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1 Introduction

Rao’s (1948) score test and Silvey’s (1959) numerically equivalent Lagrange multiplier (LM)

version completed the classic triad of classical hypothesis tests (see Bera and Bilias (2001) for

a survey). Under standard regularity conditions, Likelihood ratio (LR), Wald and LM tests are

asymptotically equivalent under the null and sequences of local alternatives, and thus they share

their optimality properties.

A standard regularity condition is a full rank information matrix of the unrestricted model

parameters evaluated under the null. Nevertheless, there are situations in which this condition

does not hold despite the fact that the model parameters are locally identified. In non-linear

instrumental variable models, Sargan (1983) referred to those situations in which the expected

Jacobian of the influence functions is singular but the expected Jacobian of their derivatives

has full rank as second-order identified but first-order underidentified. In a likelihood context,

a singular information matrix implies that there is a linear combination of the average scores

which is identically 0, at least asymptotically. In their seminal paper, Lee and Chesher (1986)

provided several examples of this situation: i) univariate type II Tobit models with selectivity,

ii) stochastic production frontier models, and iii) mixture models. In all their examples, in fact,

the average score with respect to one of the parameters of the alternative evaluated under the

null is identically 0 in finite samples.

Lee and Chesher (1986) proposed to replace the LM test by what they called an “extremum

test”. Their suggestion is to study the restrictions that the null imposes on higher-order opti-

mality conditions. Often, the second derivative will suffi ce, but sometimes it might be necessary

to study the third or even higher-order ones. Lee and Chesher (1986) proved the asymptotic

equivalence between their extremum tests and the corresponding LR tests under the null and

sequences of local alternatives in unrestricted contexts. Using earlier results by Cox and Hinkley

(1974), this equivalence intuitively follows from the fact that their extremum tests can often be

re-interpreted as standard LM tests of a suitable transformation of the parameter whose first

derivative is 0 on average such that the new score is no longer so. In contrast, Wald tests are

extremely sensitive to reparametrization under these circumstances. Bera et al (1998) provide

some additional insights. In turn, Rotnitzky el al (2000) rigorously study the asymptotic distrib-

ution of the maximum likelihood (ML) estimators in those contexts. Finally, Bottai (2003) looks

at the validity of confidence intervals obtained by inverting the three classical test statistics in

this setup.

However, in the existing literature the nullity of the information matrix is assumed to be 1.

When the information matrix is repeatedly singular, in the sense that its nullity is two or more,
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the number of second-order derivatives exceeds the number of parameters effectively affected by

the singularity by an order of magnitude. The unbalance gets worse when it becomes necessary

to look at higher-order derivatives. Unfortunately, in general there is no reparametrization

that leads to a regular information matrix. In particular, transforming each of the parameters

individually along the lines suggested by Lee and Chesher (1986) does not usually give rise to

a test asymptotically equivalent to the LR. On the contrary, different reparametrizations will

typically give rise to different test statistics.

The purpose of our paper is precisely to propose a generalization of the Lee and Chesher

(1986) approach which leads to extremum-type tests asymptotically equivalent to the corre-

sponding LR test.

To illustrate our proposal, consider the estimation of the p × 1 parameter vector % charac-

terizing the probability density function (pdf) of the i.i.d. random vector y, f(y;%).1 In what

follows,

s%ji(%) =
∂li(%)

∂%j
=
∂ log f(yi;%)

∂%j

denotes the contribution of observation i to the score with respect to %j , 1 ≤ j ≤ p. To keep the

notation to a minimum, we begin by considering the simplest possible case. Let us partition %

into two blocks: 1) ϕ, which contains the (p− q)× 1 vector of parameters estimated under H0;

and 2) ϑ, which is the q × 1 vector of parameters such that the null hypothesis can be written

in explicit form as H0 : ϑ = 0. We maintain throughout the assumption that the first p − q

scores, sϕi(ϕ,0), are linearly independent under the null. In contrast, we initially assume that

the remaining scores are a linear combination of those, so that

M(ϕ)sϕi(ϕ,0) + sϑi(ϕ,0) = 0 (1)

for some q× (p− q) matrix M, whose elements may be functions of ϕ. In this context, the rank

of the information matrix E[s%i(ϕ,0)s′%i(ϕ,0)|(ϕ,0)] is p− q and its nullity q.

The first thing we do is to reparametrize the model so that the singularity is confined to

the last elements of a new parameter vector. Specifically, we can reparametrize from % to

ρ = (φ′,θ′)′ as

ϕ = φ+ M′(φ)θ, and ϑ = θ, (2)

so that ϕ = φ under the null. Defining li(%) = li(ρ) and assuming that this transformation is a

continuous second-order diffeomorphism (which needs to be verified for each example), we can

1Although we could easily generalize our results to explicitly deal with dependent data by using standard
factorizations of the log-likelihood function, we maintain independence to simplify the expressions.
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easily use the chain rule for first and second derivatives to show that evaluated under the null

∂li
∂φ

=
∂li
∂ϕ

, (3)

∂li
∂θ

= M(φ)
∂li
∂ϕ

+
∂li
∂ϑ

= M(ϕ)sϕi + sϑi = 0, (4)

∂2li
∂θ∂θ′

= [M(φ), Iq]
∂2li
∂%∂%′

(
M′(φ)

Iq

)
.

Assuming that the variance of {sφi(φ,0), vech[∂2li(φ,0)/∂θ∂θ′]} has full rank under the

null, the number of different elements of ∂2li/∂θ∂θ
′ is

(
q+1

2

)
= q(q + 1)/2 > q for q > 1 even if

the Clairaut-Schwartz-Young theorem holds.

Let Vθθ denote the asymptotic residual variance of vec(∂2li/∂θ∂θ
′) after orthogonalizing

these influence functions with respect to sφi. In this context, we can define the extremum

statistic for a given value of θ as

ETn(θ) =
1

n

[θ′(∂2Ln/∂θ∂θ
′)θ]21[θ′(∂2Ln/∂θ∂θ

′)θ > 0]

(θ ⊗ θ)′Vθθ(θ ⊗ θ)
,

where n denotes the sample size, Ln =
∑n

i=1 li and 1[A] the usual indicator function that

takes the value 1 if the event A happens, and 0 otherwise. Importantly, the expected value

of θ′(∂2Ln/∂θ∂θ
′)θ, which is proportional to the second-order term in the expansion of the

log-likelihood function, is zero under the null rather than negative, as it happens in the regular

case.

By analogy to the LR test, our proposed test statistic is simply the supremum of ETn(θ)

over θ. In fact, under suitable regularity conditions, we show in Theorem 1 below that

LRn = 2 [Ln(ρ̂)− Ln(ρ̃)] = sup
‖θ‖6=0

ETn(θ) +Op(n
− 1
4 ),

where ρ̂ denotes the unrestricted ML estimator (UMLE) and ρ̃ the restricted one (RMLE). In

what follows, we shall refer to the sup statistic above as the generalized extremum test (GET).

In the case of a single parameter, Theorem 1 collapses to the results obtained by Lee and

Chesher (1986) and Rotnitzky et al (2000). However, when the information matrix is repeat-

edly singular, our result provides an asymptotically equivalent but computationally convenient

alternative to the LR test, which requires the estimation under the alternative of a model whose

log-likelihood function is extremely flat under the null. In addition, the maximization of ETn(θ)

over θ takes place on a space of dimension q−1 because we can alter the norm of θ without chang-

ing the value of this statistic, while the maximization of the unrestricted log-likelihood function

of the sample Ln(ρ) is over a space of dimension p, which is usually much larger.2 Importantly,

2Obviously, both procedures require the estimation of the model under the null, but the RMLE ρ̃ is often
available in closed form.
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although the common asymptotic distribution of the GET and LR test is often non-standard,

there are examples, such as the multiplicative seasonal Arma model in Supplemental Appendix

D.1, in which it will be χ2-like.3

The structure of the paper is as follows. In section 2 we obtain our theoretical results

first in the baseline case in which all the underidentified parameters have the same degree of

underidentification r > 1, and then when the degree of underidentification may be different for

different parameters. Then, in section 3 we illustrate our testing procedure in detail through

three examples of interest in financial econometrics: 1) testing a multivariate normal distribution

against a skew normal alternative, 2) testing a multivariate normal copula against a Hermite

expansion, and 3) testing for predictability in a purely non-linear regression model. We assess

the finite sample performance of our proposals in those examples through an extensive Monte

Carlo analysis in section 4. Finally, we conclude in section 5, relegating proofs and additional

results to the appendices.

2 Theoretical results

2.1 Notation and regularity conditions

Consider the estimation of the parameter vector ρ characterizing the distribution of an i.i.d.

random vector y, where ρ = (φ′,θ′)′ = (φ′,θ′1,θ
′
r)
′, where q1 = dim(θ1) and qr = dim(θr), so

that q = dim(θ) = q1 + qr ≤ p = dim(ρ). This parameter vector is such that φ contains

those parameters estimated under the null hypothesis H0 : θ = 0, so that θ only appears

under the alternative. As we mentioned in the introduction, we assume φ is always first-order

identified. Further, we generalize the setup in the introduction by assuming that θ1 is first-order

identified too, while the elements of θr concentrate the singularity of the information matrix.4

More specifically, we assume that the log-likelihood function contribution from observation i,

li(ρ) = log f(yi;ρ), is differentiable up to order 2r, and that the information matrix under H0 is

such that its top (p−qr)× (p−qr) block is regular and the rest contains zeros, so that its nullity

is precisely qr.5 In fact, we initially assume that θr is only rth-order identified, a definition that

will become precise after we introduce Assumption 2 below.

Let j ∈ Np denote a p× 1 vector of indices, j! =
∏p
i=1 ji!,

l
[j]
i (ρ) =

1

j!

∂ι
′
pjli(ρ)

∂ρj
, L[j]

n (ρ) =

n∑
i=1

l
[j]
i (ρ),

3A standard asymptotic distribution is usually associated to the existence of some regular reparametrization.
4We consider an even more flexible structure in section 2.3.
5One often needs to reparametrize the model to make sure it satisfies these conditions, an issue mentioned in

the introduction that we discuss in detail in Supplemental Appendix B.1
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where ιp is a vector of p ones,

sφi(ρ) =
∂li(ρ)

∂φ
, sθ1i(ρ) =

∂li(ρ)

∂θ1
, Sφn(ρ) =

n∑
i=1

sφi(ρ) and Sθ1n(ρ) =
n∑
i=1

sθ1i(ρ).

Finally, let |.| and ||.|| denote absolute value and Euclidean norm, respectively. Throughout

the paper, we assume the following conditions hold:

Assumption 1 Regularity
(1.1) ρ takes its value in a compact subset P of Rp that contains an open ball N of the true
value ρ0 which generates the observations.
(1.2) Distinct values of ρ in P correspond to distinct probability distributions.
(1.3) E[supρ∈P |li(ρ)|] <∞.
(1.4) With probability 1, the derivatives l[j]i (ρ) exist for all ρ in N and ι′pj ≤ 2r and satisfy

E[supρ∈N |l
[j]
i (ρ)|] <∞. Furthermore, with probability 1, f(yi,ρ) > 0 for all ρ ∈ N .

(1.5) For r ≤ ι′pj ≤ 2r, E{[l[j]i (ρ0)]2} <∞.
(1.6) When ι′pj = 2r there is some function g(y) satisfying E[g2(y)] <∞ such that with proba-

bility 1, |L[j]
n (ρ)− L[j]

n (ρ′)| ≤ ||ρ− ρ′||
∑

i g(yi) for all ρ and ρ′ in N .
(1.7) For all j1, j2 ∈

{
(e,0qr), (0p−qr , jθr)

∣∣ι′p−qre = 1, ι′qr jθr = r, e ∈ Rp−qr , jθr ∈ Rqr
}
, we have

sup
(φ,0)∈N

E

[
∂

∂φ
[l

[j1]
i (φ,0)] · l[j2]

i (φ,0)]

∣∣∣∣φ,0] <∞.
We borrow Assumptions 1.1—1.6 from Rotnitzky et al. (2000) with some modifications. The

main difference is that they require (2r+1)th differentiability for the Taylor expansions they use

to analyze the distribution of the MLE, while we only need 2rth differentiability to study the

asymptotic distribution of our tests. The compactness of P in Assumption 1.1 together with

the continuity of li(ρ) and Assumptions 1.2 and 1.3 guarantee the existence, uniqueness with

probability tending to 1, and consistency of the UMLE of ρ0, ρ̂ (Newey and McFadden 1994,

Theorem 2.5). The “open ball”part of Assumption 1.1 is just used to simplify the expressions

and their derivation. Extensions to situations in which the parameters lie at the boundary of

the parameter space are feasible, but at the expense of complicating the notation and blurring

the message of the paper.

Assumptions 1.4 and 1.6 guarantee the existence of derivatives and the stochastic equiconti-

nuity of the sample mean of l[j]i (ρ) with ι′pj ≤ 2r. In turn, Assumption 1.5 allows us to apply a

central limit theorem to l[j]i (ρ0), while we use Assumption A1.7 to prove that the estimated co-

variance matrix of the influence functions under the null converges to the true value at the usual

n−
1
2 rate. This last assumption is not in Rotnitzky et al (2000) because they were interested in

estimation, not testing.
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2.2 Repeated singularity of the same order

Let θ⊗kr = θr ⊗ θr ⊗ ...⊗ θr︸ ︷︷ ︸
k times

denote the kth order Kronecker power of the qr × 1 vector θk,

and define
∂kLn(ρ)

∂θ⊗kr
= vec

{
∂

∂θr

[
∂k−1Ln(ρ)

∂θ
⊗(k−1)
r

]′}
.

Moreover, let I denote the asymptotic covariance matrix of the relevant influence functions,

which may be understood as a generalized information matrix. Specifically,

I(φ) =

 Iφφ(φ) Iφθ1(φ) Iφθr(φ)
Iθ1φ(φ) Iθ1θ1(φ) Iθ1θr(φ)
Iθrφ(φ) Iθrθ1(φ) Iθrθr(φ)

 = lim
n→∞

V

 1√
n

 Sφn(φ,0)
Sθ1n(φ,0)

∂rLn(φ,0)/∂θ⊗rr

∣∣∣∣∣∣φ,0
 ,

so that

Vθθ(φ)=

[
Vθ1θ1(φ) Vθ1θr(φ)
Vθrθ1(φ) Vθrθr(φ)

]
=

[
Iθ1θ1(φ) Iθ1θr(φ)
Iθrθ1(φ) Iθrθr(φ)

]
−
[
Iθ1φ(φ)
Iθrφ(φ)

]
I−1
φφ(φ)

[
Iφθ1(φ) Iφθr(φ)

]
coincides with the asymptotic residual variance of Sθ1n(φ,0) and ∂rLn(φ,0)/∂θ⊗rr after orthog-

onalizing these influence functions with respect to sφ.

Assumption 2 Rank conditions qr ≥ 1 :
(2.1) With probability 1

∂ι
′
qr

jθr li(φ,0)

∂θ
jθr
r

= 0

for all ι′qr jθr ≤ r − 1 such that jθr = (j1, ..., jqr)
′.

(2.2) For all θr ∈ Rqr : θr 6= 0, the asymptotic covariance matrix of the (scaled by
√
n) sample

averages of {
sφi(φ,0), sθ1i(φ,0),θ⊗r′r

∂rli(φ,0)

∂θ⊗rr

}
has full rank.

Intuitively, the rationale for looking at

θ⊗r′r

∂rli

∂θ⊗rr
=

∑
ı′qr jθr=qr

r!

jθr !

(
qr∏
k=1

θjkrk

)
∂rli(φ,0)

∂θ
jθr
r

is that it coincides with the rth-order term in the expansion of the log-likelihood function. In

that regard, note that although the higher order derivatives ∂rli/∂θ⊗rr will usually contain many

repeated elements because of Clairaut’s theorem, the rank deficiency condition in Assumption

2.2 applies to the inner product of θ⊗rr with those influence functions, so the requirement is that

those linear combinations of the elements in ∂rli/∂θ⊗rr be linearly independent of sφi(φ,0) and

sθ1i(φ,0).

Finally, let

Qn(θr,φ) =
θ⊗r′r Drn(φ)D′rn(φ)θ⊗rr

θ⊗r′r [Vθrθr(φ)− Vθrθ1(φ)V −1
θ1θ1

(φ)Vθ1θr(φ)]θ⊗rr
, (5)
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where

Drn(φ) =
∂rLn(φ,0)

∂θ⊗rr
− Vθrθ1(φ)V −1

θ1θ1
(φ)Sθ1n(φ,0)

is the residual in the least squares projection of ∂rLn(φ,0)/∂θ⊗rr on Sθ1n(φ,0).6

Theorem 1 If Assumptions 1 and 2 hold, then:

LRn = 2 [Ln(ρ̂)− Ln(ρ̃)] = GETn +Op(n
− 1
2r ),

where

GETn =
1

n
S′θ1n(φ̃,0)V −1

θ1θ1
(φ̃)Sθ1n(φ̃,0) +

1

n
sup
θr 6=0

{
Qn(θr, φ̃) if r is odd,
Qn(θr, φ̃)1[θ⊗r′r Drn(φ̃) ≥ 0] if r is even.

.

An important implication of Theorem 1 is that the rate of convergence of the difference

between the LR and GET tests is inversely proportional to the order of identification.

Expression (5), which can be understood as a generalized Rayleigh quotient evaluated at the

restricted qrr×1 vector θ⊗rr , does not effectively depend on θr when the nullity of the information

matrix is 1, so Theorem 1 generalizes the results in Lee and Chesher (1986) and Rotnitzky et al.

(2000) by allowing for the presence of the “nuisance”parameters φ and θ1 that can be estimated

at standard rates.

Since ‖θr‖ is irrelevant, we can without loss of generality set θr to lie on the unit circle.

This allows us to intuitively link Theorem 1 to those earlier results when qr > 1. Specifically,

consider the reparametrization θr = ηλ, with λ ∈ Rqr , ‖λ‖ = 1 and η ≥ 0, so that η and λ

represent the magnitude and direction of the parameter vector θr, respectively. Given that

sup
φ,θ1,‖λ‖=1,η≥0

Ln(φ,θ1,λη) = sup
φ,θ1,θr

Ln(φ,θ1,θr),

we could rewrite the null hypothesis as H0 : θ1 = 0, η = 0, where λ is a nuisance parameter that

only appears under the alternative. If we considered the rth derivative of li(ρ) along a specific

direction λ, which would effectively coincide with the rth derivative with respect to η, then we

could directly apply the Lee and Chesher (1986) approach to obtain the relationship between

the LR and ET tests along that direction. Next, we could look at the suprema of those tests

over all possible directions, as suggested by Davies (1987), which would effectively yield GETn.

Nevertheless, this intuitive explanation in terms of η and λ has some limitations. First, Lee

and Chesher (1986) would yield a pointwise result for a given λ, while Theorem 1 relies on

uniform convergence. More importantly, Davies (1987) method is designed for models in which

6 Importantly, Assumption 2.2 guarantees that the denominator of Qn(θr,φ) is positive for all θr 6= 0 because
Vθθ is the variance of the residuals from the least squares projection of sθ1(φ,0) and

∂rl
∂⊗rθr (φ,0) on sφ(φ,0)

while Vθrθr − Vθrθ1V −1θ1θ1Vθ1θr is the residual variance of the projection of the second residual on the first one,
which by the Frisch-Waugh theorem coincides with the residual in the projection of ∂rl

∂⊗rθr (φ,0) onto the linear
span of sφ(φ,0) and sθ1(φ,0).
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the log-likelihood function is absolutely flat for some parameters under the null, so regardless

of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we

consider situations in which the log-likelihood function written in terms of θ only has a finite

number of zero derivatives, so a test statistic can be based on the first round of non-zero ones.

In this regard, the underidentification of λ is an artifact of the θr = ηλ reparametrization that

would persist even if the information matrix had full rank, in which case the supremum over λ

of the test of H0 : θ1 = 0, η = 0 will yield the usual LM test. In any event, in the next section we

shall derive GETn in a more general context without resorting to any such reparametrization.

2.3 Repeated singularity of different orders

Theorem 1 provides a substantive generalization over existing results. Specifically, it covers

situations in which all the partial (cross) derivatives up to a given order are identically 0. It

also says that tests will be one-sided for even ordered derivatives and two-sided for odd ordered

ones. However, there are situations in which the degree of underidentification of the different

elements of θ is heterogeneous.

In what follows, we use the vector inequality jθ > j′θ if and only if jk ≥ j′k, for k = 1, ..., q

and jθ 6= j′θ. Let C ⊂ Nq denote a finite set of index pairs. With these notational conventions,

we state the following assumption:

Assumption 3 1) There exists a set C = {jθ1, ..., jθK} such that ∀k ≤ K (i) l[0p−q ,jθk]
i (φ,0) 6= 0

with positive probability but (ii) l[0p−q ,jθ ]
i (φ,0) = 0 for all jθ < jθk with probability 1.

2) For all i ≤ q, there exists an ai ∈ N such that aiei ∈ C, where ei is the ith element of the
canonical basis of order q.
3) The asymptotic covariance matrix of the sample averages of sφi(φ,0), l[0p−q ,jθ1]

i (φ,0),...,

l
[0p−q ,jθK ]
i (φ,0) scaled by

√
n has full rank.

Assumption 3.3 is stronger than required. For example, it does not necessarily cover all the

cases allowed for Assumption 2, such as the multiplicative seasonal Ar example we study in

the Supplemental Appendix D.1, in which the covariance matrix of the influence functions that

appear in its statement is singular. Nevertheless, we maintain it to simplify the notation of our

most general theorem.

Let Ln(φ,0) = [L
[0p−q ,jθ1]
n (φ,0), ..., L

[0p−q ,jθK ]
n (φ,0)]′, θj = (θjθ1 , ...,θjθK ), with θjθk =∏q

i=1 θ
jθki
i and

I(φ) =

[
Iφφ(φ) Iφθ(φ)
Iθφ(φ) Iθθ(φ)

]
= V

{
1√
n

[
Sφn(φ,0)
Ln(φ,0)

]∣∣∣∣φ,0} ,
where Vθθ(φ) = Iθθ(φ) − Iθφ(φ)I−1

φφ(φ)Iφθ(φ), so that once again we can interpret I(φ) as a

generalized information matrix.
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Theorem 2 If Assumptions 1 and 3 hold with r = max{ι′qjθ1, ..., ι
′
qjθK} and C = {jθ1, ..., jθK},

respectively, then
LRn = 2 [Ln(ρ̂)− Ln(ρ̃)] = GETn +Op(n

− 1
2a ),

where GETn = ETn(θET ), θET = arg maxθ ETn(θ),

ETn(θ) = 2n
1
2θj′n−

1
2Ln(φ̃,0)− n

1
2θj′Vθθ(φ̃)n

1
2θj, (6)

and a = max{a1, ..., aq}, with ai defined in Assumption 3.2.

It is informative to relate this more general theorem to Theorem 1 in the previous section.

Under Assumption 2, it is easy to see that C = C1 ∪ Cr with C1 =
{

(e,0qr)
∣∣ι′q1e = 1

}
and

Cr =
{

(0q1 , jθr)
∣∣ι′qr jθr = r

}
, so that

ETn(θ) = 2n
1
2 (θ′1,θ

⊗r′
r )n−

1
2

[
Sθ1n(φ̃,0)

1
r!
∂rLn
∂θ⊗rr

(φ̃,0)

]
− n

1
2 (θ′1,θ

⊗r′
r )Vθθ(φ̃)n

1
2

(
θ1

θ⊗rr

)
.

Let η = ‖θr‖ and θr = ηλ. When r is odd, the values of θ1 and η that maximize ETn(θ)

are such that (
n
1
2θET1

n
1
2

(
ηET

)r
)

= V −1
θθ (φ̃)

[
n−

1
2Sθ1n(φ̃,0)

1
r!n
− 1
2

(
λET⊗rr

)′ ∂rLn
∂θ⊗rr

(φ̃,0)

]
.

This expression also gives the maximizers of those parameters when r is even provided that

(λET⊗rr )′[ ∂Ln
∂θ⊗rr

(φ̃,0)− Vθrθ1(φ̃)V −1
θ1θ1

(φ̃)Sθ1n(φ̃,0)] ≥ 0. Otherwise,

n
1
2θET1 = V −1

θ1θ1
(φ̃)n−1/2Sθ1n(φ̃,0) and n

1
2
(
ηET

)r
= 0.

Introducing these expressions in ETn(θ), we can easily verify that when we evaluate all the

expressions at the RMLE φ̃

GETn =
1

n
S′θ1(φ̃,0)V −1

θ1θ1
(φ̃)Sθ1(φ̃,0)+

1

n
sup‖λ‖=1

{
Qn(λ, φ̃) if r is odd
Qn(λ, φ̃)1[λ⊗r′Drn(φ̃) ≥ 0] if r is even

because λET is the maximizer of the second summand. Thus, Theorem 2 coincides with Theorem

1 regardless of the parity of r.

Importantly, the previous derivations show that we can formally interpret the sum of Ln(φ̃,0)

and ETn(θ) as a Taylor approximation of order 2r to the log-likelihood function around ρ̃, which

means that GETn is effectively a LR-type test that compares the log-likelihood function under

the null to the maximum of its approximation under the alternative.

Finally, it is worth mentioning that although GETn cannot be directly understood as a

moment test, a by-product of Theorem 2 is a set of influence functions Ln that can be used for

that purpose after taking into account the sampling uncertainty in estimating φ under the null.

In fact, it is easy to see from (6) that such a test provides an upper bound to GETn because

sup
τ∈RK

2τ ′Ln(φ̃,0)− τ ′Vθθ(φ̃)τ =
1

n
L′n(φ̃,0)V −1

θθ (φ̃)Ln(φ̃,0)
d→ χ2

K under H0. (7)
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3 Examples

Given that LM tests only require estimation of the model parameters under the null, in

the late 1970’s and early 1980’s they became the preferred choice for many specification tests,

as reflected in the surveys by Breusch and Pagan (1980), Engle (1983), and Godfrey (1988).

In addition to computational considerations, an important advantage of LM tests is that they

are often easy to interpret as moment tests, so that rejections provide a clear indication of

the specific directions along which modelling efforts should focus. As we mentioned in the

introduction, though, standard LM tests cannot be computed when the information matrix

is singular. In what follows, we discuss the application of our proposed tests as specification

tests of two models of empirical interest. In addition, we consider a third example in which

the objective is to detect non-linear predictability. Moreover, in Supplemental Appendix D we

consider testing for multiplicative seasonal serial correlation in univariate time series and study

a bivariate generalization of the Tobit II model with selectivity in Lee and Chesher (1986).

3.1 Testing Gaussian vs Skew Normal

The skew-normal distribution is a generalization of the normal distribution introduced by

O’Hagan and Leonard (1976) in the univariate case and Azzalini and Dalla Valle (1996) in

the multivariate one, which allows for asymmetry and positive excess kurtosis but retains a

fair amount of analytical tractability with a relatively small number of additional parameters.

Among its many applications, this distribution is increasingly popular in finance and insurance,

and also stochastic frontier models (see Adcock et al (2014) and Amsler et al (2016), respec-

tively).

The pdf of a K-dimensional skew-normal random variable y is given by

fSN (y;%) = 2fN (y −ϕM ;ϕV )Φ[ϑ′dg−1/2(ϕD)(y −ϕM )],

where fNK(y−ϕM ;ϕV ) denotes the pdf of a K-variate Gaussian random vector with mean ϕM

and covariance matrix Σ(ϕV ) such that ϕV = (ϕ′D,ϕ
′
L)′ with ϕD = vecd[Σ(ϕV )] and ϕL =

vecl[Σ(ϕV )], dg(ϕD) is a diagonal matrix with ϕD in its main diagonal, and Φ(.) the univariate

standard normal cumulative distribution function (cdf). This joint distribution simplifies to the

K-variate normal when the shape parameters ϑ are equal to 0.

For illustrative purposes, we use the bivariate case here but consider a trivariate example in

the Monte Carlo experiments too. Let ϕ = (ϕM1
, ϕM2

, ϕD1 , ϕD2 , ϕL1)
′ and ϑ = (ϑ1, ϑ2)′ denote

the vectors that contain the two mean and three covariance parameters, and the two shape

10



parameters, respectively, so that

fSN (y;ϕ,ϑ)=2fNK

[(
y1 − ϕM1

y2 − ϕM2

)
;

(
ϕD1 ϕL1
ϕL1 ϕD2

)]
Φ

[
ϑ1

(
y1 − ϕM1√

ϕD1

)
+ϑ2

(
y2 − ϕM2√

ϕD2

)]
.

It is easy to see that

sϑ1(ϕ,0)−
√

2ϕD1
π

sϕM1
(ϕ,0)−

√
2

π

ϕL1√
ϕD1

sϕM2
(ϕ,0) = 0,

sϑ2(ϕ,0)−
√

2

π

ϕL1√
ϕD2

sϕM1
(ϕ,0)−

√
2ϕD2
π

sϕM2
(ϕ,0) = 0.

As explained in the introduction, we can consider the following reparametrization

ϕM1
= φ†1 −

√
2ϕD1
π

θ†21 −
√

2

π

ϕL1√
ϕD2

θ†22, ϕM2
= φ†2 −

√
2

π

ϕL1√
ϕD1

θ†21 −
√

2ϕD2
π

θ†22

ϕD1 = φ†3, ϕL1 = φ†4, ϕD2 = φ†5,

which is easily seen to be a suffi ciently smooth continuous diffeomorphism. In this context, the

chain rule immediately implies that s
θ†21

(φ†,0) = s
θ†22

(φ†,0) = 0.

Unfortunately, the Hessian under the null, which we denote by hθθ(φ,0), is such that

h
θ†21θ

†
21

(φ†,0) +
4φ†3
π
s
φ†3

(φ†,0) +
4φ†4
π
s
φ†4

(φ†,0) +
4φ†24

πφ†3
s
φ†5

(φ†,0) = 0,

h
θ†21θ

†
22

(φ†,0) +
4

√
φ†3φ

†
4

π

√
φ†5

s
φ†3

(φ†,0) +
2(φ†3φ

†
5 + φ†24 )

π

√
φ†3

√
φ†5

s
φ†4

(φ†,0) +
4φ†4

√
φ†5

π

√
φ†3

s
φ†5

(φ†,0) = 0

and

h
θ†22θ

†
22

(φ†,0) +
4φ†24

πφ†5
s
φ†3

(φ†,0) +
4φ†4
π
s
φ†4

(φ†,0) +
4φ†5
π
s
φ†5

(φ†,0) = 0.

For that reason, we must carry out one further reparametrization:

φ†1 = φ1, φ†2 = φ2, φ†3 = φ3 +
2φ3

π
θ2

31 +
4
√
φ3φ4

π
√
φ5

θ31θ32 +
2φ2

4

πφ5

θ2
32,

φ†4 = φ4 +
2φ4

π
θ2

31 +
2
(
φ3φ5 + φ2

4

)
π
√
φ3

√
φ5

θ31θ32 +
2φ4

π
θ2

32

φ†5 = φ5 +
2φ2

4

πφ3

θ2
31 +

4φ4

√
φ5

π
√
φ3

θ31θ32 +
2φ5

π
θ2

32, θ†21 = θ31, θ†22 = θ32,

which is another suffi ciently smooth continuous diffeomorphism. This reparametrization simul-

taneously achieves sθ31(φ,0) = sθ32(φ,0) = hθ31θ31(φ,0) = hθ31θ32(φ,0) = hθ32θ32(φ,0) = 0.

Therefore, we must consider the third-order derivatives l[0,3,0](φ,0), l[0,2,1](φ,0), l[0,1,2](φ,0) and

11



l[0,0,3](φ,0).7 Fortunately, we can show that the (asymptotic) covariance matrix of the sample

averages of

s′φ(φ,0), l[0,3,0](φ,0), l[0,2,1](φ,0), l[0,1,2](φ,0) and l[0,0,3](φ,0)]

scaled by
√
n has full rank, so that Assumption 2 holds with r = 3 a fortiori.

Next, we must purge the third derivatives from the sampling uncertainty in estimating

the mean vector and covariance matrix under the null. We can do this by orthogonalizing

the third derivatives with respect to the scores of the first and second moment parameters φ.

Straightforward calculations show that the resulting influence functions coincide with the four

bivariate Hermite polynomials of order three for y1 and y2 defined in (8) (see Supplemental

Appendix C.1.1 for further details).

We can then apply our proposed test by combining these four influence functions with weights

(λ3
1, λ

2
1λ2, λ1λ

2
2, λ

3
2) because

1

3!

∂3`

∂η3
(φ, 0,λ) = λ3

1l
[0,3,0](φ,0) + λ2

1λ2l
[0,2,1](φ,0) + λ1λ

2
2l

[0,1,2](φ,0) + λ3
2l

[0,0,3](φ,0),

with `(φ, η,λ) = l(φ,λη). Moreover, let Ln(φ, η,λ) = Ln(φ,λη), and define Vη(φ,λ) as the

asymptotic variance of ∂
3`
∂η3

(φ, 0,λ) adjusted for parameter uncertainty in estimating φ. Then,

GETn = sup‖λ‖=1

1

n

[∂3L/∂η3(φ̃, 0,λ)]2

Vη(φ̃,λ)
.

A convenient property of the skew normal distribution that it shares with its Gaussian special

case is that it is closed under affi ne transformations. In this regard, we show in Supplemental

Appendix C.1.2 that our tests are numerically invariant to a full rank affi ne transformation of

the vector y. Effectively, this means that our test is pivotal in finite samples. Therefore, we can

estimate the sample mean and covariance matrix of the original data, create some orthogonalized

residuals e1 and e2, and apply our test directly to e1 and e2 as if they were the observed variables.

In particular, if we define e1 as the standardized value y1i and e2i as the standardized value

of the residual in the OLS regression of y2i on a constant and y1i, we can show that the test

7For any cross-sectional dimension K, we can combine the two reparametrizations that we have used in the
following single transformation:

ϕM = φM +

√
2

π
Σ(φV )dg

−1/2(φD)θ

Σ(ϕV ) = Σ(φV ) +
2

π
Σ(φV )dg

−1/2(φD)θθ
′dg−1/2(φD)Σ(φV )

ϑ = θ

where Σ(ϕV ) (Σ(φV )) is a q× q matrix whose diagonal and strict lower triangular elements are in ϕD (φD) and
ϕL (φL), respectively. This combined reparametrization ensures that all relevant scores and Hessian elements are
zero at once, and leads to the same influence functions.
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statistic becomes

GETn = sup
‖λ‖=1

1

6n

[
λ3

1

∑n
i=1H3(e1i) + 3λ2

1λ2
∑n

i=1H2(e1i)H1(e2i)
+3λ1λ

2
2

∑n
i=1H1(e1i)H2(e2i) + λ3

2

∑n
i=1H3(e2i)

]2

where H3(e) = e3 − 3e, H2(e) = e2 − 1 and H1(e) = e are the first three univariate Hermite

polynomials. As can be seen, the first and last of the four terms effectively check the asymmetry

of the marginal distributions of e1 and e2 by looking at their third-order Hermite polynomials

H3(e1) and H3(e2), respectively. In contrast, the two middle ones check the co-asymmetries

between those two random variables by focusing on H2(e1)H1(e2) and H1(e2)H2(e2).8

3.2 Testing Gaussian vs Hermite copulas

The validity of the Gaussian copula in finance has been the subject of considerable debate.

As a result, it is not surprising that several authors have considered more flexible copulas. For

example, Amengual and Sentana (2018) consider the Generalized Hyperbolic copula, a location-

scale Gaussian mixture which nests the popular Student t copula discussed by Fan and Patton

(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas,

which provide a rather flexible alternative.

As is well known, Hermite polynomial expansions of the multivariate normal pdf can be

understood as Edgeworth-like expansions of its characteristic function. They are based on mul-

tivariate Hermite polynomials of order pth, which are defined as differentials of the multivariate

normal density:

Hv(x,ϕ) = fNK(x; R)−1

(
−∂
∂x

)v

fNK(x; R), ι′Kv = p with v ∈ NK , (8)

where ϕ = vecl(R) and R is a positive definite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions

in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-

able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but

straightforward.

We say that (x1, x2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fH(x1, x2;ϕ,ϑ) = fN2

[(
x1

x2

)
;

(
1 ϕ
ϕ 1

)]
P (x1, x2;ϕ,ϑ), (9)

8The asymptotic distribution of GETn in this example is bounded below by a χ21 distribution because it
coincides with the extremum test of Lee and Chesher (1986) for H0 : η = 0 for a specifc λ. At the same time,
expression (7) implies that it is bounded above by a χ24 distribution, which is the asymptotic distribution of the
moment test that uses as influence functions H3(e1), H3(e2), H2(e1)H1(e2) and H1(e2)H2(e2).
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where

P (x1, x2;ϕ,ϑ) = 1 +
4∑
j=0

ϑj+1H4−j,j(x1, x2;ϕ),

ϕ is the correlation between x1 and x2, which we assume is different from 0, and ϑ1, . . . , ϑ5 the

coeffi cients of the expansion. The leading term in (9) is the normal pdf and the remaining terms

represent departures from normality. Indeed, fH(x1, x2;ϕ,ϑ) reduces to a Gaussian distribution

when ϑ = 0.

We can easily show that the corresponding marginal distributions are given by

fH(x1;ϑ1) = φ(x1)[1 + ϑ1H4(x1)]
fH(x2;ϑ5) = φ(x2)[1 + ϑ5H4(x2)]

}
, (10)

where H4(x) = x4 − 6x2 + 3 is the fourth-order univariate Hermite polynomial and φ(.) the

standard normal pdf.

Hermite expansion copulas are based on Hermite expansion distributions. Specifically, if

y = (y1, y2) denotes the original data, we can define u = (u1, u2) = [F1(y1), F2(y2)] as the

uniform ranks of y, and finally x = (x1, x2) = [F−1
H (u1;ϑ1), F−1

H (u2;ϑ5)], where F−1
H (.;ϑi) are

the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with

parameter ϑi in (10). When the copula is Gaussian, xi coincides with the Gaussian rank Φ−1(u).

The pdf of the pure fourth-order Hermite expansion copula is

fH(x1, x2;%)

fH(x1;ϑ1)fH(x2;ϑ5)
=
φ2(x1, x2;ϕ)[1 +

∑4
j=0 ϑj+1H4−j,j(x1, x2;ϕ)]

φ1(x1)[1 + ϑ1H4(x1)]φ1(x2)[1 + ϑ5H4(x2)]
.

Straightforward calculations show that in this case

sϑ1(ϕ,0) + 3ϕsϑ2(ϕ,0) + 3ϕ2sϑ3(ϕ,0) + ϕ3sϑ4(ϕ,0) = 0,

sϑ5(ϕ,0) + 3ϕsϑ4(ϕ,0) + 3ϕ2sϑ3(ϕ,0) + ϕ3sϑ2(ϕ,0) = 0.

Our proposed reparametrization, namely

ϕ = φ, ϑ1 = θ21, ϑ2 = θ11 + 3φθ21 + φ3θ22,

ϑ3 = θ12 + 3φ2θ21 + 3φ2θ22, ϑ4 = θ13 + 3φθ22 + φ3θ21, ϑ5 = θ22,

confines the singularity to the scores of θ21 and θ22. Therefore, we need to obtain the second

order derivatives with respect to θ21 and θ22. In this case, we can prove that the asymptotic

covariance matrix of

∂l

∂φ
,
∂l

∂θ11
,
∂l

∂θ12
,
∂l

∂θ13
,
∂2l

∂θ2
21

,
∂2l

∂θ2
22

and
∂2l

∂θ21∂θ22

scaled by
√
n has full rank. Although the algebra is a bit messy, after orthogonalizing those

second derivatives with respect to the score of φ to eliminate the effect of the sampling un-

certainty in estimating this correlation coeffi cient under the null, we can express those three
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second derivatives as linear combinations of all the even-order multivariate Hermite polynomials

of (x1, x2) up to the 8th order, with coeffi cients that depend on the correlation coeffi cient (see

Supplemental Appendix C.2.1 for details).

Let θ21 = λ1η and θ22 = λ2η with λ2
1 + λ2

2 = 1, and consider the simplified null hypothesis

H0 : θ11 = θ12 = θ13 = η = 0. Then it is easy to see that the GET statistic will be

1

n
S′1nV

−1
11 S1n +

1

n
sup
‖λ‖=1

D′n(Vηη − Vη1V
−1

11 V1η)
−1Dn1 [Dn > 0] ,

where

Dn(φ, η,λ) = Hηn(φ, η,λ)− Vη1(φ, η,λ)V −1
11 (φ)S1n(φ,0),

Hηn(φ, η,λ) =
n∑
i=1

(λ1 λ2)

[
hθ21θ21,i(ρ) hθ21θ22,i(ρ)
hθ21θ22,i(ρ) hθ22θ22,i(ρ)

](
λ1

λ2

)
,

S1n(φ,0) = [Sθ11(φ,0), Sθ12(φ,0), Sθ13(φ,0)]′,

and the omitted arguments are (φ̃, 0,λ) for Dn, (φ̃,λ) for Vηη, Vη1 and V1η, (φ̃,0) for S1,n and

φ̃ for V11.9

3.2.1 Positivity

The foregoing derivations, though, ignore that the positivity of the Hermite copula density

for all values of y imposes highly nonlinear inequality constraints on the elements of θ = (θ′1,θ
′
2)′

with θ1 = (θ11, θ12, θ13)′ and θ2 = (θ21, θ22)′.10 Fortunately, given that under the null hypothesis

of a Gaussian copula the UMLE estimators of θ1 and θ2 converge at rates n−
1
2 and n−

1
4 ,

respectively, the elements of the sequence θ1n are negligible, in which case we simply need to

find the asymptotes of the feasible set for (θ21, θ22). Let θ21 = ηλ1 = ηsin(ω) and θ22 = ηλ2 =

ηcos(ω) with ω ∈ [0, 2π) to ensure a unit norm for λ = (λ1, λ2)′. As we show in Supplemental

Appendix C.2.2, these parameters lead to a positive density when η is small enough if and only

if ω ∈ (ωl, ωu), with ωl and ωu defined in (C17).

Therefore, an asymptotically equivalent GET statistic that imposes positivity of the Hermite

expansion copula under admissible alternatives local to the null will be given by

1

n
S′1nV

−1
11 S1n +

1

n
sup

ω∈(ωl,ωu)
D′n
(
Vηη − Vη1V−1

11 V1η

)−1Dn1 [Dn > 0] . (11)

This test is asymptotically equivalent to the LR test, which implicitly imposes positivity

because a zero density gives rise to an infinitely penalized log-likelihood. Nevertheless, our

9 In view of equation (7), in this case the asymptotic distribution of GETn is bounded above by a χ26 distribution
because of the six influence functions. In addition, it is bounded below by a 50:50 mixture of χ23 and χ

2
4 because

θ11, θ12 and θ13 are first-order identified parameters and an even-order derivative of η is involved.
10This is an example in which Assumption 1.1 fails because ρ0 lies at the boundary of the admissible parameter

space, and yet we can still derive a LR-equivalent test.
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test is far more computationally convenient than the LR test because the positivity constraints

effectively become linear under local alternatives.

3.3 Purely non-linear predictive regression

Consider the following extension of the nonlinear regression model in Bottai (2003), in which

the data consist of n observations y = (y1, y2, y3) drawn from a joint distribution characterized

by

f(y;θ) = f(y3|y1, y2;θ)f(y1, y2),

where f(y1, y2) is fixed and known, while

f(y3|y1, y2;θ) = φ

[
y3 − exp (θ1y1 + θ2y2) + θ1y1 + θ2y2 +

1

2
θ2

2y
2
2

]
, (12)

with θ = (θ1, θ2)′ unknown. This model has an interesting interpretation in the context of

predictive regressions. Specifically, a Taylor expansion of the exponential function immediately

shows that the mean predictability of y3 does not come from the terms that also enter outside

the exponent (viz y1, y2 and y2
2) but rather, from higher order powers of the two regressors

as well as their cross-products. Therefore, model (12) provides an interesting functional form

for predictive regressions of variables such as financial returns when a researcher believes in

predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).

In the case of a single regressor, Bottai (2003) showed that the nullity of the information

matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix

has several rank deficiencies under the null hypothesis H0 : θ = 0 in the multiple regressor case.

The relevant derivatives of log-likelihood function with respect to θ1 and θ2 evaluated at the

null hypothesis are
∂l

∂θ1
= 0,

∂l

∂θ2
= 0,

∂2l

∂θ2
1

= y2
1(y3 − 1),

∂2l

∂θ1∂θ2
= y1y2(y3 − 1),

∂2l

∂θ2
2

= 0

and
∂3l

∂θ3
2

= y3
2(y3 − 1).

Therefore, we have a situation in which the degree of underidentification is different for the

two regression coeffi cients. But since Assumption 3 is satisfied with C = {(2, 0), (1, 1), (0, 3)}, a
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straightforward application of Theorem 2 implies that

LRn = GETn +Op(n
− 1
6 )

= sup
θ1,θ2

2(θ2
1, θ1θ2, θ

3
2)

 L
[2,0]
n

L
[1,1]
n

L
[0,3]
n

−n(θ2
1, θ1θ2, θ

3
2)

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 θ2
1

θ1θ2

θ3
2

+Op(n
− 1
6 ), (13)

where  I11 I12 I13

I21 I22 I23

I31 I32 I33

 = V

 l[2,0]

l[1,1]

l[0,3]

 .

Unlike in the two previous examples, in this case we would need to obtain the maximum with

respect to θ1 and θ2 over the entire Euclidean space of dimension 2 rather than over the unit

circle. Nevertheless, we can provide a much simpler but asymptotically equivalent statistic. Let

p1 =
√
n(θET1 )2, p2 =

√
nθET1 θET2 and p3 =

√
n(θET2 )3. It is then straightforward to show that

n
1
6 p1p

2
3
3 = p2

2.

As a result, we must have that either p1 or p3 are negligible when n is large because p2 is Op(1)

from Lemma 7 in Appendix A. If p1 is negligible, then (13) is asymptotically equivalent to

supET1n = sup
θ1,θ2

2(θ1θ2, θ
3
2)

(
L

[1,1]
n

L
[0,3]
n

)
− n(θ1θ2, θ

3
2)

(
I22 I23

I32 I33

)(
θ1θ2

θ3
2

)

=
1

n
(L[1,1]

n , L[0,3]
n )

(
I22 I23

I32 I33

)−1
(
L

[1,1]
n

L
[0,3]
n

)
.

If instead p3 is negligible, then (13) becomes asymptotically equivalent to

supET2n = sup
θ1,θ2

2(θ2
1, θ1θ2)

(
L

[2,0]
n

L
[1,1]
n

)
− n(θ2

1, θ1θ2)

(
I11 I12

I21 I22

)(
θ2

1

θ1θ2

)

=
1

n

{
(L

[1,1]
n )2

I22
+

(L
[2,0]
n − I12I

−1
22 L

[1,1]
n )2

I11 − I12I
−1
22 I21

1[L[2,0]
n − I12I

−1
22 L

[1,1]
n > 0]

}
.

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order op(1)

by simply retaining GETn = max {supET1n, supET2n}.

In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Specifically, let

Z1n = n−
1
2
L

[2,0]
n − I12I

−1
22 L

[1,1]
n√

I11 − I12I
−1
22 I21

, Z2n = n−
1
2
L

[1,1]
n√
I22

and Z3n = n−
1
2
L

[0,3]
n − I32I

−1
22 L

[1,1]
n√

I33 − I32I
−1
22 I23

,

where  Z1n

Z2n

Z3n

 d−→

 Z1

Z2

Z3

 ∼ N
 0

0
0

 ;

 1 0 r13

0 1 0
r13 0 1


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and

r13 =
I13 − I12I

−1
22 I23√

I11 − I12I
−1
22 I21

√
I33 − I32I

−1
22 I23

.

Then supET1n = Z2
2n + Z2

3n and supET2n = Z2
2n + Z2

1n1 [Z1n ≥ 0]. As a consequence,

GETn
d→ max{Z2

11 {Z1 ≥ 0} , Z2
3}+ Z2

2 .

In other words, the asymptotic distribution of GETn will be a χ2
2 50% of the time (when Z1 < 0)

and the sum of a χ2
1 with the largest of two other possibly dependent χ

2′
1 s (when Z1 ≥ 0).11

4 Simulation evidence

In this section we study the finite sample size and power properties of the testing procedures

we introduced in section 2 by means of several extensive Monte Carlo exercises. We do so in

the context of the three different examples discussed in the previous section. For each distribu-

tional assumption, we generate 10,000 samples of size n and compute the parameter estimators

and tests.12 When no nuisance parameters are involved, we compute the exact finite sample

distribution using 10,000 simulated samples. Otherwise, we employ a parametric bootstrap pro-

cedure based on the same number of simulated samples, so that we can automatically compute

size-adjusted rejection rates, as forcefully argued by Horowitz and Savin (2000).

4.1 Testing Gaussian vs Skew Normal

As we explained at the end of section 3.1, we can set the true unconditional mean vec-

tor and covariance matrix of the simulated data to 0 and IK , respectively, under the null and

alternative hypotheses without loss of generality. As expected, the RMLE of the mean and

variance parameters that impose the Gaussian null are the sample mean and covariance ma-

trix. As alternative hypotheses, we consider ϑ′ =
(√

3
2 ,
√

3
2

)
(Ha1) and ϑ′ =

(√
3
10 , 2

√
3
10

)
(Ha2) in the bivariate case, and ϑ′ =

(√
2

2 ,
√

2
2 ,
√

2
2

)
(Ha1) and ϑ′ =

(
1√
6
, 2√

6
, 2√

6

)
(Ha2) in the

trivariate one.

Given that the test statistics are numerically invariant to the estimated values of means,

variances and covariances, we can compute exact critical values under the null for any sample

size to any degree of accuracy by repeatedly simulating samples of i.i.d. bivariate and trivariate

spherical normal random vectors.

11 If we further assume that the regressors y1 anf y2 are two independent normals with 0 means and variances
σ21 and σ

2
2, respectively, then Z1, Z2 and Z3 will be three independent N(0, 1) random variables.

12Given the number of Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo
rejection probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.
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In Table 1 we compare the results of our tests with a standard LM test based on the score

of the skewness parameters under the parametrization proposed in Arellano-Valle and Azzalini

(2008), which we denote by LM-AA. Effectively, this procedure applies the Lee and Chesher

(1986) expansion on an individual parameter basis. Hence, asymptotically this test will follow

a standard χ2
K distribution because it only considers K influence functions, as opposed to the

K(K + 1)(K + 2)/6 influence function underlying our tests, which we list in Appendix C.1.1.

We also consider the moment test of all those influence functions, which we label GMM, as

well as tests on marginal skewness a là Jarque-Bera based on the third-order univariate Hermite

polynomials of all the components simultaneously, which again reduce the number of degrees of

freedom to K at the cost of ignoring all the different co-skewness terms.

Panels A and B of Table 1 report the results for bivariate and trivariate models, respectively.

The first columns of Table 1 report rejection rates under the null at the 1%, 5% and 10% levels,

confirming that our simulated critical values work remarkably well for both sample sizes. In

turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for the

alternatives we consider. Our proposed test is more powerful than the LM-AA test for both

alternatives. It also beats by far the test based on the skewness of the margins only. Interestingly,

the moment test based on all the underlying influence functions and our test have similar power

in the bivariate case. Still, our proposed test clearly dominates GMM in the trivariate case for

n = 1, 600.

Finally, our results for the bivariate and trivariate cases also indicate a Gaussian rank corre-

lation of .97 (.98) between our proposed test statistic and the LR across Monte Carlo simulations

of 400 (1,600) observations that satisfy the null, which is in line with the asymptotic equivalence

result in Theorem 1. In addition, they indicate that the LR takes between 12 and 75 times as

much CPU time to compute as GET does.

4.2 Testing Gaussian vs Hermite copulas

For simplicity, we assume the marginal distributions are known, so that we can directly

work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual

and Sentana (2018) for further discussion of this topic). We estimate the correlation parame-

ter, whose true value we set to 0.5 under both the null and alternative hypotheses, using the

Gaussian rank correlation in Amengual, Sentana and Tian (2019), which effectively imposes

the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with

ϑ′ = (0.04, 0, 0, 0, 0) (Ha1) and another with ϑ
′ = (0.02, 0, 0, 0, 0.02) (Ha2). While the second

one generates a copula density which is symmetric around the 45o line, the first one does not.

In any event, both departures from the Gaussian copula are rather mild, as they only involve
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one or two parameters different from 0.

If the correlation coeffi cient were known, we could again compute exact critical values under

the null for any sample size to any degree of accuracy by repeatedly simulating samples of i.i.d.

bivariate normals with correlation ϕ. In practice, though, we fix the correlation coeffi cient to

its estimated value in each sample in what is effectively a parametric bootstrap procedure (see

Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 2 we compare the results of our tests with three alternative procedures: KS, which

denotes the non-parametric Kolmogorov—Smirnov test for copula models (see Rémillard (2017)),

KT—AS, which is the Kuhn-Tucker test based on the score of a symmetric Student t copula

evaluated under Gaussianity (see Amengual and Sentana (2018)), and GMM, which refers to

the moment test based on the underlying influence functions in GET.

Following the same structure as in Table 1, the first three columns of Table 2 report rejection

rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1, 600 (bottom).

The results make clear that the parametric bootstrap works remarkably well for both sample

sizes. In turn, the last six columns present the rejection rates at the same levels for the two

Hermite expansion copula alternatives. By and large, the behavior of the different test statistics

is in accordance with expectations. In particular, when the sample size is large our proposal is

the most powerful given that it is designed to direct power against Hermite expansion copula

alternatives. In contrast, its non-parametric competitor has close to trivial power in samples

of 400 observations, a situation that improves marginally when n = 1, 600. Interestingly, the

Kuhn-Tucker version of the Gaussian versus Student t copula test in Amengual and Sentana

(2018) performs quite well when n is large in spite of not being designed for the alternatives

we consider. Importantly, GET does a better job than the moment test based on the influence

functions Ln implied by the higher-order expansion of the log-likelihood on which it is based,

which is partly due to the fact that it takes into account the partially one-sided nature of the

alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the

alternative is particularly diffi cult to maximize over the five parameters involved. In fact, we

systematically encounter multiple local maxima in samples of up to 100,000 observations even

if we fix the correlation parameter to its true value and use global optimization methods, which

forced us to repeat the calculations over a huge grid of initial values. For that reason, we have

only computed the Gaussian rank correlation coeffi cient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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4.3 Non-linear predictive regression

As alternative hypotheses, we consider θ1 = 0.3, θ2 = 0 (Ha1) and θ1 = 0, θ2 = 0.5 (Ha2) in

specification (12). And like in the skew normal example, we can compute exact critical values for

any sample size to any degree of accuracy by repeatedly drawing i.i.d. spherical normal vectors

(y1, y2, y3), which effectively imposes the null hypothesis.

In Table 4 we compare the results of the two versions of our tests discussed in section 3.3

with the GMM test mentioned at the end of section 2.3 and two simple alternative procedures.

First, a standard LM test based on pseudo-Gaussian ML that checks the joint significance of

y2
1t and y1ty2t in the OLS regression of y3t on a constant and these two variables, which are the

transformations of the predictors missing from the part outside the exponent in the conditional

mean specification. And second, a closely related LM test based on pseudo-Gaussian ML which

augments the previous regression with the following four cubic terms y3
1t, y

2
1ty2t, y1ty

2
2t and y

3
2t.

We refer to these tests as OLS1 and OLS2, respectively.

As in previous examples, the first three columns of Table 3 report rejection rates under

the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1, 600 (bottom). The

results make clear that our simulated critical values are reliable for both sample sizes. In turn,

the last six columns present the rejection rates at the 1%, 5% and 10% levels for the two

previously mentioned alternatives. Once again, the behavior of the different test statistics is in

accordance with expectations. In particular, our proposed statistics are the most powerful in

both cases. Part of the reason has to do with the fact that the linear regressions only provide

an approximation to the true non-linear conditional expectation. However, the fraction of the

theoretical variance of y3t explained by y2
1t, y1ty2t, y

3
1t, y

2
1ty2t, y1ty

2
2t and y

3
2t is essentially the

same as the fraction explained by the true conditional mean in Ha2. As a result, the superior

power of our tests relative to OLS2 comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution —namely,

a 50:50 mixture of χ2
2 and the sum of χ2

1 with the larger of two other independent χ
2′
1 s—we can

also compute Davidson and MacKinnon (1998)’s p-value discrepancy plots to assess the finite

sample reliability of this large sample approximation for every possible significance level. Figure

1, which displays those plots for the two sample sizes we consider, confirms the high quality of

the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test

statistic and the LR across Monte Carlo simulations generated under the null, which is in

line with our asymptotic equivalence results in Theorem 2. At the same time, they con-

firm that the LR test typically takes about 200 times as much CPU time to compute as the
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max {supET1n, supET2n} version of our test.

5 Conclusions

We propose a generalization of the extremum-type tests in Lee and Chesher (1986) to models

in which the nullity of the information matrix under the null hypothesis is larger than one. In the

case of a single singularity, our results are consistent with theirs, as well as those in Rotnitzky et

al. (2000). However, when the information matrix is repeatedly singular, our procedures provide

a computationally convenient alternative to the LR test. Our proposed test statistic is a sup

type test over a space whose dimension is the nullity of the information matrix minus one when

all parameters show the same degree of underidentification, and the nullity otherwise, while

the maximization of the original log-likelihood function is over a space of the same dimension

as the vector of parameters, which is usually much larger. In addition, the fact that several

log-likelihood derivatives are 0 under the null implies that the LR requires the estimation of all

the parameters that appear under the alternative in a model whose log-likelihood function is

extremely flat. Intuitively, the substantial computational gains that we find arise because GET

is a LR-type test that compares the log-likelihood function under the null to the maximum of

its 2rth-order expansion under the alternative.

Interestingly, the asymptotic distribution of our test statistic is similar to the asymptotic

distribution of the usual overidentification test statistic in a GMM model in which the expected

Jacobian of the moment conditions is of reduced rank but the parameters are second-order

identified (see Supplemental Appendix E for a formal link to the results in Dovonon and Renault

(2013)). An application of our approach to GMM contexts in which not only the expected

Jacobian matrix is singular but some higher order Jacobian matrices are singular too would

constitute a very valuable extension.
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Appendices

A Proofs

We first state and prove several lemmas that we will use in the proofs of our main theorems.
To shorten notation, let w = (φ′,θ′1, η,λ

′)′.

Lemmata

Lemma 1 (a) Under Assumption 1 and 2, for all (φn,θ1n, ηn) = op(1) and ‖λn‖ = 1,

LRn (wn) = ET n (wn) + op[h(φn,θ1n, ηn)],

where

LRn(w) = 2[Ln(φ+ φ̃,θ1, η,λ)− Ln(φ̃,0, 0,λ)], with Ln(w) = L(φ,θ1,λη),

ET n(w) = 2

 n
1
2φ

n
1
2θ1

n
1
2 ηr


′ 
 0

n−
1
2Sθ1

n−1/2L[0,r]
n

− 1

2

 Iφφ Iφθ1 Iφθr
Iθ1φ Iθ1θ1 Iθ1θr
Iθrφ Iθrθ1 Iθrθr


 n

1
2φ

n
1
2θ1

n
1
2 ηr


 ,

h(φ,θ, η) = max{1, ||n
1
2φ||2, ||n

1
2θ||2, (n

1
2 ηr)2},

and [Iθrφ(φ,λ), Iθrθ1(φ,λ), Iθrθr(φ,λ)] given by

E{L[0,r]
n (φ,0, 0,λ)[s′φ(φ,0), s′θ1(φ,0),L[0,r]

n (φ,0, 0,λ)]|(φ,0)},

and where the omitted arguments are (φ̃,0), φ̃, (φ̃,0, 0,λ) and (φ̃,λ) for Sθ1, (Iφφ, Iφθ1 , Iθ1θ1),

L[0,r]
n and (Iθrφ, Iθrθ1 , Iθrθr), respectively.
(b) Moreover, when (n

1
2φn, n

1
2θ1n, n

1
2 ηrn) = Op(1), we have

LRn (wn) = ET n (wn) +Op(n
− 1
2r ).

Proof. To simplify the notation, in the proof we assume φ and θ1 are both scalar and we drop
the subscript n of the arguments. To show (a), first notice that by the chain rule

L[jφ,jθ1 ,jη ]
n (w) =

∑
ι′qr jθr=jη

λjθrL
[jφ,jθ1 ,jθr ]
n (φ, θ1,λη) . (A1)

Next, a 2rth-order Taylor expansion of Ln (w) around the restricted MLE yields

Ln(φ+ φ̃, θ1, η,λ)− Ln = n
1
2 ηr[A1n +A2n + n

1
2 ηr (A3n +R1n)]

+ n
1
2 θ1[A4n +A5nn

1
2 θ1 + n

1
2 θ1 (A6n +R2n)]

+ nφ2 [A7n +A8n +R3n] + nθ1φ [A9n +A10n +R4n]

+ n
1
2 θ1[A11n +A12nn

1
2 ηr + n

1
2 ηr (A13n +R5n) + n

1
2 θ1 (A14n +R6n)]

+ n
1
2φ[A15n +A16nn

1
2 ηr + n

1
2 ηr (A17n +R7n) + n

1
2φ (A18n +R8n)]

+ nφθ1 [A19n +R9n] ,

with (φ̃, 0, 0,λ) as omitted arguments, and where the leading terms are

A1n =

{
1√
n
L[0,0,r]
n

}
, A2n =

r−1∑
j=1

{
1√
n
L[0,0,r+j]
n

}
ηj , A3n =

{
1

n
L[0,0,2r]
n

}
,
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A4n =

{
1√
n
L[0,1,0]
n

}
, A5n =

{
1

n
L[0,2,0]
n

}
, A6n =

2r∑
j=3

{
1

n
L[0,j,0]
n

}
θj−2

1 ,

A7n =

{
1

n
L[2,0,0]
n

}
, A8n =

2r∑
j=3

{
1

n
L[j,0,0]
n

}
φj−2, A9n =

{
1

n
L[1,1,0]
n

}
,

A10n =
2r−2∑

j1+j2=1
j1≥0, j2≥0

{
1

n
L[j1+1,j2+1,0]
n

}
θj11 φ

j2 , A11n =
r−1∑
j=1

{
1√
n
L[0,1,j]
n

}
ηj , A12n =

{
1

n
L[0,1,r]
n

}
,

A13n =
2r−1∑
j=r+1

{
1

n
L[0,1,j]
n

}
ηj−r, A14n =

2r−1∑
j1+j2=2
j1≥1, j2≥1

{
1

n
L[0,j1+1,j2]
n

}
θj1−1

1 ηj2 ,

A15n =

r−1∑
j=1

{
1√
n
L[1,0,j]
n

}
ηj , A16n =

{
1

n
L[1,0,r]
n

}
, A17n =

2r−1∑
j=r+1

{
1

n
L[1,0,j]
n

}
ηj−r,

A18n =

2r−1∑
j1+j2=2
j1≥1, j2≥1

{
1

n
L[j1+1,0,j2]
n

}
φj1−1ηj2 , A19n =

2r−1∑
j1+j2+j3=3

j1≥1, j2≥1, j3≥1

φj1−1θj2−1
1 ηj3

{
1

n
L[j1,j2,j3]
n

}
,

while the remainder terms are

R1n =

{
1

n
δ[0,0,2r]
n

}
, R2n =

{
1

n
δ[0,2r,0]
n

}
θ2r−2

1 , R3n =

{
1

n
δ[2r,0,0]
n

}
φ2r−2,

R4n =
∑

j1+j2=2r−2
j1≥0, j2≥0

{
1

n
δ[j1+1,j2+1,0]
n

}
θj11 φ

j2 , R5n =

{
1

n
δ[0,1,2r−1]
n

}
ηr−1,

R6n =
∑

j1+j2=2r−1
j1≥1, j2≥1

{
1

n
δ[0,j1+1,j2]
n

}
θj1−1

1 ηj2 , R7n =

{
1

n
δ[1,0,2r−1]
n

}
ηr−1,

R8n =
∑

j1+j2=2r−1
j1≥1, j2≥1

{
1

n
δ[j1+1,0,j2]
n

}
φj1−1ηj2

and

R9n =
∑

j1+j2+j3=2r
j1≥1, j2≥1, j3≥1

φj1−1θj2−1
1 ηj3

{
1

n
δ[j1,j2,j3]
n

}
,

with
δ

[jφ,jθ1 ,jη ]
n = L[jφ,jθ1 ,jη ]

n (φ̃+ ε̄φ, ε̄θ1 , ε̄θr ,λ)− L[jφ,jθ1 ,jη ]
n

for some ε̄ between 0 and (φ, θ1, η).
Next, we look at each of the above terms, having used curly brackets around an expression

to emphasize that the term inside is Op(1) when (φ, θ1, η) = op(1).
The remainder terms R1n, R2n,... R9n are clearly op(1) by virtue of Assumption 1.6 together

with the fact that (φ, θ1, η) = op(1) and ‖λ‖ = 1.
On the other hand, notice that n−1Lj

n(ρ) is stochastic equicontinuous for ι′pj = 2r by As-
sumption 1.6 and Theorem 21.10 in Davidson (1994). Similarly, Assumption 1.4 and Theorem
21.10 in Davidson (1994) also imply n−1Lj

n(ρ) is stochastic equicontinuous for ι′pj ≤ 2r − 1.

Therefore, n−1Lj
n(ρ) is stochastically equicontinuous for ı′pj ≤ 2r.
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In turn, (A1) together with Assumptions 1.4 and 1.5 imply that by the law of large numbers:

n−1L[j1,j2,j3]
n (φ0, 0, 0, ,λ) = Op(1) for j1 + j2 + j3 ≤ 2r.

Further, we have that

n−1L[j1,j2,j3]
n (φ, 0, 0,λ) = n−1L[j1,j2,j3]

n (φ0, 0, 0,λ) + op(1) = Op(1) for j1 + j2 + j3 ≤ 2r

by stochastic equicontinuity together with the fact that φ̃ − φ0 = Op(n
− 1
2 ) because the RMLE

has an asymptotically normal distribution under our assumptions. As a result, A6n, A8n, A10n,
A13n, A14n, A17n, A18n, A19n are op(1).

Next, notice that

1√
n
L[0,0,r+j]
n (φ0, 0, 0,λ) = Op(1),

1√
n
L[0,1,j]
n (φ0, 0, 0,λ) = Op(1)

and
1√
n
L[1,0,j]
n (φ0, 0, 0,λ) = Op(1)

for j = 1, ..., r − 1 under Assumptions 1.4, 1.5 and 2.1, together with Corollary 1 in Rotnitzky
et al. (2000, page 268). Consequently, the Taylor expansion

1√
n

[L[0,0,r+j]
n (φ̃, 0, 0,λ)− L[0,0,r+j]

n (φ0, 0, 0,λ)] =
1

n
L[1,0,r+j]
n (φ0 + ε̄, 0, 0,λ)

√
n(φ̃− φ0) = Op(1)

implies that

1√
n
L[0,0,r+j]
n (φ̃, 0, 0,λ) =

1√
n
L[0,0,r+j]
n (φ0, 0, 0,λ) +Op(1) = Op(1),

so that A2n = op(1). An analogous argument implies that A11n and A15n are also op(1).
Regarding A3n, we have that

n−1L[0,0,2r]
n (φ0, 0, 0,λ) = −1

2
Iθrθr(φ0,λ) +Op(n

− 1
2 ) (A2)

because of Corollary 1(c) in Rotnitzky et al. (2000). On the other hand,

1

n

∣∣∣L[0,0,2r]
n (φ̃, 0, 0,λ)− L[0,0,2r]

n (φ0, 0, 0,λ)
∣∣∣ ≤ |φ̃− φ0|

1

n

∑
i

g(Y i) = Op(n
− 1
2 )

by virtue of Assumption 1.6. As a consequence,

1

n
L[0,0,2r]
n (φ̃, 0, 0,λ) =

1

n
L[0,0,2r]
n (φ0, 0, 0,λ) +Op(n

− 1
2 ). (A3)

If we then combine (A2) and (A3), we end up with

A3n =
1

n
L[0,0,2r]
n (φ̃, 0, 0,λ) = −1

2
Iθrθr(φ0,λ) +Op(n

− 1
2 ). (A4)

Next, given that

sup
(φ,0,0)∈N

∣∣∣∣∂Iθrθr(φ,λ)

∂φ

∣∣∣∣ <∞
in view of Assumptions 1.7, if we take a Taylor expansion we obtain∣∣∣Iθrθr(φ̃,λ)− Iθrθr(φ0,λ)

∣∣∣ ≤ sup
(φ,0,0)∈N

∣∣∣∣∂Iθrθr(φ,λ)

∂φ′

∣∣∣∣ |φ̃− φ0| = Op(n
− 1
2 ). (A5)
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Therefore, if we combine (A4) and (A5) we get

A3n = −1

2
Iθrθr(φ̃,λ) +Op(n

− 1
2 ).

Similarly, we can also show that

A5n = −1

2
Iθ1θ1(φ̃) +Op(n

− 1
2 ), A7n = −1

2
Iφφ(φ̃) +Op(n

− 1
2 ),

A9n = −Iθ1φ(φ̃) +Op(n
− 1
2 ), A12n = −Iθrφ(φ̃) +Op(n

− 1
2 ) and A16n = −Iθ1θr(φ̃) +Op(n

− 1
2 ).

Regrouping terms, we obtain

Ln(φ̃+ φ, θ1, η,λ)− Ln = n
1
2 ηr(A1n + n

1
2 ηrA3n) + n

1
2 θ1(A4n +A5nn

1
2 θ1) + nφ2A7n

+ nθ1φA9n + n
1
2 θ1η

rA12n + nφηrA16n + op[h(φ, θ1, η)]

=

 n
1
2φ

n
1
2 θ1

n
1
2 ηr


′ 1√

n

 0
Sθ1
L[0,r]
n

− 1

2

 Iφφ Iφθ1 Iφθr
I ′φθ1 Iθ1θ1 Iθ1θr
I ′φθr I

′
θ1θr

Iθrθr


 n

1
2φ

n
1
2 θ1

n
1
2 ηr




+ op[h(φ, θ1, η)]

as desired.
Regarding (b), when (n

1
2φ, n

1
2 θ1, n

1
2 ηr) = Op(1) we have that part (a) trivially implies

LRn (wn) = ET n (wn) +Op(n
− 1
2r )

because (i) the remainder terms are Op(n−
1
2r ) by Assumption 1.6; (ii) A2n, A6n, A8n, A10n,

A11n, A13n, A14n, A15n, A17n, A18n and A19n are Op(n−
1
2r ) as all the terms inside curly brackets

are Op(1); and (iii) A3n, A5n, A7n, A9n, A12n and A16n converge to the asymptotic variance
function evaluated at (φ̃,λ) at the rate n−1/2. �

Lemma 2 Let wET = (φET ,θET1 , ηET ,λET ) = arg maxw ET (w). If Assumptions 1 and 2 hold,
then (φET ,θET1 , ηET )

p−→ 0 and h(φET ,θET1 , ηET ) = Op(1).

Proof. In this proof, we omit all arguments when evaluated at the RMLE, except λ when
necessary. Given that

ET n(w) = 2

 n
1
2φ

n
1
2θ1

n
1
2 ηr


′
 0

n−
1
2Sθ1

n−
1
2L[0,r]

n

− 1

2

 Iφφ Iφθ1 Iφθr
Iθ1φ Iθ1θ1 Iθ1θr
Iθrφ Iθrθ1 Iθrθr


 n

1
2φ

n
1
2θ1

n
1
2 ηr




= 2

(
n
1
2θ1

n
1
2 ηr

)′(
n−

1
2Sθ1

n−
1
2L[0,r]

n

)
−
(
n
1
2θ1

n
1
2 ηr

)′(
Iθ1θ1 Iθ1θr
Iθrθ1 Iθrθr

)(
n
1
2θ1

n
1
2 ηr

)

− n
1
2φ′Iφφn

1
2φ− n

1
2φ′

(
Iφθ1 Iφθr

)( n
1
2θ1

n
1
2 ηr

)
−
(
n
1
2θ1

n
1
2 ηr

)′(
Iθ1φ
Iθrφ

)
n
1
2φ

is a quadratic form in φ, its maximizer φET will be given by

n
1
2φET (θET1 , ηET ) = −I−1

φφ

[
Iφθ1 Iφθr

] [ θET1

(ηr)ET

]
. (A6)
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Hence,

ET n(wET ) =

[
n
1
2θET1

n
1
2 (ηr)ET

]′{
2

[
n−

1
2Sθ1

n−
1
2L[0,r]

n (λET )

]
−
(
Vθ1θ1 Vθ1θr
Vθrθ1 Vθrθr

)[
n
1
2θET1

n
1
2 (ηr)ET

]}
,

where Vθrθ1(λ) =
(
λ⊗r

)′
Vθrθ1 , Vθrθr(λ) =

(
λ⊗r

)′
Vθrθrλ

⊗r.
When r is odd, the maximizer is trivially{
n
1
2θET1 (λET )

n
1
2 [ηET (λET )]r

}
=

[
Vθ1θ1 Vθ1θr(λET )

Vθrθ1(λET ) Vθrθr(λET )

]−1
[

n−
1
2Sθ1

n−
1
2L[0,r]

n (λET )

]
= Op(1). (A7)

By (A6) and (A7), we have h(φET ,θET1 , ηET ) = Op(1). We can also show that

ET n
(
wET

)
=

[
n−1/2Sθ1

n−1/2L[0,r]
n (λET )

]′
V−1
θθ (λET )

[
n−1/2Sθ1

n−1/2L[0,r]
n (λET )

]
=

1

n
S′θ1V

−1
θ1θ1

Sθ1 +
1

n
Q(λET )

=
1

n
S′θ1V

−1
θ1θ1

Sθ1 +
1

n
sup‖λ‖=1Q(λ).

When r is even, ηr is non-negative. Hence, if Dn(λET ) = L[0,r]
n (λET )−Vθrθ1(λET )V −1

θ1θ1
Sθ1 ≥ 0,

then the maximizer will be the same as before. In contrast, when Dn(λET ) < 0,

n
1
2θET1 = V −1

θ1θ1
n−1/2Sθ1 = Op(1) and n

1
2
(
ηET

)r
= 0. (A8)

As a consequence,

ET n(wET ) =
1

n
S′θ1 [Vθ1θ1 ]

−1 Sθ1 +
1
n [Dn(λET )]21

[
Dn(λET ) ≥ 0

]
Vθrθr − Vθrθ1V −1

θ1θ1
Vθr

=
1

n
S′θ1V

−1
θ1θ1

Sθ1 +
1

n
Q(λET )1[Dn(λET ) ≥ 0]

=
1

n
S′θ1V

−1
θ1θ1

Sθ1 +
1

n
sup‖λ‖=1{Q(λ)1[Dn(λET ) ≥ 0]},

so by (A6) and (A8) we have that (φET ,θET1 , ηET )
p−→ 0 and h(φET ,θET1 , ηET ) = Op(1). �

Lemma 3 Let wLR = (φLR,θLR1 , ηLR,λLR) = arg maxw LR(w). If Assumptions 1 and 2 hold,
then [n

1
2φLR, n

1
2θLR1 , n

1
2

(
ηLR

)r
] = Op(1).

Proof. First, Assumptions 1.1, 1.2, 1.3 combined with Theorem 2.5 in Newey and McFadden
(1994) allow us to prove that ρ̂− ρ0 = (φ̂−φ0, θ̂1, θ̂r) = op(1), and φ̃−φ0 = op(1). Therefore,
we have (φ̂ − φ̃, θ̂1, θ̂r) = op(1), which implies that (φLR,θLR1 , ηLR) = op(1). Again, in what
follows we omit the arguments when evaluated at the RMLE. Recall that,

LR(w) = 2

 n
1
2φ

n
1
2θ1

n
1
2 ηr


′ 
 0

n−
1
2Sθ1

n−
1
2L[0,r]

n

− I(φ̃, λ)
1

2

 n
1
2φ

n
1
2θ1

n
1
2 ηr




+ op[h(φ,θ1, η)]

= 2t′l− t′It+ op[h(φ,θ1, η)],
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where

I(φ, λ)=

 Iφφ(φ) Iφθ1(φ) Iφθr(φ,λ)
Iθ1φ(φ) Iθ1θ1(φ) Iθ1θr(φ,λ)
Iθrφ(φ,λ) Iθrθ1(φ,λ) Iθrθr(φ,λ)



t =

 n
1
2φ

n
1
2θ1

n
1
2 ηr

 , tLR =

 n
1
2φLR

n
1
2θLR1

n
1
2 (ηr)LR

 and l =

 0

n−
1
2Sθ1

n−
1
2L[0,r]

n

 . (A9)

Next, we want to show that ∀ε > 0, ∃M > 1 such that ∀n, Pr
(∥∥tLR∥∥ ≤M) ≥ 1− ε. Or in

other words, that ∀ε > 0, ∃N such that ∀n > N , Pr(||tLR|| > M) < ε.
First, let τ = (τ1, . . . , τK) and definem as the smallest value of 1

4τ
′I(φ,λ)τ that satisfies the

following three conditions: ||λ|| = 1, maxk |τk| = 1 and (φ,0) ∈ N . It is then straightforward
to see that m > 0 because I is positive definite for all ‖λ‖ = 1 and all feasible φ. Let Rn(w) =

LRn(w)− ET n(w) be the remainder. As discussed before,
(
φLR,θLR1 , ηLR

)
= op(1).

As a consequence, we can use Lemma 1 to prove that

Rn(wLR)

max
{

1, ||tLR||2
} = op(1).

Thus, we have proved that ∀ε > 0, ∃N such that for all ∀n > N ,

Pr

(∣∣∣∣∣ Rn(wLR)

max
{

1, ||tLR||2
}∣∣∣∣∣ > 2m

)
<
ε

2
. (A10)

On the other hand, given that l is Op(1), ∃M > 1 such that for all n,

Pr
(
ı′p−qr+1 |l| ≥ mM

)
<
ε

2
. (A11)

Let tM = maxk
∣∣tLRk ∣∣. We then have

Pr
(
||tLR|| > M

)
= Pr

(
||tLR|| > M , LRn(wLR) ≥ 0

)
≤ Pr

(
tM > M, ET n(wLR) +Rn(wLR) ≥ 0

)
= Pr

(
tM > M,

ET n(wLR)

t2M
+
Rn(wLR)

t2M
≥ 0

)
= Pr

(
tM > M,

ET n(wLR)

t2M
+
Rn(wLR)

t2M
≥ 0,

∣∣∣∣Rn(wLR)

t2M

∣∣∣∣ ≤ 2m

)
+ Pr

(
tM > M,

ET n(wLR)

t2M
+
Rn(wLR)

t2M
≥ 0,

∣∣∣∣Rn(wLR)

t2M

∣∣∣∣ > 2m

)
≤Pr

(
tM >M,

ET n(wLR)

t2M
+2m≥0

)
+P

(
tM >M,

∣∣∣∣Rn(wLR)

t2M

∣∣∣∣>2m

)
, (A12)
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where the first equality follows from Pr
(
LRn(wLR) ≥ 0

)
= 1, the first inequality from the

definition of tM and Rn(wLR), and the rest are trivial. But then,

(A12) ≤ Pr

(
tM > M,

1

tM

tLR′

tM
l− 1

2

tLR

tM
I t

LR

tM
+m ≥ 0

)
+ Pr

(∣∣∣∣∣ Rn(wLR)

max
{

1, ||tLR||2
}∣∣∣∣∣ > 2m

)

≤ Pr

[
tM > M, ı′p−qr+1 |l| ≥

(
1

2

tLR′

tM
I t

LR

tM
−m

)
tM

]
+
ε

2

≤ Pr
(
ı′p−qr+1 |l| ≥ mM

)
+
ε

2

≤ ε

2
+
ε

2
= ε,

where the first inequality uses the definition of ET and M > 1, the second one follows from
(A10), the third one from the definition of m and the last one is implied by (A11). �

Lemma 4 Under Assumptions 1 and 2, LRn(wLR)− ET n(wET ) = Op(n
− 1
2r ).

Proof. We want to show that for all ε > 0, there exists a constant Kε such that

inf
n

Pr
(∣∣LRn(wLR)− ET n(wET )

∣∣ ≤ Kεn
− 1
2r

)
≥ 1− ε.

To do so, first notice that we can find a constant M such that for all n,

Pr[h(φLR,θLR1 , ηLR) ≤M,h(φET ,θET1 , ηET ) ≤M ] ≥ 1− ε

2
,

because h(φLR,θLR1 , ηLR) = Op(1) and h(φET ,θET1 , ηET ) = Op(1). Defining

S = {(φ,θ1, η) |h(φ,θ1, η) ≤M } ,

we have that

1− ε

2
≤ inf

n
Pr

(∣∣LRn(wLR)− ET n(wET )
∣∣ =

∣∣∣∣sup
w∈S
LRn(w)− sup

w∈S
ET n(w)

∣∣∣∣)
≤ inf

n
Pr

(∣∣LRn(wLR)− ET n(wET )
∣∣ ≤ ∣∣∣∣sup

w∈S
LRn(w)− sup

w∈S
ET n(w)

∣∣∣∣)
≤ inf

n
Pr

(∣∣LRn(wLR)− ET n(wET )
∣∣ ≤ sup

w∈S
|LRn(w)− ET n(w)|

)
= inf

n
Pr (An) , (A13)

with

An =

{∣∣LRn(wLR)− ET n(wET )
∣∣ ≤ sup

w∈S
|LRn(w)− ET n(w)|

}
,

where the first inequality follows from

Pr
(
wLR ∈ S,wET ∈ S

)
≤ Pr

(∣∣LRn(wLR)− ET n(wET )
∣∣ =

∣∣∣∣sup
w∈S
LRn(w)− sup

w∈S
ET n(w)

∣∣∣∣)
the second inequality is trivial, and the third inequality is a property of the sup operator.
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Next, we have to prove that

sup
w∈S
|LRn(w)− ET n(w)| = Op(n

− 1
2r ).

To do so, assume instead that supw∈S |LR(w)− ET (w)| 6= Op(n
− 1
2r ). Let

w∗ = sup
w∈S
|LRn(w)− ET n(w)| .

Since S = {(φ,θ1, η) |h(φ,θ1, η) ≤M }, we have h(w∗) = Op(1), but then,

|LRn(w∗)− ET n(w∗)| = sup
w∈S
|LRn(w)− ET n(w)| 6= Op(n

− 1
2r ),

which contradicts Lemma 1. Thus, we have that for all ε > 0 there exists a constant Kε such
that

inf
n

Pr(Bn) =

(
sup
w∈S
|LRn(w)− ET n(w)| ≤ Kεn

− 1
2r

)
≥ 1− ε

2
, (A14)

where

Bn =

{
sup
w∈S
|LRn(w)− ET n(w)| ≤ Kεn

− 1
2r

}
.

As a consequence,

inf
n

Pr
(∣∣LRn(wLR)− ET n(wET )

∣∣ ≤ Kεn
− 1
2r

)
≥ inf

n
Pr (An ∩Bn)

≥ inf
n

(Pr(An) + Pr(Bn)− 1) ≥ inf
n

Pr(An) + inf
n

Pr(Bn)− 1

≥
(

1− ε

2

)
+
(

1− ε

2

)
− 1 = 1− ε,

where the first equality follows from the definition of An and Bn, the second inequality from
1 ≥ P (A∪B) = P (A) +P (B)−P (A∩B), the third inequality is a property of the inf operator,
and the fourth inequality is a consequence of (A13) and (A14). �

Lemma 5 Multivariate Faa di Bruno’s formula (see Constantine and Savits (1996) for
details) The arbitrary partial derivative of a composition of functions

l(x1, ..., xd) = log[f(x1, ..., xd)]

is given by

l[v] =
∑

1≤h≤ι′dv
(−1)h+1

∑
s=1:h
ps(v,h)

s∏
a=1

1

ma!

(
f [ka]

f

)ma
,

where

ps(v, h)=

{
(m1, ...,ms;k1, ...,ks) :ma>0,0≺k1≺ ...≺ ks,

s∑
a=1

ma=h and
s∑

a=1

maka=v

}
, (A15)

with ≺ being defined as in Constantine and Savits (1996, p. 505).

To simplify notation, in what follows we shall only present proofs without nuisance parame-
ters and only two θ′s. Thus, C = {(i1, j1), ..., (iK , jK)}. When we say that (i, j) > C, we mean
that ∃(i′, j′) ∈ C such that (i, j) > (i′, j′). By (i, j) < C we mean l[i

′,j′](Y,0 ) = 0 ∀(i′, j′) such
that (i′, j′) ≤ (i, j). And we can verify that ∀(i, j), we have (i, j) ∈ C, (i, j) < C or (i, j) > C.
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Corollary 1 Under Assumption 3, for (i, j) ∈ C or (i, j) < C, we have l[i,j] = f [i,j]

f evaluated
at the null.

Lemma 6 Let t be a K× 1 vector such that its kth element is tk = n
1
2 θik1nθ

jk
2n, with (ik, jk) ∈ C.

Under Assumptions 1 and 3, if θ1n = op(1) and θ2n = op(1), then:

LRn(θn) = ET n(θn) + op(max{1, ||t||2}), (A16)

where
LRn(θ) = 2 [Ln(θ)− Ln(0)]

and

ET n(θ) = 2


n
1
2 θi11 θ

j1
2

n
1
2 θi21 θ

j2
2

...
n
1
2 θiK1 θjK2


′

n−
1
2L

[i1,j1]
n

n−
1
2L

[i2,j2]
n
...

n−
1
2L

[iK ,jK ]
n

−


n
1
2 θi11 θ

j1
2

n
1
2 θi21 θ

j2
2

...
n
1
2 θiK1 θjK2


′

Iθθ


n
1
2 θi11 θ

j1
2

n
1
2 θi21 θ

j2
2

...
n
1
2 θiK1 θjK2

 . (A17)

Moreover, if ‖t‖ = Op(1), then

LRn(θn) = ET n(θn) +Op(n
−1/2a),

where a = max{a1, a2}, with a1, a2 defined in Assumption 3.2.

Proof. Let M = max {i1 + j1, ..., iK + jK} and consider a 2M th order Taylor expansion of
L(θn) around 0 in terms of (θ1n, θ2n). In what follows, we omit the subscript n from θn for
simplicity, and the omitted argument is 0. For terms (i, j) such that (i, j) < C, we have L[i,j]

n = 0

by the definition of C. Further, E(l[i,j]) = 0 for (i, j) ∈ C because of Lemma 5 and Corollary 1.
In the Taylor expansion, the corresponding term is(

n−
1
2
∂i+jLn

∂θi1∂θ
j
2

)
n
1
2 θi1θ

j
2,

which belongs to the first summand of ET n(θn) in (A17).
For those pairs (i, j) such that (i, j) > C, if l[i,j] 6= 0 and E(l[i,j]) = 0, then the corresponding

term in the Taylor expansion is again(
n−

1
2
∂i+jLn

∂θi1∂θ
j
2

)
n
1
2 θi1θ

j
2. (A18)

Since (i, j) > C, we can find (i′, j′) < (i, j) such that the associated term(
n−

1
2
∂i
′+j′Ln

∂θi
′

1 ∂θ
j′

2

)
n
1
2 θi
′

1 θ
j′

2

dominates the (i, j) term because θ1, θ2 = op(1), which means that (A18) is op(max{1, ||t||2}).
On the other hand, when E(l[i,j]) 6= 0, Lemma 5 implies that

E(l[i,j]) = E

 ∑
1≤h≤i+j

(−1)h+1
∑
s=1:h

ps[(i,j),h]

s∏
a=1

1

ma!

(
f [ka]

f

)ma

= E

− ∑
s=1:2

ps[(i,j),2]

s∏
a=1

1

ma!

(
f [ka]

f

)ma
+

∑
2<h≤i+j

(−1)h+1
∑
s=1:h

ps[(i,j),h]

s∏
a=1

1

ma!

(
f [ka]

f

)ma ,

34



where ps[(i, j), h] is defined in (A15). The first equality is a direct consequence of Lemma 5,
while the second one follows from splitting {1 ≤ h ≤ i+j} into {1 ≤ h ≤ 2} and {2 < h ≤ i+j},
together with the fact that when h = 1,

(−1)h+1
∑
s=1:h

ps[(i,j),h]

E

[
s∏

a=1

1

ma!

(
f [ka]

f

)ma]
=

∑
s=1:1

ps[(i,j),1]

E

(
f [i,j]

f

)
= 0.

In this context, the law of large numbers and Corollary 1(c) in Rotnitzky et al (2000) imply
that the (i, j)th term in the Taylor expansion will be given by

(n−1L[i,j]
n )nθi1θ

j
2 = −

∑
s=1:2

ps[(i,j),2]

E

[
s∏

a=1

1

ma!

(
f [ka]

f

)ma]
nθi1θ

j
2

+
∑

2<h≤i+j
(−1)h+1

∑
s=1:h

ps[(i,j),h]

E

[
s∏

a=1

1

ma!

(
f [ka]

f

)ma]
nθi1θ

j
2

+Op(n
− 1
2 max{1, |nθi1θ

j
2|}).

Consequently, if h = 2 and s = 1 then m1 = 2. If either i or j are odd, then p1[(i, j), 2] = ∅.
If instead i, j are both even, then p1[(i, j), 2] = {[2; ( i2 ,

j
2)]}; see (A15). When ( i2 ,

j
2) ∈ C, then

the corresponding term is

−1

2
E

(f [ i
2
, j
2

]

f

)2
nθi1θj2 = −1

2
V (l[

i
2
, j
2

])nθi1θ
j
2, (A19)

which belongs to the second summand of (A17). In turn, if ( i2 ,
j
2) 6∈ C, then either (i) ( i2 ,

j
2) > C,

which means that ∃(i′, j′) ∈ C such that (i′, j′) < ( i2 ,
j
2), in which case the LHS of (A19) is

dominated by −1
2V ar(l

[i′,j′])nθ2i′
1 θ2j′

2 ; or (ii) ( i2 ,
j
2) < C, in which case the LHS of (A19) must

be equal to zero because l[
i
2
, j
2

] = 0.
Consider next h = 2, s = 2, m1 = m2 = 1, (i, j) = k1 + k2. If k1,k2 ∈ C, then the

corresponding term is

−E
(
f [k1]

f

f [k2]

f

)
nθi1θ

j
2 = −Cov(l[k1], l[k2])nθi1θ

j
2, (A20)

which also belongs to the second summand of (A17). If either C > k1 or C > k2, then the LHS
of (A20) is equal to zero. Next, we look at the cases in which k1 ≥ C and k2 > C or k2 ≥ C

and k1 > C. Specifically, if we can find a pair (i′, j′) ∈ C such that k1 ≥ (i′, j′) and another
pair (i′′, j′′) ∈ C such that k2 ≥ (i′′, j′′) so that k2 > (i′′, j′′) if k1 = (i′, j′) and vice versa, then
the LHS of (A20) is dominated by the largest of nθ2i′

1 θ2j′

2 and nθ2i′′
1 θ2j′′

2 . Consequently,∣∣∣∣∣E
(
f [k1]

f

f [k2]

f

)
nθi1θ

j
2

∣∣∣∣∣ = op[max(1, |nθi′+i′′1 θj
′+j′′

2 |)]

= op{max[1, n(θ2i′
1 θ2j′

2 + θ2i′′
1 θ2j′′

2 )]} (A21)

= op[max(1, ‖t‖2)].

Finally, consider h ≥ 3. In this case, either there exists a j such that kj < C, in which case

E
[∏s

j=1
1
mj !

(
f [kj ]

f

)mj]
= 0, or kj ≥ C for all j, in which case E

[∏s
j=1

1
mj !

(
f [kj ]

f

)mj]
nθi1θ

j
2

will be dominated by the second summand of (A17), as in (A21).
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The remainder terms, which correspond to all those indices that satisfy (i+j) = 2r, are such
that

|δ[i,j]| = |n−1[L[i,j]
n (θ̄)− L[i,j]

n ]||nθi1θ
j
2| = op(max{1, nθi1θ

j
2}) = op(max{1, ||t||2}) (A22)

because |n−1[L
[i,j]
n (θ̄) − L[i,j]

n ]| ≤ ||θ̄||n−1
∑

i g(yi) = op(1) since ||θ̄|| = Op(n
−1/a), where a =

max(a1, a2) and |n−1
∑

i g(yi)| = Op(1) by Assumption 1.6. But given that (A22) contains the
last terms in the 2M th order Taylor expansion of L(θn) around 0, (A16) holds.

Let us now turn to the second part of the lemma, in which we further assume that ‖t‖2 =

Op(1). We then have θ1 = Op(n
−1/2a1) and θ2 = Op(n

−1/2a2) because (a1, 0) ∈ C and (0, a2) ∈
C, which has important implications for the different terms of the expansion. First, notice that
we do not make any approximation for the leading terms with (i+ j) ≤ 2r in the first summand
of (A17). In addition, we can write those (i, j)th terms that are not included in the first two
summands of (A17) as Op(1) ·θk11 θ

k2
2 with k1 +k2 ≥ 1, which implies that they are Op(n−1/a). As

for the rest of the leading terms, i.e. those whose (i, j)-th term belongs to the second summand
of (A17), we can approximate 1

nL
[i,j] by its expectation, where the convergence rate is Op(n−1/2)

as shown by Rotnitzky at al (2000). Finally, we can easily see that Assumption 1.6 implies that
δ[i,j] = Op(n

−1/a) for the remainder terms of (A17). Therefore,

LRn(θ) = ET n(θ) +Op(n
−1/a)

when ‖t‖ = Op(1), as desired. �

Lemma 7 Under Assumptions 1 and 3, tET = Op(1), where

tETk = n
1
2 (θET1 )ik(θET2 )jk and θET = arg max

θ
ET n(θ).

Proof. We want to show that ∀ε > 0, ∃M > 0 such that infn Pr
(∥∥tET∥∥ ≤M) ≥ 1 − ε.

Specifically, let tk = n
1
2 θik1 θ

jk
2 , t̃ = I

1
2
θθt, lk = n−1/2L[ik,jk], l̃ = I

− 1
2

θθ l, T = {t|tk = n
1
2 θik1 θ

jk
2 },

T̃ = {I
1
2
θθt|t ∈ T} and t̃

ET
= I

1
2
θθt

ET , so that

ET n(θ) = 2t′I
1
2
θθI
− 1
2

θθ l− t
′I

1
2
θθI

1
2
θθt = 2t̃

′
l̃− t̃′t̃. (A23)

Then, it is suffi cient to show that t̃ETk = Op(1) for all k.

It is easy to see that l̃ d−→ N(0, Ik) by the central limit theorem, so that l̃k = Op(1) ∀k. As a
result, we will have that ∀ε > 0, ∃M1 such that for all n,

Pr(|l̃k| ≤M1) ≥ 1− ε

2
. (A24)

In addition, we have

0 ≤ sup
t̃−k∈T̃−k

(∑
−k

2t̃a l̃a − t̃2a

)
≤ sup
t̃−k

(∑
−k

2t̃a l̃a − t̃2a

)
≤ l̃′−k l̃−k = Op(1),

where the last equality follows from l̃
′
−k l̃−k

d−→ χ2
K−1. Hence, there exists M2 > 0 such that

inf
n

Pr

[
sup

t̃−k∈T̃−k

(∑
−k

2t̃a l̃a − t̃2a

)
< M2

]
≥ 1− ε

2
. (A25)
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Next, choose M large enough such that 1
2

(
M − M2

M

)
≥M1. We then have that

Pr
(
|t̃ETk | ≤M

)
≥ Pr

(
sup

t̃∈T̃ ,|t̃k|≥M
ET n(t̃) < sup
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)]
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}
, (A26)

where the first inequality follows from the definition of t̃
ET
, the second one exploits the fact

that Pr(supt̃∈T̃ ,|t̃k|≤M ET n(t̃) ≥ 0) = 1, and the last one follows directly from (A23).

In addition, we can write

(A26) ≥ Pr
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+ Pr

[(
sup

t̃,|t̃k|≥M
2t̃k l̃k − t̃2k ≤ −M2

)
∧ (|l̃k| > M)

]
− ε

2
, (A28)

where the first inequality is trivial, the second one makes use of Pr(A∧B) ≥ Pr(A) + Pr(B)−1,
the third one is also trivial, and the last one changes the domain of the first two terms and uses
(A25). Thus,

(A27) + (A28) ≥ Pr
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|l̃k| ≤

1

2

(
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}
+ Pr[(l̃2k ≤ −M2) ∧ |l̃k| > M ]− ε

2

≥ Pr

{[
|l̃k| ≤

1

2

(
M − M2

M

)]
∧ |l̃k| ≤M

}
+ 0− ε

2

≥ Pr

[
|l̃k| ≤

1

2

(
M − M2

M

)]
− ε

2

≥ Pr(|l̃k| ≤M1)− ε

2

=
(
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where the first inequality is a consequence of replacing t̃ with its optimal value, the second
inequality follows from the fact that Pr[(l̃2k ≤ −M2) ∧ |l̃k| > M ] = 0, the third and fourth ones
follow from M1 ≤ 1

2

(
M − M2

M

)
< M and the fifth inequality from (A24). By (A26), (A27) and

(A28), we can easily show that for all k, ∃M > 0 such that Pr
(
|t̃ETk | ≤M

)
≥ 1− ε. Therefore,

t̃
LM

= Op(1) and tLM = Op(1) because of the proportionality between t̃
LM

and tLM . �

Lemma 8 Under Assumptions 1 and 3, tLR = Op(1), where

tLRk = n
1
2 (θLR1 )ik(θLR2 )jk .

Proof. The regularity conditions in Assumptions 1.1 and 3 guarantee that θLR1 , θLR2 = op(1).
Consequently, the proof is same as the part of the proof of Lemma 3 that follows (A9) with
w = (θ1, θ2) and wLR = (θLR1 , θLR2 ), but invoking Lemma 4 instead of Lemma 1. �

Lemma 9 Under Assumptions 1 and 3, we have that

LR(θLR) = ET (θET ) +Op(n
−1/2a), a = max(a1, a2).

Proof. The proof is entirely analogous to the one of Lemma 6, but replacing (φ,θ1, η) with
(θ1, θ2) and h(φ,θ1, η) with max {1, ||t||}. �

Theorem 1

We can apply Lemma 1 because of Assumptions 1 and 2. The same assumptions allow us
to apply Lemma 2 so that

ET n(wET
n ) =

1

n
S′θ1nV

−1
θ1θ1

Sθ1n +
1

n
sup
θr 6=0

{
Qn (θr) if r is odd
Qn (θr) 1

[
θ⊗r′r Drn ≥ 0

]
if r is even.

Moreover, by definition we have that,

LRn(wLR) = supw2
[
Ln(φ+ φ̃,θ1,λη)− Ln(ρ̃)

]
= 2 [Ln(ρ̂)− Ln(ρ̃)] .

Finally, invoking Lemma 4,

LRn(wLR
n ) = ET n(wET

n ) +Op(n
− 1
2r ),

which is equivalent to
LRn = GETn +Op(n

− 1
2r ),

as desired. �

Theorem 2

Again, notice that by definition LR(θLR) = 2 [L(ρ̂)− L(ρ̃)]. Then, we have

ET (wET
n ) = supθ2

 n
1
2θjθ1

...
n
1
2θjθK


′

n−
1
2L

[0p−q ,jθ1]
n
...

n−
1
2L

[0p−q ,jθK ]
n

−
 n

1
2θjθ1

...
n
1
2θjθK


′

Vθθ

 n
1
2θjθ1

...
n
1
2θjθK


Finally, invoking Lemma 9, we obtain

LR(wLR
n ) = ET (wET

n ) +Op(n
− 1
2a ),

which is equivalent to LRn = GETn +Op(n
− 1
2a ). �
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Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
multivariate Gaussian versus skew normal test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Bivariate
n = 400

GET 1.0 4.9 10.2 9.9 24.2 35.3 10.1 25.0 35.8
LM-AA 0.9 5.0 9.9 5.5 16.4 26.2 8.8 22.4 33.3
GMM 1.0 4.9 9.7 9.4 23.7 35.0 9.4 24.5 35.6
Margins 1.1 4.9 10.2 2.1 8.0 15.4 5.3 14.6 23.9

n = 1, 600
GET 1.0 5.3 10.4 61.9 79.4 85.5 61.8 80.4 86.8
LM-AA 1.0 5.2 10.2 30.5 54.5 65.6 47.2 70.4 79.5
GMM 1.0 5.4 9.5 56.5 77.7 85.3 56.1 77.7 85.4
Margins 1.2 5.0 9.8 5.8 16.6 25.3 22.6 43.2 55.5

Panel B: Trivariate
n = 400

GET 0.7 4.5 9.5 6.2 18.5 28.7 5.8 18.2 28.3
LM-AA 1.1 5.2 10.0 3.1 10.5 18.2 3.7 12.6 20.6
GMM 1.1 4.7 9.4 5.6 17.0 26.0 5.5 16.3 25.5
Margins 1.2 5.0 10.0 1.8 6.3 11.4 1.6 6.2 12.1

n = 1, 600

GET 1.0 4.9 10.0 51.6 70.7 79.9 50.6 70.6 80.2
LM-AA 1.2 5.1 9.8 12.4 28.3 39.4 18.2 37.3 48.5
GMM 0.9 4.8 9.4 38.2 61.4 71.8 37.9 61.7 72.1
Margins 1.1 5.0 9.8 2.2 8.1 14.5 3.5 10.5 18.1

Notes: Results based on 10,000 samples. Panel A and B report rejection rates for bivariate and trivariate
models, respectively. The mean and variance parameters ϕM and ϕV are estimated under the null
using the sample mean and covariance matrix, respectively. LM-AA denotes the Lagrange multiplier
test based on the score of the skewness parameters under the parametrization proposed in Arellano-
Valle and Azzalini (2008). GMM refers to the J-test based on the influence functions underlying GET.
Margins denotes tests on marginal skewness —a là Jarque-Bera— for each of the components. Finite
sample critical values are computed by simulation. DGPs: the true mean and covariance matrix of the
generated data are set to 0 and Ik, respectively, under both the null and alternative hypotheses. As for

the alternative hypotheses, in the bivariate case Ha1 : ϑ′ =
(√

3
2 ,

√
3
2

)
and Ha2 : ϑ′ =

(√
3
10 , 2

√
3
10

)
,

while Ha1 : ϑ′ =
(√

2
2 ,

√
2
2 ,

√
2
2

)
and Ha2 : ϑ′ =

(
1√
6
, 2√

6
, 2√

6

)
in the trivariate case.
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Table 2: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 400

GET 1.1 5.0 10.2 22.6 55.8 69.7 23.9 55.8 69.8
KS 0.8 4.6 9.4 1.1 5.4 10.8 1.1 5.6 10.7
KT-AS 1.0 5.0 9.7 27.7 50.8 63.5 30.0 53.6 66.0
GMM 1.0 5.2 10.1 5.6 43.0 62.0 5.2 45.0 62.7

n = 1, 600

GET 1.0 4.8 9.6 95.3 99.5 99.8 94.6 99.2 99.8
KS 1.1 5.1 10.4 2.0 7.7 14.5 2.4 9.4 17.0
KT-AS 1.1 4.9 10.0 79.8 93.4 96.5 83.8 95.1 97.6
GMM 1.1 5.0 9.8 55.9 97.9 99.6 57.1 97.8 99.3

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter
ϕ is estimated under the null using the Gaussian rank correlation estimator described in Amengual,
Sentana and Tian (2019). KS denotes the Kolmogorov—Smirnov test for copula models (see Rémillard
(2017) for details) while KT—AS is the Kuhn-Tucker test based on the score of the symmetric Student t
copula (see Amengual and Sentana (2018) for details). GMM refers to the J-test based on the influence
functions underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The
correlation parameter ϕ is set to 0.5 under both the null and alternative hypotheses. As for the alternative
hypotheses, Ha1 and Ha2 correspond to Hermite expansion copulas with ϑ

′ = (0.04, 0, 0, 0, 0) and ϑ′ =
(0.02, 0, 0, 0, 0.02), respectively.
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Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for white
noise versus a purely nonlinear regression

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 400

GET 1.0 5.1 10.1 9.3 24.4 36.7 33.0 56.3 68.9
GET2 1.1 5.3 10.1 8.0 21.8 32.4 31.5 54.7 66.2
OLS1 1.0 4.9 10.0 5.3 16.7 25.6 1.7 7.8 14.0
OLS2 1.1 5.1 10.0 3.6 12.1 19.8 20.1 40.4 53.1
GMM 1.0 5.2 10.4 6.9 19.8 30.1 27.9 51.6 64.0

n = 1, 600

GET 1.1 5.3 9.5 70.3 88.0 92.8 82.7 93.9 96.6
GET2 1.0 5.3 9.7 68.8 86.5 91.7 81.8 93.1 96.2
OLS1 0.9 4.9 9.9 48.9 72.4 81.9 0.8 5.1 10.2
OLS2 1.1 4.9 9.9 33.7 57.6 69.4 66.1 84.0 90.3
GMM 1.2 5.0 10.0 66.5 84.3 90.5 79.8 91.9 95.3

Notes: Results based on 10,000 samples. GET and GET2 are defined in section 3.3. OLS1 denotes a
standard LM test that checks the joint significance of y21t and y1ty2t in the OLS regression of y3t on
a constant and these two variables while OLS2 is the LM test which augments the previous regression
with the following four cubic terms y31t, y

2
1ty2t, y1ty

2
2t and y

3
2t. GMM refers to the J-test based on the

influence functions underlying GET. Finite sample critical values are computed by simulation. DGPs:
(y1y2) ∼ i.i.d. N(0, I2) under both the null and alternative hypotheses. In turn, y3|y2, y1 is i.i.d. standard
normal under the null but under the alternative we consider θ1 = 0.3, θ2 = 0 (Ha1) and θ1 = 0, θ2 = 0.5

(Ha2).
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Figure 1: p-value discrepancy plot for the white noise versus nonlinear predictability test
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Notes: Results based on 10,000 simulated samples of size n of (y1, y2, y3) ∼ i.i.d. N(0, I3). GET is
computed as defined in section 3.3. To compute the exact distribution for each sample size, we simulate
(Z1, Z2, Z3) ∼ N(0, I3) 107 times, calculate T = max{Z211{Z1 ≥ 0}, Z23}+ Z22 each time, and obtain the
αth quantile of T , QT,α.
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B Reparametrization

B.1 Sequential reparametrization method

In this section, we show how to obtain the reparametrization described in the main text in

a sequential manner under the following:

Assumption 4 1) The asymptotic variance of the sample averages of (sϕ, sϑ1) evaluated at

(ϕ,0) scaled by
√
n has full rank.

2) ∂
ι′qr jθr l

∂ϑ
jθr
r

∣∣∣∣
(ϕ,0)

= 0, for all index vectors such that ι′qr jθr < r − 1.

3) There exists a set of coeffi cients {mjθr
k }ι′qr jθr=r−1,k=1,...,p−qr which may be functions of ϕ such

that ∀ι′qr jθr = r − 1

m
jθr
1 sϕ1 + ...+m

jθr
p−qsϕp−q +m

jθr
p−q+1sϑ11 + ...+m

jθr
p−qrsϑ1q1 +

∂ι
′
qr

jθr l

∂ϑjθr
= 0,

where the default argument is (ϕ,0).

In this context, a convenient way of reparametrizing the model from (ϕ,ϑ) to (φ,θ) is

ϕ1 = φ1 +
∑

ι′qr jθr=r−1

m
jθr
1

jθr !
θ

jθr
r , ..., ϕp−q = φp−q +

∑
ι′qr jθr=r−1

m
jθr
p−q

jθr !
θ

jθr
r ,

ϑ11 = θ11 +
∑

ι′qr jθr=r−1

m
jθr
p−q+1

jθr !
θ

jθr
r , ..., ϑ1q1 = θ1q1 +

∑
ι′qr jθr=r−1

m
jθr
p−qr
jθr !

θ
jθr
r ,

ϑr1 = θr1, ..., ϑrqr = θrqr .

Then, if we use the chain rule we can show that

∂r−1l

∂θ
jθr
r

= m
jθr
1 sϕ1 + ...+m

jθr
p−qsϕp−q +m

jθr
p−q+1sϑ11 + ...+m

jθr
p−qrsϑ1q1 +

∂ι
′
qr

jθr l

∂ϑjθr
= 0

∀ι′qr jθr = r − 1 as desired, where the default argument is again (ϕ,0).

Finally, we need to check whether
∑
ι′qr jθr=r

λjθr
jθr !

∂rl

∂θjθr
evaluated at (φ,0) is linearly inde-

pendent of (sφ, sθ1) for all λ
2
1 + · · ·+ λ2

qr = 1. If so, Theorem 1 applies.

If not, we should check whether either:

1) there is a new set of coeffi cients {m†jθrk }ι′qr jθr=r,k=1,...,p−qr which may be functions of φ such

that

m
†jθr
1 sφ1 + . . .+m

†jθr
p−q sφp−q +m

†jθr
p−q+1sθ11 + . . .+m

†jθr
p−r sθ1q1 +

∂ι
′
qr jθr l

∂θjθr
= 0 (B1)

when evaluated under the null, in which case we can do further reparametrization from (φ,θ)

to (φ†,θ†) that sets all the rth partial derivatives with respect to θ† to zero, or

2) we can use Theorem 2, which covers far more general cases.
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B.2 Invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to

reparametrization, exactly like the LR test or the usual LM tests that rely on the information

matrix rather than the sample average of the Hessian. For simplicity of notation, we will do so in

a simple case in which r = 2 and θ = θ2, so that we can omit the subscript 2 from θ henceforth.

Define % = (ϕ,ϑ) as the original parameter vector of dimension p, where ϕ is (p− q)× 1 and ϑ

a q × 1 vector. In what follows, (ϕ,0) are the omitted arguments for all the relevant quantities

that depend on (ϕ,ϑ).

We maintain that Assumption 2 holds with r = 2 for the original parameters %, so that

1) the asymptotic variance of the sample average of sϕ has full rank, 2) there is a q × (p − q)
matrix M(ϕ) of possible functions of ϕ such that (1) holds, and 3) the asymptotic variance of

the sample average of [
sϕ,λ

′
(

M′

Iq

)′
∂2l

∂%∂%′

(
M′

Iq

)
λ

]
has full rank under the null ∀||λ|| 6= 0.

As usual, if we reparametrize from % to ρ as in (2), then, we can easily check that (3) and

(4) hold when evaluated under the null, with

λ′
∂2l

∂θ∂θ′
λ = λ′

(
M′

Iq

)′
∂2l

∂%∂%′

(
M′

Iq

)
λ

linearly independent of ∂l/∂φ, which implies that Assumption 2 is satisfied with r = 2 for the

transformed parameters ρ = (φ,θ) too. Consequently, we can apply Theorem 1, which yields

GETρn = sup||λ||6=0ET
ρ
n (λ), where

ETρn (λ) =

[
λ′H(ϕ̃)λ

]2
1
[
λ′H(ϕ̃)λ ≥ 0

]
V(λ, ϕ̃)

,

H(ϕ) =

(
M(ϕ)′

Iq

)′
∂2l(%)

∂%∂%′

∣∣∣∣
(ϕ,0)

(
M(ϕ)′

Iq

)
, (B2)

and

Vη(λ,ϕ) = V [λ′H(ϕ)λ]− Cov[λ′H(ϕ)λ, sφ(ϕ)]V −1[sφ(ϕ)]Cov[sφ(ϕ),λ′H(ϕ)λ]

is the adjusted variance of λ′H(ϕ)λ.

Consider now an alternative reparametrization from % to ρ† characterized by

% =

(
ϕ
ϑ

)
=

[
gφ(φ†,θ†)
gθ(φ†,θ†)

]
= g(ρ†),

where g(·) is some second-order continuously differentiable vector of functions which represent
a one-to-one mapping, at least locally around the null. Such an alternative reparametrization

must also ensure that: (I) sφ† has full rank, (II) sθ† is identically 0 at H0 : θ† = 0, and (III)

λ′ ∂2l
∂θ†∂θ†′

λ is linearly independent of sφ† ∀||λ|| 6= 0.
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Given that the first order derivative of φ† under the null is given by

∂l

∂φ†
=
∂gφ′

∂φ†
sϕ +

∂gθ′

∂φ†
sϑ =

(
∂gφ′

∂φ†
− ∂gθ′

∂φ†
M

)
sϕ,

where we have used the chain rule in the first equality and (1) in the second one, we need to

assume that

det

(
∂gφ′

∂φ†
− ∂gθ′

∂φ†
M

)
6= 0 (B3)

for ∂l/∂φ† to have full rank. Similarly, given that (1) and the chain rule imply that

∂l

∂θ†
=
∂gφ′

∂θ†
sϕ +

∂gθ′

∂θ†
sϑ =

(
∂gφ′

∂θ†
− ∂gθ′

∂θ†
M

)
sϕ,

we must also assume that
∂gφ′

∂θ†
=
∂gθ′

∂θ†
M (B4)

to ensure that ∂l/∂θ† = 0 under the null irrespective of φ† because sϕ has full rank.

Let us now turn to condition (III), for which we first need to compute the corresponding

second order derivatives. Applying the chain rule once again, we obtain

∂2l

∂θ†i∂θ
†
j

=
∂l
∂ϕ′

∂2gφ

∂θ†i∂θ
†
j

+
∂gφ′

∂θ†j

∂2l

∂ϕ∂ϕ′
∂gφ

∂θ†i
+
∂gθ ′

∂θ†j

∂2l

∂ϑ∂ϕ′
∂gφ

∂θ†i

+
∂l

∂ϑ′
∂2gθ

∂θ†i∂θ
†
j

+
∂gθ ′

∂θ†j

∂2l

∂ϑ∂ϑ′
∂gθ

∂θ†i
+
∂gφ′

∂θ†j

∂2l

∂ϕ∂ϑ′
∂gθ

∂θ†i
.

In this context, (B4) and (1) imply that

∂2l

∂θ†i∂θ
†
j

= s′ϕ
∂2gφ

∂θ†i∂θ
†
j

+
∂gθ′

∂θ†j
M

∂2l

∂ϕ∂ϕ′
M′∂gθ

∂θ†i
+
∂gθ ′

∂θ†j

∂2l

∂ϑ∂ϕ′
M′∂gθ

∂θ†i

− s′ϕM′ ∂
2gθ

∂θ†i∂θ
†
j

+
∂gθ ′

∂θ†j

∂2l

∂ϑ∂ϑ′
∂gθ

∂θ†i
+
∂gθ′

∂θ†j
M

∂2l

∂ϕ∂ϑ′
∂gθ

∂θ†i

= s′ϕ

(
∂2gφ

∂θ†i∂θ
†
j

−M′ ∂
2gθ

∂θ†i∂θ
†
j

)
+
∂gθ′

∂θ†j

(
M′

Iq

)′
∂2l

∂%∂%′

(
M′

Iq

)
∂gθ

∂θ†i

when evaluated at the null, so

∂2l

∂θ†∂θ†
=

{
s′ϕ

(
∂2gφ

∂θ†i∂θ
†
j

−M′ ∂
2gθ

∂θ†i∂θ
†
j

)}
ij

+
∂gθ′

∂θ†
H
∂gθ

∂θ†
.

Hence, (B2) implies that

λ′
∂2l

∂θ†∂θ†
λ = s′ϕa + λ†

′Hλ†, for all λ 6= 0

when evaluated at the null, where a = (a1, . . . , aq)
′ with

ai = λ′

(
∂2gφi
∂θ†∂θ†

−M′ ∂
2gθi

∂θ†∂θ†

)
λ,
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and

λ† =
∂gθ

∂θ†′
λ.

In this context, if we further assume that

det
(
∂gθ

∂θ†′

)
6= 0, (B5)

then it is easy to see that λ′ ∂2l
∂θ†∂θ†

λ will be linearly dependent of sφ† ∀
∥∥λ†∥∥ 6= 0 because (i)

λ†
′Hλ† is linearly independent of sϕ and (ii) sφ† is a linear combination of sϕ.

In sum, once we guarantee that (B3), (B4) and (B5) hold, the parametrization from % to ρ†

satisfies the rank deficiency condition in Assumption 2 with r = 2.

Finally, let us define the adjusted asymptotic variance of λ′ ∂2l
∂θ†∂θ†

λ as

V†
η†

(λ, φ†) = V

(
λ′

∂2l

∂θ†∂θ†
λ

)
− Cov

(
λ′

∂2l

∂θ†∂θ†
λ, sφ†

)
V −1(sφ†)Cov

(
sφ† ,λ

′ ∂2l

∂θ†∂θ†
λ

)
= V (s′ϕa + λ†

′Hλ†)− Cov(s′ϕa + λ†
′Hλ†,a′sϕ)V −1(a′sϕ)Cov(a′sϕ, s

′
ϕa + λ†

′Hλ†)

= V (λ†
′Hλ†)− Cov(λ†

′Hλ†, sϕ)V −1(sϕ)Cov(sϕ,λ
†′Hλ†)

= Vη(λ†,φ).

Then, we will have that

ETρ
†

n (λ) =

[
λ′ ∂2l

∂θ†∂θ†
(ρ̃†)λ

]2
1
[
λ′ ∂2l

∂θ†∂θ†
(ρ̃†)λ ≥ 0

]
V†
η†

(λ, φ†)

=
[s′ϕ(ϕ̃)a + λ†

′H(%̃)λ†]21
[
s′ϕ(ϕ̃)a + λ†

′H(%̃)λ† ≥ 0
]

Vη(λ†,φ)

=
[λ†
′H(%̃)λ†]21

[
λ†
′H(%̃)λ† ≥ 0

]
Vη(λ†,φ)

= ETρn (λ†),

where the third equality follows from the fact that sϕ(ϕ̃) = 0. Given that the mapping from λ

to λ† is bijective, taking the sup will finally imply that

GETρ
†
n = sup||λ||6=0ET

ρ†
n (λ) = sup||λ†||6=0ET

ρ
n (λ†) = GETρn,

as desired.

C Implementation details

C.1 Skew normal distribution

C.1.1 Influence functions

If we call

z1 =
y1 − φ1√

φ3

, z2 =
y2 − φ2√

φ5

, ρ =
φ4√
φ3φ5

,
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then we can show that

sφ1 =
1√
φ3

H10(z1, z2; ρ), sφ2 =
1√
φ5

H01(z1, z2; ρ),

sφ3 =
1

2φ3

H20(z1, z2; ρ), sφ4 =
1√
φ3φ5

H11(z1, z2; ρ), sφ5 =
1

2φ5

H02(z1, z2; ρ),

3!L[0,3,0] =

√
2(4− π)

π3/2

(
1, 3ρ, 3ρ2, ρ3

)
·H3(z1, z2; ρ)

−
[3
√

2 (π − 2)]
√
φ3

π3/2
sφ1 −

[3
√

2(π − 2)ρ]
√
φ5

π3/2
sφ2 ,

2!L[0,2,1] =

√
2(4− π)

π3/2

(
ρ, 2ρ2 + 1, ρ

(
ρ2 + 2

)
, ρ2
)
·H3(z1, z2; ρ)

−
√

2ρ
(
2ρ2 + 3π − 8

)√
φ3

π3/2
sφ1 −

√
2[2πρ2 − 2

(
ρ2 + 2

)
+ π]

√
φ5

π3/2
sφ5 ,

2!L[0,1,2] =

√
2(4− π)

π3/2

(
ρ2, ρ

(
ρ2 + 2

)
, 2ρ2 + 1, ρ

)
·H3(z1, z2; ρ)

−
√

2[2πρ2 − 2
(
ρ2 + 2

)
+ π]

√
φ3

π3/2
sφ1 −

√
2ρ
(
2ρ2 + 3π − 8

)√
φ5

π3/2
sφ5

and

3!L[0,0,3] =

√
2(4− π)

π3/2

(
ρ3, 3ρ2, 3ρ, 1

)
·H3(z1, z2; ρ)

−
3
√

2(π − 2)ρ
√
φ3

π3/2
sφ1 −

3
(√

2π − 2
√

2
)√

φ5

π3/2
sφ2 ,

where

Hp(z1, z2;φ) = [Hp,0(z1, z2;φ), Hp−1,1(z1, z2;φ), ...,H0,p(z1, z2;φ)]′ , (C6)

with the bivariate Hermite polynomials Hp,q(z1, z2;φ) defined in (8).

Analogous expressions for the trivariate case are available upon request.

C.1.2 Affi ne transformation invariance

Consider the full-rank affi ne transformation of a skew-normal random vector y of dimension

K given by y? = a + By, where B is a K ×K invertible matrix. As we mentioned in the main

text, a useful property of the skew normal distribution is that y? will also be skew normal.

Specifically, we will have that

l(y?;%?) = ln
{

2fN (y?;ϕ?)Φ
[
ϑ?′dg−1/2(ϕ?D)(y? −ϕ?M )

]}
= l(y;%)− 1

2
ln
(
|BB′|

)
with %? defined by

ϕ?M = a + BϕM , ϕ
?
V = BϕV B′, and ϑ? = dg1/2(ϕ?D)B′−1dg−1/2(ϕD)ϑ. (C7)
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Let us now consider the relationship between ρ and ρ? after applying the combined repara-

metrization in footnote 7. Specifically, (C7) implies that

φ?M +

√
2

π
Ψ(φ?V )θ? = a + B

[
φM +

√
2

π
Ψ(φV )θ

]
, (C8)

Σ(φ?V ) +
2

π
Ψ(φ?V )θ?θ?′Ψ′(φ?V ) = B

[
Σ(φV ) +

2

π
Ψ(φV )θθ′Ψ′(φV )

]
B′ (C9)

and

θ? = dg1/2(ϕ?D)B′−1dg−1/2(ϕD)θ

for Ψ(φV ) = Σ(φV )dg−
1
2 (φD). Further, let θ = λη and θ? = λ?η?, and define the following

one-to-one mapping from λ? to λ

λ? = dg1/2(ϕ?D)B′−1dg−1/2(ϕD)λ, so that η? = η. (C10)

From now on, we treat λ and λ? as constant, so that we can focus on the derivatives of η

and η?.

The chain rule implies that the score of φ? spans the same vector space as the score of φ under

the null. As a result, there exists an invertible matrix M such that sφ?(φ
?,0) = Msφ(φ,0). On

this basis, equations (C9) and (C10) imply that

Σ(φ?V ) = BΣ(φV )B′ +
2

π
[BΨ(φV )λλ′Ψ′(φV )B′ −Ψ(φ?V )λ?λ?′Ψ′(φ?V )]η2, (C11)

which implicitly defines φ?V as a function of η
2 and φV , φ

?
V = D

(
η2;φV

)
. Next, we can easily

verify that Σ[D (0;φV )] = BΣ(φV )B′. If we take derivatives with respect to η2 on both sides

of (C11) and evaluate them at η = 0, we get

d
d(η2)

Σ(φ?V )

∣∣∣∣
η=0

=
2

π
[BΨ(φV )λλ′Ψ′(φV )B′ −Ψ(φ?V )λ?λ?′Ψ′(φ?V )]

∣∣∣∣
η=0

= 0 (C12)

because

Ψ(φ?V )λ? = Σ(φ?V )dg−
1
2 (φ?D)dg1/2(ϕ?D)B′−1dg−1/2(ϕD)λ

= Σ(φ?V )dg−
1
2 (φ?D)dg1/2(φ?D)B′−1dg−1/2(φD)λ = BΨ(φV )λ.

In turn, (C12) also implies that
∂D

(
η2;φV

)
∂(η2)

∣∣∣∣∣
η=0

= 0. (C13)

Furthermore, (C8) and (C10) imply that

φ?M = a + BφM +

[√
2

π
BΨ(φV )λ−

√
2

π
Ψ(φ?V )λ?

]
η

= a + BφM + C(η2;φV )η,
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where

C(η2;φV ) =

√
2

π
BΨ(φV )λ−

√
2

π
Ψ(φ?V )λ? =

√
2

π
BΨ(φV )λ−

√
2

π
Ψ[D

(
η2;φV

)
]λ?.

But given the relationship between λ and λ?, we can easily verify that

C (0;φV ) = 0. (C14)

Let us consider next the derivatives with respect to η of the log-likelihood contribution for

a single observation. Once again, the chain rule implies that

∂`

∂η
=
∂l?

∂φ?′M

∂φ?M
∂η

+
∂l?

∂φ?′V

∂φ?V
∂η

+
∂`?

∂η?
dη?

dη

=
∂l?

∂φ?′M

[
C
(
η2;φV

)
+ 2η2∂C

(
η2;φV

)
∂(η2)

]
+ 2

∂l?

∂φ?′V
η
∂D

(
η2;φV

)
∂(η2)

+
∂`?

∂η?

and

∂2`

∂η∂η
=
∂l?

∂φ?′M

[
6η
∂C

(
η2;φV

)
∂(η2)

+ 4η3∂
2C
(
η2;φV

)
∂(η2)∂(η2)

]

+

[
C
(
η2;φV

)
+ 2η2∂C

(
η2;φV

)
∂(η2)

]′
∂2l?

∂φ?M∂φ
?′
M

[
C
(
η2;φV

)
+ 2η2∂C

(
η2;φV

)
∂(η2)

]

+ 2
∂l?

∂φ?′V

[
∂D

(
η2;φV

)
∂(η2)

+ 2η2∂
2D
(
η2;φV

)
∂(η2)∂(η2)

]

+ 4

[
η
∂D

(
η2;φV

)
∂(η2)

]′
∂2l?

∂φ?V ∂φ
?′
V

[
η
∂D

(
η2;φV

)
∂(η2)

]
+

∂2`?

∂η?∂η?
.

On this basis, we can easily exploit (C13) and (C14) to show that ∂`
∂η = ∂`?

∂η? and
∂2`
∂η∂η = ∂2`?

∂η?∂η?

evaluated at η = 0. Furthermore, given that (i) the reparametrization from ρ to % in footnote 7

is such that the components of the score vector and Hessian matrix corresponding to θ will be

identically 0 at η = 0, and (ii) ∂`
∂η and

∂2`
∂η∂η are linear combinations of

∂l
∂θ and

∂l
∂θ∂θ′

for fixed λ,

it follows that ∂`
∂η = ∂2`

∂η∂η = 0 when evaluated at η = 0, and the same is trivially true of ∂`
?

∂η? and
∂2`?

∂η?∂η? .

On the other hand,

∂3`

∂η∂η∂η

∣∣∣∣
η=0

= 6
∂l?

∂φ?′M

∂C
(
η2;φV

)
∂(η2)

∣∣∣∣∣
η=0

+ ...+
∂3`?

∂η?∂η?∂η?

∣∣∣∣∣∣
η=0

=m′sφ+
∂3`?

∂η?∂η?∂η?

∣∣∣∣
η=0

, (C15)

where m satisfies

m′sφ(φ,0) = m′M−1sφ?(φ
?,0) = 6sφ?(φ

?,0)′
∂C

(
η2;φV

)
∂(η2)

∣∣∣∣∣
η=0

.

As for the omitted “. . . ” terms in equation (C15), we can easily prove that all the other third

derivatives are 0 under the null because of (C13) and (C14).
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The GET statistics for the original variables y and the transformed ones y? will be

supλ
n

Vη(φ̃,λ)

[
∂3`

∂η∂η∂η
(φ̃, 0,λ)

]2

, supλ
n

Vη?(φ̃
?
,λ)

[
∂3`?

∂η?∂η?∂η?
(φ̃

?
, 0,λ)

]2

,

where the overbar denotes sample averages.

In this context, we can immediately notice that the numerators of GET and GET? will be

such that

∂3`

∂η∂η∂η
(φ̃, 0,λ) =

∂3`?

∂η?∂η?∂η?
(φ̃

?
, 0,λ?) because

∂l?

∂φ?′M
(φ̃

?
,0) = 0.

As for the asymptotic variance that accounts for parameter uncertainty under the null, we have

that

Vη(φ,λ) = V

(
∂3l

∂η∂η∂η

)
− Cov′

(
sφ,

∂3l

∂η∂η∂η

)
V −1(sφ)Cov

(
sφ,

∂3l

∂η∂η∂η

)
= V

(
∂3l?

∂η?∂η?∂η?
+ m′sφ

)
− Cov′

[
sφ,

(
∂3l?

∂η?∂η?∂η?
+ m′sφ

)]
V −1(sφ)Cov

[
sφ,

(
∂3l?

∂η?∂η?∂η?
+ m′sφ

)]
= V

(
∂3l?

∂η?∂η?∂η?

)
− Cov′

(
Msφ,

∂3l?

∂η?∂η?∂η?

)
V −1(Msφ)Cov

(
Msφ,

∂3l?

∂η?∂η?∂η?

)
= Vη?(φ?,λ?).

Hence, we will have that

n

Vη(φ̃,λ)

[
∂3l(φ̃, 0,λ)

∂η∂η∂η

]2

=
n

V?η?(φ̃
?
,λ?)

[
∂3l?(φ̃

?
, 0,λ)

∂η?∂η?∂η?

]2

and

supλ
n

Vη(φ̃,λ)

[
∂3l(φ̃, 0,λ)

∂η∂η∂η

]2

= supλ
n

V?η?(φ̃
?
,λ)

[
∂3l?(φ̃

?
, 0,λ)

∂η?∂η?∂η?

]2

,

which confirms that GET is indeed invariant to affi ne transformations, as we had claimed.

C.2 Hermite expansion of the Gaussian copula

C.2.1 Influence functions

Tedious but straightforward algebra implies that

∂l

∂φ
= (0, 1, 0) ·H2(x1, x2;φ),

∂l

∂θ11
= H31(x1, x2;φ),

∂l

∂θ12
= H22(x1, x2;φ),

∂l

∂θ13
= H13(x1, x2;φ),
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∂2l

∂θ2
21

= (0, 6φ, 0) ·H2(x1, x2;φ)

+ (0, 18φ, 36φ2, 18φ3, 0) ·H4(x1, x2;φ)

+ (0, 9φ, 36φ2, 54φ3, 36φ4, 9φ5, 0) ·H6(x1, x2;φ)

+ (0, φ, 6φ2, 15φ3, 20φ4, 15φ5, 6φ6, φ7, 0) ·H8(x1, x2;φ),

∂2l

∂θ21∂θ22
= −(0, 6φ3, 0) ·H2(x1, x2;φ)

−
[
0, 18φ3, 18

(
φ4 + φ2

)
, 18φ3, 0

]
·H4(x1, x2;φ)

−
[
0, 9φ3, 18

(
φ4 + φ2

)
, 9
(
φ5 + 4φ3 + φ

)
, 18

(
φ4 + φ2

)
, 9φ3, 0

]
·H6(x1, x2;φ)

−
[
0, φ3, 3

(
φ4 + φ2

)
, 3
(
φ5 + 3φ3 + φ

)
, φ6 + 9φ4

+9φ2 + 1, 3
(
φ5 + 3φ3 + φ

)
, 3
(
φ4 + φ2

)
, φ3, 0

]
·H8(x1, x2;φ)

and

∂l

∂θ2
22

= (0, 6φ, 0) ·H2(x1, x2;φ)+(
0, 18φ3, 36φ2, 18φ, 0

)
·H4(x1, x2;φ)

+
(
0, 9φ5, 36φ4, 54φ3, 36φ2, 9φ, 0

)
·H6(x1, x2;φ)

+
(
0, φ7, 6φ6, 15φ5, 20φ4, 15φ3, 6φ2, φ, 0

)
·H8(x1, x2;φ),

where the bivariate 4th-order Hermite polynomialsH31(x1, x2;φ),H22(x1, x2;φ) andH13(x1, x2;φ)

are defined in (8) and the H’s in Supplemental Appendix C.1.

C.2.2 Positivity of the Hermite expansion of the Gaussian copula

In the original parametrization, P (x1, x2;ϕ,ϑ) is equal to

1 + ϑ1H40(x1, x2;ϕ) + ϑ2H31(x1, x2;ϕ) + ϑ3H22(x1, x2;ϕ) + ϑ4H13(x1, x2;ϕ) + ϑ5H04(x1, x2;ϕ).

But as described in section 3.2, after reparametrization the marginal distributions only depend

on θ21 or θ22. For that reason, it is convenient to consider two groups of parameters, namely

θ1 = (θ11, θ12, θ13) and θ2 = (θ21, θ22). In addition, the positivity constraint depends mainly on

θ2 because θ̂21 and θ̂22 are Op(n−
1
4 ) under the null while θ̂11, θ̂12 and θ̂13 are Op(n−

1
2 ). Therefore,

θ1 is dominated, at least asymptotically. For that reason, we first discuss the positivity constraint

on θ2 when θ1 = 0, and then explain how to simplify the asymptotic positivity constraint and

the extremum test statistic.

Let x2 = tx1, θ22 = kθ21, k ≥ 0 so that the polynomial that multiplies the Gaussian pdf

simplifies to

P̃ (x1, φ, k, t, θ21) = P [x1, tx1;φ, (θ21, 0, 0, 0, kθ21)′]

= 1 + 3θ21C0(k) +
3θ21

1− φ2C2(k, t, φ)x2
1 +

θ21

1− φ2C4(k, t, φ)x4
1,

9



where

C0(k) = k+1, C2(k, t, φ) = k
(
φ2 − 2

)
t2+(k + 1)φt+φ2−2 and C4(k, t, φ) = kt4−kφt3−φt+1.

It is easy to see that the minimum of P̃ (x, φ, k, t, θ21) is finite if and only if (i) C4(k, t, φ) > 0

or (ii) C4(k, t, φ) = 0 and C2(k, t, φ) ≥ 0. In addition, when θ21 is very small under either (i) or

(ii), we have minx P̃ (x, φ, k, t, θ21) is greater than 0. Thus, we need to find a set K(φ) such that

for all φ 6= 0, for all k ∈ K(φ) ⊆ [0,+∞) and for all t ∈ R, we have either (1) C4(k, t, φ) > 0 or (2)

C4(k, t, φ) = 0 and C2(k, t, φ) ≥ 0. In other words, we need C4(k, t, φ) = kt4− kφt3−φt+ 1 ≥ 0

for all t.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of C4(k, t, φ)

is positive, then C4(·, t, ·) = 0 has either only real or only complex roots, while if the discriminant

is negative, then C4(·, t, ·) = 0 will have both two real and two complex roots. Finally, if the

discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant

of C4(k, t, φ) to be non-negative. Indeed, we can find two functions, lb(φ) and ub(φ) such that

lb(φ) < k < ub(φ) if and only if the discriminant is positive while k ∈ {lb(φ), ub(φ)} if and only
if the discriminant is zero. Moreover, lb(φ) ∈ (0, 1), ub(φ) ∈ (1,+∞), and lb(φ)ub(φ) = 1. The

proof of these statements is as follows.

We can easily show that

Disct[C4(k, t, φ)] = −k2[27k2φ4 + 2k
(
2φ6 + 3φ4 + 96φ2 − 128

)
+ 27φ4],

so that the solution to

Disct[C4(k, t, φ)] = 0

is 
lb(φ) = −

2φ6 + 3φ4 + 96φ2 + 2(

√(
φ2 − 4

)3 (
φ2 − 1

) (
φ2 + 8

)2 − 64)

27φ4

ub(φ) = −
2φ6 + 3φ4 + 96φ2 − 2(

√(
φ2 − 4

)3 (
φ2 − 1

) (
φ2 + 8

)2
+ 64)

27φ4

Thus, when k ∈ [lb(φ), ub(φ)], the discriminant is positive and we simply need to check whether

C4(k, t, φ) ≥ 0. First, consider φ > 0 and C4(k, t, φ) = kt3(t − φ) − φt + 1. When t ≥ φ,

C4(k, t, φ) is increasing in k. In this context, we can prove that mint≥φC4[lb(φ), t, φ] = 0. In

contrast, when t ∈ [0, φ), C4(k, t, φ) is decreasing in k, and we have mint≥φC4[ub(φ), t, φ] = 0.

Finally, when t < 0, it is obvious that C4(k, t, φ) > 0. To summarize, k ∈ [lb(φ), ub(φ)] is

suffi cient for C4(k, t, φ) ≥ 0 and the same is true for φ < 0.

However, when either k = lb(φ) or k = ub(φ), we have tl, tu defined by C4[lb(φ), tl, φ] = 0

and C4[ub(φ), tu, φ] = 0, respectively, so that

C2[lb(φ), tl, φ] < 0 and C2[ub(φ), tu, φ] < 0 for all φ,

which in turn implies that k ∈ {lb(φ), ub(φ)} does not hold.
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In sum, we have shown that when θ1 = 0, the asymptotes of the feasible set near 0 are

θ22 = lb(φ)θ21 and θ22 = ub(φ)θ21.

Next, we know from Theorem 1 that

LR = ET (θET ) +Op(n
− 1
2r ), (C16)

where

ET (θ) = 2


n
1
2θ1

n
1
2 θ2

21

n
1
2 θ21θ22

n
1
2 θ2

22




n−
1
2Sθ1(φ̃,0)

n−
1
2Hθ21θ21(φ̃,0)

n−
1
2Hθ21θ22(φ̃,0)

n−
1
2Hθ22θ22(φ̃,0)

−


n
1
2θ1

n
1
2 θ2

21

n
1
2 θ21θ22

n
1
2 θ2

22

Vθθ(φ̃)


n
1
2θ1

n
1
2 θ2

21

n
1
2 θ21θ22

n
1
2 θ2

22

 ,

θET = argmaxθ∈ΘET (θ),

and Θ is the set of parameters that satisfies the positivity constraint. Unfortunately, ET (θET )

is not very easy to calculate because Θ is diffi cult to characterize explicitly. For that reason, we

will show that

ET (θET ) = GET + op(1),

where

GETn =
1

n
S′θ1(φ̃,0)V −1

11 (φ̃)Sθ1(φ̃,0) + sup
ω∈(ωl,ωu)

1

n

D2(φ̃,λ)1[D(φ̃,λ) ≥ 0]

V22(φ̃,λ)− V21(φ̃,λ)V −1
11 (φ̃)V12(φ̃,λ)

,

with λ1 = sin(ω) and λ2 = cos(ω) so that ‖λ‖ = 1, and

ωl = arctan[lb(φ̃)], ωu = arctan[ub(φ̃)]. (C17)

Let θ21 = λ1η and θ22 = λ2η, then

ET n(θ1, η,λ)= 2

(
θ1

η2

)(
Sθ1(φ̃,0)

Sθ2(φ̃, 0,λ)

)
− n

(
θ1

η2

)[
V11(φ̃) V12(φ̃,λ)

V21(φ̃,λ) V22(φ̃,λ)

](
θ1

η2

)
, (C18)

with

Sθ2(φ, 0,λ) =

(
λ1

λ2

)′ [
Hθ21θ21(φ,0) Hθ21θ22(φ,0)
Hθ21θ22(φ,0) Hθ22θ22(φ,0)

](
λ1

λ2

)
.

Similarly, let η̃ = max{ηET , n−k} with 1
4 < k < 1

2 . Then it is easy to see that

ET n(θET1 , η̃,λET ) = ET n(θET1 , ηET ,λET ) + op(1). (C19)

Next, consider (θ∗1, η
∗,λ∗)=argmaxpc∧{η≥n−k}ET n(θ1, η,λ), where pc={(θ1, ηλ1, ηλ2) ∈ Θ}.

It is easy to see that with probability approaching 1,

ET n(θET1 , ηET ,λET ) ≥ ET n(θ∗1, η
∗,λ∗) ≥ ET n(θET1 , η̃,λET ) (C20)

because (θET1 , ηET ,λET ) = argmaxpcET n(θ1, η,λ) has a larger feasible set, and the event

(θET1 , η̃,λET ) ∈ pc and
{
η̃ ≥ n−k

}
happens with probability approaching 1. Combining (C19)

and (C20), we have

ET n(θ∗1, η
∗,λ∗) = ET n(θET1 , ηET ,λET ) + op(1), (C21)
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so we only need to calculate (θ∗1, η
∗,λ∗).

In this context, note that there exists a k′ ∈ (k, 1
2) such that

limnP (‖θ∗1‖ < n−k
′
< n−k ≤ η∗) = 1. (C22)

Therefore, this confirms that θ∗1 is asymptotically irrelevant for the positivity constraints because

it is effectively unrestricted. Consequently, (C22) implies that the only relevant restriction will

affect the direction of θ2.

In view of (C18), the first order condition for θ∗1 for given η
∗ and λ∗ implies that

n
1
2θ∗1(η∗,λ∗) = V −1

11 (φ̃)[n−
1
2Sθ1(φ̃,0)− V12(φ̃,λ∗)n

1
2 (η∗)2].

Hence, if we substitute θ∗1(η∗,λ∗) in the expression for ET (θ1, η,λ), we end up with

ET n(θ∗1, η
∗,λ∗) =

1

n
S′θ1(φ̃,0)V −1

11 (φ̃)Sθ1(φ̃,0)

− n
1
2 η∗2[V22(φ̃,λ∗)− V21(φ̃,λ∗)V −1

11 (φ̃)V12(φ̃,λ∗)]n
1
2 η∗2

+ 2n
1
2 η∗2[n−

1
2Sθ2(φ̃,0,λ∗)− V21(φ̃,λ∗)V −1

11 (φ̃)n−
1
2Sθ1(φ̃,0)]. (C23)

Given that (C23) is quadratic in η∗2, if take into account the restriction η∗ ≥ n−k, we obtain

η∗(λ∗)=max
{
n−

1
4

√
[V22(φ̃,λ∗)−V21(φ̃,λ∗)V −1

11 (φ̃)V12(φ̃,λ∗)]n−
1
2D(φ̃,λ∗)1[D(φ̃,λ∗)≥0],n−k

}
,

where D(φ,λ) = Sθ2(φ,0,λ∗)− V21(φ,λ)V −1
11 (φ)Sθ1(φ,0).

Thus, if we replace the previous expression for η∗(λ∗) into (C23), we end up with

ET n(θ∗1, η
∗,λ∗) =

1

n
S′θ1(φ̃,0)V −1

11 (φ̃)Sθ1(φ̃,0)

+
1

n

D2(φ̃,λ∗)1[D(φ̃,λ∗) ≥ 0]

V22(φ̃,λ∗)− V21(φ̃,λ∗)V −1
11 (φ̃)V12(φ̃,λ∗)︸ ︷︷ ︸

part 2

+op(1). (C24)

But since part 2 in (C24) is a function of λ∗, which by definition is a maximizer of ET , we will
finally end up with

ET n(θ∗1, η
∗,λ∗) =

1

n
S′θ1(φ̃,0)V −1

11 (φ̃)Sθ1(φ̃,0)

+ sup
ω∈(ωl,ωu)

1

n

D2(φ̃,λ)1[D(φ̃,λ) ≥ 0]

V22(φ̃,λ)− V21(φ̃,λ)V −1
11 (φ̃)V12(φ̃,λ)

+ op(1),

which confirms that

ET n(θET1 , ηET ,λET ) =
1

n
S′θ1(φ̃,0)V −1

11 (φ̃)Sθ1(φ̃,0)

+ sup
ω∈(ωl,ωu)

1

n

D2(φ̃,λ)1[D(φ̃,λ) ≥ 0]

V22(φ̃,λ)− V21(φ̃,λ)V −1
11 (φ̃)V12(φ̃,λ)

+ op(1)

in view of (C21).
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D Additional examples

D.1 Testing white noise versus multiplicative seasonal AR

Box and Jenkins (1970) introduced the popular multiplicative seasonal Arima model to

capture the autocorrelation of series with strong seasonal patterns, such as their famous airline

passenger example. Suppose that after taking regular and seasonal differences of an observed

time series, a researcher would like to formally assess the need for a more complicated dependence

structure. Assuming the data is observed at the quarterly frequency, one of the alternatives that

she might consider is the following Ar(2)-Sar(2) process:

(1− ϑ1L)(1− ϑ2L)(1− ϑ3L
4)(1− ϑ4L

4)(yt − ϕ1) = εt, (D25)

with E(εt) = 0 and V (εt) = ϕ2, where yt = ∆∆4xt and xt is the original data. In this context,

H0 : ϑ1 = ϑ2 = ϑ3 = ϑ4 = 0.

As usual, non-linear least squares estimation coincides with Gaussian ML, so that the crite-

rion function will be

−T
2

ln(2π)− T

2
lnϕ2 −

T∑
t=1

[yt − µt(ϕ1,ϑ)]2

2ϕ2

,

where the conditional mean under the alternative is

µt(ϕ1, ϑ) =ϕ1 + (ϑ1 + ϑ2) (yt−1 − ϕ1)− ϑ1ϑ2 (yt−2 − ϕ1) + (ϑ3 + ϑ4) (yt−4 − ϕ1)

− (ϑ1 + ϑ2) (ϑ3 + ϑ4) (yt−5 − ϕ1) + ϑ1ϑ2 (ϑ3 + ϑ4) (yt−6 − ϕ1)

− ϑ3ϑ4 (yt−8 − ϕ1) + (ϑ1 + ϑ2)ϑ3ϑ4 (yt−9 − ϕ1)− ϑ1ϑ2ϑ3ϑ4 (yt−10 − ϕ1) .

Hence, the scores evaluated under the null will be

sϕ1(ϕ,0) =
yt − ϕ1

ϕ2

, sϕ2(ϕ,0) =
(yt − ϕ1)2 − ϕ2

2ϕ2
2

,

sϑ1(ϕ,0) = sϑ2(ϕ,0) =
(yt − ϕ1) (yt−1 − ϕ1)

ϕ2

,

sϑ3(ϕ,0) = sϑ4(ϕ,0) =
(yt − ϕ1) (yt−4 − ϕ1)

ϕ2

.

As a result:

sϑ1(ϕ,0)− sϑ2(ϕ,0) = 0, sϑ3(ϕ,0)− sϑ4(ϕ,0) = 0,

which shows that the nullity of the information matrix is 2.

Consider the reparametrization from % = (ϕ1, ϕ2, ϑ1, ..., ϑ4)′ to ρ = (φ1, φ2, θ11, θ12, θ21, θ22)′

defined by

ϕ1 = φ1, ϕ2 = φ2, ϑ1 = θ11 − θ21, ϑ2 = θ21, ϑ3 = θ12 − θ22 and ϑ4 = θ22.
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The corresponding derivatives under the equivalent hypothesis H0 : θ11 = θ21 = θ12 = θ22 = 0

are

∂lt
∂θ11

=
(yt − φ1) (yt−1 − φ1)

φ2

,
∂lt
∂θ21

= 0,

∂lt
∂θ12

=
(yt − φ1) (yt−4 − φ1)

φ2

,
∂lt
∂θ22

= 0,

∂2lt

∂θ2
21

=
2 (yt − φ1) (yt−2 − φ1)

φ2

,
∂2lt

∂θ21∂θ22
= 0,

∂2lt

∂θ2
22

=
2 (yt − φ1) (yt−8 − φ1)

φ2

.

Let θ21 = λ1η and θ22 = λ2η with λ2
1 + λ2

2 = 1 and consider the simplified null hypothesis

H0 : θ11 = θ12 = 0, η = 0. In this context, the only relevant quantity associated to η is

∂2lt
∂η2

= 2λ2
1

(yt − ϕ1) (yt−2 − ϕ1)

σ2
+ 2λ2

2

(yt − ϕ1) (yt−8 − ϕ1)

σ2
.

Moreover, given that under the null

E

(
∂lt
∂φ

∂lt
∂θ′1

)
= 0 and E

[
∂lt
∂φ

vech′
(

∂2lt
∂θ2∂θ

′
2

)]
= 0,

we can ignore the parameter uncertainty in estimating φ1 and φ2, at least asymptotically.

In view of the discussion in section 2, the GET statistic will be given by

GETT = sup
||λ||=1

T−1[S′θ1(φ̃,0),Hη(φ̃, 0,λ)]V−1(φ̃,λ)[S′θ1(φ̃,0),Hη(φ̃, 0,λ)]′,

where

Sθ1(ρ) = [Sθ11(ρ), Sθ12(ρ)]′ ,

Hη(φ, η,λ) =
T∑
t=1

∂2lt(ρ)

∂η2
,

V(φ,λ) = V ar{T−1/2[S′θ(φ,0),Hη(φ, 0,λ)]′|φ,0}.

Interestingly, in this example GETT can be computed analytically. Specifically, straightforward

algebra shows that

GETT = T sup
||λ||6=0

{
r̃2

1 + r̃2
4 +

(λ2
1r̃2 + λ2

2r̃8)2

λ4
1 + λ4

2

1[λ2
1r̃2 + λ2

2r̃8 ≥ 0]

}
,

where

r̃j =
1

T

∑
t

(yt − φ̃1)(yt−j − φ̃1)

φ̃2

is the jth-order sample autocorrelation of yt. In addition, when r̃2 > 0 or r̃8 > 0, we can show

that the value of λ that maximizes the above expression will be proportional to the vector{
(
√
r̃21 [r̃2 ≥ 0],

√
r̃81 [r̃8 ≥ 0]), if r̃2 ≥ 0 or r̃8 ≥ 0

(1, 1), otherwise.

As a result, GETT will be

T (r̃2
1 + r̃2

4 + r̃2
21[r̃2 ≥ 0] + r̃2

81[r̃8 ≥ 0]), (D26)
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Therefore, the GET statistic is simply focusing on the first two regular sample autocorre-

lations and the first two seasonal ones, which is very intuitive in view of (D25). The partially

one-sided nature of the test arises from the multiplicative nature of the alternative, which forces

the roots to be always real. Additive alternatives, which allow for complex roots too, give rise

to two-sided tests. Given that these estimated autocorrelations are asymptotically independent

under the null, the asymptotic distribution of (D26) will be a mixture of χ2
2, χ

2
3 and χ

2
4 with

weights 1
4 ,

1
2 and

1
4 , respectively. Not surprisingly, we would obtain exactly the same test statistic

if we consider multiplicative Ma alternatives instead.

Furthermore, we can show that a test of white noise against multiplicative Ar(k)-Sar(ks)

for k ≥ 3 or ks ≥ 3 will numerically coincide with the statistic in (D26). The intuition is as

follows. We can show that when the null is true, the MLE of an additive Ar(3) is such that all

three roots of the lag polynomial are real with probability tending to 0, unless one of the roots

is forced to be 0. Consequently, the LR for multiplicative Ar(3) is asymptotically equivalent to

the LR for Ar(2), and the same applies to the corresponding GETs.

Finally, it is important to mention that our proposed test, which is based on sample autocor-

relations, is numerically invariant to affi ne transformations of the observed series yt. Effectively,

this means that the finite sample distribution of our test is pivotal with respect to (φ1, φ2).

Therefore, we can estimate the sample mean and variance of yt, and apply our test directly to

the standardized series as if they were the observed variables.

D.1.1 Monte Carlo simulations

Without loss of generality, we set the unconditional mean and variance of the innovations

εt to 0 and 1, respectively, both under the null and alternative hypotheses. We also estimate the

mean and variance parameters ϕ1 and ϕ2 with the sample mean and variance, respectively, which

effectively impose the null. As alternative hypotheses we consider the covariance stationary

models (1 − .1L − .1L2 − .1L3 − .1L4)yt = εt (Ha1) and (1 − .4L)(1 + .4L)(1 − .4L4)(1 +

.4L4)yt = εt (Ha2). Note that two of the roots of the first process are complex conjugates,

so our tests is not ideally designed for it. We approximate the exact finite sample distribution

using 10,000 simulated samples under the maintained hypothesis that the innovations are normal.

Alternatively, one could consider a non-parametric bootstrap procedure that randomly draws

with replacement from the observations, which would eliminate any time series dependence while

allowing for any marginal distribution. As in section 4.1, either way we do not need to take

into account the sensitivity of the critical values to ϕ̃ because the test statistics are numerically

invariant to the values of this estimator.

In Table D.1 we compare the results of our tests with three alternative procedures: LM-

Ar(1) and LM-SAr(4), which denote standard LM tests based on the score of an Ar(1) and

a Wallis (1972)-style seasonal Ar(4), respectively, and the GMM test described at the end of

section 2.3.
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Following the same structure by columns as in the previous tables, we report the results we

have obtained for n = 100 (top) and n = 400 (bottom). The first three columns make clear

that the our simulated finite sample distribution works remarkably well for both sample sizes.

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for the

two Ar alternatives. Once again, the behavior of the different test statistics is in accordance

with expectations. In particular, our proposal is the most powerful for Ha2 , which is not very

surprising given that it is designed to direct power against such multiplicative alternatives with

real roots. But it is also the top performer for Ha1 even though the process has two complex

roots.

Given that in this case our test has a relatively standard asymptotic distribution, we can

also compute p-value discrepancy plots to assess the finite sample reliability of this large sample

approximation for every possible significance level. The results displayed in Figure D.1 confirm

that the asymptotic distribution is also reliable in this context.

D.2 Testing for selectivity in a bivariate type II Tobit

Consider the following bivariate generalization of the type II Tobit model in Lee and Chesher

(1986):

y∗1 = x′1ϕ1 + u1,

y∗2 = x′2ϕ2 + u2,

y∗3 = x′3ϕ3 + u3,

y1 = 1 {y∗1 ≥ 0} ,

y2 = y∗21 {y∗1 ≥ 0} ,

y3 = y∗31 {y∗1 ≥ 0} , u1

u2

u3

 ∼ N
0,

 1 ϑ1
√
ϕ4 ϑ2

√
ϕ5

ϑ1
√
ϕ4 ϕ4 ϕ6

√
ϕ4ϕ5

ϑ2
√
ϕ5 ϕ6

√
ϕ4ϕ5 ϕ5

 .
(see Amemiya (1984) for a taxonomy of Tobit models). Under H0 : ϑ1 = ϑ2 = 0, there is

no selection bias, and one can jointly estimate ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 by Seemingly Unrelated

Regression Equations (Sure) using the non-zero observed values of y∗2 and y
∗
3, while ϕ1 can be

obtained from a univariate probit for y∗1.

Observation i’s log likelihood contribution is

(1− y1i) log Φ(−x′1iϕ1)

+y1i

{
−1

2
log[(1− ϕ2

6)ϕ4ϕ5]− 1

2
u′i(ϕ)Υ−1(ϕ)ui(ϕ) + log Φ

[
x′1iϕ1 + υ′(%)Υ−1(ϕ)u(ϕ)√

1− υ′(%)Υ−1(ϕ)υ(%)

]}
,

where

ui(ϕ) =

(
y2i − x′2iϕ2

y3i − x′3iϕ3

)
, υ(%) =

(
ϑ1
√
ϕ4

ϑ2
√
ϕ5

)
and Υ(ϕ) =

(
ϕ4 ϕ6

√
ϕ4ϕ5

ϕ6
√
ϕ4ϕ5 ϕ5

)
.

16



Consider the case when x1i = 1 and both x2i and x3i contain a constant term. Straightfor-

ward algebra shows that if we evaluate all the scores at ϑ1 = ϑ2 = 0, then

sϑ1 −
√
ϕ4M1(ϕ1)sϕ21 = 0,

sϑ2 −
√
ϕ5M1(ϕ1)sϕ31 = 0,

where ϕ21 and ϕ31 are the constants in the conditional means of y
∗
2i and y

∗
3i, respectively and

M1 (ϕ1) = Φ−1(x1ϕ1)φ(x1ϕ1). Such a singularity also arises when x1 is a set of dummy variables

and x2 and x3 contain the same set of dummy variables. Intuitively, the problem occurs when

Heckman’s (1976) selectivity correction is perfectly collinear with the regressors that appear in

the conditional means of y∗1i and y
∗
2i.

In this case, the three elements of the Hessian corresponding to ϑ1 and ϑ2 are all 0 too, so we

need to do a second reparametrization to get the desired results. We can show that a suitable

combined reparametrization would be

ϕ1 = φ1

ϕ21 = φ21 −
√
φ4M1(φ1)θ31

ϕ22 = φ22

ϕ31 = φ31 −
√
φ5M1(φ1)θ32

ϕ32 = φ32

ϕ4 = φ4 + φ4M1(φ1)[M1(φ1) + φ1]θ2
31

ϕ5 = φ5 + φ5M1(φ1)[M1(φ1) + φ1]θ2
32

ϕ6 = φ6 − .5[M1(φ1) + φ1]M1(φ1)
(
φ6θ

2
31 + φ6θ

2
32 − 2θ31θ32

)
ϑ1 = θ31

ϑ2 = θ32.

Then, we can show that

∂i+jl

∂θi31∂θ
j
32

∣∣∣∣∣
ϑ1=ϑ2=0

= 0, i = 0, 1, 2, j = 0, 1, 2, and 1 ≤ i+ j ≤ 2.

In addition, we can also show that the asymptotic variance of

∂l

∂φ1

,
∂l

∂φ2

,
∂l

∂φ3

,
∂l

∂φ4

,
∂l

∂φ5

,
∂l

∂φ6

,
∂3l

∂θ3
31

,
∂3l

∂θ2
31∂θ32

,
∂3l

∂θ31∂θ
2
32

and
∂3l

∂θ3
32

has full rank. Therefore, the features of this model closely resemble those of the skew normal

example we discussed at length in sections 3.1 and 4.1.

E Relationship to Dovonon and Renault (2013)

As we mentioned in the concluding section, the results of our paper can be extended to

other extremum estimators, such as GMM. In that regard, the purpose of this appendix is to
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compare the results in Dovonon and Renault (2013) with the implications of our Theorem 1 for

the particular case of r = 2. To simplify the notation, in what follows we will omit the nuisance

parameters φ from ρ = (φ′,θ′)′.

LetQ be the normalized objective function of some extremum estimator θ̂ ∈ arg maxθ∈ΘQ(θ).

Specifically, QGMM (θ) = −nψ̄′(θ)Wnψ̄(θ) in GMM, where ψ(θ) denotes a vector of H influ-

ence functions and Wn
p→ W, while QML(θ) = 2L(θ) in a likelihood context. For brevity of

exposition, we assume that either our Assumptions 1 and 2 hold (likelihood), or Assumptions

1—5 in Dovonon and Renault (2013) hold (GMM).

Let us start by comparison of the rank deficiency conditions. Regarding first-order under-

identification (Condition E1 henceforth), we have that ∂
∂θ′
E[ψ(θ0)] = 0 [see Proposition 2.1

in Dovonon and Renault (2013)]. In turn, our Assumption 2.1 implies that ∂l
∂θ

∣∣
θ0

= 0. As

for second-order identification (Condition E2 hereinafter), Lemma 2.3 in Dovonon and Renault

(2013) implies that
(
λ′ ∂

2ψh
∂θ∂θ′

∣∣∣
θ0
λ

)
h=1,...,H

6= 0 for all ||λ|| 6= 0. In the likelihood context

instead, we have λ′ ∂2l
∂θ∂θ′

∣∣∣
θ0
λ 6= 0 for all ||λ|| 6= 0 whenever Assumption 2.2 holds.

Using a fourth-order Taylor expansion of the normalized objective function Q around the

true value of the parameter vector, we can show that

Q(θ̂)−Q(θ0) =
∂Q

∂θ′
(θ̂ − θ0) +

1

2
(θ̂ − θ0)′

∂2Q

∂θ∂θ′
(θ̂ − θ0) (E27)

+
1

3!

∑
ı′qj=3

∂3Q

∂θj
(θ̂ − θ0)j +

1

4!

∑
ı′qj=4

∂4Q

∂θj
(θ̂ − θ0)j + δn,

where δn is a remainder term, which is zero in the Dovonon and Renault (2013) setup because

ψ is a second order polynomial in θ, while we have shown it to be op(1) in the likelihood context

of our paper.

Next, we look a each of the other terms of the RHS of (E27) in detail.

Regarding the linear term in (E27), we have ∂Q
GMM

∂θ′
= −2(

√
nψ̄
′
n)Wn

(√
n ∂ψ̄
∂θ′

)
in the GMM

context, which is Op(1) by virtue of Condition E1, while the analogous condition in the likelihood

context implies that ∂Q
ML

∂θ = 0. Moreover, θ̂−θ0 = op(1) due to the usual regularity conditions,

which implies that the first-order conditions are negligible in both cases.

As for the quadratic term in (E27), we can show that 1√
n
λ′ ∂

2Q
∂θ∂θ′

λ converges in distribution

to a non-degenerate normal distribution with zero mean. In Dovonon and Renault (2013),

specifically, this fact follows from the form of the GMM criterion function, which implies that

1√
n
λ′

∂2Q

∂θ∂θ′
λ = −2λ′

∂ψ̄
′
n

∂θ
Wn

√
n
∂ψ̄n
∂θ′

λ− 2λ′
∂vec′

(
∂ψ̄n/∂θ

′)
∂θ

[Iq ⊗
(√
nWnψ̄n

)
]λ,

while it is a consequence of the information matrix equality in our setup.

In turn, the third-order term in (E27) is dominated by the quadratic one in both cases.

Specifically, 1√
n
∂3Q
∂θ3

= Op(1) holds in MLE by virtue of Lemma 5, while it holds in GMM thanks

to Condition E1. This, together with the fact that θ̂ − θ0 = op(1), allows us to neglect the

third-order term.
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Finally, regarding the fourth-order term of the expansion (E27), which is the one character-

izing the asymptotic variance of the tests, we have that in the GMM context

1

4!

∑
ı′qj=4

∂4Q

∂θj
(θ̂GMM − θ0)j = −1

4
vec(v̂v̂′)′

[
G′WG + op(1)

]
vec(v̂v̂′)

where v̂ = n
1
4 (θ̂GMM −θ0) and G =

[
vec

(
∂2ψ1
∂θ∂θ′

)
, vec

(
∂2ψ2
∂θ∂θ′

)
, . . . , vec

(
∂2ψH
∂θ∂θ′

)]′
(see Dovonon

and Renault (2013, p. 2,576)).

Similarly, if we denote (θ̂ML− θ0)′ ∂
2Q

∂θ∂θ′
(θ̂ML− θ0) = Zvec[(θ̂ML− θ0)(θ̂ML− θ0)′], we will

have that in the likelihood context

1

4!

∑
ı′qj=4

∂ı
′
qjQ

∂θj
(θ̂ML − θ0)j

p−→ −1

4
vec(v̂v̂′)′V ar (Z) vec(v̂v̂′)

by virtue of Lemma 5.

As a consequence,

QGMM (θ̂GMM )−QGMM (θ0) = vec(v̂v̂′)′

G′WX︸ ︷︷ ︸
A1

−1

4
G′WG︸ ︷︷ ︸

A2

vec(v̂v̂′)

+ op(1), (E28)

where X ∼ N [0,Σ(θ0)] and Σ(θ0) is the asymptotic variance of
√
nψ̄n(θ0).

In turn,

QML(θ̂ML)−QML(θ0) = vec(v̂v̂′)′

 Z︸︷︷︸
B1

−1

4
V (Z)︸ ︷︷ ︸
B2

vec(v̂v̂′)

+ op(1) (E29)

where Z ∼ N [0, V (Z)]. Importantly, the term A2 in (E28) is the variance of A1 only if

one chooses the optimal GMM weighting matrix W = Σ−1(θ0). In contrast, B2 in (E29)

is always the variance of B1 because of Lemma 5. Therefore, the asymptotic distribution of

QGMM (θ̂GMM )−QGMM (θ0) and QML(θ̂ML)−QML(θ0) will be the same when W = Σ−1(θ0).

While the rank deficiency condition and the asymptotic distribution of Q(θ̂) − Q(θ0) look

quite similar for a likelihood function and an optimal GMM criterion, there are some differences.

First, the expected Jacobian is zero with rank deficiency q in GMM, while q linear combinations of

the score vector are numerically zero in the likelihood context. An additional difference between

GMM and MLE is that in the latter θ is the parameter we want to test, while in the former the

objective is to test some H > q overidentified moment conditions, with θ being the parameter

vector estimated from those conditions.
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F Additional tables and figures

Table D.1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
white noise versus multiplicative seasonal Ar test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100

GET 1.0 4.7 9.4 26.7 43.7 54.1 24.6 47.2 60.4
LM-AR(1) 1.2 5.7 10.7 14.6 28.8 38.3 3.2 9.9 16.4
LM-SAR(4) 0.9 4.8 9.9 12.8 27.3 38.2 2.8 9.5 16.0
GMM 1.0 5.2 10.1 24.4 40.4 49.4 20.8 40.0 51.5

n = 400

GET 1.0 4.8 9.9 88.1 95.1 97.0 92.0 98.0 99.1
LM-AR(1) 1.2 4.4 9.7 60.2 76.4 84.1 3.3 9.9 16.8
LM-SAR(4) 1.1 5.4 9.8 59.2 78.6 86.4 5.6 15.0 22.6
GMM 0.9 5.0 9.9 86.1 93.7 96.1 89.0 96.5 98.5

Notes: Results based on 10,000 samples. The mean and variance parameters ϕ1 and ϕ2 are estimated
under the null using the sample mean and sample variance. LM-AR(1) and LM-SAR(4) denote the
Lagrange multiplier tests based on the score of an AR(1) and a seasonal AR(4), respectively. GMM
refers to the J-test based on the influence functions underlying GET. Finite sample critical values are
computed by simulation. DGPs: the true unconditional mean and the variance of the innovations are set
to 0 and 1, respectively, under both the null and alternative hypotheses. As for the alternative hypotheses,
Ha1 : (1− .1L− .1L2 − .1L3 − .1L4)yt = εt and Ha2 : (1− .4L)(1 + .4L)(1− .4L4)(1 + .4L4)yt = εt.
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Figure D.1: p-value discrepancy plot for the white noise versus multiplicative seasonal Ar

test

n = 100

0 0.05 0.1 0.15 0.2 0.25 0.3
nominal size

­8

­6

­4

­2

0

2

4
di

sc
re

pa
nc

y
10­3

n = 400

0 0.05 0.1 0.15 0.2 0.25 0.3
nominal size

­8

­6

­4

­2

0

2

4

di
sc

re
pa

nc
y

10­3

Notes: Results based on 10, 000 simulated samples of size n of y ∼ i.i.d. N (0, 1). GET is computed
as defined in section D.1. Given that the asymptotic distribution of the GET statistic is a mixture of χ22,
χ23 and χ

2
4 with weights

1
4 ,

1
2 ,

1
4 , we compute the p-values as a linear combination of the p-values of those

three random variables with the same weights.




