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1 Introduction

Most of the empirical literature assessing the predictability of the levels of financial returns

has focused on the predictor variables. But despite hundreds of papers over several decades, the

evidence remains controversial (see for example Spiegel (2008) and the references therein). The

solomonic decision on the part of the 2013 Economic Sciences Nobel Prize Committee provides a

case in point. While Fama, Hansen and Shiller agree on the relevance of the return predictability

question, they do not necessarily agree on the answer.

There is of course much stronger evidence on time variation in volatilities at daily frequencies,

but at the same time there is a widespread belief that those effects are irrelevant at monthly and

quarterly frequencies. Nevertheless, theoretical and empirical considerations suggest that the

movements in the first two moments of excess returns on financial assets, assuming that those

movements are real, should be smooth and persistent.

Finally, many empirical studies indicate that regardless of the frequency of observation, the

distribution of asset returns is rather leptokurtic, and possibly somewhat asymmetric. Still,

most existing tests for predictability of the mean and volatility of asset returns ignore this fact

by implicitly relying on normality.

In this context, we propose new testing approaches for mean-variance predictability that ex-

plicitly account for all those empirical regularities. Specifically, we propose tests for smooth but

persistent serial correlation in asset risk premia and volatilities that exploit the non-normality

of returns. In this sense, we consider both parametric tests that assume flexible non-normal

distributions, and semiparametric tests.

For a given predictor variable, our tests differ from standard tests in that we effectively change

the regressand in a manner that is reminiscent of the robust estimation literature. Thereby, we

achieve two important improvements over the usual Gaussian tests: increases in their local power

and reductions in their sensitivity to influential observations. Furthermore, we also transform

the regressor to exploit the persistence of conditional means and variances.

Although we focus our discussion on Lagrange Multiplier (or score) tests, our results apply

to Likelihood ratio and Wald tests, which are asymptotically equivalent under the null and

sequences of local alternatives, and therefore share their optimality properties.

From the theoretical point of view, our most novel contribution is to show that our parametric

tests remain valid regardless of whether or not the assumed distribution is correct, which puts

them on par with the Gaussian pseudo-maximum likelihood (PML) testing procedures advocated

by White (1982) and Bollerslev and Wooldridge (1992) among many others. We also show that

our semiparametric tests should be as effi cient as if we knew the true distribution of the data.
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We present local power analyses that confirm the gains that our new testing approaches

deliver over existing methods. We complement our theoretical results with detailed Monte Carlo

exercises that study their finite sample reliability, as well as the ability of a straightforward non-

parametric bootstrap procedure to improve it. Finally, we also illustrate our methods with an

application to the five Fama and French (2015) (FF) factors for international stocks, which

confirms the empirical relevance of our proposals.

The rest of the paper is organised as follows. We introduce our mean and variance pre-

dictability tests in sections 2 and 3, respectively, and study the power gains that they offer

against local alternatives. Next, we study joint tests in section 4. A Monte Carlo evaluation

of our proposed procedures can be found in section 5, followed by our empirical application in

section 6. Finally, we present our conclusions in section 7. Proofs and auxiliary results are

gathered in appendices.

2 Tests for predictability in mean

2.1 First order serial correlation tests

Although we can consider any predictor variable available at time t − 1, for pedagogical

reasons we initially develop tests of first order serial correlation under the maintained assumption

that the conditional variance is constant. More specifically, the model under the alternative is

yt = π(1− ρ) + ρyt−1 +
√
ωε∗t ,

ε∗t |It−1;π, ω, ρ,η ∼ i.i.d. D(0, 1,η)
with density function f(.;η)

 , (1)

where the parameters of interest are φ = (θ′,η′)′, θ′ = (θ′s, ρ)′ and θs = (π, ω)′. In this context,

the null hypothesis is H0 : ρ = 0. Regardless of the specific parametric distribution, testing the

null of white noise against first order serial correlation is extremely easy:

Proposition 1 Let

Ḡm(l) =
1

T

∑T

t=1

∂ ln f [εt(θs0);η0]

∂ε∗
εt−l(θs0)

denote the sample cross moment of εt−l(θs0) and the derivative of the conditional log density of

ε∗t with respect to its argument evaluated at εt(θs0), where εt(θs) = ω−1/2(yt − π) and θs0 the

true parameter value.

1. Under the null hypothesis H0 : ρ = 0, the score test statistic

LMAR(1) = T · Ḡ2m(1)

Iρρ(θs0, 0,η0)
(2)

will be distributed as a χ2 with 1 degree of freedom as T goes to infinity, where

Iρρ(θs, 0,η) = V [εt(θs)|θs, 0,η] ·Mll(η)
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and

Mll(η) = V

[
∂ ln f(ε∗t ;η)

∂ε∗

∣∣∣∣ It−1;η] . (3)

2. This asymptotic distribution is unaffected if we replace the true values of the parameters

θs0 or η0 by their maximum likelihood estimators under the null.

The exact expression for Ḡm(1) depends on the assumed distribution. For example, in the

standardised Student t case with η−1 degrees of freedom,

∂ ln f(ε∗; η)

∂ε∗
= − η + 1

1− 2η + ηε∗2
ε∗, (4)

which reduces to (−) ε∗ under normality (η = 0). Similarly, for a standardised Kotz distribution

with excess kurtosis parameter κ, which also nest the normal when κ = 0, it becomes

∂ ln f(ε∗; η)

∂ε∗
= − 1

3κ + 2

(
3κ
ε∗

+ 2ε∗
)
,

which is a linear combination of the standardised residual and its reciprocal. On the other

hand, a standardised Laplace (or double exponential) distribution, which does not depend on

any additional parameters, yields

∂ ln f(ε∗)

∂ε∗
= −
√

2sign(ε∗), (5)

which means that (2) effectively becomes a directional prediction test, as in Christoffersen and

Diebold (2006).

Similarly, in the case of a standardised two component mixture of normals with density

function:

f(ε∗;η) =
λ

σ∗1(η)
φ

[
ε∗ − µ∗1(η)

σ∗1(η)

]
+

1− λ
σ∗2(η)

φ

[
ε∗ − µ∗2(η)

σ∗2(η)

]
,

where φ(.) is the standard normal density, η = (δ, υ, λ)′ are shape parameters, and µ∗1(η), µ∗2(η),

σ∗21 (η) and σ∗22 (η) are defined in appendix C.1, the relevant regressand becomes

∂ ln f(ε∗;η)

∂ε∗
=

1

σ∗1(η)

[
ε∗ − µ∗1(η)

σ∗1(η)

]
w(ε∗;η) +

1

σ∗2(η)

[
ε∗ − µ∗2(η)

σ∗2(η)

]
[1− w(ε∗;η)],

with

w(ε∗;η) =

λ
σ∗1(η)

φ
[
ε∗−µ∗1(η)
σ∗1(η)

]
λ

σ∗1(η)
φ
[
ε∗−µ∗1(η)
σ∗1(η)

]
+ 1−λ

σ∗2(η)
φ
[
ε∗−µ∗2(η)
σ∗2(η)

] ,
so that it can be understood as the average of the standardised residuals for each component

weighted by the posterior probabilities that the observation belongs to each of those components.

As for Mll, we can either use its theoretical expression (for instance (1 + η) (1− 2η)−1

× (1 + 3η)−1 in the case of the Student t, or 1 under normality), compute the sample analogue
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of (3), or exploit the information matrix equality and calculate it as the sample average of

−∂2 ln f [εt(θs),η] /∂ε∗∂ε∗. As shown by Davidson and MacKinnon (1983) and many others,

this choice will affect the finite sample properties of the tests, as well as their validity under

distributional misspecification.

Intuitively, we can interpret the above score test as a moment test based on the following

orthogonality condition:

E

{
∂ ln f [εt(θs0);η0]

∂ε∗
εt−1(θs0)

∣∣∣∣θs0, 0,η0} = 0, (6)

which is related to the moment conditions used by Bontemps and Meddahi (2012) in their

distributional tests.1 Given that the score with respect to π under the null is proportional to

1

T

∑T

t=1

∂ ln f [εt(θs);η]

∂ε∗
,

the sample second moment will numerically coincide with the sample covariance if we evaluate

the standardised residuals at the ML estimators. Hence, an asymptotically equivalent test

under the null and sequences of local alternatives would be obtained as T ·R2 in the regression

of ∂ ln f [εt(θs),η]/∂ε∗ on a constant and εt−1(θs).2

Our regressand can also be regarded as εt(θs) times a damping factor that accounts for

skewness and kurtosis, as in the robust estimation literature. Figure 1C illustrates the regressand

as a function of εt(θs) for four common distributions: normal, Laplace (whose kurtosis is 6),

Student t with 6 degrees of freedom (and therefore the same kurtosis as the Laplace), and a

two component mixture of normals with skewness coeffi cient -.5 and kurtosis coeffi cient 6. As

a reference, we also plot the corresponding standardised densities in Figure 1A, and (minus)

log-densities in Figure 1B, which can be understood as estimation loss functions.

These damping factors are closely related to those used in the robust estimation literature

(see e.g. Maronna et al (2006)). In fact, the Student t and Laplace distributions are common

choices for robust influence functions.3 In this sense, the Student t factor (η+ 1)/(1−2η+ηε∗2)

clearly downweights big observations because it is a decreasing function of ε∗2 for fixed η > 0,

the more so the higher η is. As a result, the ML estimators of π and ω can be regarded as

M-estimators, which are typically less sensitive to outliers than the sample mean and variance.

1See Arellano (1991), Newey (1985), Newey and McFadden (1994) and Tauchen (1985) for a thorough discussion
of moment tests.

2 It is straightforward to show that (6) coincides with the moment condition one would obtain if the model
under the alternative was yt = π+

√
ω(ε∗t +ϕε∗t−1), thereby encompassing the well known result that Ma(1) and

Ar(1) processes provide locally equivalent alternatives in univariate Gaussian tests for serial correlation (see e.g.
Godfrey (1988)).

3Other well-known choices not directly related to parametric densities are Tukey’s biweight function, which
behaves like a quadratic loss function for small values of εt(θs) but then tapers off, and the so-called windorising
approach, whose loss function is also initially quadratic in εt(θs) but eventually becomes linear.
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A notable exception is a discrete mixture of normals, since we prove in appendix D.7 that the

ML estimators of π and ω coincide with the Gaussian ones.4

Despite the theoretical advantages and numerical robustness of our proposed tests, in practice

most researchers will test for first order serial correlation in yt by checking whether its first

order sample autocorrelation lies in the 95% confidence interval (−1.96/
√
T , 1.96/

√
T ). Such

a test, though, is nothing other than the test in (1) under the assumption that the conditional

distribution of the standardised innovations is i.i.d. N(0, 1). Apart from tradition, the main

justification for using a Gaussian test is the following (see e.g. Breusch and Pagan (1980) or

Godfrey (1988)):

Proposition 2 If in model (1) we assume that the conditional distribution of ε∗t is i.i.d. N(0, 1),
when in fact it is i.i.d. D(0, 1,%0) with bounded second moments, then T · Ḡ2m(1) will continue
to be distributed as a χ2 with 1 degree of freedom as T goes to infinity under the null hypothesis
of H0 : ρ = 0.

Nevertheless, it is important to emphasise that the orthogonality condition (6) underlying

our proposed mean predictability test also remains valid under the null regardless of whether

or not the assumed parametric distribution is correct. More precisely, if we fixed π, ω and η to

some arbitrary values, T ·R2 in the regression of ∂ ln f [εt(θs),η]/∂ε∗ on a constant and εt−1(θs)

would continue to be asymptotically distributed as a χ21 under the null. In practice, though,

researchers will typically replace θs and η by their ML estimators obtained on the basis of the

assumed misspecified distribution, θ̂s and η̂, say, and then apply our tests. In principle, one

would need to take into account the sampling uncertainty in those PML estimators of θ∞ and

η∞. However, it is not really necessary to robustify our proposed Ar test to distributional

misspecification:

Proposition 3 If in model (1) we assume that the conditional distribution of ε∗t is i.i.d. with
density function f(.;η), when in fact it is i.i.d. D(0, 1,%0), then T · R2 in the regression of
∂ ln f [εt(θ̂s), η̂]/∂ε∗ on a constant and εt−1(θ̂s) will continue to be distributed as a χ2 with 1
degree of freedom as T goes to infinity under the null hypothesis H0 : ρ = 0.

In this sense, Proposition 2 can be regarded as a corollary to Proposition 3. Unlike in the

Gaussian case, however, this proposition holds despite the fact that the (pseudo) maximum like-

lihood estimators of π and ω will generally be inconsistent under distributional misspecification,

with substantial asymptotic biases, as illustrated in Figures 2A-B of Fiorentini and Sentana

(2018). Intuitively, the reason is that both the expected value of the Hessian and the variance of

the score of the misspecified log-likelihood are block diagonal between ρ and θs under the null.

4We also show in Appendix D.5 that the Kotz-based ML estimator of ω coincides with the Gaussian one for a
fixed value of π, but the ML estimator of π differs from the sample mean in that it sets to 0 some combination
of the artihmetic and harmonic means of the standardised residuals εt(θs).
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Importantly, a moment test based on (6) will have non-trivial power even when it is no longer

a proper LM test. In fact, in section 2.3 we show that our proposed tests are more powerful

than the usual regression-based tests in Proposition 2 even though the parametric distribution

is misspecified.

The test proposed in Proposition 1, though, requires the specification of a parametric dis-

tribution. Given that some researchers might be reluctant to do so, we next consider semi-

parametric tests that do not make any specific assumptions about the conditional distribution

of the standardised innovations ε∗t , as in González-Rivera and Ullah (2001) and Bera and Ng

(2002). There are two possibilities: unrestricted non-parametric density estimates (SP) and

non-parametric density estimates that impose symmetry (SSP), which is the univariate version

of the procedure used by Hodgson and Vorkink (2003) and Hafner and Rombouts (2007) among

others to reduce the curse of dimensionality in multivariate contexts by assuming sphericity. It

turns out that not only the asymptotic null distribution of our proposed serial correlation test

remains valid if we replace ∂ ln f [εt(θs),η]/∂ε∗ by one of those non-parametric estimators, but

also that the resulting tests are as powerful as if we knew the distribution of ε∗t , including the

true values of the shape parameters:

Proposition 4 1. The asymptotic distribution of the test in Proposition 3 under the null
hypothesis H0 : ρ = 0 is unaffected if we replace ∂ ln f [εt(θs),η0]/∂ε

∗ by a non-parametric
estimator, and π0 and ω0 by their effi cient semiparametric estimators under the null,

π̄ =
1

T

∑T

t=1
yt (7)

and
ω̄ =

1

T

∑T

t=1
(yt − π̄)2, (8)

which coincide with the sample mean and variance of yt.

2. The resulting test is adaptive, in the sense of having the same non-centrality parameter
against sequences of local alternatives of the form Hl : ρT = ρ̄/

√
T as the parametric tests

in Proposition 1 with full knowledge of the distribution of ε∗t .

3. If the true distribution of ε∗t is symmetric, then the previous two results are valid if we
replace ∂ ln f [εt(θs),η0]/∂ε

∗ by a non-parametric estimator that imposes symmetry, and
π0 and ω0 by their effi cient symmetric semiparametric estimators under the null,

π̇ = π̄ +
1√
ω

{∑T

t=1

[
∂ ln f [εt(θs),η0]

∂ε∗

]2}−1 [∑T

t=1

∂ ln f [εt(θs),η0]

∂ε∗

]
(9)

and
ω̇ =

1

T

∑T

t=1
(yt − π̇)2. (10)

The adaptivity of the semiparametric tests is a direct consequence of the fact that ρ is

partially adaptive, in the sense that after partialling out the effect of estimating θs, it can be

estimated as effi ciently as if we knew the true distribution.
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Proposition 4 might suggest that one should never use parametric tests because at best

(i.e. under correct specification) they will be as powerful as the semiparametric ones. In finite

samples, though, the power of these semiparametric procedures may not be well approximated

by the first-order asymptotic theory underlying this proposition. In that sense, a parametric

test based on a flexible non-Gaussian distribution might provide a good practical compromise.

Finally, it is worth mentioning that our tests of H0 : ρ = 0 are different from the tests that

one would obtain in the so-called Generalised Autoregressive Score models (GAS), also known as

Dynamic Conditional Score models (see Creal, Koopman and Lucas (2013) and Harvey (2013)).

Those models implicitly change the specification of the conditional mean or variance, which

become a function of the lagged value of the log-likelihood score ∂ ln f(ε∗; η)/∂ε∗. For example,

the conditional mean in (1) is a function of sign(ε∗t−1) for the Laplace distribution, while it

is affi ne in (η + 1)ε∗t−1/(1 − 2η + ηε∗2t−1) in the Student t case. In that context, we can use

straightforward algebra to show that an LM test of lack of predictability in mean in a Student

t-based GAS model would check the significance of the first sample autocorrelation of (4), while

it would look at the first-order autocorrelation of sign(ε∗t ) in the Laplace case, as in the popular

Henriksson - Merton (1981) market timing test.5

2.2 Exploiting the persistence of expected returns

Let us now consider a situation in which

yt = π(1−
∑h

l=1
ρl) +

∑h

l=1
ρlyt−l +

√
ωε∗t ,

with h > 1 but finite, so that the null hypothesis of lack of predictability becomesH0 : ρ1 = . . . =

ρh = 0. In view of our previous discussion, it is not diffi cult to see that under this maintained

assumption the score test of ρl = 0 will be based on the orthogonality condition

E

{
∂ ln f [εt(θs),η0]

∂ε∗
εt−l(θs)|θs0, 0,η0

}
= 0.

In this context, it is straightforward to show that the joint test for Ar(h) dynamics will be

given by the sum of h terms of the form

T · Ḡ2m(l)

Iρρ(θs0, 0,η0)
for l = 1, . . . , h, whose asymptotic distribution would be a χ2h under the null.

Such a test, though, does not impose any prior knowledge on the nature of the expected

return process, other than its lag length is h. Nevertheless, there are theoretical and empirical

reasons which suggest that time-varying expected returns should be smooth processes.
5Tests that transform both regressand and regressor to make them robust to outliers have also been discussed

by Amengual and Sentana (2018) in a copula context with arbitrary margins, and Camponovo, Scaillet and
Trojani (2013) in a more general non-likelihood setting.
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A rather interesting example of persistent expected returns is an autoregressive model in

which ρl = ρ for all l. In this case, we can use the results in Fiorentini and Sentana (1998) to

show that the process for expected returns will be given by the following not strictly invertible

Arma(h, h− 1) process:

µt+1 = π(1− hρ) +
∑h

j=1
ρµt+1−j + ρ

[
εt +

∑h−1

j=1
εt−j

]
. (11)

As long as the covariance stationarity condition hρ < 1 is satisfied, the autocorrelations of

the expected return process can be easily obtained from its autocovariance generating function

ψµµ(z) =

(
1 +

∑h−1
j=1 z

j
)(

1 +
∑h−1

j=1 z
−j
)

(
1− ρ

∑h
j=1 z

j
)(

1− ρ
∑h

j=1 z
−j
) , (12)

which contrasts with the autocovariance generating function of the observed process

ψyy(z) =
1(

1− ρ
∑h

j=1 z
j
)(

1− ρ
∑h

j=1 z
−j
) .

In this context, we can easily find examples in which the autocorrelations of the observed

return process are very small while the autocorrelations of the expected return process are much

higher, and decline slowly towards 0. For example, Figure 2 presents the correlograms of yt and

µt+1 on the same vertical scale for h = 24 and ρ = .015.6

This differential behaviour suggests that a test against first order correlation will have little

power to detect such departures from white noise, the optimal test being one against an Ar(h)

process with common coeffi cients. We shall formally analyse this issue in the next section.

From the econometric point of view, the assumption that ρl = ρ for all l does not pose any

additional problems. Specifically, it is easy to prove that the relevant orthogonality condition

will become

E

{
∂ ln f [εt(θs),η0]

∂ε∗

∑h

l=1
εt−l(θs)

∣∣∣∣θs0, 0,η0} = 0, (13)

with hIρρ(θs, 0,η) being the corresponding asymptotic variance.

This moment condition is analogous to the one proposed by Jegadeesh (1989) to test for

long run predictability of individual asset returns without introducing overlapping regressands.

Cochrane (1991) and Hodrick (1992) discussed related suggestions. The intuition is that if re-

turns contain a persistent but mean reverting predictable component, using a persistent right

hand side variable such as an overlapping h-period return may help to pick it up. Not surpris-

ingly, the asymptotic variance is analogous to the so-called Hodrick (1992) standard errors used

in tests for long run predictability in univariate OLS regressions with overlapping regressands.

6Expression (12) implies the correlograms of µt+1 and an overlapping sum of h consecutive returns coincide.
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More recently, the Gaussian version of (13) has also been tested by Moskowitz, Ooi and

Pedersen (2012) in their empirical analysis of time series momentum. These authors provide both

behavioural and rational justifications for the forecasting ability of lagged compound returns.

It is important to mention that the regressor
∑h

l=1 εt−l(θs) will be quite persistent even

if returns are serially uncorrelated because of the data overlap. Specifically, the first-order

autocorrelation coeffi cient will be 1− 1/h in the absence of return predictability. Nevertheless,

since the correlation between the innovation to the regressor at time t + 1 and the innovations

εt(θs) is 1/
√
h under the null, the size problems that plague predictive regressions should not

affect much our test (see Campbell and Yogo (2006)).

2.3 The relative power of mean predictability tests

Let us begin by assessing the power gains obtained by exploiting the persistence of expected

returns. For simplicity we consider Gaussian tests only, and evaluate asymptotic power against

compatible sequences of local alternatives of the form ρ0T = ρ̄/
√
T . As we show in appendix B,

when the true model is (11), the non-centrality parameter of the Gaussian score test for first

order serial correlation is ρ̄2 regardless of h, while the non-centrality parameter of the test that

exploits the persistence of the conditional mean will be hρ̄2. Hence, Pitman’s asymptotic relative

effi ciency of the two tests is precisely h. Figure 3A shows that those differences in non-centrality

parameters result in substantive power gains. However, the asymptotic relative effi ciency would

be exactly reversed in the unlikely event that the true model were an Ar(1) but we tested for

it by using the moment condition (13) (see appendix B). Not surprisingly, this would result in

substantial power losses, which are also illustrated in Figure 3A.

Let us now turn to study the improvements obtained by considering distributions other than

the normal. The following result gives us the necessary ingredients.

Lemma 1 If the true DGP corresponds to (1) with ρ0 = 0, then the feasible ML estimator of
ρ is as effi cient as the infeasible ML estimator, which require knowledge of η0. In contrast, the
ineffi ciency ratio of the Gaussian PML estimator of ρ isM−1ll (η0), withMll(η0) defined in (3).

This means that Pitman’s asymptotic relative effi ciency of those serial correlation tests that

exploit the non-normality of yt will be M−1ll (η0). Figure 3B assesses the power gains against

local Ar(1) alternatives under the assumption that the true conditional distribution of ε∗t is a

Student t with either 6 or 4.5 degrees of freedom. This figure confirms that the power gains that

accrue to our proposed serial correlation tests by exploiting the leptokurtosis of the t distribution

are noticeable, the more so the higher the kurtosis of yt. Similarly, Figure 3C repeats the same

exercise for two normal mixtures whose kurtosis coeffi cients are both 6, and whose skewness

coeffi cients are -.5 and -1.219, respectively. Once again, we can see that there are significant
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power gains. In this sense, it is worth remembering that since our semiparametric tests are

adaptive, they should achieve these gains, at least asymptotically.

For the parametric tests, however, the results in those figures are based on the assumption

that the non-Gaussian distribution is correctly specified. Given that we have proved in Propo-

sition 3 that those tests are robust, an obvious question is what their relative power is under

distributional misspecification. For the sake of concreteness, we answer this question for the

Student t tests when the degrees of freedom parameter is estimated and the true distribution is

either a fourth-order Gram-Charlier (GC) expansion of the normal or an unrestricted location-

scale mixture of two normals. In this regard, our results complement those in Amengual and

Sentana (2010), who show that mean tests based on the Student t distribution dominate the

corresponding Gaussian tests when the true distribution is either Kotz or a symmetric scale

mixture of two normals. Since the non-centrality parameters do not depend on the true values

of π and ω, we assume they are equal to 0 and 1 without loss of generality.

Figure 4A illustrates the ratio of the non-centrality parameters of the Gaussian and Student

t tests of H0 : ρ = 0 when the true distribution is an admissible fourth-order GC expansion

of the standard normal as a function of the skewness and kurtosis coeffi cients compatible with

a non-negative density everywhere (see Jondeau and Rockinger (2001) and appendix C.2.2 for

a characterisation of the set of skewness and kurtosis values that give rise to a non-negative

density for the fourth-order expansion).7 The results clearly show that a misspecified Student t

systematically leads to more powerful tests of H0 : ρ = 0 than the Gaussian ones.

Similarly, Figure 4B repeats the same calculations, but this time assuming that the true

distribution is a mixture of two normals in which the probability of the first component is

5%. To facilitate its comparison with Figure 4A, the axes are again the skewness and kurtosis

coeffi cients of the mixture as we vary the shape parameters δ and υ (see appendix C.1.2 for a

characterisation of the set of skewness and kurtosis values that are compatible with a mixture

of two normals when the mixing probability is fixed).8 Once again, a misspecified Student t

systematically leads to more powerful tests.

These results raise the question of whether the observed advantage of the Student t is uni-

versal. Obviously, it crucially depends on the (reciprocal) degrees of freedom parameter η being

estimated, for otherwise it is easy to see that fixing η to a positive value when the true value

is 0 necessarily means that the Gaussian test will dominate. To answer this question, we have

considered all possible discrete mixtures of two normals because this family of distribution covers

7Since the non-centrality parameters do not depend on the sign of the skewness coeffi cient, we only show the
positive side of the admissible region.

8As in Figure 4A, we only show the positive skewness side of the admissible region because the non-centrality
parameters do not depend on the sign of the skewness coeffi cient.
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the entire admissible range of skewness-kurtosis coeffi cients that any distribution can achieve,

which is characterised by the bound E(ε∗4t ) ≥ 1 + E2(ε∗3t ) (see Stuart and Ord (1977) and ap-

pendix C.1.2). In effect, this requires repeating the calculations underlying Figure 4B for every

value of λ between 0 and 1. Although we have not been able to find any counterexample, at

least in a triple grid for λ, υ and δ over (0,1)×(0,1)×(-4,4), we cannot rule out that it might

exist for some other family of true distributions.

3 Tests for predictability in variance

3.1 First-order ARCH tests

Although we can consider any variance predictor variable available at time t−1, for pedagogi-

cal reasons we initially develop tests of first order Arch effects under the maintained assumption

that the conditional mean is constant. More specifically, the model under the alternative is

yt = π0 + σt(θ0)ε
∗
t ,

σ2t (θ) = ω(1− α) + α(yt−1 − π)2,
ε∗t |It−1;π, ω, α,η ∼ i.i.d. D(0, 1,η),

with density function f(.,η)

 , (14)

where the parameters of interest are φ = (θ′,η′)′, with θ′ = (θ′s, α)′. In this context, the null

hypothesis is H0 : α = 0. Regardless of the specific parametric distribution, testing the null of

conditional homoskedasticity against first order Arch is extremely easy:

Proposition 5 Let

Ḡs(j) =
1

T

∑T

t=1

{
1 +

∂ ln f [εt(θs0),η0]

∂ε∗
εt(θs0)

}
ε2t−j(θs0)

denote the sample cross moment of ε2t−j(θs0) and 1 plus the derivative of the conditional log
density of ε∗t with respect to its argument evaluated at εt(θs0) times εt(θs0).

1. Under the null hypothesis H0 : α = 0, the score test statistic

LMARCH(1) =
T

4
· Ḡ2s(1)

Iαα(θs0, 0,η0)
(15)

will be distributed as a χ2 with 1 degree of freedom as T goes to infinity, where

Iαα(θs, 0,η) = V [12ε
2
t (θs)|θs, 0,η] ·Mss(η)

and

Mss(η) = V

[
∂ ln f(ε∗t ,η)

∂ε∗
ε∗t

∣∣∣∣ It−1;η] . (16)

2. This asymptotic null distribution is unaffected if we replace θs0 or η0 by their maximum
likelihood estimators.

11



As in the case of the mean predictability tests discussed in the previous section, the exact

expression for Ḡs(1) depends on the assumed distribution. As for Mss(η), we can either use

its theoretical expression (for instance 2(1 + 3η)−1 in the case of the Student t, which reduces

to 2 under normality), compute the sample analogue of (16), or exploit the information matrix

equality and calculate it as twice the sample average of 1 − ∂2 ln f [εt(θs),η] /∂ε∗∂ε∗ · ε2t (θs).

Once again, this choice will affect the finite sample properties of the tests (see Davidson and

MacKinnon (1983)), as well as their validity under distributional misspecification.

Intuitively, we can interpret the above score test a moment test based on the following

orthogonality condition:

E

[{
1 +

∂ ln f [εt(θs),η0]

∂ε∗
εt(θs)

}
ε2t−1(θs)

∣∣∣∣θs0, 0,η0] = 0, (17)

which is also related to the conditions used by Bontemps and Meddahi (2012). In fact, given

that the score with respect to ω under the null is proportional to

1

T

∑T

t=1

{
1 +

∂ ln f [εt(θs),η]

∂ε∗
εt(θs)

}
,

the sample second moment will numerically coincide with the sample covariance if we evaluate

the standardised residuals at the ML estimators. As a result, an asymptotically equivalent test

under the null and sequences of local alternatives would be obtained as T ·R2 in the regression

of 1 + εt(θs)∂ ln f [εt(θs),η]/∂ε∗ on a constant and ε2t−1(θs).

Importantly, the numerical invariance of LM tests to non-linear transformations of the re-

strictions when the asymptotic variance under the null is computed using either the information

matrix or the sample variance of the score (see section 17.4 of Ruud (2000)) implies that the

test for H0 : γ = 0, where γ = α/ω, will be numerically identical in finite samples to the test

above, and the same is obviously true to its size and power properties.

Godfrey (1988) re-interprets Glejser (1969) heteroskedasticity test, which regresses the ab-

solute value of the residuals on several predictor variables, as an ML test based on the Laplace

distribution. More generally, our regressand can be regarded as ε2t (θs) times a damping factor

that accounts for skewness and kurtosis.9 Figure 5 illustrates the transformation of the regres-

sands for the same four standardised distributions depicted in Figure 1: normal, Laplace distri-

bution, Student t with 6 degrees of freedom (and therefore the same kurtosis as the Laplace),

and a discrete mixture of normals with skewness coeffi cient -.5 and kurtosis coeffi cient 6. A com-

parison with Figure 1C indicates that the regressands of the mean and variance predictability

9This factor also plays an important role in the beta-t-Arch models proposed by Harvey and Chakravarty
(2008), although if one derived an LM test for conditional homoskedasticity against their models, the damping
factor (η + 1)/(1− 2η + ηε∗2) would appear not only in the regressand but also in the regressor, as we discussed
in the case of the serial correlation tests at the end of section 2.1.
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tests can behave rather differently for a given distribution.10

Despite the theoretical advantages and numerical robustness of our proposed tests, in prac-

tice, most researchers will test for first order Arch effects in yt by checking whether the first

order sample autocorrelation of ε2t (θs) lies in the 95% confidence interval (−1.96/
√
T , 1.96/

√
T ).

Such a test, though, is nothing other than the test in (5) under the assumption that the con-

ditional distribution of the standardised innovations is i.i.d. N(0, 1). Apart from tradition, the

main justification for using a Gaussian test is the following (see e.g. Demos and Sentana (1998)):

Proposition 6 If in model (14) we assume that the conditional distribution of ε∗t is i.i.d.
N(0, 1), when in fact it is i.i.d. D(0, 1,%0) with bounded fourth moments, then (15) will still be
distributed as a χ2 with 1 degrees of freedom as T goes to infinity under the null hypothesis of
H0 : α = 0 as long as we replace the Gaussian expression for Mss(η) with V [ε2t (θs)

∣∣θs0, 0,%0].
Notice that in this case we have to use Koenker’s (1981) version of the usual heteroskedas-

ticity test because the information matrix version of Engle’s (1982) test, which assumes that

V [ε2t (θs)
∣∣θs0, 0,%0] = 2, will be incorrectly sized.

But again, it is important to emphasise that the orthogonality condition (17) underlying

our proposed Arch test also remains valid under the null regardless of whether or not the

assumed parametric distribution is correct. Specifically, if we fixed π, ω and η to some arbitrary

values, T ·R2 in the regression of 1+ εt(θs)∂ ln f [εt(θs),η]/∂ε∗ on a constant and ε2t−1(θs) would

continue to be asymptotically distributed as a χ21 under the null. In practice, though, researchers

will typically replace θs and η by their ML estimators obtained on the basis of the assumed

distribution, θ̂s and η̂, say, and then apply our tests. In principle, one would have to take into

account the sampling uncertainty in those PML estimators of θ∞ and η∞. However, it is not

really necessary to robustify our proposed Arch test to distributional misspecification:

Proposition 7 If in model (14) we assume that the conditional distribution of ε∗t is i.i.d. with
density function f(.;η), when in fact it is i.i.d. D(0, 1,%0), then T · R2 in the regression of
1 + εt(θ̂s)∂ ln f [εt(θ̂s), η̂]/∂ε∗ on a constant and ε2t−1(θ̂s) will continue to be distributed as a χ

2

with 1 degree of freedom as T goes to infinity under the null hypothesis H0 : γ = 0.

In this sense, the result in Proposition 6 can be regarded as a corollary to Proposition 7

in the Gaussian case. Similarly, the suggestion made in Proposition 2 of Machado and Santos

Silva (2000) to robustify Glejser’s heteroskedasticity test, which in our case would involve re-

placing π by the sample median of yt, can also be regarded as a corollary to this Proposition
10Another interesting example is given by the Kotz distribution, whose variance regresand is proportional to

ε2t (θs), with a factor of proportionality that depends on κ, while its mean regressand is a linear combination
of εt(θs) and ε−1t (θs). Although the ML estimator of π is not the sample mean, if we knew that π0 = 0 and
we correctly imposed this restriction in estimation, ω̂2 would coincide with the second sample moment, which is
also the Gaussian PMLE. As a result, the Gaussian and Kotz Arch(1) tests would be numerically identical too.
Proposition 9.1 in Francq and Zakoïan (2010) confirms that the numerical equality will apply to the corresponding
ML estimators of α under the alternative.
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in the Laplace case. Once again, though, Proposition 6 holds despite the fact that the (pseudo)

maximum likelihood estimators of π and ω will generally be inconsistent under distributional

misspecification, with substantial asymptotic biases, as illustrated in Figures 2A-B of Fioren-

tini and Sentana (2018). Once more, the intuitive reason is that both the expected value of

the Hessian and the variance of the score of the misspecified log-likelihood are block diagonal

between γ and θs under the null.

Importantly, a moment test based on (17) will continue to have non-trivial power even

though it will no longer be an LM test. In fact, in section 3.3 we show that our proposed tests

are generally more powerful than the usual regression-based tests in Proposition 6 even though

the parametric distribution is misspecified.

The test proposed in Proposition 5, however, requires to specify a parametric distribution.

Since some researchers might be reluctant to do so, we next consider semiparametric tests that

do not make any specific assumptions about the conditional distribution of the innovations ε∗t ,

as in Linton and Steigerwald (2000) and Bera and Ng (2002). Once again, there are two possibil-

ities: unrestricted non-parametric density estimates (SP) and non-parametric density estimates

that impose symmetry (SSP). Unsurprisingly, it turns out that not only the asymptotic null dis-

tribution of our proposed serial correlation test remains valid if we replace ∂ ln f [εt(θs),η]/∂ε∗

by one of those non-parametric estimators, but also that the resulting tests are as powerful as

if we knew the distribution of ε∗t , including the true values of the shape parameters:

Proposition 8 1. The asymptotic distribution of the test in Proposition 7 is unaffected if
we replace ∂ ln f [εt(θs),η0]/∂ε

∗ by a non-parametric estimator and π0 and ω0 by their
effi cient semiparametric estimators under the null defined in (7) and (8), which coincide
with the sample mean and variance of yt.

2. The resulting test is adaptive, in the sense of having the same non-centrality parameter
against sequences of local alternatives of the form Hl : γT = γ̄/

√
T with γ = α/ω, as the

parametric tests in Proposition 5 with full knowledge of the distribution of ε∗t .

3. If the true conditional distribution is symmetric, then the previous two results are valid if
we replace ∂ ln f [εt(θs),η0]/∂ε

∗ by a non-parametric estimator that imposes symmetry, and
π0 and ω0 by their effi cient symmetric semiparametric estimators under the null, which
are defined in (9) and (10).

The adaptivity of the semiparametric tests is a direct consequence of the fact that γ is

partially adaptive, in the sense that after partialling out the effect of estimating θs, it can be

estimated as effi ciently as if we knew the true distribution.

Once again, Proposition 8 might suggest that one should never use parametric tests because

at best (i.e. under correct specification) their local power coincides with those of the semipara-

metric ones. As before, though, the power of these semiparametric procedures in finite samples
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may not be well approximated by the first-order asymptotic theory that justifies their adap-

tivity, so a parametric test based on a flexible but parsimoniously parametrised non-Gaussian

distribution might provide a good practical compromise.

3.2 Exploiting the persistence of volatilities

Let us now consider a situation in which

σ2t (θ) = ω(1−
∑q

j=1
αj) +

∑q

j=1
αj(yt−j − π)2,

with q > 1 but finite, so that the null hypothesis of conditional homoskedasticity becomes

H0 : α1 = . . . = αq = 0. In view of our previous discussion, it is not diffi cult to see that under

this maintained assumption the score test of αj = 0 will be based on the orthogonality condition

E

[{
1 +

∂ ln f [εt(θs),η0]

∂ε∗
εt(θs)

}
ε2t−1(θs)|θs0, 0,η0

]
= 0.

In this context, it is straightforward to show that the joint test for Arch(q) dynamics will

be given by the sum of q terms of the form

T

4
· Ḡ2s(j)

Iαα(θs0, 0,η0)

for l = 1, . . . , q, whose asymptotic distribution would be a χ2q under the null.

But since the inequality constraints α1 ≥ 0, . . . , αq ≥ 0 must be satisfied to guarantee

nonnegative conditional variances of an Arch(q) model, an even more powerful test can be

obtained if we test H0 : α1 = 0, . . . , αq = 0 versus H1 : α1 ≥ 0, . . . , αq ≥ 0, with at least

one strict inequality. An argument analogous to the one in Demos and Sentana (1998) shows

that a version of the Kuhn-Tucker multiplier test of Gouriéroux, Holly and Monfort (1980) can

be simply computed as the sum of the square t-ratios associated with the positive estimated

coeffi cients in the regression of ∂ ln f [εt(θs),η]/∂ε∗ · εt(θs) on a constant and the first q lags of

ε2t (θs). The asymptotic distribution of such a test will be given by
∑q

i=0

(
q
i

)
2−qχ2i , which is a

mixture of q + 1 independent χ2′s whose critical values can be found in Table 1 in that paper.

Nevertheless, there is a lot of evidence which suggests that volatilities are rather persistent

processes. In this sense, the obvious model that we shall use to capture such an effect is a

Garch(1, 1) process in which q is in fact unbounded, and αj = αβj−1 for j = 1, 2, . . .

From the econometric point of view, this model introduces some additional complications

because the parameter β becomes underidentified when α = 0 (see Bollerslev (1986)). Note,

however, that since α has to be positive under the alternative to guarantee that σ2t (θ) =

ω(1 − β)−1 + α
∑t−2

j=0 β
jε2t−j−1(θ) is nonnegative everywhere, we should still test H0 : α = 0

vs. H1 : α ≥ 0 even if we knew β. One solution to testing situations such as this involves
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computing the test statistic for many values of β in the range [0,1), which are then combined

to construct an overall statistic, as initially suggested by Davies (1977, 1987). Andrews (2001)

discusses ways of obtaining critical values for such tests by regarding the different LM statistics

as continuous stochastic processes indexed with respect to the parameter β. An alternative

solution involves choosing an arbitrary value of β, β̄ say, to carry out a one-sided LM test as

T · R2 from the regression of {1 + ∂ ln f [εt(θs),η0]/∂ε
∗ · εt(θs)} on a constant and the distrib-

uted lag
∑t−2

j=0 β̄
j
ε2t−j−1(θs) (see Demos and Sentana (1998)). The one-sided versions of such

tests are asymptotically distributed as a 50 : 50 mixture of χ20 and χ
2
1 irrespective of the value

of β̄. Obviously, the chosen value of β̄ influences the small sample power of the test, an issue

to which we shall return in the next section, but the advantage is that the resulting test has

a standard distribution under H0. An attractive possibility is to choose β̄ equal to the decay

factor recommended by RiskMetrics (1996) to obtain their widely used exponentially weighted

average volatility estimates (e.g. β̄ = .94 for daily observations). In this respect, note that

since the RiskMetrics volatility measure is proportional to
∑t−2

j=0 β̄
j
ε2t−j−1(θs), in effect our pro-

posed Garch(1,1) tests differ from the Arch(q) tests discussed before in that the q lags of the

squared residuals are replaced by the RiskMetrics volatility estimate in the auxiliary regressions.

Straightforward algebra shows that the asymptotic variance of this statistic would be (1− β̄2)−1

times the Arch(1) expression under the null of conditional homoskedasticity.

3.3 The relative power of variance predictability tests

Let us begin by assessing the power gains obtained by exploiting the persistence of con-

ditional variances. For simplicity, we first compare the Gaussian versions of the Arch(1)

and fixed-β̄ Garch(1,1) tests, and evaluate asymptotic power against compatible sequences

of local alternatives of the form α0T = ᾱ/
√
T . Given that the sample variance is consistent

for ω, exactly the same results will be obtained if we worked with the transformed sequence

γ0T = (ᾱω−10 )/
√
T = γ̄/

√
T .

As we show in appendix B, when the true model is (11), the non-centrality parameter of

the Gaussian pseudo-score test based on the first order serial correlation coeffi cient of ε2t (θs) is

ᾱ2 regardless of the true value of β. In contrast, the non-centrality parameter of the fixed-β̄

Garch(1,1) test is ᾱ2(1− β̄2)/(1− β̄β0)2. Hence, the asymptotic relative effi ciency of the two

tests is (1− β̄2)/(1− β̄β0)2, which is not surprisingly maximised when β̄ = β0. Figure 6A shows

that for a realistic value of β0 these effi ciency gains yield substantive power gains when we set

β̄ to its RiskMetrics value of .94

Let us now study the power gains obtained by considering distributions other than the

normal. The following proposition gives us the necessary ingredients:
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Lemma 2 If the true DGP corresponds to (14) with α0 = 0, then the feasible ML estimator of
α is as effi cient as the infeasible ML estimator, which require knowledge of η0. In contrast, the
ineffi ciency ratio of the Gaussian PML estimator of α is 4/[(κ0 − 1)Mss(η0)], where Mss(η0)
is defined in (16).

Lemma 2 then implies that the local non-centrality parameter of the Gaussian test for Arch

is α2, while the non-centrality parameter of the parametric test forArch is 14 [(κ0−1)Mss(η0)]α
2.

Figure 6B assesses the power gains under the assumption that the true conditional distribution of

ε∗t is a Student t with either 6 or 4.5 degrees of freedom. This figure confirms that the power gains

that accrue to our proposed Arch tests by exploiting the leptokurtosis of the t distribution are

in fact more pronounced than the corresponding gains in the mean predictability tests. Similarly,

Figure 6C repeats the same exercise for two discrete location scale mixture of normals whose

kurtosis coeffi cients are both 6, and whose skewness coeffi cients are either -.5 or -1.219. In this

case, our tests also yield significant power gains. In this sense, it is worth remembering that since

our semiparametric tests are adaptive, they should achieve these gains, at least asymptotically.

For the parametric tests, however, the results in those figures are based on the assumption

that the non-Gaussian distribution is correctly specified. Given that we have proved in Propo-

sition 7 that those tests are robust, an obvious question is what their relative power is under

distributional misspecification. As in section 2.3, we answer this question for the Student t-based

tests when the degrees of freedom parameter is estimated and the true distribution is either a

fourth-order GC expansion of the normal or a mixture of two normals. Once again, we set π

and ω to 0 and 1 without loss of generality.

Figure 7A depicts the ratio of the non-centrality parameters of the Gaussian and Student t

tests of H0 : γ = 0 when the true distribution is an admissible fourth-order GC expansion of

the standard normal as a function of the skewness and kurtosis coeffi cients. As can be seen,

the results clearly show that the misspecified Student t systematically leads to more powerful

tests than the Gaussian ones. Figure 7B repeats the same calculations, but this time assuming

a mixture of two normals with mixing probability λ = .05. Once more, the misspecified Student

t systematically leads to more powerful tests.

These results raise the question of whether the advantage of the Student t are pervasive, at

least when the (reciprocal) degrees of freedom parameter η is estimated. Unlike in the case of the

serial correlation tests discussed in section 2.3, we have been able to find a somewhat contrived

counterexample in which the Student t test is marginally less powerful than the Gaussian one.

Specifically, if the true distribution is a scale mixture of two normals with δ = 0, κ = .03 and

λ = .97, so that the relative variance of the less likely component is very small - the so-called

inlier case in Amengual and Sentana (2011) - then the Gaussian test is marginally more powerful
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than the misspecified Student t test, with an asymptotic ineffi ciency ratio of merely 1.0035.

4 Joint tests for mean-variance predictability

In this section we shall consider joint tests of Ar and Arch effects. Specifically, our alter-

native in the first-order case will be

yt = µt(π0, ρ0) + σt(θ0)ε
∗
t ,

µt(π, ρ) = π(1− ρ) + ρyt−j ,
σ2t (θ) = ω(1− α) + αj [yt−1 − µt−1(π, ρ)]2,

ε∗t |It−1;θ0,η0 ∼ i.i.d. D(0, 1,η0)

 , (18)

where the parameters of interest are φ = (θ′,η′)′, with θ′ = (θ′s, ρ, α)′. When the conditional

variance σ2t (θ) is constant (α = 0), the above formulation reduces to (1). Similarly, when the

levels of the observed variable are unpredictable (ρ = 0), the above model simplifies to (14).

Finally, the joint null hypothesis of lack of predictability in mean and variance corresponds to

ρ = 0 and α = 0.

In this context, the double length artificial regression of Davidson and MacKinnon (1988)

might seem natural. However, there are two potential problems. First, in general the mean

and variance regressands, namely ∂ ln f [εt(θs),η]/∂ε∗ and 1 + εt(θs)∂ ln f [εt(θs),η]/∂ε∗, have

different variances, which introduces heteroskedasticity. More seriously, those two regressands

will be correlated unless the true distribution is symmetric. The solution is a system of seemingly

unrelated regression equations (SURE) in which one simultaneously regresses each of those

regressands on the corresponding regressors, εt−1(θs) and ε2t−1(θs), respectively, and jointly

tests the significance of both slope coeffi cients. In effect, this is a joint moment test of (6) and

(17). Under the null, the covariance matrix of those moment conditions is

V

[
εt−1(θs0)
1
2ε
2
t−1(θs0)

]
�
[
Mll(η0) Mls(η0)
Mls(η0) Mss(η0)

]
,

where � denotes the Hadamard (or element-by-element) product of two matrices and

Mls(η0) = cov [∂ ln f [εt(θs0),η0]/∂ε
∗, 1 + εt(θs0)∂ ln f [εt(θs0),η0]/∂ε

∗] ,

which reduces to [
1 1

2φ
2
0

1
2φ
2
0

1
4(κ0 − 1)2

]
when the assumed distribution is Gaussian but the true one has skewness and kurtosis coeffi cients

φ0 and κ0, respectively.

Nevertheless, if the true distribution of ε∗t is symmetric, then it turns out that the joint tests

of Ar(1)-Arch(1) in Propositions 1 and 5 is simply the sum of the separate tests:

Proposition 9 If ε∗t is symmetrically distributed, then
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1. Under the joint null hypothesis H0 : ρ = 0 and α = 0 the score test statistic

LMAR(1)−ARCH(1)(η0) = LMAR(1)(η0) + LMARCH(1)(η0),

will be distributed as a χ2 with 2 degrees of freedom as T goes to infinity. This asymptotic
null distribution is unaffected if we replace θs and η0 by their joint maximum likelihood
estimators.

2. It also remains valid if we replace θs0 by its symmetric semiparametric estimator

3. Under the same null hypothesis

LMAR(1)−ARCH(1)(0) = LMAR(1)(0) + LMARCH(1)(0)

will also be distributed as a χ2 with 2 degrees of freedom as T goes to infinity irrespective of
whether the conditional distribution is normal. This result continues to hold if we replace
θs0 by its Gaussian pseudo maximum likelihood estimator θ̄s

Intuitively, the serial correlation orthogonality condition (6) is asymptotically orthogonal to

theArch orthogonality condition (17) because all odd order moments of symmetric distributions

are 0, which means that the joint test is simply the sum of its two components.

Obviously, all previous results continue to hold mutatis mutandi for the alternative persistent

regressors that we have discussed in sections 2.2 and 3.2.

5 Monte Carlo analysis

5.1 Design and computational details

In this section, we assess the finite sample performance of the different testing procedures

discussed above by means of an extensive Monte Carlo exercise adapted to the behaviour of the

market portfolios in the empirical application in section 6. Specifically, we consider the following

univariate, covariance stationary Arma(1,1)-Garch(1,1) model:

yt = µt(π0, ρ0, ϕ0) + σt(θ0)ε
∗
t ,

µt(π, ρ, ϕ) = π + ρyt−1 + ϕ[yt−1 − µt−1(π, ρ, ϕ)],
σ2t (θ) = ω + α[yt−1 − µt−1(π, ρ, ϕ)]2 + βσ2t−1(θ),

ε∗t |It−1;θ0,η0 ∼ i.i.d. D(0, 1,η0).

We set π = .5 and ω = 18. Although these values are inconsequential for the simulation

results because our tests are numerically invariant to location-scale affi ne transformations of the

observations, in annualised terms they imply a realistic risk premia of 6%, a standard deviation

14.7%, and a Sharpe ratio .41 under the null.

For the sake of brevity, we focus on the results for T = 100 observations (plus another 112

for initialisation), equivalent to 25 years of quarterly data, roughly the same as in our empirical

analysis. The Arma(1,1) specification corresponds to the reduced form of the model with

smooth, persistent autoregressive expected returns observed subject to negatively correlated
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noise that underlies the mean reversion literature (see e.g. Fiorentini and Sentana (1998) and

the references therein). When ϕ = 0, this mean specification reduces to the Ar(1) process that

we considered in section 2.1. In general, though, it nests neither this process nor the restricted

Ar(h) process in section 2.2. As a result, we can use it to assess which of the tests we developed

in those sections has more power to detect predictability in a realistic context.

We systematically rely on 20,000 replications, so the 95% confidence interval for nominal

sizes of 1, 5 and 10% would be (0.86, 1.14), (4.70, 5.30) and (9.58, 10.42)%, respectively.

As for η0, we consider five different standardised distributions: Gaussian, Student t6, a

mixture of two normals with the same kurtosis (=6) but negative skewness (=-.5), and two

4th-order Gram Charlier expansions: GC(0,3.0) - symmetric - and GC(-0.8, 3.0) - asymmetric.

Finally, we also consider a sixth distribution to assess the sensitivity of the different tests to the

presence of unusual values. Specifically, we replace five observations of the GC(-0.8, 3.0) random

variable with additive outliers four standard deviations away from the mean, two of which are

consecutive. In principle, influential observations may have three possibly compensating effects

on the different testing procedures. First, they can affect the estimates of the mean and variance

of the distribution, and thereby the distribution of the standardised residuals. Second, even if

we could observe the true standardised innovations, the presence of two consecutive unusual

values can generate large test statistics even though the null is true. And finally, in as much as

large observations are a reflection of a non-Gaussian distribution, they will tend to increase the

power of the non-Gaussian tests relative to the Gaussian ones.

We use the same underlying pseudo-random numbers in all designs to minimise experimental

error. In particular, we make sure that the underlying Gaussian random variables are the same

for all five distributions. Given that the usual routines for simulating gamma random variables

involve some degree of rejection, which unfortunately can change for different values of the shape

parameters, we use the slower but smooth inversion method based on the NAG G01FFF gamma

quantile function so that we can keep the underlying uniform variates fixed across simulations.

Those uniform random variables are also recycled to generate the normal mixture.

For each Monte Carlo sample thus generated, our ML estimation procedure employs the

following numerical strategy. First, we estimate the static mean and variance parameters θs

under normality using (7) and (8). Then, we compute the sample coeffi cient of kurtosis κ, on

the basis of which we obtain the sequential Method of Moments estimator of the shape parameter

of the t distribution suggested by Fiorentini, Sentana and Calzolari (2003), which exploits the

theoretical relationship η = max[0, (κ− 3)/(4κ− 6)]. Next, we use this estimator as initial value

for a univariate optimisation procedure that uses the E04ABF routine to obtain a sequential
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ML estimator of η, keeping π and ω fixed at their Gaussian PML estimators. The resulting

estimates of η, together with the PMLE of θs, become the initial values for the t-based ML

estimators. Following Fiorentini, Sentana and Calzolari (2003), the final stage of our estimation

procedure employs the following mixed approach: initially, we use a scoring algorithm with a

fairly large tolerance criterion; then, after “convergence” is achieved, we switch to a Newton-

Raphson algorithm to refine the solution. Both stages are implemented by means of the NAG

Fortran 77 Mark 19 library E04LBF routine (see Numerical Algorithm Group (2001) for details),

with the analytical expressions for the score and information matrix I(φ0) derived in section

2 of that paper. We rule out numerically problematic solutions by imposing the inequality

constraints 0 ≤ η ≤ .499. As for the discrete mixture of normals, we use the EM algorithm

described in appendix D.7 to obtain good initial values, and then we numerically maximise the

log-likelihood function of yt in terms of the shape parameters η = (δ, υ, λ)′ keeping θs fixed at

their Gaussian ML estimates. To reduce the chances that the mixture ML estimator corresponds

to a singular configuration in which the relative variance parameter υ is either 0 or infinity, we

repeat the EM optimisation using 100 different starting values.

Computational details for the symmetric and general semiparametric procedures can be

found in appendix B of Fiorentini and Sentana (2018). Given that a proper cross-validation

procedure is extremely costly to implement in a Monte Carlo exercise, we have chosen the

“optimal”bandwidth in Silverman (1986).11

For each Monte Carlo sample we compute the predictability tests based on six different

scores: Gaussian, Student t, discrete location-scale mixture of two normals (DLSMN), Laplace,

the effi cient semiparametric score and an effi cient semiparametric score that imposes symmetry

of the innovation distribution.

5.2 Finite sample size

We report the size properties of the different predictability tests under the null in Table 1A,

which displays the empirical rejection rates of the different tests at the conventional 10, 5 and

1% significance levels. The small sample size of the first-order serial correlation tests are rather

accurate for every outlier-free distribution. In contrast, the restricted 12th-order serial correlation

tests discussed in section 2.2 and the conditional heteroskedasticity tests in section 3 show some

moderate size distortions. Those distortions are more pronounced for the Arch(1) tests, which

tend to under-reject the null, and less evident for the Garch(1,1) tests calculated with the

11Nevertheless, the optimality of this bandwidth for density estimation purposes does not necessarily extend
to the estimation of the effi cient score, as illustrated in Robinson (2010). See e.g. Prakasa Rao (1983) for a
formal statistical treatment of kernel density estimation, including regularity conditions on the tail behaviour of
the distributions which are estimated.
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discount factor β̄ = .84.12 In this case, the under-rejection is attenuated and sometimes even

reversed except for the Gaussian-based test, which still suffers from a noticeable small sample

size distortion when the true distribution is not Gaussian. Nevertheless, in simulation exercises

with T = 500 and T = 1000 (available upon request), all size distortions quickly disappear as

the sample length increases.

But when the distribution is contaminated with additive outliers, the size distortions re-

ported in the bottom panel of Table 1A become remarkable for all tests but the restricted serial

correlation tests, which benefit from the compound regressor averaging the outliers out. As one

might have expected, though, the size distortions of the Student and mixture-based tests are

acceptable, so these tests turn out to be rather robust in this case. In contrast, the other tests

and particularly the Gaussian tests display a rather wild behaviour. For example, the Gaussian

test against Garch(1,1) almost never rejects even at a the 10% significance level, while the

Gaussian Ar(1) and Arch(1) tests massively reject their nulls.

As is well known, the bootstrap often manages to partly correct the finite sample size dis-

tortions evidenced in simulation exercises. Unfortunately, given that the semiparametric tests

are computationally intensive, it would be incredibly time consuming to carry out standard

versions of the bootstrap with a large number of samples B for each of the 20,000 Monte Carlo

simulations. For that reason, we adapt the so-called warp-speed bootstrap procedure of Gia-

comini, Politis and White (2013) to our testing framework. Specifically, we set B = 1, so that

effectively there is a single bootstrap sample for each of the 20,000 simulated samples, but then

pool those 20,000 bootstrap samples to obtain the relevant critical values. The fact that the

(pseudo) maximum likelihood estimators of π and ω based on the affi ne transformation of the

observations a + byt will be precisely a + bπ̂T and b2ω̂2T regardless of the correct specification

of the distribution, means that a non-parametric bootstrap procedure applied to the original

observations yt or the estimated standardised residuals εt(π̂T , ω̂2T ) yield identical test statistics

in each bootstrap sample.

The results in Table 1B show that these bootstrap critical values render all tests very accurate

even in samples of size T = 100 for every outlier-free distribution. For this reason, the finite

sample power results in the next section will use bootstrap critical values. In contrast, the

Gaussian tests continue to behave wildly in the outlier case because the bootstrap procedure

destroys the artificial dependence introduced by the two consecutive outliers.

12The conventional discount factor β̄ = .94 suggested in RiskMetrics (1999) for daily data seems inappropriate
for the quarterly data used in the empirical application.
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5.3 Finite sample power

In order to gauge the power of the serial correlation tests we look at a design in which

ρ = 2/
√
T but α = 0. The evidence at the 10, 5 and 1% significance level is presented in first

two groups of columns of Table 1C, which includes rejection rates based on bootstrap critical

values rather than nominal ones. The bootstrap procedure adopted under the null remains valid

under the alternative too because the resampling scheme destroys the dynamic dependence in

yt arising from the presence of serial correlation or conditional heteroskedasticity.

As expected from the theoretical analysis in section 2.3, our proposed non-Gaussian tests

show some power gains over standard Gaussian procedures when the true distribution is non-

normal, with the parametric tests performing on par with the semiparametric ones even in those

situations in which the assumed distribution is misspecified. Nevertheless, the mixture-based

serial correlation test is not the most powerful when this distribution is correctly specified. This

surprising result reflects the poor performance of the ML estimators of the mixture shape para-

meters when T = 100, which implies that the estimated distribution is in practice misspecified.

We will return to this point at the end of this section. Finally, the restricted 12th-order serial

correlation tests show very little power under the Ar(1) alternative, thereby confirming the

results depicted in Figure 3A.

We also look at a persistent Arma(1,1) design with ρ = 0.98 and ϕ = −0.92, which implies

a restricted infinite-order autoregressive process with ρi = 0.06 × 0.92i−1. The results of these

alternative experiments are displayed in the two rightmost groups of columns of Table 1C. Our

tests against a restricted Ar(12) process show substantial power gains over the first-order serial

correlation test in this context despite the fact that the true alternative differs from the ones for

which those two tests are optimal. Moreover, our proposed non-Gaussian tests also show clear

power gains over standard (i.e. Gaussian) tests in the presence of non-normal distributions,

including when the distribution is misspecified.

Turning to the variance predictability tests in Table 4D, we consider a design with ρ = 0 but

α = 2.5/
√
T and β = 0 to assess the power of the Arch(1) tests. We find again that the usual

Gaussian tests are usually worse than our flexible parametric tests. We also find that when

the true DGP follows an Arch(1) process, the Garch(1,1) tests have small but non-negligible

power, a situation which gets reversed when we simulate with β = 0.88 and α = 1/
√
T . In

this case, the Garch(1,1) tests have substantially more power than the Arch(1) statistics even

though the assumed dumping factor β̄ = .84 differs from the true one.

Once more, the poor performance of the mixture ML estimators in small sample sizes implies

that the mixture-based test is not the most powerful under correct distributional specification.
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To confirm that this is a small sample problem, we consider a simulation exercise with T = 1, 000,

a common sample size in empirical finance applications even with low frequency data. For

example, the original three FF factor portfolios for the US comprise 1, 074 monthly observations

as of December 2018. Importantly, though, by dividing the parameter values by the square

root of the sample size, the alternative hypotheses we analyse in this larger sample exercise are

comparable with those in the simulations with T = 100.

The results presented in Table 1E show that the mixture-based tests are indeed the most pow-

erful under correct specification, which confirms the relevance in larger samples of the theoretical

results reported in Figure 3C. In addition, the Gaussian tests are systematically dominated by

all our flexible proposals, with the Student t achieving almost full effi ciency despite being distri-

butionally misspecified. In contrast, the semiparametric tests are only slightly better than the

Gaussian ones, so once again they fail to achieve maximum power even though the sample size

is ten times as large. Finally, the Laplace conditional mean tests turn out to be worse than the

Gaussian ones, which probably reflects the fact that it is not a flexible distribution either.

6 Empirical application

We apply the procedures studied previously to the five FF factors for international stocks,

which we have obtained from Ken French’s Data Library (see Fama and French (1993, 2012,

2015) and <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html> for

further details). Those five factors are constructed using 6 value-weight portfolios formed on size

and book-to-market, 6 value-weight portfolios formed on size and operating profitability, and 6

value-weight portfolios formed on size and investment. The exact factor definition is as follows:

1. MK is the return on a region’s value-weight market portfolio minus the relevant safe rate.

2. SMB contains the returns on small cap firms in excess of the returns on large cap firms.

3. HML are the returns on value firms in excess of the returns on growth firms.

4. RMW contains the average return on the two robust operating profitability portfolios

minus the average return on the two weak operating profitability portfolios.

5. CMA is the average return on the two conservative investment portfolios minus the average

return on the two aggressive investment portfolios

We consider portfolios for four world regions: North America (US and Canada), Europe

(Austria, Belgium, Denmark, Finland, France, Germany, Great Britain, Greece, Ireland, Italy,

Netherlands, Norway, Portugal, Spain, Sweden and Switzerland), Japan, and “Asia Pacific ex

Japan”(Australia, Hong Kong, New Zealand and Singapore). All returns are in US dollars, in-

clude dividends and capital gains, and are not continuously compounded. We construct quarterly
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data from July 1991 to September 2018, with the US 3-month Tbill rate as the safe asset. All

in all, our sample contains 113 observations because we reserve the first quarters for pre-sample

values (see appendix C.4 for further details).

Figure 8 displays the temporal evolution of the returns on those portfolios over the sample.

We have highlighted two periods in grey: the years 1999 and 2000, which correspond to the

dotcom bubble, and the global financial crisis, which goes from the last quarter of 2007 to the

first quarter of 2009. Each subplot also contains lower and upper confidence bands at the first

quartile minus 1.5 times the interquartile range (IQR) and the third quartile plus 1.5·IQR. If the

return distributions were normal, those bands would be centred around the mean with width

±2.7 standard deviations, so they would cover 99.3% of the observations. For that reason, they

are often used in the robust statistical literature as a simple visual device to detect “unusual”

observations, with the IQR being preferred to the sample standard deviation because of its lower

sensitivity to outliers. As can be seen, in practice the number of “influential” observations is

much larger than what one would expect from a Gaussian distribution.

We present more formal statistics in Table 2. As expected from the plots in Figure 8, the

most striking result is the extent to which many of the FF factor returns have fat tails at the

quarterly frequency. Specifically, if we use the one-sided test of the null of mesokurtosis against

the alternative of leptokurtosis in Fiorentini, Sentana and Calzolari (2003), we reject at the 5%

significance level in 16 out of 20 cases, with the Value and Investment factors systematically

showing excess kurtosis.

In turn, we test for symmetry by means of a moment test of the null hypothesis H0 :

E[H3(y;m, o)] = 0, which we compute as the t-ratio of the sample mean of the third Hermite

polynomial of the standardised residuals evaluated at the sample mean and standard deviation

of the returns (see appendix C.3.1). As can be seen, we cannot reject the null hypothesis that the

quarterly returns on all the different portfolios are symmetric, with the exception of the North

American stock market, which shows statistically significant negative skewness. Although it

might be the case that the moment test that we use has low power to detect asymmetries, the

usual skewness component of the Jarque-Bera (1980) test, which assumes normal returns, shows

massive size distortions for symmetric but leptokurtic distributions.

In any event, the results in Table 2 clearly motivate the use of our proposed tests for serial

dependence. In this regard, Tables 3A-3D report the results of the different mean and variance

predictability tests across the four regions. The first column of each table displays the results of

the first-order serial correlation test. Similarly, the second and third columns show the results of

our tests against restrictedAr(4) andAr(12) alternatives, respectively. As we mentioned before,
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these tests are effectively testing the presence of 1- and 3-year time series momentum in quarterly

returns, as in Moskowitz, Ooi and Pedersen (2012). In turn, the fourth and fifth columns

display the results of our one-sided tests for Arch and Garch effects. Testing for conditional

heteroskedasticity in quarterly returns might seem unjustified because many academics and

financial markets participants believe that high frequency movements in volatility mean revert

at a simple, non-negative exponential rate so that they wash out at such a low frequency.

However, the persistent movements in volatility indices such as the Vix, whose central tendency

seems to fluctuate over a long-run mean for several years (see e.g. Mencía and Sentana (2013)),

suggest that volatility changes might still be relevant at low frequencies.

As can be seen, we find substantial differences across regions. In North America, we do not

reject the null hypothesis of mean predictability, with the possible exception of the profitability

factor, for which some of the tests find 3-year momentum effects. Interestingly, the Gaussian

test for first-order serial correlation applied to the value factor rejects its null in marked contrast

to all the other tests. This rejection seems to be driven by the presence of some unusually large

observations of the same sign during the dotcom bubble and its aftermath. In contrast, we

systematically find evidence for conditional heteroskedasticity.

On the other hand, we find that the quarterly returns on the European value factor are

predictable, both in the short run and in the long run. Once again, the Gaussian test for first-

order serial correlation in the investment factor is the only one that rejects the null. As for the

conditionally heteroskedasticity tests, we find evidence for Arch effects for the same two factors

and the market, as well as more persistent changes in volatility for the size factor.

The evidence for Japan is also different. Aside from finding Arch(1) effects in the market

portfolio, and Garch effects in all the other factors except investment, we do not find any

evidence of predictability in levels, except if we rely on the Gaussian tests, which once again are

the only ones that reject the null for the value and investment factors.

Finally, in Asia Pacific we find predictability for the value factor using one-year momentum,

and first-order serial correlation for the profitability factor. There is also evidence against

conditional homoskedasticity for all factors except size, which is stronger for persistent changes

in volatility than for short-run movements.

7 Conclusions

We propose more powerful score tests of predictability in the levels and squares of financial

returns by exploiting the non-normality of their distributions. For our purposes the conditional

distribution of returns can be either parametrically or non-parametrically specified.
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We show that our score tests are equivalent to standard orthogonality tests of predictability

in which the regressand has been multiplied by a damping factor that reflects the skewness and

kurtosis of the data, as in the robust estimation literature. Thereby, we achieve two important

improvements over the usual Gaussian tests advocated by White (1982) and Bollerslev and

Wooldridge (1992) among many others: increases in their local power and reductions in their

sensitivity to influential observations. Both these improvements are very useful from a practical

point of view because they will allow researchers to go beyond the binary question of the presence

or absence of mean-variance predictability, helping them understand better which predictors are

really relevant. In this regard, we also explain how to transform the regressor to exploit the

persistence of expected returns and volatilities.

Importantly, we prove that our parametric tests remain valid regardless of whether or not the

assumed distribution is correct, which puts them on par with the Gaussian testing procedures.

We also show that our semiparametric tests should be (locally) as powerful as if we knew the

true distribution of the data.

We present local power analyses which confirm that irrespective of whether the parametric

distribution is correctly specified, there are clear power gains from exploiting the non-normality

of financial returns, as well as the persistent behaviour of risk premia and volatility. We com-

plement our theoretical results with detailed Monte Carlo exercises that assess the reliability

of our predictability tests in finite samples. We also show that straightforward non-parametric

bootstrap procedures correct the observed small size distortions. In addition, we verify that

our parametric tests offer clear power gains over the usual Gaussian procedures even in those

situations in which the assumed distribution is misspecified. Finally, we also observe that the

finite sample power of the semiparametric procedures is not well approximated by the first-order

asymptotic theory that justifies their adaptivity, not even in samples of 1,000 observations.

Finally, we apply our methods to quarterly stock returns on the five FF factors for interna-

tional stocks, which in most cases have fat tailed symmetric distributions. Our results highlight

noticeable differences across regions and factors. While we find no evidence in favour of either

short-run serial correlation or long-run momentum for the different market portfolios, we find

persistent components in the European and Asian-Pacific value factors, as well as a few of the

profitability and investment factors. We also find stronger evidence for persistent serial corre-

lation in the volatility of many series, but certainly not all. Importantly, the inability of the

extant Gaussian tests to deal with unusually large observations sometimes results in rejections

that are not supported by the robust tests.

Multivariate extensions of our testing procedures are simple in theory but diffi cult in practice
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because of the curse of dimensionality. For that reason, in Fiorentini and Sentana (2015) we

imposed a parsimonious factor structure both under the null and under the different alternatives.

We could study the effect of replacing the kernel-based non-parametric density estimators

that we have considered by either positive Hermite expansions of the normal density (see e.g.

León, Mencía and Sentana (2009)), or discrete normal mixture models with multiple underlying

components. In this sense, it is worth mentioning that the robustness of the parametric dynamic

specification tests that we have highlighted holds for those flexible distributions for any finite

number of terms. In addition, one would expect that the larger the number of components, the

closer one would get to achieving the adaptivity of the semiparametric tests. In this regard, an

interesting question is the effect of overparametrising the parametric distribution. For example,

imagine that the true distribution is Gaussian but we estimate the model under the null using

a fourth-order GC expansion. The block-diagonality between conditional mean and variance

parameters on the one hand, and shape parameters on the other in Proposition 3 of Fiorentini

and Sentana (2007) suggests that there should be no effi ciency loss in conducting the tests using

the maximum likelihood estimates of the overparametrised GC distribution.

Another interesting extension would be to consider non-parametric alternatives, in which

the lag length is implicitly determined by the choice of bandwidth parameter in a kernel-based

estimator of a spectral density matrix (see e.g. Hong (1996) and Hong and Shehadeh (1999)). In

addition, we could test for the effect of exogenous regressors in either the conditional mean or the

conditional variance. Finally, it would be interesting to extend our mean-variance predictability

tests so that they apply to the residuals of models which are already dynamic under the null.

We are currently exploring some of these interesting research avenues.
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Appendix

A Proofs

Proposition 1

Given the discussion in appendix D, to find the score function and conditional information

matrix all we need is the matrix Zdt(θs), which in turn requires the Jacobian of the conditional

mean and covariance functions. In view of (1), we will have that

∂µt(π, 0, ω)/∂θ′ =
(

1 yt−1 − π 0
)

and

∂σ2t (π, 0, ω)/∂θ′ =
(

0 0 1
)
,

whence

Zdt(π, 0, ω) =

 ω−1/2 0
εt−1(θs) 0

0 1
2ω
−1

 , (A1)

so that

Zd(π0, 0, ω0,η0) =

 ω
−1/2
0 0
0 0

0 1
2ω
−1
0

 . (A2)

As a result, the score under the null will be sπt(π, 0, ω,η)
sρt(π, 0, ω,η)
sωt(π, 0, ω,η)

 =

 −ω−1/2∂f [εt(θs), η] /∂ε∗

−∂f [εt(θs), η] /∂ε∗ · εt−1(θs)
−12ω

−1[∂f [εt(θs), η] /∂ε∗ · εt(θs) + 1]

 .
Similarly, the conditional information matrix will be

ω−1/2 0 0
εt−1(θs) 0 0

0 1
2ω
−1 0

0 0 Iq


 Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M′lr(η) M′sr(η) Mrr(η)

 ω−1/2 εt−1(θs) 0 0
0 0 1

2ω
−1 0

0 0 0 Iq



=


ω−1Mll(η) ω−1/2εt−1(θs)Mll(η) 1

2ω
−3/2Mls(η) ω−1/2Mlr(η)

ω−1/2εt−1(θs)Mll(η) ε2t−1(θs)Mll(η) 1
2ω
−1εt−1(θs)Mls(η) εt−1(θs)Mlr(η)

1
2ω
−3/2Mls(η) 1

2ω
−1εt−1(θs)Mls(η) 1

4ω
−2Mss(η) 1

2ω
−1Msr(η)

ω−1M′lr(η) εt−1(θs)M′lr(η) 1
2ω
−1M′sr(η) Mrr(η)

 ,
while the unconditional one becomes

ω−1Mll(η) 0 1
2ω
−3/2Mls(η) ω−1/2Mlr(η)

0 Mll(η) 0 0
1
2ω
−3/2Mls(η) 0 1

4ω
−2Mss(η) 1

2ω
−1Msr(η)

ω−1/2M′lr(η) 0 1
2ω
−1M′sr(η) Mrr(η)

 .
This result confirms the expression for Iρρ(φ), as well as the fact that the sampling uncertainty

in the ML estimators of π, ω and η is inconsequential for the asymptotic distribution of the test,

at least up to first order. �
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Proposition 2

As discussed in appendix D.2, the asymptotic distribution of the Gaussian Pseudo ML esti-

mators and tests will depend on

Aθθ(θs, 0,0;θ0, 0,%0) = E[Aθθtθs, 0,0;θ0, 0,%0)|θ0, 0,%0],

Aθθt(θ,0;θ,%) = −E[hθθt(θ,0)| zt, It−1;θ,%] = Zdt(θ)K(0, 0)Z′dt(θ)

and

Bθθt(θ,0;θ,%) = V [sθt(θ; 0)| zt, It−1;θ,%]] = Zdt(θ)K(ϕ, κ)Z′dt(θ),

where

K (ϕ,κ) =V [edt(θ,0)| zt, It−1;θ,%]] =

[
1 ϕ(%)

ϕ(%) κ(%)− 1

]
and % are the shape parameters of the true distribution of ε∗t .

But given the structure of Zdt(θ) in (A1) and the consistency of the Gaussian PML estimators

of π and ω, which implies that E[εt(θs0)|θ0, 0,%0] = 0, it is clear that Aθθ(θs, 0,0;θ0, 0,%0) will

be block diagonal between ρ and θs irrespective of the true distribution of yt. In addition,

Aρρ(θs, 0,0;θ0, 0,%0) will coincide with Iρρ(θs, 0,%0). A closely related argument shows that

Bθθt(θ,0;θ,%) will also be block diagonal between ρ and θs, and that Bρρ(θs, 0,0;θ0, 0,%0) =

Aρρ(θs, 0,0;θ0, 0,%0). As a result, the Gaussian-based LM test for H0 : ρ = 0 remains valid

irrespective of the true distribution of yt. �

Proposition 3

We can use standard arguments (see e.g. Newey and McFadden (1994)) to show that
√
T

T

∑T

t=1
sρt(φ̂s, 0) =

√
T

T

∑T

t=1
sρt(φs∞, 0) +

1

T

∑T

t=1
hρφst(φs∞, 0)

√
T (φ̂s − φs∞) + op(1)

=

√
T

T

∑T

t=1
sρt(φs∞, 0)− 1

T

∑T

t=1
hρφst(φs∞, 0)

[
1

T

∑T

t=1
hφsφst(φs∞, 0)

]−1
×
√
T

T

∑T

t=1
sφst(φs∞, 0) + op(1),

where φs = (θ′s,η
′)′. Hence, the asymptotic variance of

√
T
T

∑T
t=1 sρt(φ̂s, 0) will be given by

Fρρ(θs∞, 0,η∞;θs0, 0,%0), where

Fρρ = Bρρ − 2AρφsA
−1
φsφs
B′ρφs +AρφsA

−1
φsφs
BφsφsA

−1
φsφs
A′ρφs ,

and Bρρ, Aρφs , etc. are the relevant elements of

B(θs, 0,η;θs0, 0,%0) = V [sφt(θs, 0,η)|θs0, 0,%0),

A(θs, 0,η;θs0, 0,%0) = −E[hφφt(θs, 0,η)|θs0, 0,%0).
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Tedious but straightforward algebra shows that at ρ = 0 :

hππt(φ) = ω−1∂2 ln f [εt(θs),η] /∂ε∗∂ε∗

hπωt(φ) = 1
2ω
−3/2{∂2 ln f [εt(θs),η] /∂ε∗∂ε∗ · εt(θs) + ∂ ln f [εt(θs),η] /∂ε∗}

hπηt(φ) = −ω−1/2∂2 ln f [εt(θs),η] /∂ε∗∂η′

hωωt(φ) = 1
2ω
−2{1 + 3

2∂ ln f [εt(θs),η] /∂ε∗ · εt(θs) + 1
2∂
2 ln f [εt(θs),η] /∂ε∗∂ε∗ · ε2t (θs)}

hωηt(φ) = −12ω
−2∂2 ln f [εt(θs),η] /∂ε∗∂η′ · εt(θs)

hηηt(φ) = ∂2 ln f [εt(θs),η] /∂η∂η′

Similarly, we can show that at ρ = 0

hρπt(φ) = ω−1/2{∂2 ln f [εt(θs),η] /∂ε∗∂ε∗ · εt−1(θs) + ∂ ln f [εt(θs),η] /∂ε∗}

hρρt(φ) = ∂2 ln f [εt(θs),η] /∂ε∗∂ε∗ · ε2t−1(θs) + ∂ ln f [εt(θs),η] /∂ε∗ · εt−2(θs)

hρωt(φ) = 1
2ω
−1{∂2 ln f [εt(θs),η] /∂ε∗∂ε∗ · εt(θs) + ∂ ln f [εt(θs),η] /∂ε∗} · εt−1(θs)

hρηt(φ) = −∂2 ln f [εt(θs),η] /∂ε∗∂η · εt−1(θs)

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [εt(θs∞),η∞] /∂ε∗|ϕ0} = 0,

E{1 + ∂ ln f [εt(θs∞),η∞] /∂ε∗ · εt(θs∞)|ϕ0} = 0,

E{∂ ln f [εt(θs∞),η∞] /∂η|ϕ0} = 0,

the law of iterated expectations implies that

E[hππt(φ∞)|It−1;ϕ0] = ω−1∞ Hll(φ∞;ϕ0)

E[hπωt(φ∞)|It−1;ϕ0] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ0)

E[hπηt(φ∞)|It−1;ϕ0] = −ω−1/2∞ Hlr(φ∞;ϕ0)

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

E[hωηt(φ∞)|It−1;ϕ0] = −12ω
−1
∞ Hsr(φ∞;ϕ0)

E[hηηt(φ∞)|It−1;ϕ0] = Hrr(φ∞;ϕ0)

and

E[hρπt(φ∞)|It−1;ϕ0] = ω−1/2∞ Hll(φ∞;ϕ0) · εt−1(θs∞)

E[hρρt(φ∞)|It−1;ϕ0] = Hll(φ∞;ϕ0) · ε2t−1(θs∞)

E[hρωt(φ∞)|It−1;ϕ0] = 1
2ω
−1
∞ Hls(φ;ϕ0) · εt−1(θs∞)

E[hηηt(φ∞)|It−1;ϕ0] = −Hlr(φ∞;ϕ0) · εt−1(θs∞)
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where

Hll(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗|It−1;ϕ0]

Hls(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗ · εt(θs)|It−1;ϕ0]

Hlr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂η′|It−1;ϕ0]

Hss(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗ · ε2t (θs)|It−1;ϕ0]

Hsr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂η′ · εt(θs)|It−1;ϕ0]

and ϕ0 = (θ′s0, 0,%
′
0)
′.

Consequently,

E[hρπt(φ∞)|ϕ0] = ω−1/2∞ Hll(φ∞;ϕ0) · E[εt−1(θs∞)|ϕ0]

E[hρρt(φ∞)|ϕ0] = Hll(φ∞;ϕ0) · E[ε2t−1(θs∞)|ϕ0]

E[hρωt(φ∞)|ϕ0] = 1
2ω
−1
∞ Hls(φ∞;ϕ0) · E[εt−1(θs∞)|ϕ0]

E[hρηt(φ∞)|ϕ0] = −Hlr(φ∞;ϕ0) · E[εt−1(θs∞)|ϕ0]

where

E[εt(θs)|ϕ0] = E[ω−1/2(yt − π)|ϕ0] = E[ω−1/2(π0 + ω
1/2
0 ε∗t − π)|ϕ0] = ω−1/2(π0 − π)

and

E[ε2t (θs)|ϕ0] = E[ω−1(yt − π)2|ϕ0] = E[ω−1(π0 + ω
1/2
0 ε∗t − π)2|ϕ0] = ω−1[(π0 − π)2 + ω0],

so that

V [εt(θs)|ϕ0] = ω−1ω0. (A3)

Given that Aρφs is proportional to the first column of Aφsφs , we can immediately show that

AρφsA
−1
φsφs

=
(
E[εt(θs∞)|ϕ0]

√
ω∞ 0 0′

)
= E[εt(θs∞)|ϕ0]ω1/2∞ e′1 (A4)

if we evaluate these expressions at the pseudo true values. Therefore, the only elements of

B(φ∞;ϕ∞) that we need are the ones corresponding to π and ρ. But since

B(φ∞;ϕ∞) = E[Bt(φ∞;ϕ∞)|ϕ∞],

Bt(φ∞;ϕ∞) = V [sφt(θs∞, 0,η∞)| It−1;ϕ∞] = Zt(θ∞)K(φ∞;ϕ∞)Z′t(θ∞),

K(φ;ϕ) = V

 elt(φ)
est(φ)
ert(φ)

∣∣∣∣∣∣ϕ
 =

 Kll(φ;ϕ) Kls(φ;ϕ) K′lr(φ;ϕ)
Kls(φ;ϕ) Kss(φ;ϕ) K′sr(φ;ϕ)
Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)


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we will have that under the null of H0 : ρ = 0,[
Bππ(φ∞;ϕ0) Bπρ(φ∞;ϕ0)
Bπρ(φ∞;ϕ0) Bρρ(φ∞;ϕ0)

]
= Kll(φ∞;ϕ0)

[
ω−1∞ ω

−1/2
∞ E[εt−1(θs∞)|ϕ0]

ω
−1/2
∞ E[εt−1(θs∞)|ϕ0] E[ε2t−1(θs∞)|ϕ0]

]
.

Finally we obtain

Fρρ(θs∞, 0,η∞;θs0, 0,%0) = Kll(φ∞;ϕ0)V [εt−1(θs∞)|ϕ0],

which is precisely the denominator of the R2 in the regression of ∂ ln f [εt(θs∞),η] /∂ε∗ on a

constant and εt−1(θs∞).

We can also use these expressions to derive the asymptotic variance of the pseudo ML

estimator of ρ under the null. Specifically, straightforward algebra shows that the “ρρ”element

of the matrix

C(φ∞;ϕ∞) = A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞)

will be given by
Fρρ(θs∞, 0,η∞;θs0, 0,%0)

G2ρρ(θs∞, 0,η∞;θs0, 0,%0)
,

where

Gρρ = Aρρ −AρφsA
−1
φsφs
A′ρφs .

But (A4) immediate implies that

Gρρ(θs∞, 0,η∞;θs0, 0,%0) = Hll(φ∞;ϕ0)
{
E[ε2t−1(θs∞)|ϕ0]−E2[εt−1(θs∞)|ϕ0]

}
= Hll(φ∞;ϕ0)V [εt−1(θs∞)|ϕ0],

whence
√
T ρ̂T → N

[
0,
Kll(φ∞;ϕ0)

H2ll(φ∞;ϕ0)

ω∞
ω0

]
in view of (A3). Not surprisingly, this expression nests both the Gaussian PML expression in

Proposition 2, as well as the true ML expression in Proposition 1.

Let us now find the remaining elements of C(φ∞;ϕ∞).

We need to find out an expression for B(φ∞;ϕ∞), which is given by the unconditional
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expected value of
ω−1/2 0 0
εt−1(θs) 0 0

0 1
2ω
−1 0

0 0 Iq


 Kll(φ;ϕ) Kls(φ;ϕ) K′lr(φ;ϕ)
Kls(φ;ϕ) Kss(φ;ϕ) K′sr(φ;ϕ)
Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)

 ω−1/2 εt−1(θs) 0 0
0 0 1

2ω
−1 0

0 0 0 Iq




ω−1/2Kll(φ;ϕ) ω−1/2Kls(φ;ϕ) ω−1/2K′lr(φ;ϕ)
εt−1(θs)Kll(φ;ϕ) εt−1(θs)Kls(φ;ϕ) εt−1(θs)K′lr(φ;ϕ)
1
2ω
−1Kls(φ;ϕ) 1

2ω
−1Kss(φ;ϕ) 1

2ω
−1K′sr(φ;ϕ)

Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)


 ω−1/2 εt−1(θs) 0 0

0 0 1
2ω
−1 0

0 0 0 Iq




ω−1Kll(φ;ϕ) ω−1/2εt−1(θs)Kll(φ;ϕ) 1
2ω
−3/2Kls(φ;ϕ) ω−1/2K′lr(φ;ϕ)

ω−1/2εt−1(θs)Kll(φ;ϕ) ε2t−1(θs)Kll(φ;ϕ) 1
2ω
−1εt−1(θs)Kls(φ;ϕ) εt−1(θs)K′lr(φ;ϕ)

1
2ω
−3/2Kls(φ;ϕ) 1

2ω
−1εt−1(θs)Kls(φ;ϕ) 1

4ω
−2Kss(φ;ϕ) 1

2ω
−1K′sr(φ;ϕ)

ω−1/2Klr(φ;ϕ) εt−1(θs)Klr(φ;ϕ) 1
2ω
−1Ksr(φ;ϕ) Krr(φ;ϕ)



As for A−1(φ∞;ϕ∞), we can use the partitioned inverse formula to write

A−1(φ∞;ϕ∞) =

(
A−1φsφs +A−1φsφsA

′
ρφs
G−1ρρ AρφsA

−1
φsφs

−A−1φsφsA
′
ρφs
G−1ρρ

−G−1ρρ AρφsA
−1
φsφs

G−1ρρ

)
.

But if we use the expression for AρφsA
−1
φsφs

, we will get

A−1(φ∞;ϕ∞) =

(
A−1φsφs 0

0 0

)
+G−1ρρ

(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e′1 1

)
Hence,

A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞) =

(
A−1φsφsBφsφsA

−1
φsφs

0

0 0

)
+G−1ρρ

(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e′1 1

)( BφsφsA−1φsφs 0

BρφsA
−1
φsφs

0

)

+G−1ρρ
(
A−1φsφsBφsφs A

−1
φsφs
B′ρφs

0 0

)(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e′1 1

)
+FρρG−2ρρ

(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e′1 1

)
.

But (
−E[εt(θs∞)|ϕ0]ω

1/2
∞ e′1 1

)( BφsφsA−1φsφs 0

BρφsA
−1
φsφs

0

)
= 0

because

BφsφsA
−1
φsφs
A′ρφs =

 ω−1Kll(φ;ϕ)
1
2ω
−3/2Kls(φ;ϕ)

ω−1/2Klr(φ;ϕ)

E[εt(θs∞)|ϕ0]ω1/2∞

and

B′ρφs−BφsφsA
−1
φsφs
A′ρφs =

ω−1/2εt−1(θs)Kll(φ;ϕ)
1
2ω
−1εt−1(θs)Kls(φ;ϕ)
εt−1(θs)Klr(φ;ϕ)

−

 ω−1Kll(φ;ϕ)
1
2ω
−3/2Kls(φ;ϕ)

ω−1/2Klr(φ;ϕ)

E[εt(θs∞)|ϕ0]ω1/2∞ = 0.
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As a result,

C(φ∞;ϕ∞) = A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞)

=

(
A−1φsφsBφsφsA

−1
φsφs

0

0 0

)
+ FρρG−2ρρ

(
E2[εt(θs∞)|ϕ0]ω∞e1e

′
1 −E[εt(θs∞)|ϕ0]ω

1/2
∞ e1

−E[εt(θs∞)|ϕ0]ω
1/2
∞ e′1 1

)
,

which means that the PML estimator of ρ will be asymptotically orthogonal to the PML esti-

mators of ω and η, but not to the PML estimator of π.

It is also worth deriving the previous expressions for a fixed value of η, so that we can say

what would happen for a restricted pseudo ML estimator that fixes the shape parameters to

some arbitrary value η̄. In this case, all the previous expressions remain valid after eliminating

the rows and columns corresponding to η, and replacing θ∞ by θ∞(η̄) = [π∞(η̄), ω∞(η̄)], which

are the values that solve the system of equations

E[∂ ln f{εt[θ∞(η̄)], η̄}/∂ε∗|ϕ0] = 0,

E[1 + ∂ ln f{εt[θ∞(η̄)], η̄}/∂ε∗ · εt[θ∞(η̄)]|ϕ0] = 0.

In fact, we would obtain exactly the same expressions even if fixed both ω and η to some

arbitrary values ω̄ and η̄, as long as we replaced π∞ by π∞(ω̄, η̄), which would be the value that

solves

E[∂ ln f{ω̄−1/2[yt − π∞(ω̄, η̄)], η̄}/∂ε∗|ϕ0] = 0.

�

Proposition 4

Given that

W′
d(π0, 0, ω0,η0) =

(
0 1

2ω
−1
0 0

)
,

it is easy to see that the symmetric semiparametric effi cient score and bound are given by:

s̊θt(φ0) = Zdt(θ0)edt(φ0)−Ws(φ0)

{
−
[
∂ ln f [εt(θs),η] /∂ε∗ε2t (θs0) + 1

]
− 2

κ− 1

[
ε2t (θ0)− 1

]}

and

S̊(φ0) =

 1
ωMll(η) 0 0

0 Mll(η) 0
0 0 1

ω2(κ−1)

 .
Since this matrix is block diagonal and the effi ciency bound for ρ coincides with the cor-

responding element of the information matrix under correct specification of the conditional
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distribution, the asymptotic variance of the SSP estimator of this parameter coincides with that

of the infeasible ML estimator which uses knowledge of the shape parameters η0. As a result,

the non-centrality parameters will also be the same.

Similarly, we can use the expression for (A2) to show that the semiparametric effi cient score

will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
[
edt(θ0,%0)−K (0)K−1 (ϕ, κ) edt(θ0,0)

]
,

while the semiparametric effi ciency bound is

S(φ0) =

 ω−1Mll(η) 0 1
2ω
−3/2Mls(η)

0 Mll(η) 0
1
2ω
−3/2Mls(η) 0 1

4ω
−2Mss(η)

−
 ω

−1/2
0 0
0 0

0 1
2ω
−1
0

{[ Mll(η) Mls(η)
Mls(η) Mss(η)

]

−
(

1 0
0 2

)(
1 ϕ
ϕ κ− 1

)−1(
1 0
0 2

)}(
ω
−1/2
0 0 0

0 0 1
2ω
−1
0

)

=

 ω−1 0 1
2ω
−3/2ϕ

0 Mll(η) 0
1
2ω
−3/2ϕ 0 1

4ω
−2(κ− 1)

 .
Given that this matrix is block diagonal and the effi ciency bound for ρ coincides with the

corresponding element of the information matrix under correct specification of the conditional

distribution, the asymptotic variance of the SP estimator of this parameter coincides with that

of the infeasible ML estimator which uses knowledge of the shape parameters η0. Consequently,

the non-centrality parameters will also be the same. �

Lemma 1

The proof is trivial if we combine several results that appear in the proofs of Propositions 1,

2 and 4. �

Proposition 5

As explained in appendix D, we must start once again by finding an expression for the matrix

Zdt. Given (14), we will have that

∂µt(θs, 0)/∂θ′ =
(

1 0 0
)

and

∂σ2t (θs, 0)/∂θ′ =
(

0 1 (yt−1 − π)2 − ω
)
,
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whence

Zdt(θs, 0) =

 ω−1/2 0
0 1

2ω
−1

0 1
2 [ε2t−1(θs)− 1]

 , (A5)

so that

Zd(θs, 0,η0) =

 ω
−1/2
0 0

0 1
2ω
−1
0

0 0

 . (A6)

As a result, the score under the null will be sπt(θs, 0,η)
sωt(θs, 0,η)
sαt(θs, 0,η)

 =

 −ω−1/2∂f [εt(θs), η] /∂ε∗

−12ω
−1[∂f [εt(θs), η] /∂ε∗ · εt(θs) + 1]

−12 [∂f [εt(θs), η] /∂ε∗ · εt(θs) + 1][ε2t−1(θs)− 1]

 .
Similarly, the conditional information matrix will be

ω−1/2 0 0
0 1

2ω
−1 0

0 1
2 [ε2t−1(θs)− 1] 0

0 0 Iq


 Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M′lr(η) M′sr(η) Mrr(η)



×

 ω−1/2 0 0 0
0 1

2ω
−1 1

2 [ε2t−1(θs)− 1] 0
0 0 0 Iq



=


ω−1Mll(η) 1

2ω
−3/2Mls(η)

1
2ω
−3/2Mls(η) 1

4ω
−2Mss(η)

1
2ω
−1/2[ε2t−1(θs)− 1]Mls(η) 1

4ω
−1[ε2t−1(θs)− 1]Mss(η)

ω−1/2M′lr(η) 1
2ω
−1M′sr(η)

1
2ω
−1/2[ε2t−1(θs)− 1]Mls(η) ω−1/2Mlr(η)

1
4ω
−1[ε2t−1(θs)− 1]Mss(η) 1

2ω
−1Msr(η)

1
4 [ε2t−1(θs)− 1]2Mss(η) 1

2 [ε2t−1(θs)− 1]Msr(η)
1
2 [ε2t−1(θs)− 1]M′sr(η) Mrr(η)

 ,
while the unconditional one becomes

1
ωMll(η) 1

2ω
−3/2Mls(η) 0 1

2ω
−1/2Mlr(η)

1
2ω
−3/2Mls(η) 1

4ω
−2Mss(η) 0 1

2ω
−1Msr(η)

0 0 κ−1
4 Mss(η) 0

ω−1/2M′lr(η) 1
2ω
−1M′sr(η) 0 Mrr(η)

 .
This result confirms the expression for Iαα(φ), as well as the fact that the sampling uncer-

tainty in the ML estimators of π, ω and η is inconsequential for the asymptotic distribution of

the test, at least up to first order.

Proposition 6

Once again, the asymptotic distribution of the Gaussian Pseudo ML estimators and tests

will depend on

Aθθ(θs, 0,0;θ0, 0,%0) = E[Aθθtθs, 0,0;θ0, 0,%0)|θ0, 0,%0],

Aθθt(θ,0;θ,%) = −E[hθθt(θ,0)| zt, It−1;θ,%] = Zdt(θ)K(0, 0)Z′dt(θ)
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and

Bθθt(θ,0;θ,%) = V [sθt(θ; 0)| zt, It−1;θ,%]] = Zdt(θ)K(ϕ, κ)Z′dt(θ),

where

K (ϕ,κ) =V [edt(θ,0)| zt, It−1;θ,%] =

[
1 ϕ(%)

ϕ(%) κ(%)− 1

]
and % are the shape parameters of the true distribution of ε∗t .

But given the structure of Zdt(θ) in (A5) and the consistency of the Gaussian PML estima-

tors of π and ω, which implies that E[ε2t (θs0)|θ0, 0,%0] = 1, it is clear that Aθθ(θs, 0,0;θ0, 0,%0)

will be block diagonal between α and θs irrespective of the true distribution of yt. In ad-

dition, Aαα(θs, 0,0;θ0, 0,%0) will coincide with Iαα(θs, 0,%0) provided that we use the true

value of κ(%) − 1 instead of its value under normality. A closely related argument shows that

Bθθt(θ,0;θ,%) will also be block diagonal between α and θs, and that Bαα(θs, 0,0;θ0, 0,%0) =

1
2 [κ(%)−1]Aαα(θs, 0,0;θ0, 0,%0). As a result, the Gaussian-based LM test forH0 : α = 0 remains

valid irrespective of the true distribution of yt as long as we replace the 2 in the denominator

by the variance of the score. �

Proposition 7

Consider the following model:

yt = π0 + σt(θ0)ε
∗
t ,

σ2t (θ) = ω[1 + γ(yt−1 − π)2],
ε∗t |It−1;π, ω, γ,η ∼ i.i.d. D(0, 1,η),
with density function f(.,η)

 ,

where the parameters of interest are φ = (θ′,η′)′, θ′ = (θ′s, γ)′ and θs = (π, ω)′. In this context,

the null hypothesis is H0 : γ = 0.

It is then easy to see that
∂µt
∂θ′

=
(

1 0 0
)

while
∂σ2t
∂θ′

=
(
−2ωγ(xt−1 − π) 1 + γ(xt−1 − π)2 ω(xt−1 − π)2

)
.

As a result, the score vector will be

sπt = − 1

{ω[1 + γ(xt−1 − π)2]}1/2
∂ ln f [ε∗t (θ),η]

∂ε∗
+

γ(xt−1 − π)

[1 + γ(xt−1 − π)2]

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
,

sωt = − 1

2ω

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
,

sγt = − (xt−1 − π)2

2[1 + γ(xt−1 − π)2]

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
,

sηt =
∂ ln f [ε∗t (θ),η]

∂η
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which under the null of γ = 0 reduces to

sπt = − 1

ω1/2
∂ ln f [εt(θs),η]

∂ε∗
,

sωt = − 1

2ω

{
1 + εt(θs) ·

∂ ln f [εt(θs),η]

∂ε∗

}
,

sγt = −ω
2
ε2t−1(θs)

{
1 + εt(θs) ·

∂ ln f [εt(θs),η]

∂ε∗

}
,

sηt =
∂ ln f [εt(θs),η]

∂η
.

Note that we could have obtained the same expressions by using the chain rule for first

derivatives since

sωt = − 1− γω
2ω[1 + γ(xt−1 − π)2]

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
sαt = −

(xt−1 − π)2 − ω
1−γω

2ω[1 + γ(xt−1 − π)2]

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
and

∂

(
ω
α

)
∂
(
ω γ

) =

(
(1− γω)−2 ω2(1− γω)−2

γ ω

)
.

Similarly,

hππt(φ) =
1

σ2t

∂2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗
− ωγ (xt−1 − π)

σ3t

(
∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

)
+γ
−1 + γ(xt−1 − π)2

[1 + γ(xt−1 − π)2]2

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
+

γ(xt−1 − π)

[1 + γ(xt−1 − π)2]

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
ε∗t (θ)

)[
∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

]

hπωt(φ) = − 1

2ω

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
ε∗t (θ)

)[
∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

]

hπγt(φ) =
(xt−1 − π)

[1 + γ(xt−1 − π)2]2

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
− (xt−1 − π)2

2[1 + γ(xt−1 − π)2]

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
ε∗t (θ)

){
∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

}

hπηt(φ) =

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
ε∗t (θ)

)
∂2 ln f [ε∗t (θ),η]

∂ε∗t (θ)∂η′

hωωt(φ) =
1

2ω2

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
+

1

4ω2

[
ε∗t (θ)

∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

]

hωγt(φ) =
(xt−1 − π)2

4ω[1 + γ(xt−1 − π)2]

[
ε∗t (θ)

∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

]
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hωηt(φ) = − 1

2ω
ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗∂η

hγγt(φ) =
(xt−1 − π)4

2[1 + γ(xt−1 − π)2]2

{
1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
+

(xt−1 − π)4

4[1 + γ(xt−1 − π)2]2

[
ε∗t (θ)

∂ ln f [ε∗t (θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [ε∗t (θ),η]

∂ε∗∂ε∗

]

hγηt(φ) = − (xt−1 − π)2

2[1 + γ(xt−1 − π)2]
ε∗t (θ)

∂2 ln f [ε∗t (θ),η]

∂ε∗t (θ)∂η′

and

hηηt(φ) =
∂2 ln f [ε∗t (θs),η]

∂η∂η′
.

Under the null of γ = 0 these expressions reduce to

hππt(φ) =
1

ω

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

hπωt(φ) =
1

2ω3/2

[
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
hπγt(φ) = ω1/2εt−1(θ)

{
1 + εt(θ) · ∂ ln f [ε∗t (θ),η]

∂ε∗

}
+
ω1/2

2
ε2t−1(θ)

{
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

}
hπηt(φ) = − 1

ω1/2
∂2 ln f [ε∗t (θ),η]

∂ε∗t (θ)∂η′

hγγt(φ) =
1

2
ω2ε4t−1(θ)

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+

1

4
ω2ε4t−1(θ)

[
εt(θ)

∂ ln f [εt(θ),η]

∂ε∗
+ ε2t (θ) · ∂

2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
hγηt(φ) = −1

2
ωε2t−1(θ) · εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗t (θ)∂η′

and

hηηt(φ) =
∂2 ln f [εt(θ),η]

∂η∂η′

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [εt(θs∞),η∞] /∂ε∗|ϕ0} = 0,

E{1 + ∂ ln f [εt(θs∞),η∞] /∂ε∗ · εt(θs∞)|ϕ0} = 0,

E{∂ ln f [εt(θs∞),η∞] /∂η|ϕ0} = 0,

the law of iterated expectations implies that
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E[hππt(φ∞)|It−1;ϕ0] = ω−1∞ Hll(φ∞;ϕ0)

E[hπωt(φ∞)|It−1;ϕ0] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ0)

E[hπηt(φ∞)|It−1;ϕ0] = −ω−1/2∞ Hlr(φ∞;ϕ0)

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

E[hωηt(φ∞)|It−1;ϕ0] = −12ω
−1
∞ Hsr(φ∞;ϕ0)

E[hηηt(φ∞)|It−1;ϕ0] = Hrr(φ∞;ϕ0)

and

E[hπγt(φ∞)|ϕ0] = 1
2ω
−1/2
∞ Hls(φ∞;ϕ0) · E[ε2t−1(θs∞)|ϕ0]

E[hωγt(φ∞)|ϕ0] = 1
4 [Hss(φ∞;ϕ0)− 1] · E[ε2t−1(θs)|ϕ0]

E[hγγt(φ∞)|ϕ0] = 1
4ω

2
∞[Hss(φ∞;ϕ0)− 1] · E[ε4t−1(θs)|ϕ0]

E[hγηt(φ∞)|ϕ0] = −12ω∞Hsr(φ∞;ϕ0) · E[ε2t−1(θs∞)|ϕ0]

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

where

Hll(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗|It−1;ϕ0]

Hls(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗ · εt(θs)|It−1;ϕ0]

Hlr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂η′|It−1;ϕ0]

Hss(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂ε∗ · ε2t (θs)|It−1;ϕ0]

Hsr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞),η∞] /∂ε∗∂η′ · εt(θs)|It−1;ϕ0]

and ϕ0 = (θ′s0, 0,%
′
0)
′. Finally,

E[ε2t (θs)|ϕ0] = E[ω−1(yt − π)2|ϕ0] = E[ω−1(π0 + ω
1/2
0 ε∗t − π)2|ϕ0] = ω−1[(π0 − π)2 + ω0]

and

E{[ε4t (θs)|ϕ0} = E{ω−2[(yt − π)4|ϕ0} = ω−2E{[(π0 − π) + ω
1/2
0 ε∗t ]

4|ϕ0}

= ω−2[(π0 − π)4 + 6(π0 − π)2ω0 + 4ω
3/2
0 (π0 − π)ϕ(%0) + ω20κ(%0)].

where ϕ(%0) = E(ε∗3t |%0) and κ(%0) = E(ε∗4t |%0) are the skewness and kurtosis coeffi cients of
the true distribution of ε∗t .

Proposition 8

Given that

W′
d(π0, 0, ω0,η0) =

(
0 1

2ω
−1
0 0

)
,
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it is easy to see that

S̊(φ0) =

 ω−1Mll(η) 0 0
0 1

(κ−1)ω2 0

0 0 κ−1
4 Mss(η)

 .
Since this matrix is block diagonal and the effi ciency bound for γ coincides with the correspond-

ing element of the information matrix under correct specification of the conditional distribution,

the asymptotic variance of the SSP estimator of this parameter coincides with that of the in-

feasible ML estimator which uses knowledge of the shape parameters η0. As a result, the

non-centrality parameters will also be the same.

Similarly, we can use the expression for (A2) to show that

S(φ0) =

 ω−1Mll(η) 0 1
2ω
−3/2Mls(η)

0 1
4ω
−2Mss(η) 0

1
2ω
−3/2Mls(η) 0 κ−1

4 Mss(η)

−
 ω

−1/2
0 0

0 1
2ω
−1
0

0 0

{[ Mll(η) Mls(η)
Mls(η) Mss(η)

]

−
(

1 0
0 2

)(
1 ϕ
ϕ κ− 1

)−1(
1 0
0 2

)}(
ω
−1/2
0 0 0

0 1
2ω
−1
0 0

)

=

 ω−1 1
2ω
−3/2ϕ 0

1
2ω
−3/2ϕ 1

4ω
−2(κ− 1) 0

0 0 κ−1
4 Mss(η)

 .
Given that this matrix is block diagonal and the effi ciency bound for γ coincides with the

corresponding element of the information matrix under correct specification of the conditional

distribution, the asymptotic variance of the SP estimator of this parameter coincides with that

of the infeasible ML estimator which uses knowledge of the shape parameters η0. Consequently,

the non-centrality parameters will also be the same. �

Lemma 2

The proof is trivial if we combine several results that appear in the proofs of Propositions 5,

6 and 8. �

Proposition 9

The proof of the three statements is trivial if we combine several results that appear in

the proofs of Propositions 1 and 5, 2 and 6, and 4 and 8, respectively, with the fact that

the corresponding effi ciency bounds are block diagonal between θs, ρ and γ when the true

distribution of ε∗t is symmetric.
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B Local power calculations

B.1 General results

Let mt(θ1,θ2) denote the h influence functions used to develop the following moment test

of H0 : θ2 = 0:

MT = Tm̄′T (θ10,0)Ψ−1m̄T (θ10,0), (B7)

where m̄T (θ10,0) is the sample average of mt(θ) evaluated under the null, Ψ is the correspond-

ing asymptotic covariance matrix and θ10 the true values of the remaining model parameters.

In order to obtain the non-centrality parameter of this test under Pitman sequences of local

alternatives of the form H0 : θ2T = θ̄2/
√
T , it is convenient to linearise mt(θ10,0) with respect

to θ2 around its true value θ2T . This linearisation yields

√
Tm̄T (θ10,0) =

√
Tm̄T (θ10,θ2T ) +

1

T

∑T

t=1

∂mt(θ10,θ
∗
2T )

∂θ′2
θ̄2,

where θ∗2T is some “intermediate”value between θ2T and 0. As a result,

√
Tm̄T (θ10,0)→ N [M(θ10,0)θ̄2,Ψ],

under standard regularity conditions, where

M(θ10,0) = E[∂mt(θ10,0)/∂θ′2],

so that the non-centrality parameter of the moment test (B7) will be

θ̄
′
2M
′(θ10,0)Ψ−1M(θ10,0)θ̄2 (B8)

when θ10 is known. On this basis, we can easily obtain the limiting probability of MT exceed-

ing some pre-specified quantile of a central χ2h distribution from the cdf of a non-central χ2

distribution with h degrees of freedom and non-centrality parameter (B8).

Often, though, θ10 will be unknown, and we will have to replace it by some estimator θ̄1T . Let

nt(θ1,θ2) denote the dim(θ1) influence functions used to estimate θ10 subject to the restriction

θ2 = 0. For convenience, we replace the original influence functions by

m⊥t (θ1,θ2) = mt(θ1,θ2)− E
(
∂mt(θ1,θ2)

∂θ′1

)[
E

(
∂nt(θ1,θ2)

∂θ′1

)]−1
nt(θ1,θ2),

which are unaffected by the sampling uncertainty in the estimator of θ1. In this way, the test

statistic will be

MT = Tm̄⊥′T (θ̄1T ,0)Υ−1m̄⊥T (θ̄1T ,0),
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where Υ is the relevant asymptotic covariance matrix, which takes into account the possible

(long-run) correlation between mt(θ1,θ2) and nt(θ1,θ2). As a result, the non-centrality para-

meter will be

θ̄
′
2M
⊥′(θ10,0)Υ−1M⊥(θ10,0)θ̄2,

where

M⊥(θ10,0) = E

(
∂mt(θ1,θ2)

∂θ′2

)
− E

(
∂mt(θ1,θ2)

∂θ′1

)[
E

(
∂nt(θ1,θ2)

∂θ′1

)]−1
E

(
∂nt(θ1,θ2)

∂θ′2

)
.

In the special case in which θ̄1T is the ML estimator of θ10 under the null, and mt(θ1,0) and

the scores corresponding to θ1 are asymptotically uncorrelated whenH0 is true, as in all our tests

under correct specification, then no adjustment will be required because E[∂mt(θ1,θ2)/∂θ
′
1] will

be 0 by the generalised information matrix equality. In addition, both M(θ10,0) and Ψ coincide

with the (2,2) block of the information matrix when mt(θ1,θ2) are the scores with respect to

θ2.

If on the other hand nt(θ1,θ2) andmt(θ1,θ2) coincide with the scores with respect to θ1 and

θ2 but these are not uncorrelated under the null, as in our tests under incorrect specification,

then we should we work with m⊥t (θ1,θ2), although we could still exploit the fact that

E

(
∂mt(θ1,θ2)

∂θ′1

)′
= E

(
∂nt(θ1,θ2)

∂θ′2

)
by the symmetry of the Hessian matrix. In either case, though, the non-centrality parameters

of LM and Wald tests will be the same under sequences of local alternatives, at least under

the assumption that θ2 is consistently estimated not only under the null but also under those

sequences (see White (1982)).

B.2 Gaussian tests

B.2.1 Serial correlation tests

Let us assume without loss of generality that π = 0. The first-order serial correlation test is

effectively based on the influence functions

mlt(θs, ρ) = ytyt−1 −Gyy(1)

evaluated at ρ = 0. But since

yt =

(
1 +

∑h

l=1
ρLl
)
εt,

we will have that

Gyy(0) = [1 + (h− 1)ρ2]σ2
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The Yule-Walker equations of the model considered in (11) will be given by

Gyy(1)
Gyy(0)

= ρ
[
1 +

Gyy(1)
Gyy(0)

+ . . .+
Gyy(h−1)
Gyy(0)

]
Gyy(2)
Gyy(0)

= ρ
[
Gyy(1)
Gyy(0)

+ 1 + . . .+
Gyy(h−2)
Gyy(0)

]
...

...
Gyy(h−1)
Gyy(0)

= ρ
[
Gyy(h−2)
Gyy(0)

+
Gyy(h−3)
Gyy(0)

+ . . .+
Gyy(1)
Gyy(0)

]
whence

Gyy(1) =
ρ

1− (h− 1)ρ
[1 + (h− 1)ρ2]σ2.

Hence, it trivially follows that

Ml(θs,0) = E[∂mlt(θs, 0)/∂ρ] = −σ2.

As for the asymptotic covariance matrix, the proof of Proposition 2 implies that if ρ = 0, then

√
Tmlt(θs, 0) =

√
T

T

∑T

t=1
yty
′
t−1 → N(0, σ4)

irrespective of the distribution of yt. As a result, the non-centrality parameter will be ρ2 regard-

less of h.

In contrast, the test that uses the influence function

yt
∑h

l=1
yt−l −

∑h

l=1
Gyy(l)

will be asymptotically equivalent to the Wald test based on the Gaussian PML estimator ρ,

whose non-centrality parameter is hρ2, which is clearly bigger than ρ2 for any h > 1.

It is also interesting to study the opposite situation in which we decide to use the influence

function that involves h−period returns when in fact the true model is an Ar(1). Since Gyy(l) =

ρlσ2 in that case,
∑h

l=1Gyy(l) will be equal to (1 − ρh+1)σ2/(1 − ρ). Therefore, Ml(θs,0) will

also be equal to −σ2. But since the asymptotic covariance of the sample average of yt
∑h

l=1 yt−l

is hσ4 under the null, the non-centrality parameter will be h−1ρ2, which is clearly below ρ2 for

any h > 1.

B.2.2 GARCH tests

To keep the algebra simple, we assume once again that π = 0, that the conditional variance

has been generated according to a Garch(1,1) process and that the conditional distribution

has constant kurtosis coeffi cient κ. The fixed-β̄ Garch test is based on the following influence

function:

mst(σ
2, β̄) = (x2t − σ2)

∑∞

j=0
β̄
j
(x2t−j − σ2)
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As is well known, Bollerslev (1986) showed that a Garch(1, 1) model implies the following

Arma(1, 1) process for x2t :

(x2t − σ2) = (α+ β)(x2t−1 − σ2) + ηt − βηt−1,

where ηt is the martingale difference sequence x
2
t − σ2t . As a result,

V (x2t ) =
1− 2αβ − β2

1− (α+ β)2
V (ηt),

cov(x2t , x
2
t−1) =

[1− (α+ β)β]

1− (α+ β)2
αV (ηt),

and

cov(x2t , x
2
t−j−1) = (α+ β)cov(x2t , x

2
t−j) = (α+ β)j−1cov(x2t , x

2
t−1)

for any j ≥ 1, so that

cor(x2t , x
2
t−1) =

[1− (α+ β)β]

1− 2αβ − β2
α,

cor(x2t , x
2
t−j−1) = (α+ β)j−1cor(x2t , x

2
t−1).

But since we know that

V (x2t ) =
1− 2αβ − β2

1− κα2 − 2αβ − β2
(κ− 1)σ4

when κα2 + 2αβ + β2 < 1, it immediately follows that

V (ηt) =
1− (α+ β)2

1− κα2 − 2αβ − β2
(κ− 1)σ4.

As a result, the expected value of mst(σ
2, β̄) under the alternative will be given by∑∞

j=0
β̄
j
(α+ β)jE[(x2t − σ2)(x2t−1 − σ2)] =

α

1− β̄(α+ β)

[1− (α+ β)β]

1− κα2 − 2αβ − β2
(κ− 1)σ4.

If we expand this expression with respect to α at α = 0, we finally obtain

α

1− β̄β
(κ− 1)σ4.

Hence, the non-centrality parameter will be

1− β̄2

(1− β̄β)2
α2.

Specifically, for β̄ = 0 the non-centrality parameter will be α2, while for β̄ = 1 the non-centrality

parameter becomes 0 because the regressor has infinite variance while the regressand does not.

In fact, β̄ bigger than 2β/(1 + β2) will result in local power losses relative to β̄ = 0. Not

surprisingly, the maximum of this expression is achieved for β̄ = β, in which case its value is

α2

1− β2
,

which is bigger than α2, the more so the closer β is to 1.

51



B.3 Student t tests

Under correct specification, the non-centrality parameters are trivial to find because they

effectively depend on the ρρ or αα elements of the information matrix under the null of mean

and variance unpredictability, which we have already discussed in Lemmas 1 and 2. Under

distributional misspecification, the calculations are substantially more elaborate.

B.3.1 Normal mixtures

For any given value of the mixing probability λ, the ratio of variances υ and the relative

differences in means δ, the first thing we do is to compute the pseudo true values of the Student

t pseudo ML estimators under the null, namely π∞, ω∞ and η∞. We obtain these pseudo true

values by solving a nonlinear system of three equations that sets to zero the expected value of

the scores with respect to π, θ and η. We compute the integrals with respect to the true normal

mixture measure as the weighted average of two integrals with respect to the two underlying

Gaussian measures, as in Amengual and Sentana (2010). We obtain each of those integrals by

Gauss-Hermite quadrature with infinite support using the Nag D01BAF routine with 64 points,

a = µi and b = .5σ−2i (i = 1, 2). We solve the resulting nonlinear system of equations in two

steps. First, we define a non-uniform grid of 70 values for η between 0.001 and .4995, which is

finer close to the two extremes, and then solve the bivariate system for π and ω keeping η fixed.

Next, we feed the “best” triplet as starting values for solving the trivariate system using the

Nag C05NCF routine.

Once we have thus obtained π∞, ω∞ and η∞, we compute the expected value of the Hessian

(H) and variance of the score (K), including the elements involving ρ or γ using the expressions

in the proofs of Propositions 3 and 7. We then compute the usual sandwich formulas H−1BH−1

and take the appropriate diagonal element to obtain the ratio of noncentrality parameters of the

Student t−based test to the Gaussian one. Although we can repeat these calculations for any

possible triplet (λ, υ, δ), in practice we fix λ = .05 and define a bivariate grid (on a log-scale)

on δ and υ of 300 × 80 points. We then find out the skewness and kurtosis values that those

parameters imply using the bounds described in appendix C.1.2.

There are two further controls in the program. On the one hand, when η∞ is less or equal

then 0.001, then we simply set the ratios of noncentrality parameters equal to one. On the other

hand, when η∞ is greater or equal than .4995, then we drop η from the calculations and compute

the expected Hessian and variance of the score matrices for the remaining three parameters.
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B.3.2 Gram-Charlier expansions

The procedure for the fourth-order Gram-Charlier density is similar to the one we have

just described for discrete normal mixtures. The most relevant differences are (i) that the shape

parameters of the true measure are now c3 and c4, so that we need to find out first the admissible

range of values of these parameters which are compatible with a non-negative density; and (ii)

the values of a and b in the Gauss-Hermite numerical quadrature Nag D01BAF routine are no

longer optimal.

C Standardised random variables

C.1 Discrete location scale mixtures of normals

C.1.1 Definition and simulation

Let st denote an i.i.d. Bernoulli variate with P (st = 1) = λ. If zt|st is i.i.d. N(0, 1), then

ε∗t =
1√

1 + λ(1− λ)δ2

[
δ(st − λ) +

st + (1− st)
√
υ√

λ+ (1− λ)υ
zt

]
,

where δ ∈ R and υ > 0, is a two component mixture of normals whose first two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that δ(st − λ) is a

shifted and scaled Bernoulli random variable with 0 mean and variance λ(1− λ)δ2. But since

st + (1− st)
√
υ√

λ+ (1− λ)υ
zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to δ(st−λ), the sum of the two random variables will have variance 1 +λ(1−

λ)δ2, which explains the scaling factor.

An equivalent way to define and simulate the same standardised random variable is as follows

ε∗t =

{
N [µ∗1(η), σ∗21 (η)] with probability λ
N [µ∗2(η), σ∗22 (η)] with probability 1− λ (C9)

where η = (δ, υ, λ)′ and

µ∗1(η) =
δ(1− λ)√

1 + λ(1− λ)δ2
,

µ∗2(η) = − δλ√
1 + λ(1− λ)δ2

= − λ

1− λµ
∗
1(η),

σ∗21 (η) =
1

[1 + λ(1− λ)δ2][λ+ (1− λ)υ]
,

σ∗22 (η) =
υ

[1 + λ(1− λ)δ2][λ+ (1− λ)υ]
= υσ∗21 (η).
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Therefore, we can immediately interpret υ as the ratio of the two variances. Similarly, since

δ =
µ∗1(η)− µ∗2(η)√

λσ∗21 (η) + (1− λ)σ∗21 (η)
,

we can also interpret δ as the parameter that regulates the distance between the means of the

two underlying components relative to the mean of the two conditional variances.

We can trivially extended this procedure to define and simulate standardised mixtures with

three or more components. Specifically, if we replace the normal random variable in the first

branch of (C9) by a k-component normal mixture with mean and variance given by µ∗1(η) and

σ∗21 (η), respectively, then the resulting random variable will be a (k + 1)-component Gaussian

mixture with zero mean and unit variance.

Finally, note that we can also use the above expressions to generate a two component mixture

of normals with mean π and variance ω2 as

yt =

{
N(µ1, σ

2
1) with probability λ

N(µ2, σ
2
2) with probability 1− λ

with

µ1 = π + ωµ∗1(η)

µ2 = π + ωµ∗2(η)

σ21 = ωσ∗21 (η),

σ22 = ωσ∗22 (η).

Interestingly, the expressions for υ and δ above continue to be valid if we replace µ∗1(η), µ∗2(η),

σ∗21 (η) and σ∗22 (η) by µ1, µ2, σ
2
1 and σ

2
2.

C.1.2 Skewness-kurtosis bounds

In the case of two-component Gaussian mixtures, the parameters λ, δ and υ determine the

higher order moments of ε∗t through the relationship

E(ε∗jt ) = λE(ε∗jt |st = 1) + (1− λ)E(ε∗jt |st = 0),

where E(ε∗jt |st = 1) can be obtained from the usual normal expressions

E(ε∗t |st = 1) = µ∗1(η)
E(ε∗2t |st = 1) = µ∗21 (η) + σ∗21 (η)
E(ε∗3t |st = 1) = µ∗31 (η) + 3µ∗1(η)σ∗21 (η)
E(ε∗4t |st = 1) = µ∗41 (η) + 6µ∗21 (η)σ∗21 (η) + 3σ∗41 (η)
E(ε∗5t |st = 1) = µ∗51 (η) + 10µ∗31 (η)σ∗21 (η) + 15µ∗1(η)σ∗41 (η)
E(ε∗6t |st = 1) = µ∗61 (η) + 15µ∗41 (η)σ∗21 (η) + 45µ∗21 (η)σ∗41 (η) + 15σ∗61 (η)
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etc. But since E(ε∗t ) = 0 and E(ε∗2t ) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coeffi cients will be given by

E(ε∗3t ) =
3δλ(1− λ)(1− υ)

[λ+ (1− λ)υ][1 + λ(1− λ)δ2]3/2
+
δ3(1− λ)λ(1− 2λ)

[1 + λ(1− λ)δ2]3/2
= a(δ, υ, λ) (C10)

and

E(ε∗4t ) =
3[λ+ (1− λ)υ2]

[λ+ (1− λ)υ]2[1 + λ(1− λ)δ2]2
+

6δ2λ(1− λ)[(1− λ) + υλ]

[λ+ (1− λ)υ][1 + λ(1− λ)δ2]2

+
δ4λ(1− λ)[1− 3λ(1− λ)]

[1 + λ(1− λ)δ2]2
= b(δ, υ, λ). (C11)

Two issues are worth pointing out. First, a(δ, υ, λ) is an odd function of δ, which means that

δ and −δ yield the same skewness in absolute value. In this sense, if we set δ = 0 then we will

obtain a discrete scale mixture of normals, which is always symmetric but leptokurtic. Another

way of obtaining discrete normal mixture distributions that are symmetric is by making λ = 1
2

and υ = 1. Second, b(δ, υ, λ) is an even function of δ, which implies that δ and −δ give rise to

the same kurtosis. For that reason, in what follows we mostly consider the case of δ ≥ 0.

A useful property of two component normal mixtures is that they span the entire uncondi-

tional skewness-kurtosis frontier given by the parabola E(ε∗4t ) ≥ 1 + E2(ε∗3t ) (see Stuart and

Ord (1977)). More specifically, for a fixed value of λ, skewness, which is 0 for δ = 0, reaches its

frontier value as δ →∞, in which case

lim
δ→∞

a(δ, υ, λ) =
2(12 − λ)√
λ(1− λ)

regardless of υ. Clearly, for λ < .5 this limiting skewness value is positive, while it is negative

for λ > .5. In any case, we can achieve the mirror point on the frontier as δ → −∞.

The corresponding kurtosis values are

b(0, υ, λ) =
3(λ+ (1− λ)υ2)

(λ+ (1− λ)υ)2
= 3

(
λ(1− λ)(1− υ)2

(λ+ (1− λ)υ)2
+ 1

)
and

lim
δ→±∞

b(δ, υ, λ) = −3 +
1

λ(1− λ)
= 1 +

(
2(12 − λ)√
λ(1− λ)

)2
,

which again does not depend on υ. Intuitively, the reason is that a standardised two component

normal mixture converges in distribution to a standardised Bernoulli random variable with

parameter λ as δ →∞ regardless of υ. Interestingly, limδ→∞ b(δ, υ, λ) = 3 for λ = 1
2 ±

1
6

√
3.

Nevertheless, to create Figures 4B and 7B, we need to find out the range of skewness and

kurtosis that this distribution can generate when λ is fixed. In this sense, notice that kurtosis is
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always larger or equal than 3 for δ = 0, which reflects the fact that a scale mixture of normals

is always leptokurtic. The boundary case is of course υ = 1, in which case

b(0, 1, λ) = 3.

In fact, maximum kurtosis when δ = 0 is achieved for υ = 0 or for υ →∞, in which case we

obtain either

b(0, 0, λ) =
3

λ
or lim

υ→∞
b(0, υ, λ) =

3

1− λ.

Obviously, this kurtosis can be made arbitrarily large as λ approaches 0 or 1, but it is clearly

bounded for fixed λ.

The other interesting cases arise when υ = 0 and υ = 1. In the first case

a(δ, 0, λ) = δ (1− λ)
3 + (1− 2λ)λδ2

(1 + λ(1− λ)δ2)3/2

and

b(δ, 0, λ) =
3

λ(1 + λ(1− λ)δ2)2
+

6δ2(1− λ)2

(1 + λ(1− λ)δ2)2
+
δ4λ(1− λ)(1− 3λ(1− λ))

(1 + λ(1− λ)δ2))2
,

while in the second case

a(δ, 1, λ) =
δ3(1− λ)λ(1− 2λ)

(1 + λ(1− λ)δ2)3/2

and

b(δ, 1, λ) =
3

(1 + λ(1− λ)δ2)2
+

6δ2λ(1− λ)

(1 + λ(1− λ)δ2)2
+
δ4λ(1− λ)(1− 3λ(1− λ))

(1 + λ(1− λ)δ2))2
.

It turns out that the range of skewness and kurtosis that a standardised mixture of two

normals can generate seems to be bounded by the following two parametric curves:

(a(δ, 1, λ), b(δ, 1, λ))

and

(a(δ, 0, λ), b(δ, 0, λ)),

where the range of δ is [0,∞). In fact, these curves intersect at the unconditional skewness-

frontier boundary when δ →∞.

Interestingly, it seems that skewness is always non-negative when λ ≤ 1/2. In contrast, for

λ > 1/2 skewness is initially positive for small values of δ, but then becomes negative as δ

increases. In turn, kurtosis bounded from below by 3 when λ ≤ 1
2 −

1
6

√
3, while it is bounded

from above by 3 on the negative skewness side if 12 ≤ λ ≤
1
2 + 1

6

√
3.

As we explained before, the mirror curves

(−a(|δ|, 1, λ), b(|δ|, 1, λ))
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and

(−a(|δ|, 0, λ), b(|δ|, 0, λ)),

give us the skewness-kurtosis range when δ if negative.

C.2 Gram-Charlier distributions

C.2.1 Definition and moments

The first five raw Hermite polynomials are:

H0(z) = 1,

H1(z) = z,

H2(z) = z2 − 1,

H3(z) = z3 − 3z,

H4(z) = z4 − 6z2 + 3.

When z ∼ N(0, 1), these have 0 mean and are orthogonal to each other. In turn,

H∗2 (z) =
z2 − 1√

2
,

H∗3 (z) =
z3 − 3z√

6
,

H∗4 (z) =
z4 − 6z2 + 3√

24
.

are called the standardised Hermite polynomials because their variance will be 1 for a standard

normal.

The Gram-Charlier density is defined as:

f(z) = φ(z)P (z), (C12)

φ(z) =
1√
2π
e−

1
2
z2 ,

P (z) = 1 +
ϕ√
6
H∗3 (z) +

υ√
24
H∗4 (z) = 1 +

ϕ

6

(
z3 − 3z

)
+

κ

24

(
z4 − 6z2 + 3

)
. (C13)

This density is such that

Ef (z) = 0,

Ef (z2) = 1,

Ef (z3) = ϕ,

Ef (z4) = 3 + κ.
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C.2.2 Positivity restrictions

The problem is that P (z) in (C13) can be negative, in which case f(z) in (C12) will not be

a proper density.

For a given z, the skewness-excess kurtosis frontier that guarantees positivity must satisfy

the following two equations:

1 +
ϕ

6

(
z3 − 3z

)
+

κ

24

(
z4 − 6z2 + 3

)
= 0,

ϕ

2

(
z2 − 1

)
+
κ

6

(
z3 − 3z

)
= 0.

The first equation, which is given by P (z) = 0, defines a straight line in (ϕ, κ) space such that

in any neighbourhood of the solution we will find positive and negative densities. In contrast,

the second equation, which corresponds to ∂P (z)/∂z = 0, guarantees that we remain in the

frontier as we move in (ϕ, κ) space.

The solution to the above system of equations in terms of ϕ and κ as a function of z is

ϕ(z) = −24
z3 − 3z

z6 − 3z4 + 9z2 + 9
,

κ(z) = 72
z2 − 1

z6 − 3z4 + 9z2 + 9
,

where the denominator is

d(z) = 4
(
z3 − 3z

)2 − 3
(
z2 − 1

) (
z4 − 6z2 + 3

)
= z6 − 3z4 + 9z2 + 9.

This solution can be regarded as the parametric representation of the admissible skewness-

kurtosis frontier.

The simplest way to find the frontier values is to carry out a grid over z, and for each

value of z find out the corresponding values of ϕ(z) and κ(z). However, this does not work as

expected because we will often end up with two different values of ϕ(z) for the same value of

κ(z). Following Jondeau and Rockinger (2001), the solution is to restrict the range of z to be

[
√

3,∞). When z =
√

3, ϕ(z) and κ(z) become 0 and 4, respectively. In contrast, when z →∞

both ϕ(z) and κ(z) converge to 0. In practice, the grid should probably be logarithmic between
√

3 and 103 or so. The maximum skewness that can be achieved is 1.0493. Obviously, we get

the mirror image by changing the sign of z.

C.2.3 Simulation

A very simple way to simulate random variables with a Gram-Charlier distribution is by

using the usual inversion method, which exploits the fact that if Z is a random variable with
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absolutely continuous distribution function FZ(.) and quantile function F−1Z (.), then U = FZ(Z)

is uniformly distributed between 0 and 1, while F−1Z (U) will follow the distribution of Z.

Given that ∫
H∗k (x)φ (x) dx =

−1√
k
H∗k−1 (x)φ (x) k ≥ 1 (C14)

(see León, Mencía and Sentana (2009)), and that H∗k (x)φ (x)→ 0 when x→ −∞ by virtue of

L’Hôpital rule, then ∫ z

−∞
H∗k (x)φ (x) dz = − 1√

k
H∗k−1 (z)φ (z) , k ≥ 1. (C15)

Consequently,

FZ(z) =

∫ z

−∞
f(x)dx =

∫ z

−∞
φ(x)P (x)dx = Φ(z)− ϕ

6
H∗2 (z)φ (z)− κ

24
H∗3 (z)φ (z) .

In practice, we simulate a uniform variate u, and numerically solve the equation

FZ(z) = u

with Φ−1(u) as starting value.

C.3 Generalised hyperbolic

Let ξt denote an i.i.d. Generalised Inverse Gaussian (GIG) random variable with parameters

−ν, τ and 1, or GIG(−ν, τ , 1) for short. Mencía and Sentana (2012) show that if zt|ξt is i.i.d.

N(0, 1), then

ε∗t = c(β, ν, τ)β

[
τξ−1t
Rν(τ)

− 1

]
+

√
τξ−1t
Rν(τ)

√
c(β, ν, τ)zt

is a standardised Generalised Hyperbolic (GH) distribution with parameters β, ν and τ , where

c(β, ν, τ) =
−1 +

√
1 + 4β2[Dν+1(τ)− 1]

2β2[Dν+1(τ)− 1]

Rν(τ) =
Kν+1(τ)

Kν(τ)
,

Dν+1(τ) =
Kν+2(τ)Kν(τ)

Kν+1(τ)
,

and Kν(.) is the modified Bessel function of the third kind. In turn, the GH distribution is a

special case of the more general location scale mixtures of normals considered in Mencía and

Sentana (2009), in which ξt is a positive random variable with an arbitrary distribution.

Mencía and Sentana (2012) also provide expressions for the third and fourth moments of the

GH distribution, which in the univariate case reduce to

E(ε∗3t ) = c3(β,ν, τ)

[
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

− 3Dν+1 (τ) + 2

]
β3 + 3c2(β, ν, τ) [Dν+1 (τ)− 1]β
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and

E(ε∗4t ) = c4(β, ν, τ)

[
Kν+4 (τ)K3

ν (τ)

K4
ν+1 (τ)

− 4
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

+ 6Dν+1 (τ)− 3

]
β4

+6c3(β, ν, τ)

[
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

− 2Dν+1 (τ) + 1

]
β2 + 3Dν+1 (τ) c2(β, ν, τ).

C.3.1 Asymmetric and symmetric versions of the Student t

The asymmetric t distribution is nested within theGH family when τ = 0 and−∞ < ν < −2.

If we define η = −1/(2ν), then for η < 1/4 we will have that

c(β, ν, τ) =
1− 4η

2η

√
1 + 8β2η/(1− 4η)− 1

2β2
,

lim
τ→∞

Rν(τ)

τ
= lim

τ→∞
Kν+1(τ)

τKν(τ)
=

η

1− 2η
,

Dν+1(τ) =
Kν+2(τ)Kν(τ)

Kν+1(τ)
=

1− 2η

1− 4η
.

Therefore, we can easily simulate an asymmetric standardised Student t distribution as:

ε∗t = c(β, ν, τ)β

[
(1− 2η)

ηξt
− 1

]
+

√
(1− 2η)

ηξt

√
c(β, ν, τ)zt,

where ξt ∼ i.i.d. Gamma with mean η−1 and variance 2η−1, and zt|ξt is i.i.d. N(0, 1).

If we further assume that η < 1/8, then

Kν+3 (τ)K2
ν (τ)

K3
ν+1 (τ)

=
(1− 2η)2

(1− 4η)(1− 6η)

Kν+4 (τ)K3
ν (τ)

K4
ν+1 (τ)

=
(1− 2η)3

(1− 4η)(1− 6η)(1− 8η)

so the skewness and kurtosis coeffi cients of the asymmetric t distribution will be:

E(ε∗3t ) = 16c3(β,ν, τ)
η2

(1− 4η)(1− 6η)
β3 + 6c2(β, ν, τ)

η

1− 4η
β

and

E(ε∗4t ) = 12c4(β, ν, τ)
η2(10η + 1)

(1− 4η)(1− 6η)(1− 8η)
β4

+12c3(β, ν, τ)
η(2η + 1)

(1− 4η)(1− 6η)
β2 + 3

1− 2η

1− 4η
c2(β, ν, τ).

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting |β| → ∞. In

contrast, a standardised version of the usual symmetric Student t with 1/η degrees of freedom is

achieved when β = 0. Since limβ→0 c(β, ν, τ) = 1, in that case the coeffi cient of kurtosis becomes

E(ε∗4t ) = 3
1− 2η

1− 4η

for any η < 1/4.
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C.3.2 Symmetric Laplace distribution

The asymmetric Laplace distribution is another special case of the GH distribution, which

is achieved when τ = 0 and ν = 1. In fact, it is a special case of the asymmetric normal-gamma

mixture, which allows ν to be any positive parameter. As is well known, the kurtosis coeffi cient

of a symmetric Laplace distribution is 6. In the univariate case, the Laplace distribution is also

a special case of the generalised error distribution (GED) with shape parameter fixed at 1, in

contrast to the Gaussian distribution, which is also a special GED case with parameter 2.

The symmetric Laplace distribution is very easy to generate as

ε∗t =
√
ξtzt,

where ξt is an i.i.d. exponential (i.e. a Gamma with mean 1 and variance 1), and zt|ξt is

i.i.d. N(0, 1). Alternatively, if ut denotes a (0, 1) uniform variate, then we can also simulate a

standardised symmetric Laplace random variable ε∗t as

− 1√
2
sign

(
ut −

1

2

)
ln

(
1− 2

∣∣∣∣ut − 1

2

∣∣∣∣) .
In effect, this procedure uses the fact that the absolute value of a Laplace is exponential, with

a closed-form quantile function, while its sign is a shifted and scaled Bernoulli random variable

that the values ±1 with probability 1/2 each.

C.4 Construction of the quarterly portfolios

We follow exactly the same procedure as Ken French uses to create annual returns from

monthly ones. The first thing we do is to add the monthly gross return on the 1-month Tbill rate

to the excess returns of the 6 value-weighted portfolios formed on size and book-to-market, the

6 value-weighted portfolios formed on size and operating profitability, and the 6 value-weighted

portfolios formed on size and investment to transform each of them into monthly gross returns.

Then we compound the monthly gross returns into quarterly gross returns by multiplication, and

subtract the quarterly gross return on the 3-month Tbill (from the FRED database) to obtain

our quarterly excess returns. Form those, we create the five FF factors using the appropriate

long or short weights.

More formally, let X(K,J,D)
t,i be the net % return over month i, year t of some value-weight

portfolio, with i = 1, . . . , 12, where D = SMALL, BIG, K = BM , OP , INV and J = LOW ,

NEUTRAL, HIGH, with LOW and HIGH denoting growth and value for BM portfolios,

weak and robust for OP portfolios, and conservative and aggressive for INV portfolios. We
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then calculate the quarterly portfolios as:

X
(K,J,D)
t,I = 100

 3I∏
i=3(I−1)+1

(
X
(K,J,D)
t,i

100
+ 1

)
− 1

 ,
for I = 1, 2, 3, 4. Next, we apply the FF factor definitions. Specifically, the small minus big

factor is

SMB = 1/3(SMBBM + SMBOP + SMPINV ),

where

SMBK =
X(K,LOW,SMALL) +X(K,NEUTRAL,SMALL) +X(K,HIGH,SMALL)

3

−X
(K,LOW,BIG) +X(K,NEUTRAL,BIG) +X(K,HIGH,BIG)

3
.

Similarly, the high minus low factor is obtained as

HML =
X(BM,HIGH,SMALL) +X(K,HIGH,BIG)

2
− X(BM,LOW,SMALL) +X(K,LOW,BIG)

2
,

the robust minus weak as

RMW =
X(OP,HIGH,SMALL) +X(OP,HIGH,BIG)

2
− X(OP,LOW,SMALL) +X(OP,LOW,BIG)

2
,

and the conservative minus aggressive as

CMA =
X(INV,LOW,SMALL) +X(INV,LOW,BIG)

2
− X(INV,HIGH,SMALL) +X(OP,HIGH,BIG)

2
.

Finally, the quarterly excess return on the market can be obtained aggregating directly the
monthly factor

Rmt,I = 100

 3I∏
i=3(I−1)+1

(
Rmt,i +Rft,i

100
+ 1

)
− 1

−Rft,I
where Rft,i and Rft,I are the one-month and three-month riskfree rate, respectively.

C.5 The symmetry component of the Jarque-Bera (1980) test without im-
posing normality

Consider a moment test based on the influence function

n(y;π, ω) = ε3t (θs)− 3εt(θs)

where εt(θs) = ω−1/2(yt−π), evaluated at the sample mean and variance. This influence function

coincides with the third Hermite polynomial.
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Using standard results (see e.g. Newey and McFadden (1994)), the asymptotic variance of
√
T

T

T∑
t=1

n(yt; π̂, ω̂)

=

√
T

T

T∑
t=1

n(yt;π0, ω0) + E
(

∂n(y;π0,ω0)
∂π

∂n(y;π0,ω0)
∂ω

)√
T

(
π̂ − π0
ω̂ − ω0

)
+ op(1)

But the expected Jacobian matrix evaluated at the true value of the parameters is 0 under

symmetry because

∂n(y;π, ω)

∂π
= − 3

ω
1
2

[
ε2t (θs)− 1

]
,

∂n(y;π, ω)

∂ω
= − 3

2ω

[
ε2t (θs)− 1

]
εt(θs).

Therefore, the asymptotic covariance matrix of the sample mean of the third Hermite poly-

nomial evaluated at the sample mean and variance will be the same as if we could evaluate it at

the true values. Consequently, a moment test of H0 : E[n(y;π, ω)] = 0 can be simply computed

as the t−ratio of the sample mean of n(yt; π̂, ω̂).

Interestingly, this moment test coincides with the outer product of the score version of

the asymmetry component of the test of the null hypothesis of normality versus generalised

hyperbolic alternatives in Mencía and Sentana (2012), which they argue remains valid under as

long the true distribution is symmetric.

D Econometric methods

D.1 Log-likelihood function, score vector, Hessian and information matrices

Let φ = (θ′,η)′ denote the p + r parameters of interest, which we assume variation free.

Ignoring initial conditions, and assuming that σ2t (θ) is strictly positive, the log-likelihood func-

tion of a sample of size T based on a particular parametric distributional assumption will take

the form LT (φ) =
∑T

t=1 lt(φ), with lt(φ) = dt(θ) + ln f [ε∗t (θ),η], where dt(θ) = −1/2 lnσ2t (θ),

ε∗t (θ) = εt(θ)/σt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), σ2t (θ) and f(ε∗,η)

are differentiable, then we can use the fact that

∂dt(θ)/∂θ = −12 · σ
−2
t (θ) · ∂σ2t (θ)/∂θ = −Zst(θ)

and

∂ε∗t (θ)/∂θ = −σ−1t (θ) · ∂µt(θ)/∂θ−12σ
−2
t (θ) · ∂σ2t (θ)/∂θ · ε∗t (θ)

= −Zlt(θ)− Zst(θ)ε∗t (θ),
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to show that

sθt(φ) =
∂dt(θ)

∂θ
+
∂ ln f [ε∗t (θ),η]

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ),

sηt(φ) = ∂ ln f [ε∗t (θ),η] /∂η = ert(φ),

where

elt(θ,η) = −∂ ln f [ε∗t (θ),η] /∂ε∗,

est(θ,η) = −{1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η] /∂ε∗} ,

depend on the specific distributional assumption.

Let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming twice differ-

entiability of the different functions involved, we will have

hθθt(φ) =
∂Zlt(θ)

∂θ′
elt(φ) +

∂Zst(θ)

∂θ′
est(φ) + Zlt(θ)

∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′
(D16)

hθηt(φ) = Zlt(θ)
∂elt(φ)

∂η′
+ Zst(θ)

∂est(φ)

∂η′
(D17)

hηηt(φ) = ∂2 ln f [ε∗t (θ),η] /∂η∂η′,

where

∂Zlt(θ)/∂θ′ = −12 · σ
−3
t (θ) · ∂µt(θ)/∂θ·∂σ2t (θ)/∂θ′ + σ−1t (θ) · ∂2µ2t (θ)/∂θ∂θ′,

∂Zst(θ)/∂θ′ = −12 · σ
−4
t (θ) · ∂σ2t (θ)/∂θ · ∂σ2t (θ)/∂θ′ + 1

2 · σ
−2
t (θ) · ∂2σ2t (θ)/∂θ∂θ′,

∂elt(φ)/∂θ′ = ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · Z′lt(θ) + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε∗t (θ) · Z′st(θ)

∂est(φ)/∂θ′ = {∂ ln f [ε∗t (θ),η] /∂ε∗ + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε∗t (θ)}Z′lt(θ)

+{∂ ln f [ε∗t (θ),η] /∂ε∗ · ε∗t (θ) + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε2∗t (θ)} · Z′st(θ)

and ∂2 ln f(ε∗, η)/∂ε∗∂ε∗, ∂2 ln f(ε∗, η)/∂ε∗∂η′ and ∂ ln f(ε∗, η)/∂η∂η′ depend on the specific

distribution assumed for estimation purposes (see FSC for the Student t).

Given correct specification, et(φ) = [e′dt(φ), ert(φ)]′ evaluated at the true parameter values

is an iid sequence, and therefore, the score vector st(φ) will be a vector martingale difference

sequence. Then, the results in Crowder (1976) imply that, under suitable regularity conditions,

the asymptotic distribution of the feasible ML estimator will be
√
T (φT −φ0)→ N [0, I−1(φ0)],

where I(φ0) = E[It(φ0)|φ0], where

It(φ) = −E [ht(φ)|zt, It−1;φ] = V [st(φ)|zt, It−1;φ] = Zt(θ)M(η)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,
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and

M(η) =

 Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M′lr(η) M′sr(η) Mrr(η)

 .

In the Student t case, this matrix is simply

M(η) =


ν(ν+1)

(ν−2)(ν+3) 0 0

0 (ν+1)
(ν+3) − 6ν2

(ν−2)(ν+1)(ν+3)

0 − 6ν2

(ν−2)(ν+1)(ν+3)
ν4

4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1
2

)]
− ν4[ν2+(ν−4)−8]

2(ν−2)2(ν+1)(ν+3)

 .

where ψ(.) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduces to

M(η) =

 1 0 0
0 1 0
0 0 3/2

 .

D.2 Gaussian pseudo maximum likelihood estimators

Let θ̃T = arg maxθ LT (θ,0) denote the Gaussian pseudo-ML (PML) estimator of the con-

ditional mean and variance parameters θ in which % is set to zero. As we mentioned in the

introduction, θ̃T remains root-T consistent for θ0 under correct specification of µt(θ) and σ2t (θ)

even though the conditional distribution of ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has

bounded fourth moments. Proposition 2 in Fiorentini and Sentana (2007) derives the asymptotic

distribution of the pseudo-ML estimator of θ when ε∗t |zt, It−1;φ0 is i.i.d.:

Proposition 10 If ε∗t |zt, It−1;φ0 is i.i.d. D(0,1, %0) with κ0 <∞, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

√
T (θ̃T − θ0)→ N [0, C(φ0)], where

C(φ) = A−1(φ)B(φ)A−1(φ),

A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(0)Z′dt(θ),

B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(κ)Z′dt(θ),

and K (ϕ,κ) =V [edt(θ,0)| zt, It−1;φ] =

[
1 ϕ(%)

ϕ(%) κ(%)− 1

]
, (D18)

which only depends on % through the population coeffi cients of asymmetry and kurtosis

ϕ(%) = E(ε∗3t |%). (D19)

κ(%) = E(ε∗4t |%). (D20)

Given that ϕ(%) = 0 and κ = 2/(ν − 4) for the Student t distribution with ν degrees of

freedom, it trivially follows that in that case Bt(φ) reduces to

1

σ2t (θ)

∂µt(θ)

∂θ
Σ−1t (θ)

∂µt(θ)

∂θ′
+

ν − 1

2(ν − 4)

1

σ4t (θ)

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′
.
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D.3 Semiparametric estimators of θ

González-Rivera and Drost (1999) obtain the semiparametric effi cient score and the corre-

sponding effi ciency bound for univariate models:

Proposition 11 If ε∗t |zt, It−1;θ0,%0 is i.i.d. (1, 0) with density function f(ε∗t ;%), where % are
some shape parameters and % = 0 denotes normality, such that both its Fisher information
matrix for location and scale

Mdd (%) = V [edt(θ,%)|zt, It−1;θ,%]

= V

{[
elt(θ,%)
est(θ,%)

]∣∣∣∣θ,%} = V

{[
−∂ ln f [ε∗t (θ);%]/∂ε∗

−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗t (θ)}

]∣∣∣∣θ,%}
and the matrix of third and fourth order central moments

K (%) = V [edt(θ,0)| zt, It−1;θ,%] (D21)

are bounded, then the semiparametric effi cient score will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
[
edt(θ0,%0)−K (0)K−1(ϕ, κ)edt(θ0,0)

]
, (D22)

while the semiparametric effi ciency bound is

S(φ0) = Iθθ(θ0,%0)− Zd(θ0,%0)
[
Mdd (%0)−K (0)K1(ϕ, κ)K (0)

]
Z′d(θ0,%0), (D23)

where + denotes Moore-Penrose inverses, and Iθθ(θ,%) = E
[
Zdt(θ)Mdd(%)Z′dt(θ)|θ,%

]
.

In practice, f [ε∗t (θ);%] has to be replaced by a non-parametric density estimator, which is

typically obtained by kernel methods.

Hodgson and Vorkink (2001), Hafner and Rombouts (2007) and other authors have suggested

semi-parametric estimators of θ which limit the admissible distributions of ε∗t |zt, It−1;φ0 to the

class of symmetric ones. Proposition 7 in Fiorentini and Sentana (2007) provides the resulting

elliptically symmetric semiparametric effi cient score and the corresponding effi ciency bound:

Proposition 12 When ε∗t |zt, It−1,φ0 is i.i.d. s(0,1,%0) with 1 < κ0 < ∞, the elliptically sym-
metric semiparametric effi cient score is given by:

s̊θt(φ0) =Zdt(θ0)edt(φ0)−Ws(φ0)

{
− [1+εt(θ0)∂ ln f [ε∗t (θ);%]/∂ε∗]− 2

κ0 − 1

[
ε2t (θ0)− 1

]}
,

(D24)
where

Ws(φ0) = Zd(φ0)

(
0
1

)
= E[Zdt(θ0)|φ0]

(
0
1

)
= E

{
1

2σ2t (θ)

∂σ2t (θ)

∂θ

∣∣∣∣φ0} , (D25)

while the elliptically symmetric semiparametric effi ciency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

[
Mss(%0)−

4

κ0 − 1

]
. (D26)

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the density

of ε∗t that imposes symmetry. The simplest way to do this is by averaging the non-parametric

density estimators at ε∗t and −ε∗t . Alternatively, one can estimate the common density of ±ε∗t
from the density of the Box-Cox transformation k−1|ε∗t |k − 1 for some k ≥ 0.
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D.4 Student t-based (pseudo) maximum likelihood estimators

Let θ̃T = arg maxθ,η LT (θ,η) denote the t-based pseudo-ML (t-PML) estimator of the condi-

tional mean and variance parameters θ obtained by assuming that the conditional distribution

is t(0, 1, η). Proposition 5 in Fiorentini and Sentana (2018) shows that this estimator is as-

ymptotically equivalent to the Gaussian PML estimator when the conditional distribution is

platykurtic. They also show that if the conditional mean and variance can be parametrised as

in Linton (1993) and Newey and Steigerwald (1997), then some of the reparametrised mean and

variance parameters will be consistently estimated even if the true conditional distribution is

not a Student t. In our context, the robustness of the Student t serial correlation tests under

conditional symmetry follows from the fact that the only parameter that is inconsistently esti-

mated is ω in those circumstances. More generally, its robustness under possibly asymmetric

distributions derives from the fact that we can reparametrise the mean of (1) as δ
√
ω + ρyt−1.

Therefore, the t-based ML estimator of ρ continues to be consistent even if the estimators of

ω and π are inconsistent. The argument for the α is slightly different, because a Student log-

likelihood function can only estimate γ = α/ω consistently in those circumstances. Nevertheless,

given that α is 0 under the null, the t-based ML estimator of α continues to be consistent even

if the estimators of ω and π are inconsistent.

D.5 Kotz-based (pseudo) maximum likelihood estimators

The original Kotz distribution (see Kotz (1975)) is a member of the spherical family, and

thereby symmetric in the univariate case. Its main distinctive characteristic is that ε∗2 follows

a gamma distribution with mean 1 and variance (3κ0 + 2), where

κ = E(ε∗4|η)/3− 1

is the coeffi cient of multivariate excess kurtosis of ε∗ (see Mardia (1970)), which is trivially 0

under normality. In fact, the Kotz distribution nests the normal distribution when κ = 0, in

which ε∗2 follows with a chi square distribution with one degree of freedom, but it can also

be either platykurtic (κ < 0) or leptokurtic (κ > 0), although in the second case the Jensen

inequality restriction E(ε∗4) ≥ E(ε∗2) = 1 implies that κ ≥ −2/3. Such a nesting provides an

analytically convenient generalisation of the normal. Specifically, the kernel of the distribution

of ε∗2 is

g(ε∗2;κ) = − 3κ
2(3κ + 2)

ln ε∗2 − 1

3κ + 2
ε∗2,

while the constant of integration becomes

c(κ) = − ln Γ

(
1

3κ + 2

)
− 1

3κ + 2
ln(3κ + 2)
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(see Amengual and Sentana (2011)). Therefore, the density of a leptokurtic Kotz distribution

has a pole at 0, and an antimode in the platykurtic case, which is a potential drawback from an

empirical point of view.

The contribution of the tth observation to the log-likelihood function is

lt(θ,κ) = −1

2
lnσ2t (θ) + c(κ) + g(ε∗2t ;κ).

As a result, the damping factor becomes

δ(ε∗2;κ) =
1

3κ + 2

(
3κ
ε∗2

+ 2

)
.

Let θ̃T = arg maxκ LT (θ,κ) denote the t-based pseudo-ML (t-PML) estimator of the condi-

tional mean and variance parameters θ obtained by assuming that the conditional distribution

is a standardised version of the univariate Kotz(0, 1,κ).

Straightforward algebra shows that the ML estimator of the mean sets to 0 the following

moment condition
1

3κ + 2
[3κε̌∗−1T (θ) + 2ε̄∗T (θ)] = 0,

where ε̌∗−1T (θ) = T−1
∑T

t=1 ε
∗−1
t (θ) is the reciprocal of the harmonic mean of the standardised

residuals and ε̄∗T (θ) their arithmetic one. Therefore, the estimator is such that it makes a

combination of the arithmetic and harmonic mean of the standardised residuals equal to 0. In

contrast, the ML estimator of the variance can be concentrated out of the log-likelihood function

as:

ω(π) =
1

T

T∑
t=1

(xt − π)2

Finally, the score with respect to the excess kurtosis parameter κ is

sκt(θ,κ) = ε∗2t − ln ε∗2t +

[
ψ

(
1

3κ + 2

)
+ ln(3κ + 2)− 1

]
,

where ψ (.) is the digamma (or Gauss psi) function (see Abramowitz and Stegun (1964)).

We can combine the moments of the gamma and reciprocal gamma random variables to show

that

mll(κ) =
9κ + 2

(3κ + 1)(3κ + 2)
, (D27)

as long as κ > −1/3,

mss(κ) =
κ + 2

3κ + 2
,

and msr(κ) = 0 ∀κ, as in the Gaussian case, so that the information matrix is block diagonal

between the mean, variance and shape parameters.
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To sample the Kotz innovations, we exploit the fact that ε∗t =
√
ξtut, where ut is a shifted

and scaled Bernoulli random variable that the values ±1 with probability 1/2 each, and ξt is a

univariate Gamma with mean 1 and variance (3κ + 2).

Like in the Student t case, all mean parameters will be consistently estimated if the true

conditional distribution is symmetric, while only ρ will remain consistent under asymmetry. And

while ω will be inconsistently estimated unless the true distribution is Kotz, γ = α/ω will be

consistently estimated regardless.

D.6 Laplace-based (pseudo) maximum likelihood estimators

The Laplace (or double exponential) distribution, which is also a member of the generalised

hyperbolic distribution, contains no shape parameters. As is well known, the ML estimator of

the location parameter is given by the sample median, med(y1, . . . , yT ). In turn, the estimator

of the variance parameter ω is given by the twice the square of the mean absolute deviation

around the median. Specifically,

ω̂T = 2

[
1

T

T∑
t=1

|yt −med(y1, . . . , yT )|
]2
.

Although the lack of shape parameters implies that the Laplace distribution is not very

flexible, the fact that it is symmetric implies that the robustness properties of the pseudo ML

estimators of ρ and γ are exactly the same as in the Student and Kotz-based log-likelihood

functions.

D.7 Discrete mixtures of normals-based (pseudo) maximum likelihood esti-
mators

The EM algorithm discussed by Dempster, Laird and Rubin (1977) allows us to obtain initial

values as close to the optimum as desired. The recursions are as follows:

λ̂
(n

=
1

T

∑T

t=1
w(yt;φ

(n−1)

µ̂
(n
1 =

1

λ̂
(n

1

T

T∑
t=1

ytw(yt;φ
(n−1),

µ̂
(n
2 =

1

1− λ̂(n
1

T

T∑
t=1

yt[1− w(yt;φ
(n−1)],

σ̂
2(n
1 =

1

λ̂
(n

1

T

T∑
t=1

y2tw(yt;φ
(n−1)−

(
µ̂
(n
1

)2
,

σ̂
2(n
2 =

1

1− λ̂(n
1

T

T∑
t=1

y2t [1− w(yt;φ
(n−1)]−

(
µ̂
(n
2

)2
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where

w(yt;φ) =

λ
σ1
φ
(
yt−µ1
σ1

)
λ
σ1
φ
(
yt−µ1
σ1

)
+ 1−λ

σ2
φ
(
yt−µ2
σ2

)
=

λ
σ∗1(η)

φ
[
ε∗t (θs)−µ∗1(η)

σ∗1(η)

]
λ

σ∗1(η)
φ
[
ε∗t (θs)−µ∗1(η)

σ∗1(η)

]
+ 1−λ

σ∗2(η)
φ
[
ε∗t (θs)−µ∗2(η)

σ∗2(η)

] = w[ε∗t (θs);η]

and φ(.) denotes the standard normal density.

From those recursions it is easy to check that

π̂(n = µ̂
(n
1 λ̂

(n
+ µ̂

(n
2 (1− λ̂(n) =

1

T

∑T

t=1
yt,

σ̂2(n = [(µ̂
(n
1 )2 + σ̂

2(n
1 ]λ̂

(n
+ [(µ̂

(n
2 )2 + σ̂

2(n
2 ](1− λ̂(n)− (π̂(n)2 =

1

T

∑T

t=1
y2t −

(
1

T

∑T

t=1
yt

)2
,

for all n regardless of the values of φ(n−1. This means that λ̂
(n
, υ̂(n = σ̂

2(n
2 /σ̂

2(n
1 and

δ̂
(n

=
µ̂
(n
1 − µ̂

(n
2√

λ̂
(n
σ̂
2(n
1 + (1− λ̂(n)σ̂

2(n
2

will yield the EM recursions for a mixture model parametrised in terms of π, ω2 and λ, δ and

υ, which are the parameters of the standardised version in appendix C.1.

Since the ML estimators constitute the fixed point of the EM recursions, (i.e. φ = φ(∞),

another implication of the above result is that π̂ and ω̂ coincide with the Gaussian PML estima-

tors. As a result, we can maximise the log-likelihood function with respect to λ, δ and υ keeping

π̂ and σ̂2 fixed at their Gaussian pseudo ML values. Interestingly, this somewhat surprising

result will continue to be true even in a complete log-likelihood situation in which we would

observe not only yt but also st. In addition, it is straightforward to prove that the same result

holds for finite mixtures of normals with more than two components.

As a result, the ML estimators of π and ω continue to be consistent under distributional

misspecification. Similarly, the estimators of ρ and α = ωγ will also remain consistent in that

case too, as explained in Fiorentini and Sentana (2018).

Nevertheless, the log-likelihood function of a mixture distribution has a pole for each obser-

vation. Specifically, it will go to infinity if we set µ̂1 = yt and let σ̂21 go to 0. In practice, we deal

with this issue by starting the EM algorithm from many different starting values. In addition,

there is a trivial identification issue that arises by exchanging the labels of the components. We

solve this problem by restricting υ to the range (0, 1) so that the first component is the one with

the largest variance.
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TABLE 1A: Monte Carlo size of predictability tests. Asymptotic critical values.

Test against AR(1) AR(12) ARCH(1) GARCH(1,1)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

dgp Gaussian

Gaussian 9.61 4.73 0.98 13.62 7.43 1.69 7.98 3.71 0.84 11.61 5.77 1.13
Student t 9.72 4.78 0.92 13.56 7.47 1.69 8.28 3.84 0.83 11.84 5.97 1.14
DLSMN 9.71 4.79 0.85 12.54 6.83 1.40 7.90 3.86 1.13 10.47 4.93 0.77
GED(1) 9.99 5.00 0.98 12.45 6.68 1.34 9.22 4.37 0.73 12.06 6.24 1.22
Semiparametric 9.73 4.98 0.88 13.37 7.36 1.69 8.76 4.00 0.92 11.78 5.79 1.04
Sym. Semipar. 9.96 4.94 0.89 13.58 7.40 1.70 8.49 3.88 0.89 11.88 5.92 1.05

dgp Student t(6)

Gaussian 9.69 4.69 0.85 13.62 7.29 1.63 5.70 3.01 0.97 8.13 3.46 0.40
Student t 9.80 4.77 0.91 13.58 7.24 1.63 7.96 3.64 0.85 10.64 4.88 0.63
DLSMN 9.61 4.59 0.98 12.83 6.86 1.41 7.07 3.86 1.37 9.45 4.17 0.60
Laplace 10.04 4.91 0.86 12.35 6.59 1.35 7.90 3.69 0.73 10.40 4.71 0.67
Semiparametric 9.69 4.76 0.88 13.07 7.11 1.47 8.28 4.15 1.41 10.44 4.75 0.70
Sym. Semipar. 9.88 4.78 0.96 13.29 7.27 1.57 8.08 4.21 1.38 10.46 4.92 0.75

dgp DLSMN(-0.85,0.16,0.05)

Gaussian 9.59 4.73 0.83 13.44 7.40 1.61 5.22 2.84 1.01 7.09 2.92 0.37
Student t 9.79 4.75 0.90 13.61 7.36 1.60 7.26 3.46 0.83 10.21 4.56 0.52
DLSMN 9.64 4.76 0.86 13.15 6.93 1.57 7.28 4.23 1.56 9.30 4.17 0.55
Laplace 9.98 4.91 0.97 12.30 6.65 1.31 7.13 3.40 0.81 9.50 4.39 0.63
Semiparametric 9.74 4.83 0.97 13.49 7.34 1.70 8.16 4.47 1.59 10.15 4.95 0.78
Sym. Semipar. 9.80 4.88 0.95 13.51 7.38 1.70 7.90 4.30 1.56 10.20 4.89 0.75

dgp Gram-Charlier(0,3.0)

Gaussian 9.01 4.60 0.90 12.93 7.08 1.51 5.80 3.62 1.37 9.20 3.88 0.40
Student t 10.14 4.86 0.89 12.47 6.49 1.42 8.71 3.89 0.80 10.80 5.38 0.80
DLSMN 10.06 4.91 0.97 12.06 6.15 1.39 8.56 4.09 0.99 10.08 4.75 0.73
Laplace 9.98 4.96 0.92 11.88 6.34 1.29 7.14 3.48 0.99 10.59 4.88 0.61
Semiparametric 9.96 4.84 0.96 11.97 6.18 1.39 8.39 4.52 1.35 9.77 4.52 0.66
Sym. Semipar. 9.88 4.82 1.00 12.03 6.20 1.37 8.03 4.32 1.34 9.56 4.28 0.60

dgp Gram-Charlier(-0.8,3.0)

Gaussian 9.18 4.50 0.89 12.96 7.01 1.59 5.63 3.44 1.40 8.92 3.55 0.40
Student t 9.95 4.91 0.94 12.30 6.33 1.39 8.69 3.90 0.78 10.84 4.99 0.80
DLSMN 9.84 4.81 0.93 11.72 6.09 1.28 8.56 4.32 1.31 9.55 4.42 0.65
Laplace 9.92 5.00 0.95 11.85 6.17 1.19 6.92 3.28 1.00 10.33 4.50 0.62
Semiparametric 9.92 4.87 1.00 11.73 6.29 1.29 8.12 4.28 1.31 9.19 4.21 0.61
Sym. Semipar. 10.10 4.96 0.98 11.75 6.28 1.32 7.75 3.93 1.27 9.10 3.94 0.56

dgp Gram-Charlier(-0.8,3.0) with outliers

Gaussian 18.20 9.75 1.90 10.79 5.15 0.81 22.93 13.24 3.40 1.00 0.23 0.01
Student t 8.73 4.04 0.66 10.96 5.55 1.03 12.89 7.00 1.57 6.35 2.37 0.22
DLSMN 8.80 4.07 0.68 11.14 5.70 1.03 10.76 5.82 1.46 7.32 3.31 0.40
Laplace 9.32 4.34 0.68 10.79 5.46 1.04 20.70 11.73 3.16 2.23 0.55 0.04
Semiparametric 9.38 4.45 0.78 10.65 5.26 1.00 18.81 11.62 3.86 8.33 3.94 0.71
Sym. Semipar. 9.73 4.76 0.89 10.48 5.17 0.98 33.06 22.18 8.46 8.29 4.00 0.79

Monte Carlo empirical rejection rates of mean variance predictability tests. Sample length=100. Repli-

cations=20,000.



TABLE 1B: Monte Carlo size of predictability tests. Warp bootstrap critical values.

Test against AR(1) AR(12) ARCH(1) GARCH(1,1)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

dgp Gaussian

Gaussian 9.29 4.69 1.00 9.99 5.11 0.94 10.35 5.16 1.11 10.11 5.17 1.19
Student t 9.30 4.71 0.92 10.05 5.12 0.91 10.32 5.20 1.09 10.11 5.15 1.17
DLSMN 9.67 4.84 0.88 9.98 5.04 0.97 9.92 4.59 0.92 10.32 5.34 1.12
Laplace 9.56 4.84 1.01 10.35 5.04 0.88 10.21 5.14 1.15 9.96 5.06 1.07
Semiparametric 9.42 4.90 0.90 10.30 5.41 1.03 10.57 5.10 1.08 9.93 5.15 1.19
Sym. Semipar. 9.59 4.79 0.91 10.48 5.38 1.03 10.53 5.04 1.05 10.23 5.19 1.11

dgp Student t(6)

Gaussian 10.01 4.96 1.03 10.53 5.23 0.99 9.35 4.52 0.91 8.97 4.38 0.84
Student t 9.71 4.75 0.99 10.57 4.94 1.03 10.10 4.95 1.04 9.59 4.69 0.81
DLSMN 9.69 4.58 1.10 10.57 5.29 0.97 9.64 4.80 1.03 9.84 4.95 0.98
Laplace 9.45 4.66 0.89 10.03 4.92 0.92 9.98 5.04 0.90 9.54 4.58 0.82
Semiparametric 9.44 4.67 0.91 10.42 5.14 0.92 10.38 5.22 1.31 9.63 4.59 0.91
Sym. Semipar. 9.75 4.81 1.06 10.57 5.01 0.95 10.27 5.19 1.26 9.74 4.71 0.94

dgp DLSMN(-0.85,0.16,0.05)

Gaussian 9.79 4.93 0.95 10.25 5.06 0.92 8.96 4.61 0.97 8.71 4.21 0.70
Student t 9.40 4.63 0.92 10.30 5.10 0.92 9.53 4.92 1.01 9.75 4.72 0.85
DLSMN 9.63 4.79 0.92 10.64 5.41 1.13 9.58 4.98 0.97 10.08 5.10 0.95
Laplace 9.62 4.57 1.08 10.05 5.15 1.01 9.78 4.69 0.92 9.28 4.71 0.84
Semiparametric 9.46 4.56 0.97 10.64 5.58 1.03 10.46 5.40 1.20 9.98 5.24 1.02
Sym. Semipar. 9.25 4.81 0.96 10.54 5.42 1.03 9.80 5.27 1.17 9.93 5.13 0.96

dgp Gram-Charlier(0,3.0)

Gaussian 9.41 4.87 1.07 10.09 5.15 1.04 9.90 5.25 0.98 10.05 5.06 0.97
Student t 9.85 4.72 0.92 9.87 4.87 1.01 10.37 5.49 1.03 9.90 5.06 1.11
DLSMN 9.88 4.89 0.94 10.23 5.07 1.10 10.41 5.08 0.83 10.40 5.38 1.28
Laplace 9.74 4.88 1.06 9.99 5.08 0.92 10.06 5.13 0.94 9.96 5.03 1.05
Semiparametric 9.66 4.92 0.97 10.13 4.85 1.02 9.86 5.10 1.05 9.93 5.10 1.03
Sym. Semipar. 9.74 4.92 0.99 10.07 4.93 0.98 9.95 5.29 1.17 9.97 4.84 0.96

dgp Gram-Charlier(-0.8,3.0)

Gaussian 9.49 4.81 1.04 10.11 5.20 1.14 9.80 4.67 0.97 10.13 4.94 0.93
Student t 9.77 4.88 1.07 10.08 4.70 0.88 10.39 5.27 1.09 9.96 4.97 0.91
DLSMN 9.83 4.85 1.05 10.00 5.13 1.10 10.62 5.04 1.06 10.44 5.27 1.05
Laplace 9.73 5.00 1.06 10.12 5.01 0.89 9.95 4.84 1.02 9.89 4.88 0.82
Semiparametric 10.02 4.93 1.16 9.88 5.39 0.95 9.83 4.88 1.01 9.79 5.01 0.91
Sym. Semipar. 10.14 5.10 1.13 10.06 5.19 1.03 9.58 4.52 0.92 9.88 4.71 0.93

dgp Gram-Charlier(-0.8,3.0) with outliers

Gaussian 18.87 10.26 1.82 7.92 3.37 0.49 34.14 17.98 1.58 1.13 0.33 0.03
Student t 8.24 3.87 0.71 9.21 4.58 0.78 13.53 8.06 1.98 5.40 2.05 0.24
DLSMN 8.45 4.01 0.68 9.74 4.71 0.82 11.78 6.71 1.60 7.12 3.31 0.55
Laplace 8.96 4.36 0.81 8.85 4.32 0.78 25.25 15.83 2.57 2.04 0.59 0.07
Semiparametric 9.01 4.23 0.80 9.18 4.51 0.81 20.52 11.67 2.54 8.73 4.47 0.95
Sym. Semipar. 9.74 4.53 0.87 8.92 4.61 0.74 36.18 24.10 6.26 8.54 4.54 1.12

Monte Carlo empirical rejection rates of mean variance predictability tests. Sample length=100. Repli-

cations=20,000.



TABLE 1C: Monte Carlo power of mean predictability tests. Warp bootstrap critical values.

True process AR(1): ρ = 0.2 ARMA(1,1): ρ = 0.98 ϕ = −0.92

Test against AR(1) AR(12) AR(1) AR(12)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

dgp Gaussian

Gaussian 58.49 44.96 22.82 9.88 4.93 1.15 18.59 11.88 4.43 29.09 21.29 10.94
Student t 57.95 44.60 22.85 9.93 4.96 1.17 18.54 11.83 4.44 29.06 21.19 11.00
DLSMN 47.66 35.38 17.29 9.96 5.04 1.15 16.98 10.46 3.67 25.29 17.82 8.69
Laplace 42.77 31.36 13.74 10.32 5.20 1.04 16.04 9.56 3.33 24.71 17.81 7.81
Semiparametric 54.00 40.74 19.22 10.06 5.16 1.23 17.85 11.07 4.04 28.19 20.17 10.58
Sym. Semipar. 56.17 43.21 20.86 10.18 5.05 1.23 18.22 11.58 4.33 28.57 20.58 10.56

dgp Student t(6)

Gaussian 59.28 46.67 23.81 9.70 5.04 0.98 19.39 12.07 4.78 29.92 21.53 11.31
Student t 62.71 50.63 28.13 10.47 5.39 1.19 20.47 13.30 5.39 33.77 25.25 14.01
DLSMN 54.03 42.34 21.80 10.51 5.21 1.23 18.87 11.62 4.40 30.70 22.28 11.96
Laplace 52.10 39.50 18.61 10.62 5.41 1.25 18.61 11.51 4.01 31.71 23.10 11.56
Semiparametric 59.89 47.21 24.00 10.61 5.55 1.05 19.92 12.34 4.78 33.18 24.68 13.72
Sym. Semipar. 61.39 49.19 26.03 10.70 5.50 0.97 20.26 12.93 5.01 33.01 25.21 13.81

dgp DLSMN(-0.85,0.16,0.05)

Gaussian 58.87 46.15 24.04 9.74 4.91 0.96 18.94 11.82 4.54 29.95 22.04 10.93
Student t 62.36 49.29 26.45 10.31 5.51 1.15 20.02 12.64 5.33 33.23 25.09 13.06
DLSMN 55.27 43.53 22.31 10.73 5.41 1.17 18.30 11.49 4.46 30.70 23.08 12.23
Laplace 48.55 35.52 16.54 11.01 5.62 1.25 17.34 10.70 3.77 29.13 21.17 10.40
Semiparametric 60.26 46.97 24.47 10.94 5.79 1.29 19.76 12.31 4.98 33.50 25.01 13.55
Sym. Semipar. 61.48 49.36 25.66 10.87 5.80 1.23 19.95 12.56 5.21 33.45 25.11 13.71

dgp Gram-Charlier(0,3.0)

Gaussian 60.62 47.51 23.44 9.46 4.75 1.12 19.21 12.57 4.37 29.60 21.75 11.05
Student t 76.32 65.15 41.03 12.18 6.73 1.67 25.07 16.89 7.29 44.53 36.20 21.57
DLSMN 73.63 62.62 39.37 12.74 7.29 1.95 24.61 16.23 6.44 45.27 36.31 22.38
Laplace 64.50 51.50 27.01 11.76 6.25 1.49 21.95 14.12 5.44 39.38 30.74 17.34
Semiparametric 78.36 67.94 43.97 12.91 7.35 1.78 25.41 16.91 6.86 47.38 38.86 24.06
Sym. Semipar. 79.35 69.36 45.52 12.91 7.44 1.69 25.56 17.39 7.26 47.40 38.81 24.09

dgp Gram-Charlier(-0.8,3.0)

Gaussian 59.48 46.67 23.13 9.74 4.96 1.03 18.98 12.55 4.42 29.62 21.97 11.47
Student t 78.50 67.83 44.50 12.42 6.75 1.83 25.83 17.69 7.72 46.52 37.68 23.92
DLSMN 78.46 68.47 46.17 13.73 7.46 2.08 26.82 18.21 7.61 50.08 41.31 25.92
Laplace 65.92 53.75 29.78 11.71 6.44 1.50 22.07 14.70 5.60 40.44 32.20 18.06
Semiparametric 82.56 73.47 51.09 13.77 7.96 2.00 28.32 19.39 8.06 52.81 43.65 28.11
Sym. Semipar. 82.97 74.00 52.51 13.78 7.78 2.02 28.13 19.20 8.31 51.70 42.52 27.24

Monte Carlo empirical rejection rates of mean predictability tests. Sample length=100. Replica-

tions=20,000.



TABLE 1D: Monte Carlo power of variance predictability tests. Warp bootstrap critical
values.

True process ARCH(1): α = 0.25 GARCH(1,1): α = 0.1 β = 0.88

Test against ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

dgp Gaussian

Gaussian 55.52 46.78 29.48 15.84 10.08 3.86 26.62 19.72 9.36 39.63 31.50 18.95
Student t 53.34 44.95 28.31 14.64 8.70 3.29 26.10 19.66 9.86 39.07 31.48 18.93
DLSMN 44.49 35.45 18.83 14.67 8.65 2.94 23.29 16.06 6.02 31.49 24.07 13.77
Laplace 49.69 41.11 25.83 13.72 8.19 2.77 24.76 17.77 8.80 37.72 29.76 17.93
Semiparametric 44.05 34.89 18.82 13.46 8.02 2.93 23.61 16.98 7.48 36.23 28.38 16.41
Sym. Semipar. 48.43 39.72 22.25 13.58 8.46 3.09 24.84 18.12 8.06 37.76 29.96 17.85

dgp Student t(6)

Gaussian 47.24 39.14 20.45 14.43 9.05 3.77 24.88 17.61 6.42 33.99 26.77 15.98
Student t 48.08 39.80 23.81 14.66 8.82 3.61 26.84 20.16 9.62 39.72 32.50 21.14
DLSMN 39.93 30.39 13.08 14.70 8.89 3.15 22.68 15.40 4.81 33.14 25.58 15.26
Laplace 48.34 39.37 23.49 14.73 8.67 3.58 26.22 19.16 8.94 39.67 32.06 19.93
Semiparametric 37.35 28.93 12.35 14.32 9.05 3.47 23.06 16.41 5.52 36.86 29.38 17.79
Sym. Semipar. 41.27 32.26 14.94 14.76 9.04 3.67 24.09 17.41 7.04 38.45 30.84 18.93

dgp DLSMN(-0.85,0.16,0.05)

Gaussian 48.23 39.90 21.50 15.42 9.96 4.11 24.98 17.93 7.07 35.99 28.36 16.71
Student t 51.24 43.92 26.53 17.00 11.09 4.70 28.59 22.07 11.70 44.27 37.02 24.62
DLSMN 42.29 32.75 13.82 16.89 10.44 4.36 24.52 16.45 5.36 38.06 30.34 18.93
Laplace 49.83 41.52 25.06 16.48 10.31 4.00 27.47 20.15 8.93 43.06 35.15 22.05
Semiparametric 41.48 32.33 14.90 16.96 11.19 4.70 26.65 19.27 7.83 44.11 36.27 23.31
Sym. Semipar. 44.80 35.77 17.50 17.88 11.70 5.15 27.43 20.24 8.77 45.31 37.23 24.27

dgp Gram-Charlier(0,3.0)

Gaussian 41.94 33.40 12.72 12.55 7.54 2.61 21.14 14.47 5.21 28.90 21.73 11.39
Student t 45.40 37.21 21.00 14.46 8.60 3.02 24.88 18.06 7.70 42.71 35.52 22.84
DLSMN 42.22 33.06 14.86 15.40 9.41 3.59 24.55 16.73 5.50 43.53 35.34 21.54
Laplace 44.69 35.87 18.45 13.44 8.15 3.09 22.84 16.55 6.54 38.35 30.84 19.47
Semiparametric 41.03 31.44 12.54 17.24 10.98 4.25 24.09 17.01 4.75 43.20 34.73 21.70
Sym. Semipar. 44.86 35.56 14.12 17.16 11.00 4.41 25.83 18.14 5.82 45.33 36.23 22.84

dgp Gram-Charlier(-0.8,3.0)

Gaussian 42.17 32.97 14.07 12.53 7.74 2.60 21.92 14.89 4.68 28.93 21.49 11.34
Student t 45.77 37.07 19.66 14.41 8.64 2.90 25.04 17.60 7.63 43.34 35.55 22.48
DLSMN 49.73 40.36 19.10 19.57 12.96 5.33 27.42 18.93 7.12 53.43 44.08 28.90
Laplace 44.34 35.37 16.91 13.51 8.01 2.99 23.22 16.01 6.07 37.23 29.68 17.75
Semiparametric 48.94 39.60 19.44 21.70 14.66 6.05 28.44 20.15 6.89 53.36 44.18 28.83
Sym. Semipar. 45.86 36.40 15.63 19.22 12.39 5.08 25.82 18.19 5.63 48.12 38.75 23.79

Monte Carlo empirical rejection rates of mean predictability tests. Sample length=100. Replica-

tions=20,000.



TABLE 1E: Monte Carlo power of predictability tests under DLSMN(-0.85,0.161,0.05)

True process AR(1): ρ = 0.06 ARMA(1,1): ρ = 0.98 ϕ = −0.96

Test against AR(1) AR(12) AR(1) AR(12)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Gaussian 59.62 46.22 23.36 13.14 7.32 1.98 19.94 12.26 4.00 60.28 50.58 31.16
Student t 63.64 51.08 27.14 14.16 8.02 2.08 21.28 13.54 4.54 65.80 55.60 35.96
DLSMN 64.70 51.92 28.00 14.02 7.74 2.12 21.54 13.52 4.66 66.34 56.34 35.90
Laplace 50.28 37.42 16.96 12.96 7.14 1.62 18.12 10.68 3.14 55.10 44.40 25.10
Semiparametric 63.12 50.06 26.62 14.00 8.20 2.38 21.04 13.20 4.50 64.60 54.94 35.42
Sym. Semipar. 63.70 50.90 26.88 14.12 7.98 2.08 21.36 13.26 4.56 65.32 55.50 35.40

True process ARCH(1): α = 0.08 GARCH(1,1): α = 0.04 β = 0.88

Test against ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1)

Nominal size 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Gaussian 56.74 47.90 33.42 27.74 19.82 10.02 32.26 24.88 14.92 73.68 64.64 46.48
Student t 72.30 64.22 47.22 36.66 26.94 12.46 47.26 37.40 22.56 88.46 83.74 69.66
DLSMN 71.98 63.68 46.22 37.02 27.14 12.56 47.42 38.30 23.30 89.70 85.26 72.18
Laplace 69.68 60.96 43.72 34.96 24.82 11.76 43.82 35.06 20.82 86.60 81.08 65.42
Semiparametric 63.12 55.02 38.16 32.78 23.80 10.60 42.34 33.54 20.02 86.10 79.82 65.28
Sym. Semipar. 65.30 56.38 39.80 34.16 24.70 11.02 43.44 34.00 20.30 87.06 80.88 66.26

Monte Carlo empirical rejection rates of mean variance predictability tests. Sample length=1,000. Repli-

cations=5,000.



TABLE 2: Descriptive statistics.

Region Factor Mean Std.dev. 0.74× IQR Skewness Kurtosis

Market 2.12 7.98 5.57 -0.64 3.83
SMB 0.53 4.36 3.77 0.13 3.01

North America HML 0.46 6.59 4.42 0.99 7.13
RMW 0.98 4.33 3.42 1.14 8.05
CMA 0.68 5.47 4.12 1.37 7.68

Market 1.57 9.29 6.68 -0.32 3.94
SMB 0.27 3.83 3.75 -0.03 3.44

Europe HML 0.95 5.21 3.77 0.43 6.31
RMW 1.14 2.92 2.85 0.04 3.34
CMA 0.52 3.88 2.10 0.37 5.82

Market 0.36 10.63 10.40 0.01 2.83
SMB 0.43 6.02 5.17 -0.49 5.01

Japan HML 0.86 5.79 4.09 -0.59 8.61
RMW 0.39 3.97 3.58 0.33 4.83
CMA 0.14 4.88 3.26 -1.59 12.39

Market 2.19 11.19 8.47 0.02 4.13
Asia Pacific SMB -0.15 6.31 4.40 1.46 8.40
ex Japan HML 1.90 5.66 3.54 1.85 10.38

RMW 0.58 4.91 4.03 0.01 3.85
CMA 1.01 4.38 3.04 -0.44 6.68

Sample: 1990Q3-2018Q3. Boldface figure means statistically different from its value under symmetry

and mesokurtosis at the 5% level. IQR denotes the Interquartile Range, which under normality equals

the standard deviation divided by .74



TABLE 3A: North America Fama and French 5 factors.

Test against AR(1) AR(4) AR(12) ARCH(1) GARCH(1,1)

Market Portfolio: Rm-Rf

Gaussian 0.62 0.81 0.82 0.01 0.00
Student t 0.63 0.67 0.30 0.00 0.00
DLSMN 0.30 0.57 0.30 0.01 0.00
Laplace 0.46 0.56 0.30 0.00 0.00
Semiparametric 0.17 0.48 0.18 0.01 0.00
Sym. Semipar. 0.56 0.93 0.48 0.01 0.00

SMB: small minus big

Gaussian 0.20 0.27 0.38 0.01 0.00
Student t 0.19 0.27 0.38 0.01 0.00
DLSMN 0.22 0.10 0.27 0.01 0.00
Laplace 0.16 0.69 0.88 0.01 0.00
Semiparametric 0.09 0.19 0.42 0.00 0.00
Sym. Semipar. 0.14 0.26 0.53 0.01 0.00

HML high minus low

Gaussian 0.00 0.74 0.39 0.00 0.00
Student t 0.69 0.96 0.80 0.00 0.00
DLSMN 0.84 0.92 0.67 0.01 0.00
Laplace 0.85 0.94 0.88 0.00 0.00
Semiparametric 0.67 0.98 0.76 0.00 0.00
Sym. Semipar. 0.89 0.91 0.74 0.03 0.00

RMW robust minus weak

Gaussian 0.21 0.68 0.09 0.05 0.00
Student t 0.97 0.68 0.09 0.00 0.00
DLSMN 0.72 0.25 0.02 0.03 0.00
Laplace 0.92 0.86 0.16 0.01 0.00
Semiparametric 0.96 0.78 0.05 0.00 0.00
Sym. Semipar. 0.96 0.95 0.11 0.00 0.00

CMA conservative minus aggresive

Gaussian 0.34 0.78 0.78 0.00 0.00
Student t 0.90 0.46 0.80 0.00 0.00
DLSMN 0.50 0.10 0.95 0.01 0.00
Laplace 0.59 0.86 0.52 0.00 0.00
Semiparametric 0.21 0.15 0.95 0.01 0.00
Sym. Semipar. 0.46 0.46 0.87 0.02 0.00

P-values of mean variance predictability tests based on 20,000 bootstrap samples.



TABLE 3B: Europe Fama and French 5 factors.

Test against AR(1) AR(4) AR(12) ARCH(1) GARCH(1,1)

Market Portfolio: Rm-Rf

Gaussian 0.39 0.78 0.35 0.02 0.00
Student t 0.58 0.79 0.42 0.04 0.00
DLSMN 0.91 0.16 0.69 0.09 0.02
Laplace 0.42 0.95 0.26 0.02 0.00
Semiparametric 0.87 0.41 0.29 0.04 0.00
Sym. Semipar. 0.67 0.73 0.55 0.06 0.01

SMB: small minus big

Gaussian 0.43 0.37 0.60 0.34 0.12
Student t 0.41 0.39 0.59 0.31 0.06
DLSMN 0.40 0.40 0.59 0.28 0.05
Laplace 0.60 0.74 0.82 0.25 0.03
Semiparametric 0.48 0.61 0.71 0.15 0.01
Sym. Semipar. 0.54 0.54 0.61 0.18 0.01

HML high minus low

Gaussian 0.00 0.04 0.41 0.01 0.00
Student t 0.01 0.01 0.03 0.00 0.00
DLSMN 0.01 0.01 0.03 0.01 0.00
Laplace 0.01 0.01 0.01 0.00 0.00
Semiparametric 0.00 0.00 0.04 0.00 0.00
Sym. Semipar. 0.01 0.01 0.06 0.00 0.00

RMW robust minus weak

Gaussian 0.60 0.54 0.22 0.13 0.16
Student t 0.83 0.36 0.26 0.14 0.20
DLSMN 0.84 0.15 0.73 0.46 0.37
Laplace 0.70 0.12 0.41 0.13 0.26
Semiparametric 0.80 0.41 0.47 0.33 0.21
Sym. Semipar. 0.92 0.25 0.50 0.38 0.24

CMA conservative minus aggresive

Gaussian 0.02 0.14 0.94 0.00 0.00
Student t 0.16 0.34 0.69 0.00 0.00
DLSMN 0.06 0.36 0.66 0.01 0.00
Laplace 0.08 0.28 0.73 0.00 0.00
Semiparametric 0.21 0.56 0.64 0.00 0.00
Sym. Semipar. 0.23 0.34 0.67 0.00 0.00

P-values of mean variance predictability tests based on 20,000 bootstrap samples.



TABLE 3C: Japan Fama and French 5 factors.

Test against AR(1) AR(4) AR(12) ARCH(1) GARCH(1,1)

Market Portfolio: Rm-Rf

Gaussian 0.17 0.40 0.12 0.01 0.00
Student t 0.17 0.40 0.12 0.01 0.00
DLSMN 0.17 0.39 0.11 0.01 0.00
Laplace 0.33 0.84 0.30 0.01 0.00
Semiparametric 0.08 0.43 0.24 0.01 0.00
Sym. Semipar. 0.08 0.48 0.14 0.01 0.00

SMB: small minus big

Gaussian 0.56 0.27 0.40 0.19 0.01
Student t 0.83 0.16 0.59 0.08 0.01
DLSMN 0.90 0.53 0.94 0.13 0.01
Laplace 0.85 0.06 0.61 0.08 0.00
Semiparametric 0.81 0.18 0.84 0.07 0.02
Sym. Semipar. 0.77 0.10 0.60 0.10 0.04

HML high minus low

Gaussian 0.05 0.72 0.75 0.31 0.00
Student t 0.27 0.95 0.44 0.35 0.00
DLSMN 0.23 0.61 0.31 0.39 0.01
Laplace 0.35 1.00 0.79 0.33 0.00
Semiparametric 0.32 0.55 0.33 0.33 0.02
Sym. Semipar. 0.20 0.37 0.36 0.32 0.01

RMW robust minus weak

Gaussian 0.61 0.84 0.41 0.37 0.00
Student t 0.86 0.54 0.77 0.41 0.00
DLSMN 0.81 0.67 0.77 0.39 0.00
Laplace 0.70 0.28 0.70 0.36 0.00
Semiparametric 0.70 0.66 0.54 0.36 0.00
Sym. Semipar. 0.80 0.72 0.70 0.36 0.01

CMA conservative minus aggresive

Gaussian 0.02 0.46 0.62 0.62 0.10
Student t 0.57 0.63 0.29 0.29 0.08
DLSMN 0.68 0.75 0.52 0.52 0.10
Laplace 0.33 0.93 0.23 0.23 0.07
Semiparametric 0.35 0.94 0.61 0.61 0.12
Sym. Semipar. 0.45 0.67 0.41 0.42 0.13

P-values of mean variance predictability tests based on 20,000 bootstrap samples.



TABLE 3D: Asia Pacific ex Japan Fama and French 5 factors.

Test against AR(1) AR(4) AR(12) ARCH(1) GARCH(1,1)

Market Portfolio: Rm-Rf

Gaussian 0.44 0.41 0.45 0.09 0.02
Student t 0.67 0.45 0.79 0.05 0.01
DLSMN 0.50 0.62 0.88 0.09 0.04
Laplace 0.61 0.77 0.93 0.05 0.01
Semiparametric 0.52 0.44 0.67 0.01 0.00
Sym. Semipar. 0.67 0.40 0.84 0.07 0.01

SMB: small minus big

Gaussian 0.38 0.07 0.01 0.33 0.25
Student t 0.92 0.44 0.08 0.42 0.07
DLSMN 0.72 0.19 0.06 0.35 0.08
Laplace 0.69 0.42 0.05 0.40 0.13
Semiparametric 0.71 0.21 0.07 0.30 0.06
Sym. Semipar. 0.88 0.36 0.08 0.41 0.09

HML high minus low

Gaussian 0.02 0.02 0.76 0.08 0.00
Student t 0.07 0.02 0.78 0.01 0.00
DLSMN 0.03 0.01 0.78 0.01 0.01
Laplace 0.14 0.04 0.67 0.05 0.00
Semiparametric 0.13 0.03 0.87 0.08 0.07
Sym. Semipar. 0.09 0.02 0.73 0.07 0.02

RMW robust minus weak

Gaussian 0.07 0.93 0.65 0.25 0.00
Student t 0.03 0.92 0.92 0.14 0.00
DLSMN 0.03 0.76 0.92 0.14 0.00
Laplace 0.04 0.54 0.78 0.12 0.00
Semiparametric 0.06 0.73 0.63 0.34 0.00
Sym. Semipar. 0.05 0.82 0.78 0.26 0.00

CMA conservative minus aggresive

Gaussian 0.84 0.22 0.29 0.01 0.00
Student t 0.65 0.44 0.48 0.00 0.00
DLSMN 0.59 0.50 0.53 0.04 0.04
Laplace 0.66 0.56 0.60 0.00 0.00
Semiparametric 0.39 0.46 0.36 0.02 0.13
Sym. Semipar. 0.79 0.46 0.47 0.01 0.03

P-values of mean variance predictability tests based on 20,000 bootstrap samples.
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FIGURE 1: Tests of predictability in mean
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FIGURE 3: Local power of unpredictability in mean tests at 5% level
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FIGURE 5: Tests of predictability in variance
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FIGURE 6: Local power of unpredictability in variance tests at 5% level
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FIGURE 7A: Pitman's asymptotic relative e/ciency of variance tests
Gaussian / Student t when DGP is GC(c3; c4)
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FIGURE 7B: Pitman's asymptotic relative e/ciency of variance tests
Gaussian / Student t when DGP is DLSMN(/; >;6)
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FIGURE 8: Fama and French 5 factor portfolios and robust confidence bands
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