T [θ(π)] and θ̃T = θ(π̃T ) when the weighting matrix used

to compute θ̃T and π̃T is common. Given the assumed regularity of the reparametrisation, we

can easily show that the asymptotic covariance matrix of J ′m(π0)Sm
√
T m̄T (π̃T ) will be

Ψm =
∂θ′(π0)

∂π
Ψm

∂θ(π0)

∂π′
.

As a consequence, it seems natural to use[
∂θ(π̇T )

∂π′

]−1
Ψ∼mT

[
∂θ′(π̇T )

∂π

]−1
(A41)

as a consistent estimator of a generalised inverse of Ψm, provided that π̇T is a consistent esti-

mator of π0.

Therefore, we can compute the analogous test in terms of π as

T m̄′T (π̃T )S̃mT
∂m̄T (π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Ψ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T ). (A42)

But if we combine the chain rule for derivatives with the results in Lemma 1, we can imme-

diately prove that

∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T ) =

∂θ′(π̃T )

∂π

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ),

which in turn implies that

m̄′T (π̃T )S̃mT
∂m̄T (π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Ψ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T )

= m̄′T (θ̃T )S̃mT
∂m̄T (θ̃T )

∂θ′
∂θ(π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Ψ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂θ′(π̃T )

∂π

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ).
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Therefore, (A40) and (A42) will be numerically identical if

∂θ(π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
= Ip.

Suffi cient conditions for this to happen are that the mapping is affi ne, or that we use π̇T = π̃T

in computing (A41). �

Proposition 3

Again, we focus on the first result, as the second one is entirely analogous. Let us start from

the asymptotic equivalence relationship (A37). Given that

J ′m(θ0)SmJm(θ0) =

[
J ′1m(θ)SmJ1m(θ) J ′1m(θ)SmJ2m(θ)
J ′2m(θ)SmJ1m(θ) J ′2m(θ)SmJ2m(θ)

]
and

J ′m(θ0)Sm
√
Tm̄T (θ̃T ) =

[
J ′1m(θ)Sm

√
Tm̄T (θ̃T )

J ′2m(θ)Sm
√
Tm̄T (θ̃T )

]
,

the application of the partitioned inverse formula yields

√
T (θ̃1T − θ̂1T ) =

[
J ′m(θ0)SmJm(θ0)

]11
m̄⊥1T (θ̃T ,Sm)

where[
J ′m(θ0)SmJm(θ0)

]11
=

[
J ′1m(θ)SmJ1m(θ)

−J ′1m(θ)SmJ2m(θ)[J ′2m(θ)SmJ2m(θ)]−1J ′2m(θ)SmJ1m(θ)

]−1
.

Given that [J ′m(θ0)SmJm(θ0)]
11 will have rank p1 because [J ′m(θ0)SmJm(θ0)] has rank p,

the Wald version of the DWH test that focuses on θ1 only is equivalent to a score version that

looks at m̄⊥1T (θ̃T ,Sn).

Proposition 4

Given that



θ̂
2
T − θ̂

1
T

θ̂
3
T − θ̂

2
T

...

θ̂
J−1
T − θ̂J−2T

θ̂
J
T − θ̂

J−1
T


=


−I I 0 . . . 0 0 0

0 −I I . . . 0 0 0
...

...
. . . . . .

...
...
...

0 0 0 . . . −I I 0
0 0 0 . . . 0 −I I





θ̂
1
T

θ̂
2
T

θ̂
3
T
...

θ̂
J−2
T

θ̂
J−1
T

θ̂
J
T


,

it follows immediately that

lim
T→∞

V





θ̂
2
T − θ̂

1
T

θ̂
3
T − θ̂

2
T

...

θ̂
J−1
T − θ̂J−2T

θ̂
J
T − θ̂

J−1
T




=


Ω2 −Ω1 0 . . . 0 0

0 Ω3 −Ω2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΩJ−1 −ΩJ−2 0
0 0 . . . 0 ΩJ −ΩJ−1

 ,
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which in turn implies the asymptotic independence of non-overlapping test statistics. �

Proposition 5

Given that we have obtained all the information bounds in Propositions A1-A4, we simply

need to compute the off-diagonal elements. Let us start with the first row. Straightforward

manipulations imply that

E[sθt(φ)s′θ|ηt(φ)|φ] = E{sθt(φ)[s′θt(φ)− s′ηt(φ)I−1ηη (φ)I ′θη(φ)]|φ}

= Iθθ(φ)− Iθη(φ)I−1ηη (φ)I ′θη(φ) = P(φ).

Intuitively, P(φ0) is the covariance matrix of the residuals in the multivariate theoretical regres-

sion of sθt(φ0) on sηt(φ0), which trivially coincides with the covariance matrix between those

residuals and sθt(φ0).

Next,

E[sθt(φ)̊s′θt(φ)|φ] = E[Zdt(θ)edt(φ){e′dt(φ)Z′dt(θ)− [̊e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)]Z′d(φ)}|φ]

= E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]
− E{Zdt(θ)edt(φ)[̊e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)]Z′d(φ)|φ}

= Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0)

by virtue of the law of iterated expectations, together with (A59), (A60) and (A61). Intuitively,

S̊(φ0) is the variance of the error in the least squares projection of sθt(φ0) onto the Hilbert space

spanned by all the time-invariant functions of ςt(θ0) with bounded second moments that have

zero conditional means and are conditionally orthogonal to edt(θ0,0), which trivially coincides

with the covariance matrix between those residuals and sθt(φ0). Given that this Hilbert space

includes the linear span of sηt(φ0), it follows immediately that S̊(φ0) is smaller than P(φ0) in

the positive semidefinite sense.

We also know from the proof of proposition A3 that

E[sθt(φ)̈s′θt(φ)|φ] = E[Zdt(θ)edt(φ)
{
e′dt(φ)Z′dt(θ)−

[
e′dt(φ)− e′dt(θ, 0)K+ (%)K (0)

]
Z′d(φ)

}
|φ]

= E
[
Zdt(θ)edt(θ,%)e′dt(θ,%)Zdt(θ)|φ

]
−E

{
Zdt(θ)edt(φ)

[
e′dt(φ)− e′dt(θ,0)K+ (%)K (0)

]
Z′d(φ)|φ

}
= Iθθ(φ)− Zd(φ)

[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0)

by virtue of the law of iterated expectations, together with (A17) and (A30). Intuitively, S̈(φ0) is

the covariance matrix of the errors in the projection of sθt(φ0) onto the Hilbert space spanned by

all the time-invariant functions of ε∗t with zero conditional means and bounded second moments

that are conditionally orthogonal to edt(θ0,0), which trivially coincides with the covariance
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matrix between those residuals and sθt(φ0). The fact that the residual variance of a multivariate

regression cannot increase as we increase the number of regressors explains why S̊(φ0) is at least

as large (in the positive semidefinite matrix sense) as S̈(φ0), reflecting the fact that the relevant

tangent sets become increasing larger.

Finally,

E[sθt(φ)s′θt(θ,0)|φ] = −∂E[s′θt(θ,0)|φ]/∂θ = A(φ)

thanks to the generalised information equality.

Let us now move on to the second row, and in particular to

E[sθ|ηt(φ)̊s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)

−Iθη(φ)I−1ηη (φ)ert(φ)}
{

e′dt(φ)Z′dt(θ)−
[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)

}
|φ]

= E[{Zdt(θ)edt(φ)e′dt(φ0)Z
′
dt(φ0)|φ]− E[Zdt(θ)edt(φ)̊e′dt(φ)Z′dt(φ0)|φ]

+E[Zdt(θ)edt(φ)e′dt(θ,0)K+(%0)K (0) Z′d(φ)|φ]− Iθη(φ)I−1ηη (φ)E[ert(φ)e′dt(φ)Z′dt(θ)|φ]

+Iθη(φ)I−1ηη (φ)E[ert(φ)̊e′dt(φ)Z′d(θ)|φ]− Iθη(φ)I−1ηη (φ)E[ert(φ)̊e′dt(θ,0)K̊+ (κ) K̊ (0) Z′d(φ)|φ]

= Iθθ(φ)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0)

where we have used the fact that

E[ert(φ)e′dt(φ)|φ] = E{E[ert(φ)e′dt(φ)|ςt,φ]|φ} = E[ert(φ)̊e′dt(φ)|φ]

= E {ert(φ) [δ(ςt,η)(ςt/N)− 1] |φ} [ 0 vec′(IN ) ]

and

E[ert(φ)e′dt(θ,0)|φ] = E{E[ert(φ)e′dt(θ,0)|ςt,φ]|φ} = E[ert(φ)̊e′dt(θ,0)|φ]

= E {ert(φ) [(ςt/N)− 1] |φ} [ 0 vec′(IN ) ] = 0

by virtue of Lemma 3.

Similarly,

E[sθ|ηt(φ)̈s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)

−Iθη(φ)I−1ηη (φ)ert(φ)}{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]− e′dt(θ0,0)K+(%0)K (0) Z′d(φ)}|φ]

= E[{Zdt(θ)edt(φ)e′dt(φ0)Z
′
dt(φ0)|φ]− E[Zdt(θ)edt(φ)e′dt(φ0)Z

′
d(φ)]|φ]

−E[Zdt(θ)edt(φ)e′dt(θ,0)K+(%0)K (0) Z′d(θ)|φ]

= Iθθ(φ)− Zd(φ)
[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0)

because sηt(φ) is orthogonal to edt(θ,0) by virtue of Lemma 3 and

E[ert(φ)}{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]}|φ] = 0
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by the law of iterated expectations.

Finally,

E[sθ|ηt(φ)s′θt(θ,0)|φ] = E[{Zdt(θ)edt(φ)− Iθη(φ)I−1ηη (φ)ert(φ)}e′dt(θ,0)Z′dt(φ)|φ] = A(φ)

because of the generalised information equality and the orthogonality of ert(φ) and edt(θ,0).

Let us start the third row with

E [̊sθt(φ)̈s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)− Zd(φ)[̊edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)]}

×{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]− e′dt(θ0,0)K+(%0)K (0) Z′d(φ)}|φ]

= Iθθ(φ)− Zd(φ)
[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0)

because

E{[̊edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)]e′dt(φ0)[Z
′
dt(φ0)− Z′d(φ)]|φ} = 0

by the law of iterated expectations.

In addition, we have that

E [̊sθt(φ)s′θt(θ,0)|φ] = A(φ), (A43)

which follows immediately from (A49) and the generalised information matrix equality.

Turning to the last off-diagonal element, we can show that

E [̈sθt(φ)s′θt(θ,0)|φ] = E[{Zdt(θ)edt(θ,%)− Zd(θ,%)
[
edt(θ,%)−K (0)K+ (%) edt(θ,0)

]
}

×e′dt(θ,0)Z′dt(θ)|φ] = A(θ)

because edt(θ,0) is conditionally orthogonal to [edt(θ,%)−K (0)K+ (%) edt(θ,0)] by construc-

tion. This result also proves the positive semidefiniteness of S̈(φ0)−A(θ)B−1(φ)A(θ) because

this expression coincides with the residual covariance matrix in the theoretical regression of the

semiparametric effi cient score on the Gaussian pseudo-score.

To prove the second part of the proposition, it is convenient to regard each estimator as an

exactly identified GMM estimator based on the corresponding score, whose asymptotic variance

depends on the asymptotic variance of this score and the corresponding expected Jacobian. In

this regard, note that the information matrix equality applied to the restricted and unrestricted

versions of the effi cient score implies that

−∂E[sθt(φ)|φ]/∂θ′ = E[sθt(φ)s′θt(φ)|φ] = Iθθ(φ)

and

−∂E[sθ|ηt(φ)|φ]/∂θ′ = E[sθ|ηt(φ)s′θ|ηt(φ)|φ] = P(φ).
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Similarly, we can use the generalised information matrix equality together with some of the

arguments in the proof of Proposition A4 to show that

−∂E [̊sθt(φ)|φ]/∂θ = E [̊sθt(φ0)s
′
θt(φ0)|φ] = E[Zdt(θ0)edt(φ0)e

′
dt(φ0)Z

′
dt(θ0)|φ0]

−E
{

Ws(φ0)

[[
δ(ςt,η0)

ςt
N
− 1
]
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)]

e′dt(φ0)Z
′
dt(θ0)

∣∣∣∣φ0}
= Iθθ(φ0)−Ws(φ0)E

{[{
δ(ςt,η0)

ςt
N
− 1
}
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)]

e′dt(φ0)

∣∣∣∣φ0}Zd(θ0)

= Iθθ(φ0)-Ws(φ0)E

[{[
δ(ςt,η0)

ςt
N
-1
]
-

2

(N + 2)κ0 + 2

( ςt
N
-1
)}[

δ(ςt,η0)
ςt
N
-1
]∣∣∣∣φ0]W′

s(φ0)

= Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0) = E [̊sθt(φ)̊s′θt(φ)|φ]. (A44)

The generalised information matrix equality also implies that

−∂E [̈sθt(φ0)|φ0]
∂θ

= E [̊sθt(φ0)s
′
θt(φ0)|φ] = E[Zdt(θ0)edt(φ0)e

′
dt(φ0)Z

′
dt(θ0)|φ0].

On this basis, we can use standard first-order expansions of
√
T [θ̂T (η0)−θ0] and

√
T (θ̂T−θ0)

to show that

lim
T→∞

E{T [θ̂T (η0)− θ0](θ̂
′
T − θ′0)} = I−1θθ (φ) lim

T→∞
E[T s̄θT (φ)̄s′θ|ηT (φ)}P−1(φ) = I−1θθ (φ).

All the remaining asymptotic covariances are obtained analogously. �

Proposition 6

Given the effi ciency of θ̂T with respect to θ̃T , it trivially follows from Lemma 2 in Hausman

(1978) that
√
T (θ̃T − θ̂T )→ N

[
0, C(φ0)− P−1(φ0)

]
.

The other two results follow directly from Proposition 1 after taking into account that

−∂E[sθ|ηt(φ)|φ]/∂θ′ = P(φ) (A45)

by the information matrix equality and

−∂E[sθt(θ,0)|φ]/∂θ′ = A(φ)

by its generalised analogue.

�
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Proposition 7

Given the effi ciency of θ̂T (η) with respect to θ̂T , it trivially follows from Lemma 2 in Haus-

man (1978) that
√
T [θ̂T − θ̂T (η)]→ N

[
0, Iθθ(φ0)− I−1θθ (φ0)

]
under then null of correct specification. The other two results follow directly from Proposition

1 and the partitioned inverse formula after taking into account that (A45) and

−∂E[sθt(θ, η̄)|φ]/∂θ′ = Iθθ(φ)

by the information matrix equality. �

Proposition 8

The proof of proposition 6 immediately implies that

√
T (θ̃T − θ̂T )→ N

[
0, Cθ1θ1(φ0)− Pθ1θ1(φ0)

]
under the null. If we combine this result with Proposition 3, we obtain the expressions for the

asymptotic variances of the two asymptotically equivalent score versions. �

Proposition 9

The proof of proposition 7 immediately implies that

√
T [θ̂1T − θ̂1T (η)]→ N{0, [Pθ1θ1(φ0)− Iθ1θ1(φ0)]}

under the null. If we combine this result with Proposition 3, we obtain the expressions for the

asymptotic variances of the two asymptotically equivalent score versions. �

Proposition 10

The proof of the first part is trivial, except perhaps for the fact that Msr(0) = 0, which

follows from Lemma 3 because est(θ0,0) coincides with est(θ0,%0) under normality.

To prove the second part, we use the fact that after some tedious algebraic manipulations

we can writeMdd (η)−K (0)K+ (κ)K(0) in the spherical case as{
[mll(η)-1]IN 0

0
[
mss(η)- 1

κ+1

]
(IN2+KNN )+

[
mss(η0)-1+

2κ
(κ+1)[(N+2)κ+2]

]
vec(IN )vec′(IN )

}
.

Therefore, given that Zl(φ0) 6= 0, Iθθ(φ)− S̈(φ) will be zero only if mll(η) = 1, which in turn

requires that the residual variance in the multivariate regression of δ(ςt,η0)ε
∗
t on ε

∗
t is zero for
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all t, or equivalently, that δ(ςt,η0) = 1. But since the solution to this differential equation is

g(ςt,η) = −.5ςt + C, then the result follows from (A54).

If the true conditional mean were 0, and this was taken into account in estimation, then the

first diagonal block would disappear, and Iθθ(φ)− S̈(φ) could also be 0 if

Zd(θ,%)
[
Mdd (%)−K (0)K+ (%)K (0)

]
Z′d(θ,%) = 0.

Although this condition is unlikely to hold otherwise, it does not strictly speaking require nor-

mality. For example, Amengual, Fiorentini and Sentana (2013), correcting an earlier typo in

Amengual and Sentana (2010), show that

mss(η0) =
Nκ+ 2

(N + 2)κ+ 2

for the Kotz distribution, which immediately implies that

mss(η)− 1

κ+ 1
=

Nκ2

(κ+ 1) (2κ+Nκ+ 2)

and

mss(η0)− 1 +
2κ

(κ+ 1)[(N + 2)κ+ 2]
= − 2κ2

(κ+ 1) (2κ+Nκ+ 2)
.

When N = 1, (IN2 + KNN ) = 2 and vec(IN )vec′(IN ) = 1, which trivially implies that

Iθθ(φ)− S̈(φ) = 0. However, this result fails to hold for N ≥ 2. Specifically, using the explicit

expressions for the commutation matrix in Magnus (1988), it is straightforward to show that

κ2

(κ+ 1) (4κ+ 2)


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

− κ2

(κ+ 1) (2κ+ 1)


1
0
0
1

( 1 0 0 1
)

=


κ2

(κ+1)(2κ+1) 0 0 − κ2

(κ+1)(2κ+1)

0 κ2

(κ+1)(2κ+1)
κ2

(κ+1)(2κ+1) 0

0 κ2

(κ+1)(2κ+1)
κ2

(κ+1)(2κ+1) 0

− κ2

(κ+1)(2κ+1) 0 0 κ2

(κ+1)(2κ+1)

 ,

which can only be 0 under normality. �

Proposition 11

Note that Iθθ(φ) − S̊(φ) is Ws(φ)W′
s(φ) times the residual variance in the theoretical

regression of δ(ςt,η0)ςt/N − 1 on (ςt/N)− 1. Therefore, given that Ws(φ) 6= 0, Iθθ(φ)− S̊(φ)

can only be 0 if that regression residual is identically 0 for all t. The solution to the resulting

differential equation is

g(ςt,η) = − N(N + 2)κ

2[(N + 2)κ+ 2]
ln ςt −

1

[(N + 2)κ+ 2]
ςt + C,
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which in view of (A54) implies that

h(ςt;η)∝ς
N

(N+2)κ+2
−1

t exp

{
− 1

[(N + 2)κ+ 2]
ςt

}
,

i.e. the density of Gamma random variable with mean N and variance N [(N +2)κ0+2]. In this

sense, it is worth recalling that κ ≥ −2/(N + 2) for all spherical distributions, with the lower

limit corresponding to the uniform. �

Proposition 12

Expression (A22) implies that in the spherically symmetric case the difference between P(φ0)

and Iθθ(φ0) is given by

Ws(φ0)W
′
s(φ0) ·

[
msr(η0)M−1rr (η0)m

′
sr(η0)

]
,

which is the product of a rank one matrix times a non-negative scalar. Therefore, given that

Ws(φ) 6= 0 andMrr(η0) has full rank, P(φ0) can only coincide with Iθθ(φ0) if the 1× q vector

msr(η0) is identically 0.

Proposition 13

Given our assumptions on the mapping rs(.), we can directly work in terms of the ϑ para-

meters. In this sense, since the conditional covariance matrix of yt is of the form ϑiΣ
◦
t (ϑc), it is

straightforward to show that

Zdt(ϑ) =

{
ϑ
−1/2
i [∂µ′t(ϑc)/∂ϑc] Σ

◦−1/2′
t (ϑc)

0

1
2{∂vec

′[Σ◦t (ϑc)]/∂ϑc}[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]

1
2ϑ
−1
i vec′(IN )

}
=

[
Zϑclt(ϑ) Zϑcst(ϑ)

0 Zϑist(ϑ)

]
. (A46)

Thus, the score vector for ϑ will be[
sϑct(ϑ,η)
sϑit(ϑ,η)

]
=

[
Zϑclt(ϑ)elt(ϑ,η) + Zϑcst(ϑ)est(ϑ,η)

Zϑist(ϑ)est(ϑ,η)

]
, (A47)

where elt(ϑ,η) and est(ϑ,η) are given in (A6) and (A7), respectively.

It is then easy to see that the unconditional covariance between sϑct(ϑ,η) and sϑit(ϑ,η) is

E

{[
Zϑclt(ϑ) Zϑcst (ϑ)

] [ Mll(η) 0
0 Mss(η)

] [
0

Z′ϑist(ϑ)

]∣∣∣∣ϑ,η}
=
{2mss(η) +N [mss(η)− 1]}

2ϑi
E

{
1

2

∂vec′[Σ◦t (ϑc)]

∂ϑc
[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]

∣∣∣∣ϑ,η} vec(IN )

=
{2mss(η) +N [mss(η)− 1]}

2ϑi
Zϑcs(ϑ,η)vec(IN ),
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with Zϑcs(ϑ,η) = E[Zϑcst(ϑ)|ϑ,η], where we have exploited the serial independence of ε∗t , as

well as the law of iterated expectations, together with the results in Proposition A1.

We can use the same arguments to show that the unconditional variance of sϑit(ϑ,η) will

be given by

E

{[
0 Zϑist(ϑ)

] [ Mll(η) 0
0 Mss(η)

] [
0

Z′ϑist(ϑ)

]∣∣∣∣ϑ,η}
=

1

4ϑ2i
vec′(IN )[mss(η) (IN2 + KNN ) + [mss(η)− 1])vec(IN )vec′(IN )]vec(IN )

=
{2mss(η) +N [mss(η)− 1]}N

4ϑ2i
.

Hence, the residuals from the unconditional regression of sϑct(ϑ,η) on sϑit(ϑ,η) will be:

sϑ1|ϑit(ϑ,η) = Zϑclt(ϑ)elt(ϑ,η) + Zϑcst(ϑ)est(ϑ,η)

− 4ϑ2i
{2mss(η)+N [mss(η)-1]}N

{2mss(η)+N [mss(η)-1]}
2ϑi

Zϑcs(ϑ)vec(IN )
1

2ϑi
vec′(IN )est(ϑ,η)

= Zϑclt(ϑ)elt(ϑ,η) + [Zϑcst(ϑ)− Zϑcs(ϑ,η)]est(ϑ,η).

The first term of sϑc|ϑit(ϑ0,η0) is clearly conditionally orthogonal to any function of ςt(ϑ0).

In contrast, the second term is not conditionally orthogonal to functions of ςt(ϑ0), but since the

conditional covariance between any such function and est(ϑ0,η0) will be time-invariant, it will be

unconditionally orthogonal by the law of iterated expectations. As a result, sϑc|ϑit(ϑ0,η0) will

be unconditionally orthogonal to the spherically symmetric tangent set, which in turn implies

that the spherically symmetric semiparametric estimator of ϑc will be ϑi-adaptive.

To prove Part 1b, note that Proposition A4 and (A46) imply that the spherically symmetric

semiparametric effi cient score corresponding to ϑi will be given by

s̊ϑit(ϑ) = − 1

2ϑi
vec′(IN )vec

{
δ[ςt(ϑ),η]ε∗t (ϑ)ε∗′t (ϑ)− IN

}
− N

2ϑi

{[
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1

]
− 2

(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}
=

1

2ϑi
{δ[ςt(ϑ),η]ςt(ϑ)−N} − N

2ϑi

{[
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1

]
− 2

(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}
=

N

ϑi[(N + 2)κ+ 2]

[
ςt(ϑ)

N
− 1

]
.

But since the iterated spherically symmetric semiparametric estimator of ϑmust set to 0 the sam-

ple average of this modified score, it must be the case that
∑T

t=1 ςt(̊ϑT ) =
∑T

t=1 ς
◦
t (̊ϑcT )/̊ϑiT =

NT , which is equivalent to (12).

To prove Part 1c note that

sϑit(ϑ,0) =
1

2ϑi
[ςt(ϑ)−N ] (A48)
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is proportional to the spherically symmetric semiparametric effi cient score s̊ϑit(ϑ), which means

that the residual covariance matrix in the theoretical regression of this effi cient score on the

Gaussian score will have rank p− 1 at most. But this residual covariance matrix coincides with

S̊ (φ)−A (φ)B−1 (φ)A (φ) since

E [̊sθt(φ)s′θt(θ,0)|φ] = E[Zdt(θ)edt(φ)e′dt(θ,0)Z′dt(θ)|φ] = A(θ) (A49)

because the regression residual[
δ(ςt,η)

ςt
N
− 1
]
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)

is conditionally orthogonal to edt(θ0,0) by the law of iterated expectations, as shown in the

proof of proposition A4.

Tedious algebraic manipulations that exploit the block-triangularity of (A46) and the con-

stancy of Zϑist(ϑ) show that the different information matrices will be block diagonal when

Wϑcs(φ0) is 0. Then, part 2a follows from the fact that Wϑcs(φ0) = −E {∂dt(ϑ0)/∂ϑc|φ0}

will trivially be 0 if (11) holds.

Finally, to prove Part 2b note that (A48) implies that the Gaussian PMLE will also satisfy

(12). But since the asymptotic covariance matrices in both cases will be block-diagonal between

ϑc and ϑi when (11) holds, the effect of estimating ϑc becomes irrelevant. �

Proposition 14

We can directly work in terms of the ψ parameters thanks to our assumptions on the mapping

rg(.). Given the specification for the conditional mean and variance in (14), and the fact that

ε∗t is assumed to be i.i.d. conditional on zt and It−1, it is tedious but otherwise straightforward

to show that the score vector will be sψ1t(ψ,%)
sψict(ψ,%)
sψimt(ψ,%)

 =

 Zψ1lt(ψ)elt(ψ,%) + Zψ1st(ψ)est(ψ,%)
Zψicst(ψ)est(ψ,%)
Zψimlt(ψ)elt(ψ,%)

 , (A50)

where

Zψ1lt(ψ) =
{
∂µ�′t (ψ1)/∂ψ1+∂vec′[Σ

�1/2
t (ψ1)]/∂ψ1 ·(ψim⊗IN )

}
Σ
�−1/2′
t (ψ1)Ψ

−1/2′
2 ,

Zψ1st(ψ) =∂vec′[Σ
�1/2
t (ψ1)]/∂ψ1 · [Ψ

1/2
2 ⊗Σ

�−1/2′
t (ψ1)Ψ

−1/2′
2 ],

Zψimlt(ψ) =Ψ
−1/2′
2 =Zψiml(ψ),

Zψicst(ψ) =∂vec′(Ψ1/2)/∂ψic · (IN⊗Ψ
−1/2′
2 ) =Zψics(ψ),

 (A51)

elt(ψ,%) and est(ψ,%) are given in (B65), with

ε∗t (ψ) = Ψ
−1/2
ic Σ

�−1/2
t (ψc)[yt − µ�t (ψc)−Σ

�1/2
t (ψc)ψim]. (A52)
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It is then easy to see that the unconditional covariance between sψct(ψ,%) and the remaining

elements of the score will be given by

[
Zψcl(ψ,%) Zψcs(ψ,%)

] [ Mll(%) Mls(%)
M′ls(%) Mss(%)

][
0 Z′ψiml(ψ)

Z′ψics(ψ) 0

]
with Zψcl(ψ,%) = E[Zψclt(ψ)|ψ,%] and Zψcs(ψ,%) = E[Zψcst(ψ)|ψ,%], where we have ex-

ploited the serial independence of ε∗t and the constancy of Zψicst(ψ) and Zψimlt(ψ), together

with the law of iterated expectations and the definition[
Mll(%) Mls(%)
M′ls(%) Mss(%)

]
= V

[
elt(ψ,%)
est(ψ,%)

∣∣∣∣ψ,%] .
Similarly, the unconditional covariance matrix of sψict(ψ,%) and sψimt(ψ,%) will be[

0 Zψics(ψ)
Zψiml(ψ) 0

] [
Mll(%) Mls(%)
M′ls(%) Mss(%)

][
0 Z′ψiml(ψ)

Z′ψics(ψ) 0

]
.

Thus, the residuals from the unconditional least squares projection of sψct(ψ,%) on sψict(ψ,%)

and sψimt(ψ,%) will be:

sψc|ψic,ψimt(ψ,%) = Zψclt(ψ)elt(ψ,%) + Zψcst(ψ)est(ψ,%)

−
[

Zψcl(ψ,%) Zψcs(ψ,%)
] [ elt(ψ,%)

est(ψ,%)

]
= [Zψclt(ψ)− Zψcl(ψ,%)]elt(ψ,%) + [Zψcst(ψ)− Zψcs(ψ,%)]est(ψ,%),

because both Zψics(ψ) and Zψiml(ψ) have full row rank when Ψic has full rank in view of the

discussion that follows expression (B74).

Although neither elt(ψ,%) nor est(ψ,%) will be conditionally orthogonal to arbitrary func-

tions of ε∗t , their conditional covariance with any such function will be time-invariant. Hence,

sψc|ψic,ψimt(ψ,%) will be unconditionally orthogonal to ∂ ln f [ε∗t (ψ);%]/∂% by virtue of the law

of iterated expectations, which in turn implies that the unrestricted semiparametric estimator

of ψc will be ψi-adaptive.

To prove Part 1b note that the semiparametric effi cient scores corresponding to ψic and ψim

will be given by[
0 Zψics(ψ)

Zψiml(ψ) 0

]
K (0)K+(%0)

{
ε∗t (ψ)

vec[ε∗t (ψ)ε∗′t (ψ)− IN ]

}
because Zψicst(ϑ) = Zψics(ϑ) and Zψimlt(ϑ) = Zψiml(ϑ) ∀t. But if (18) and (17) hold, then the

sample averages of elt[ψc,ψic(ψc),ψim(ψc); 0] and est[ψc,ψic(ψc),ψim(ψc); 0] will be 0, and

the same is true of the semiparametric effi cient score.

To prove Part 1c note that[
sψict(ψ,0)
sψimt(ψ,0)

]
=

[
0 Zψics(ψ)

Zψiml(ψ) 0

] [
ε∗t (ψ)

vec[ε∗t (ψ)ε∗′t (ψ)− IN ]

]
, (A53)
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which implies that the residual covariance matrix in the theoretical regression of the semipara-

metric effi cient score on the Gaussian score will have rank p−N(N +3)/2 at most because both

Zψics(ψ) and Zψiml(ψ) have full row rank when Ψic has full rank. But as we saw in the proof

of Proposition 5, that residual covariance matrix coincides with S̈(φ0)−A(θ)B−1(φ)A(θ).

Tedious algebraic manipulations that exploit the block structure of (A51) and the constancy

of Zψicst(ψ) and Zψimlt(ψ) show that the different information matrices will be block diagonal

when Zψcl(ψ,%) and Zψcs(ψ,%) are both 0. But those are precisely the necessary and suffi cient

conditions for sψct(ψ,%) to be equal to sψc|ψic,ψimt(ψ,%), which is also guaranteed by (16).

In this sense, please note that the reparametrisation of ψic and ψim associated with (16) will

be such that the Jacobian matrix of vech[K−1/2(ψc)Ψ2K
−1/2′(ψc)] and K−1/2(ψc)ψim − l(ψc)

with respect to ψ evaluated at the true values is equal to{
−V −1

[
sψict(ψ0)
sψimt(ψ0)

∣∣∣∣φ0]E
[

sψict(ψ0)s
′
ψct

(ψ0)

sψimt(ψ0)s
′
ψct

(ψ0)

∣∣∣∣∣φ0
] ∣∣∣∣ IN(N+1)/2

0

∣∣∣∣ 0
IN

}
.

Finally, to prove Part 2b simply note that (A53) implies the Gaussian PMLE will also satisfy

(18) and (17). But since the asymptotic covariance matrices in both cases will be block-diagonal

between ψc and ψi when (16) holds, the effect of estimating ψc becomes irrelevant. �

Proposition A1

For our purposes it is convenient to rewrite edt(φ0) as

elt(φ0) = δ[ςt(θ0),η0]ε
∗
t (θ0) = δ(ςt,η0)

√
ςtut,

est(φ0) = vec
{
δ[ςt(θ0),η0]ε

∗
t (θ0)ε

∗′
t (θ0)− IN

}
= vec

[
δ(ςt,η0)ςtutu

′
t − IN

]
,

where ςt and ut are mutually independent for any standardised spherical distribution, with

E(ut) = 0, E(utu
′
t) = N−1IN , E(ςt) = N and E(ς2t ) = N(N + 2)(κ0 + 1). Importantly, we only

need to compute unconditional moments because ςt and ut are independent of zt and It−1 by

assumption. Then, it easy to see that

E[elt(φ)|φ] = E[δ(ςt,η)
√
ςt|η] · E(ut) = 0,

and that

E[est(φ)|φ] = vec
{
E [δ(ςt,η0)ςt|η] · E(utu

′
t)− IN

}
= vec(IN ) {E [δ(ςt,η0)(ςt/N)|η]− 1} .

In this context, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of ςt as

h(ςt;η) =
πN/2

Γ(N/2)
ς
N/2−1
t exp[c(η) + g(ςt,η)], (A54)
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whence

[δ(ςt,η)(ςt/N)− 1] = − 2

N
[1 + ςt · ∂ lnh(ςt;η)/∂ς] . (A55)

On this basis, we can use Lemma 2 to show that E(ςt) = N <∞ implies

E [ςt · ∂ lnh(ςt;η)/∂ς|η] = −E [1] = −1,

which in turn implies that

E [δ(ςt,η)(ςt/N)− 1|η] = 0 (A56)

in view of (A55). Consequently, E[est(φ)|φ] = 0, as required.

Similarly, we can also show that

E[elt(φ)e′lt(φ)|φ] = E
{
δ2(ςt,η)ςtutu

′
t|η
}

= IN · E[δ2(ςt,η0)(ςt/N)|η],

E[elt(φ)e′st(φ)|φ] = E
{
δ(ςt,η)

√
ςtutvec

′ [δ(ςt,η)ςtutu
′
t − IN

]
|η
}

= 0

by virtue of (A1), and

E[est(φ0)e
′
st(φ0)|φ] = E

{
vec

[
δ(ςt,η0)ςtutu

′
t − IN

]
vec′

[
δ(ςt,η0)ςtutu

′
t − IN

]
|η
}

= E [δ(ςt,η)ςt|η]2
1

N(N + 2)
[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

−2E [δ(ςt,η)(ςt/N)|η] vec (IN ) vec′ (IN ) + vec (IN ) vec′ (IN )

=
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 (IN2 + KNN )

+

{
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 − 1

}
vec (IN ) vec′ (IN )]

by virtue of (A2), (A55) and (A56).

Finally, it is clear from (A3) that ert(φ0) will be a function of ςt but not of ut, which

immediately implies that E[elt(φ)e′rt(φ)|φ] = 0, and that

E[est(φ)e′rt(φ)|φ] = E
{
vec

[
δ(ςt,η)ςt · utu′t − IN

]
e′rt(φ)

}
= vec(IN )E

{
[δ(ςt,η)(ςt/N)− 1] e′rt(φ)

}
.

To obtain the expected value of the Hessian, it is also convenient to write hθθt(φ0) in (A9)
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as

−4Zst(θ0)[IN ⊗ {δ[ςt(θ0), η0]ε∗t (θ0)ε∗′t (θ0)− IN}]Z′st(θ0)

+[e′lt(θ0,η0)Σ
−1/2′
t (θ)⊗ Ip]

∂vec

∂θ′

[
∂µ′t(θ)

∂θ

]
+

1

2
{e′st(θ0,η0)[Σ

−1/2
t (θ0)⊗Σ

−1/2
t (θ0)]⊗Ip}

∂vec

∂θ′

{
∂vec′[Σt(θ)]

∂θ

}
−2Zlt(θ0)[e

′
lt(θ0,η0)⊗ IN ]Z′st(θ0)− 2Zst(θ0)[elt(θ0,η0)⊗ IN ]Z′lt(θ0)

−δ[ςt(θ0),η0]Zlt(θ0)Z′lt(θ0)−2Zst(θ0)Z
′
st(θ0)−

2∂δ [ςt(θ0),η0]

∂ς
{Zlt(θ0)ε∗t (θ0)ε∗′t (θ0)Z

′
lt(θ0)

+Zlt(θ0)ε
∗
t (θ0)vec

′[ε∗t (θ0)ε
∗′
t (θ0)]Z

′
st(θ0) + Zst(θ0)vec[ε

∗
t (θ0)ε

∗′
t (θ0)]ε

∗
t (θ0)Z

′
lt(θ0)

+ Zst(θ0)vec[ε
∗
t (θ0)ε

∗′
t (θ0)]vec

′[ε∗t (θ0)ε
∗′
t (θ0)]Z

′
st(θ0)

}
.

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (A1). As for the remaining terms, we can write them as

−δ(ςt,η0)Zlt(θ0)Z′lt(θ0)− 2∂δ(ςt,η0)/∂ς · Zlt(θ0)ςtutu′tZ′lt(θ0)

−2Zst(θ0)Z
′
st(θ0)− 2∂δ(ςt,η0)/∂ς · ς2tZst(θ0)vec(utu′t)vec′(utu′t)Z′st(θ0),

whose conditional expectation will be

−Zlt(θ0)Z
′
lt(θ0)E[δ(ςt;η0) + 2(ςt/N) · ∂δ(ςt,η0)/∂ς|η0]− 2Zst(θ0)Z

′
st(θ0)

−Zst(θ0)
2E[ς2t · ∂δ(ςt,η0)/∂ς|η0]

N(N + 2)
[(IN2 ⊗KNN ) + vec(IN )vec′(IN )]Z′st(θ0).

As for hθηt(φ0), it follows from (A10) and (A5) that we can write it as

{Zlt(θ0)ε∗t (θ0) + Zst(θ0)vec
[
ε∗t (θ0)ε

∗′
t (θ0)

]
} · ∂δ [ςt(θ0),η0] /∂η

′

= [Zlt(θ)ut
√
ςt + Zst(θ)vec(utu

′
t)ςt] · ∂δ(ςt,η)/∂η′,

whose conditional expected value will be Zst(θ0)vec(IN )E[(ςt/N) · ∂δ(ςt,η0)/∂η′|η]. �

Proposition A2

The proof of the first part is based on a straightforward application of Proposition 1 in

Bollerslev and Wooldridge (1992) to the i.i.d. case. Since sθt(θ0,0) = Zdt(θ0)edt(θ0,0), and

edt(θ0,0) is a vector martingale difference sequence, then to obtain Bt(φ0) we only need to

compute V [edt(θ0,0)|It−1;φ0], which justifies (A17). Further, we will have that[
elt(θ0,0)
est(θ0,0)

]
=

(
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗′
t (θ0)− IN ]

)
=

[ √
ςtut

vec(ςtutu
′
t − IN )

]
for any spherical distribution, with ςt and ut both mutually and serially independent. Then

(A18) follows from (A1) and (A2). As for At(φ0), we know that its formula, which is valid
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regardless of the exact nature of the true conditional distribution, coincides with the expres-

sion for Bt(φ0) under multivariate normality (%0 = 0) by the (conditional) information matrix

equality. �

Proposition A3

It trivially follows from (A17) and (A30) that

E
{[

edt(θ,%)−K (0)K+ (%) edt(θ,0)
]
e′dt(θ,0) |It−1;θ,%

}
= 0

for any distribution. In addition, we also know that

E
{[

edt(θ,%)−K (0)K+ (%) edt(θ,0)
]
|It−1;θ,%

}
= 0.

Hence, the second summand of (A24), which can be interpreted as Zd(φ0) times the residual from

the theoretical regression of edt(φ0) on a constant and edt(θ0,0), belongs to the unrestricted

tangent set, which is the Hilbert space spanned by all the time-invariant functions of ε∗t with zero

conditional means and bounded second moments that are conditionally orthogonal to edt(θ0,0).

Now, if we write (A24) as

[Zdt(θ)− Zd(θ,%)] edt(θ,%) + Zd(θ,%)K (0)K+ (%) edt(θ,0),

then we can use the law of iterated expectations to show that the semiparametric effi cient

score (A24) evaluated at the true parameter values will be unconditionally orthogonal to the

unrestricted tangent set because so is edt(θ0,0), and E [Zdt(θ)− Zd(θ,%)|θ,%] = 0.

Finally, the expression for the semiparametric effi ciency bound will be

E

[
{Zdt(θ)edt(θ,%)− Zd(θ,%) [edt(θ,%)−K (0)K+ (%) edt(θ,0)]}
×{edt(θ,%)′Z′dt(θ)− [e′dt(θ,%)− e′dt(θ, 0)K+ (%)K (0)] Z′d(θ,%)}

∣∣∣∣θ,%]
= E

[
Zdt(θ)edt(θ,%)e′dt(θ,%)Zdt(θ)|θ,%

]
−E

{
Zdt(θ)edt(θ,%)

[
e′dt(θ,%)− e′dt(θ,0)K+ (%)K (0)

]
Z′d(θ,%)|θ,%

}
−E

{
Zd(θ,%)

[
edt(θ,%)−K (0)K+ (%) edt(θ,0)

]
edt(φ)′Z′dt(θ)|θ,%

}
+E

{
Zd(θ,%)

[
edt(θ,%)−K (0)K+ (%) edt(θ, 0)

] [
e′dt(θ,%)− e′dt(θ, 0)K+ (%)K (0)

]
Z′d(θ,%)|θ,%

}
= Iθθ(θ,%)− Zd(θ,%)

[
Mdd (%)−K (0)K+ (%)K (0)

]
Z′d(θ,%)

by virtue of (A17), (A30) and the law of iterated expectations. �

Proposition A4

First of all, it is easy to show that for any spherical distribution

e̊dt(θ0,0) = E

[
elt(θ0,0)
est(θ0,0)

∣∣∣∣ ςt;φ0] = E

{
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗′
t (θ0)− IN ]

∣∣∣∣ ςt;φ0}
= E

[ √
ςtut

vec(ςtutu
′
t − IN )

∣∣∣∣ ςt] =
( ςt
N
− 1
)[ 0

vec(IN )

]
, (A57)
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and

e̊dt(φ0) = E

[
elt(φ0)
est(φ0)

∣∣∣∣ ςt;φ0]
= E

{
δ[ςt(θ0),η0] · ε∗t (θ0)

vec [δ[ςt(θ0),η0] · ε∗t (θ0)ε∗′t (θ0)− IN ]

∣∣∣∣ ςt;φ0}
= E

{
δ(ςt,η0)

√
ςtut

vec[δ(ςt,η0)ςtutu
′
t − IN ]

∣∣∣∣ ςt} =
[
δ(ςt,η0)

ςt
N
-1
] [ 0

vec(IN )

]
, (A58)

where we have used again the fact that E(ut) = 0, E(utu
′
t) = N−1IN , and ςt and ut are

stochastically independent.

In addition, we can use the law of iterated expectations to show that

E [̊edt(φ)e′dt(φ)|φ]=E{E[[̊edt(φ)e′dt(φ)|ςt,φ]|φ}=E[edt(φ)̊e′dt(φ)|φ]=E [̊edt(φ)̊e′dt(φ)|φ],

E [̊edt(φ)e′dt(θ,0)|φ]=E{E [̊edt(φ)e′dt(θ,0)|ςt,φ]|φ}=E[edt(φ)̊e′dt(θ,0)|φ]=E [̊edt(φ)̊e′dt(θ,0)|φ]

and

E
[̊
edt(θ,0)e′dt(θ,0)|φ

]
= E

[
edt(θ,0)̊e′dt(θ, 0)|φ

]
= E

[̊
edt(θ,0)̊e′dt(θ,0)|φ

]
.

Hence, to compute these matrices we simply need three scalar moments.

In this respect, we can use (A19) to show that

E

[( ςt
N
− 1
)2∣∣∣∣η] =

(N + 2)κ+ 2

N
, (A59)

so that

E
[̊
edt(θ,0)e′dt(θ,0)|φ

]
=

(N + 2)κ+ 2

N

(
0 0
0 vec(IN )vec′(IN )

)
= K̊ (κ) .

We can also use Lemma 2 to show that E(ς2t ) = N(N + 2)(κ+ 1) <∞ implies

E
[
ς2t · ∂ lnh(ςt;η)/∂ς

∣∣η] = −E [2ςt|η] = −2N.

If we then combine this result with (A55) and (A56), we will have that for any spherically

symmetric distribution

E
{( ςt

N
− 1
) [
δ(ςt,η0)

ςt
N
− 1
]∣∣∣η} =

2

N
, (A60)

so that

E
[̊
edt(φ)e′dt(θ,0)|φ

]
= K̊ (0) ,

which coincides with the value of E [̊edt(θ,0)e′dt(θ,0)|φ] under normality.

Finally, Proposition A1 immediately implies that

E

{[
δ(ςt,η0)

ςt
N
− 1
]2∣∣∣∣η} =

N + 2

N
mss(η)− 1. (A61)
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Therefore, it trivially follows from the expressions for K̊ (0) and K̊ (κ0) above that

E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]

e′dt(θ,0)
∣∣∣ It−1;φ}

= E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]

e̊′dt(θ,0)
∣∣∣ It−1;φ} = 0

for any spherically symmetric distribution. In addition, we also know that

E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]∣∣∣ It−1;φ} = 0.

Thus, even though
[̊
edt(φ0)− K̊ (0) K̊+ (κ0) e̊dt(θ0,0)

]
is the residual from the theoretical re-

gression of e̊dt(φ) on a constant and e̊dt(θ,0), it turns out that the second summand of (A26)

belongs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant

functions of ςt(θ0) with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(θ0,0).

Now, if write (A26) as

Zdt(θ)edt(φ)− Zd(φ)̊edt(φ) + Zd(φ)K̊ (0) K̊+ (κ) e̊dt(θ,0),

then we can use the law of iterated expectations to show that the spherically symmetric semi-

parametric effi cient score is indeed unconditionally orthogonal to the restricted tangent set.

Finally, the expression for the semiparametric effi ciency bound will be

E [̊sθt(φ)̊s′θt(φ)|φ] = E

 {
Zdt(θ)edt(φ)− Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

]}
×
{

edt(φ)′Z′dt(θ)−
[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)

} ∣∣∣∣∣∣φ


= E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]
−E

{
Zdt(θ)edt(φ)

[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)|φ

}
−E

{
Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

]
e′dt(φ)Z′d(φ)|φ

}
+E

{
Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

] [̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)|φ

}
= Iθθ(φ0)−Ws(φ0)W

′
s(φ0) ·

{[
N + 2

N
mss(η)− 1

]
− 4

N [(N + 2)κ+ 2]

}
by virtue of the law of iterated expectations. �

B The general case of non-spherical distributions

B.1 Likelihood, score and Hessian for non-spherical distributions

In this section, we assume that, conditional on It−1, ε∗t is independent and identically dis-

tributed, or ε∗t |It−1;θ0,%0 ∼ i.i.d. D(0, IN ,%0) for short, where % are some q additional pa-

rameters that determine the shape of the distribution. Importantly, this distribution could
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substantially depart from a multivariate normal both in terms of skewness and kurtosis. Let

f(ε∗;%) denote the assumed conditional density of ε∗t given It−1 and those shape parameters

%, which we assume is well defined. Let also φ = (θ′,%)′ denote the p + q parameters of inter-

est, which once again we assume variation free. Ignoring initial conditions, the log-likelihood

function of a sample of size T for those values of θ for which Σt(θ) has full rank will take

the form LT (φ) =
∑T

t=1 lt(φ), where lt(φ) = dt(θ) + ln f [ε∗t (θ),%], dt(θ) = ln |Σ−1/2t (θ)|,

ε∗t (θ) = Σ
−1/2
t (θ)εt(θ), and εt(θ) = yt − µt(θ).

The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix. The choice of square root matrix is non-trivial becauseΣ
1/2
t (θ) affects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In

what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute

than the spectral one, especially when Σt(θ) is time-varying. Nevertheless, we also discuss some

modifications required for the spectral decomposition later on.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Assuming that µt(θ),

Σ
1/2
t (θ) and ln f(ε∗,%) are differentiable, it trivially follows that

sθt(θ,%) =
∂dt(θ)

∂θ
+
∂ε′∗t (θ)

∂θ

∂ ln f [ε∗t (θ) ;%]

∂ε∗
.

But since

∂dt(θ)/∂θ = −∂vec
′[Σ

1/2
t (θ)]

∂θ
vec[Σ

−1/2′
t (θ)] = −Zst(θ)vec(IN )

and

∂ε∗t (θ)

∂θ′
= −Σ

−1/2
t (θ)

∂µt(θ)

∂θ′
− [ε∗′t (θ)⊗Σ

−1/2
t (θ)]

∂vec[Σ
1/2
t (θ)]

∂θ′

= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)}, (B62)

where
Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ)

Zst(θ) = ∂vec′[Σ
1/2
t (θ)]/∂θ · [IN ⊗Σ

−1/2′
t (θ)]

}
, (B63)

it follows that

sθt(φ) = [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (B64)

s%t(φ) = ∂ ln f [ε∗t (θ) ;%]/∂% = ert(φ),

with

edt(φ) =

[
elt(φ)
est(φ)

]
=

[
−∂ ln f [ε∗t (θ);%]/∂ε∗,
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗′t (θ)}

]
. (B65)
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Similarly, let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming

twice differentiability of the different functions involved, expression (B62) implies that

∂elt(θ,%)

∂θ′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
=
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)} (B66)

because

delt(θ,%) = −d{∂ ln f [ε∗t (θ);%]/∂ε∗}. (B67)

In turn,

dest(θ,%) = −dvec
[
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗′t (θ)

]
= −[ε∗t (θ)⊗ IN ]d

{
∂ ln f [ε∗t (θ);%]

∂ε∗

}
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
dε∗t (θ) (B68)

implies that

∂est(φ)

∂θ′
=
∂est(θ,%)

∂θ′
=−[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
−
{
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

}
∂ε∗t (θ)

∂θ′{
[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
{Z′lt(θ)+[ε′∗t (θ)⊗IN ]Z′st(θ)}. (B69)

Finally, (B67) and (B68) trivially imply that

∂2elt(θ,%)

∂θ∂%′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%′
,

∂2est(θ,%)

∂θ∂%′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
.

Using these results, we can easily obtained the required expressions for

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′

+
[
e′lt(φ)⊗ Ip

] ∂vec[Zlt(θ)]

∂θ′
+
[
e′st(φ)⊗ Ip

] ∂vec[Zst(θ)]

∂θ′
, (B70)

hθ%t(φ) = Zlt(θ)∂elt(φ)/∂%′ + Zst(θ)∂est(φ)/∂%′, (B71)

h%%t(φ) = ∂2 ln f [ε∗t (θ) ;%]/∂%∂%′.

In this regard, note that since (B67) and (B68) also imply that

∂elt(θ,%)/∂%′ = −∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′, (B72)

∂est(θ,%)/∂%′ = −[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′, (B73)

respectively, it is clear that

Zlt(θ)
∂elt(θ,%)

∂%′
+ Zst(θ)

∂est(θ,%)

∂%′
= −{Zlt(θ) + Zst(θ)[ε∗t (θ)⊗ IN ]}∂

2 ln f [ε∗t (θ) ;%]

∂ε∗∂%′

=
∂ε′∗t (θ)

∂θ

∂2 ln f(ε∗t (θ) ;%)

∂ε∗∂%′
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so both ways of computing hθ%t(φ) indeed coincide.

Importantly, while Zlt(θ), Zst(θ), ∂vec[Zlt(θ)]/∂θ′ and ∂vec[Zst(θ)]/∂θ′ depend on the dy-

namic model specification, the first and second derivatives of ln f(ε∗;%) depend on the specific

distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of Σt(θ), we will have that

dvec(Σt) = [(Σ
1/2
t ⊗ IN ) + (IN ⊗Σ

1/2
t )KNN ]dvec(Σ

1/2
t ).

Unfortunately, this transformation is singular, which means that we must find an analogous

transformation between the corresponding dvech′s. In this sense, we can write the previous

expression as

dvech(Σt) = [LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ]dvech(Σ

1/2
t ), (B74)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as Σ
1/2
t has full rank, which means that we can readily obtain the Jacobian matrix of vech(Σ

1/2
t )

from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(Σt) = [D+
N (Σ

1/2
t ⊗ IN )DN + D+

N (IN ⊗Σ
1/2
t )DN ]dvech(Σ

1/2
t ),

whereD+
N = (D′NDN )−1D′N is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).

From a numerical point of view, the calculation of both LN (Σ
1/2
t ⊗ IN )L′N and LN (IN ⊗

Σ
1/2
t )KNNL′N is straightforward. Specifically, given that LNvec(A) = vech(A) for any square

matrixA, the effect of premultiplying by the 12N(N+1)×N2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A′),

the effect of postmultiplying by KNNL′N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ,

which will be upper triangular. The fastest way to compute

∂vec′[Σ
1/2
t (θ)]

∂θ
[IN ⊗Σ

−1/2
t (θ)] =

1

2

∂vech′ [Σt(θ)]

∂θ
FtLN (IN ⊗Σ

−1/2
t )

is as follows:

1. From the expression for ∂vec′ [Σt(θ)] /∂θ we can readily obtain ∂vech′ [Σt(θ)] /∂θ by

simply avoiding the computation of the duplicated columns
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2. Then we postmultiply the resulting matrix by Ft

3. Next, we construct the matrix

LN (IN ⊗Σ
1/2
t ) = LN


Σ
−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

...
...

. . .
...

0 0 · · · Σ
−1/2
t


by eliminating the first row from the second block, the first two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by ∂vech′ [Σt(θ)] /∂θ · Ft.

B.2 Additional results

Propositions 10.1 and 14, A2.1, A3,already deal explicitly with the general case, so there

is no need to generalise them. In turn, Propositions 6, 7, 8, 9 and their proofs continue to be

valid if we change η by %. The same happens to Proposition 5, provided we erase the row and

columns corresponding to θ̊T and its influence function s̊θt(φ). On the other hand, Propositions

10.2, 11, 12, 13, A2.2 and A4, are specific to the spherically symmetric case. Therefore, the only

proposition that really requires a proper generalisation is Proposition A1.

Proposition B5 If ε∗t |It−1;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%), then

It(φ) = Zt(θ)M(%)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

and

M(%) =

[
Mdd(%) Mdr(%)
M′dr(%) Mrr(%)

]
=

 Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 ,
with

Mll(%) = V [elt(φ)|φ] = E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′

∣∣%] ,
Mls(%) = E[elt(φ)est(φ)′|φ] = E

[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε′∗t ⊗ IN )

∣∣%] ,
Mss(%) = V [est(φ)|φ] = E

[
(ε∗t ⊗ IN ) · ∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε∗′t ⊗ IN )|%

]
−KNN ,

Mlr(%) = E[elt(φ)e′rt(φ)|φ] = −E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

Msr(%) = E[est(φ)e′rt(φ)|φ] = −E
[
(ε∗t ⊗ IN )∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

and
Mrr(%) = V [ert(φ)|φ] = −E

[
∂2 ln f(ε∗t ;%)/∂%∂%′|φ

]
.
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Proof. Since the distribution of ε∗t given It−1 is assumed to be i.i.d., then it is easy to see from

(B64) that et(φ) = [e′dt(φ), e′rt(φ)]′ will inherit the martingale difference property of the score

st(φ0). As a result, the conditional information matrix will be given by[
Zlt(θ) Zst(θ) 0

0 0 Iq

] Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 Z′lt(θ) 0
Z′st(θ) 0

0 Iq


=

[
Zlt(θ)Mll(%)Z′lt(θ) + Zst(θ)M′ls(%)Z′lt(θ) + Zlt(θ)Mls(%)Z′st(θ) + Zst(θ)Mss(%)Z′st(θ)

M′lr(%)Z′lt(θ) +M′sr(%)Z′st(θ)

Zlt(θ)Mlr(%) + Zst(θ)Msr(%)
Mrr(%)

]
,

where  Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 = V

 elt(θ,%)
est(θ,%)
ert(θ,%)

∣∣∣∣∣∣θ,%
 ,

which confirms the variance of the score part of the proposition.

As for the expected value of the Hessian expressions, it is easy to see that

E[hθθt(φ)|zt, It−1;φ] = Zlt(θ)E

[
∂elt(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ]+ Zst(θ)E

[
∂est(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ]
because

E [elt(θ,%)|zt, It−1;φ] = −E [∂ ln f [ε∗t (θ);%]/∂ε∗|zt, It−1;φ] = 0 (B75)

and

E [est(θ,%)|zt, It−1;φ] = −E [vec{IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗t (θ)}|zt, It−1;φ] = 0. (B76)

Expression (B66) then leads to

E

[
∂elt(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ] = E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε′∗t (θ)⊗ IN ]Z′st(θ)}

∣∣∣∣ zt, It−1;φ]
= E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′

∣∣∣∣φ]Z′lt(θ) + E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
[ε′∗t (θ)⊗ IN ]

∣∣∣∣φ]Z′st(θ).

Likewise, equation (B69) leads to

E

[
∂est(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ] = E

[{
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
×{Z′lt(θ) + [ε′∗t (θ)⊗ IN ]Z′st(θ)}

∣∣ zt, It−1;φ] = E

[
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′

∣∣∣∣φ]Z′lt(θ)

+E

[
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ]Z′st(θ)−KNNZ′st(θ)
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because of (B75) and (B76), which in turn implies

E

{[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{
KNN

[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{[
∂ ln f [ε∗t (θ);%]

∂ε∗
⊗ IN

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{[
∂ ln f [ε∗t (θ);%]

∂ε∗
ε′∗t (θ)⊗ IN

]∣∣∣∣ zt, It−1;φ} = −KNN

in view of Theorem 3.1 in Magnus (1988).

As a result, the information matrix equality implies that

Mll(%) = E
{
∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′

∣∣φ}
Mls(%) = E

{
∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′ · [ε′∗t (θ)⊗ IN ]

∣∣φ}
Mss(%) = E

{
[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′ · [ε′∗t (θ)⊗ IN ]

∣∣φ}−KNN

Similarly, equation (B71) implies that

E[hθ%t(φ)|zt, It−1;φ] = E[Zlt(θ)∂elt(θ,%)/∂%′ + Zst(θ)∂est(θ,%)/∂%′|zt, It−1;φ].

But then the information matrix equality together with equations (B72) and (B73) imply that

E[∂elt(θ,%)/∂%′|zt, It−1;φ] = −E{∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′|φ} =Mlr(%),

E[∂est(θ,%)/∂%′|zt, It−1;φ] = −E{[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′|φ} =Msr(%).

Finally, the information matrix equality also implies that

Mrr(%) = −E{∂2 ln f [ε∗t (θ);%]/∂%∂%′|φ},

as required. �
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TABLE 1: Univariate GARCH-M: Parameter estimators.

Parameter β γ δ, ψim ϑi, ψic η = 1/ν
True value 0.85 0.1 0.05 1.0

RML 0.8467 0.0960 0.0506 1.0404 0.0833
(0.0375) (0.0348) (0.0314) (0.4132)

UML 0.8467 0.0959 0.0507 1.0397 0.0815
Student t12 (0.0376) (0.0350) (0.0315) (0.4125) (0.0276)

PML 0.8464 0.0956 0.0508 1.0420
(0.0392) (0.0363) (0.0324) (0.4331)

RML 0.8467 0.0956 0.0505 1.0137 0.0833
(0.0383) (0.0344) (0.0315) (0.3986)

UML 0.8468 0.0959 0.0504 1.0392 0.1232
Student t8 (0.0381) (0.0343) (0.0314) (0.4077) (0.0276)

PML 0.8460 0.0955 0.0504 1.0439
(0.0423) (0.0384) (0.0333) (0.4539)

RML 0.8461 0.0955 0.0506 0.8706 0.0833
(0.0437) (0.0383) (0.0278) (0.3817)

UML 0.8470 0.0967 0.0502 1.3990 0.3604
GC(0,3.2) (0.0371) (0.0338) (0.0254) (0.5748) (0.0264)

PML 0.8460 0.0956 0.0506 1.0425
(0.0429) (0.0377) (0.0327) (0.4476)

RML 0.8460 0.0956 0.1117 0.8601 0.0833
(0.0436) (0.0386) (0.0358) (0.3848)

UML 0.8475 0.0970 0.1723 1.5853 0.3865
GC(-.9,3.2) (0.0356) (0.0321) (0.0380) (0.6728) (0.0265)

PML 0.8459 0.0956 0.0511 1.0453
(0.0431) (0.0381) (0.0326) (0.4626)

Monte Carlo medians and (interquartile ranges) of RML (Student t-based maximum likelihood with
12 degrees of freedom), UML (unrestricted Student t-based maximum likelihood), and PML (Gaussian
pseudo maximum likelihood) estimators. GC (Gram-Charlier expansion). Sample length=2,000. Repli-
cations=20,000.
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