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1 Introduction

A linear structure (L-structure) is a family of matrices of given order that
satisfy a specific set of linear restrictions. For square matrices (the most
common case) examples are symmetry, skew-symmetry, (strict) lower trian-
gularity, and diagonality. The general theory of L-structures was developed
in Magnus (1988), hereafter M88, with applications to solving systems of
equations and optimization involving patterned matrices. This theory also
plays a role in the estimation of multivariate models in which linearly re-
stricted matrices appear. The purpose of this note is to complement these
results by investigating the properties of an L-structure not studied so far:
zero-diagonal matrices.

Matrices with restricted or zero diagonals arise naturally in networks.
Let W denote the n × n adjacency matrix of a directed network. The ij-th
element of W indicates the existence and strength of the link going from
unit i to unit j. One of the most salient properties of an adjacency matrix is
that all its diagonal elements are zero because loops (i.e., self-links) are not
allowed in directed networks. Consequently, W is a zero-diagonal matrix.
Graham and de Paula (2020) contains an up-to-date list of applications and
references.

Zero-diagonal matrices also arise in structural vector autoregressions.
Consider the n-variate time-series process

yt = Φyt−1 + JΨξt,

where ξt|It−1 ∼ i.i.d. (0, In), Ψ is a diagonal matrix whose elements contain
the free scale of the structural shocks, while the columns of J , whose diagonal
elements are normalized to 1, measure the relative effects of each of the
structural shocks on all the observed variables. The diagonal elements of
J − In are zero. Lanne et al. (2017) provide sufficient conditions for the full
identification of the shocks and the free elements of J and Ψ in non-Gaussian
models.

In this note we discuss in Section 2 some general features of an L-structure
and define the operator and basis for the vector space associated with zero-
diagonality. In Section 3 we briefly review the L-structure of diagonal matri-
ces. In Section 4 we develop the new L-structure of zero-diagonal matrices,
and Section 5 relates this new structure to strict lower triangularity. All
proofs are in the appendix.
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2 Linear structures and basis matrices

Consider a real n×n matrix A = (aij), restricted by some linear constraints,
for example aij = aji (symmetry), aij = −aji (skew-symmetry), or aii = 0
(zero-diagonality). The collection of matrices A of a given order that satisfy
a specific set of linear restrictions constitutes an L-structure.

Let vecA denote the n2 × 1 vector containing the columns of A, one
underneath the other, and let ψ(A) denote the vector containing only the
‘essential’ elements of the L-structure. For example, for a symmetric or
lower triangular matrix, ψ(A) is the n(n + 1)/2 × 1 vector containing the
lower triangular elements of A, ordered as vecA but with some elements
removed; a vector commonly denoted by vech(A).

In this note three L-structures and their corresponding ψ-vectors will be
considered, depending on whether A is

� zero-diagonal (aii = 0): ψo(A) of dimension mo = n(n− 1),

� diagonal (aij = 0 for i 6= j): ψd(A) of dimension md = n, and

� strictly lower triangular (aij = 0 for i ≤ j): ψl(A)
of dimension ml = n(n− 1)/2.

When n = 3 the relevant ψ-vectors are

ψo(A) =


a21
a31
a12
a32
a13
a23

 , ψd(A) =

a11a22
a33

 , ψl(A) =

a21a31
a32

 .

Given ψ(A), the corresponding basis matrices (denoted by ∆) are defined
implicitly by

� ∆oψo(A) = vecA for any zero-diagonal matrix A,

� ∆dψd(A) = vecA for any diagonal matrix A, and

� ∆lψl(A) = vecA for any strictly lower triangular matrix A.

The basis matrices ∆i are of order n2 ×mi (i = o, d, l), and for n = 3 they
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take the form

∆o =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


, ∆d =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1


, ∆l =



0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0


.

The three matrices share the property that each column contains one single 1
and zeros elsewhere. This is not true for all ∆-matrices — not, for example,
for the duplication matrix D, associated with symmetry.

The following properties hold for each of the three L-structures L(∆i).

Proposition 1. We have, for i = o, d, l,

(a) ∆i has full column rank mi,
(b) ∆′i∆i = Imi

,
(c) ∆+

i = ∆′i,
(d) ∆′i vecA = ψi(A) for all A,
(e) ∆i∆

′
i vecA = vecA for all A ∈ L(∆i),

(f) ∂ vecA/∂(ψi(A))′ = ∆i for all A ∈ L(∆i).

Note that (d) is valid for all A because these basis matrices are effectively
elimination matrices. In contrast, (e) and (f) are only valid within the chosen
L-structure. In Sections 3 and 4 we also show the effect of ∆d∆

′
d and ∆o∆

′
o

on a general matrix A.
Strict lower triangularity and diagonality were discussed in M88 (Chap-

ters 6 and 7), but the zero-diagonal L-structure has not been discussed and
will be our main interest. Since skew-symmetric matrices are zero-diagonal,
all results on zero-diagonal matrices apply also to them.

3 Diagonality

We first review some properties of the diagonal L-structure and present some
generalizations. The relevant ∆-matrix can be written as

∆′d = (E11, E22, . . . , Enn),
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where Eii is the n × n matrix with 1 in the ith diagonal position and zeros
elsewhere. We know that ∆dψd(A) = vecA when A is diagonal (the implicit
definition), and that for any A, diagonal or not,

∆d∆
′
d vecA = ∆dψd(A) = vec(dg(A));

see M88, Theorem 7.3(ii), where the matrix dg(A) is a transformation of
the matrix A containing only its diagonal elements. In contrast, the matrix
diag(a) is a function of the vector a and contains the components of a on its
diagonal. Thus,

ψd (diag(a)) = a, diag (ψd(A)) = dg(A).

Since the ψd operator only affects the diagonal elements of A we have ψd(A) =
ψd(A

′) and hence ∆′dK = ∆′d, where K is the n2 × n2 commutation matrix;
see M88, Theorem 7.4(i).

The next result links the ψd operator to the Hadamard (or element-by-
element) product.

Proposition 2. Given two matrices A and B both of dimension n × n, we
have

∆′d(A⊗B)∆d = ∆′d(B ⊗ A)∆d = A�B = B � A,

and in particular, for any two diagonal matrices Λ1 and Λ2,

∆′d(Λ1 ⊗ Λ2)∆d = ∆′d(Λ2 ⊗ Λ1)∆d = Λ1Λ2 = Λ2Λ1.

The first expression in Proposition 2 applies also to rectangular matrices
A and B, as long as A and B have the same order, but the ∆d matrices that
pre- and postmultiply will then have different orders.

We conclude this short review by presenting a generalization of Proposi-
tion 2 and Theorem 7.7(i) of M88.

Proposition 3. Let M be a diagonal n2× n2 matrix with diagonal elements
µ11, µ12, . . . , µnn. Then,

∆′dM∆d = diag(µ11, µ22, . . . , µnn)

and
∆d∆

′
dM∆d = M∆d.
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4 Zero-diagonality

The class of diagonal matrices and the class of zero-diagonal matrices are
complements.

Proposition 4. The n2 × n2 matrix (∆o,∆d) is orthogonal.

This implies that ∆′o∆d = 0 and

∆o∆
′
o = In2 −∆d∆

′
d,

a diagonal idempotent matrix of rank n(n− 1).
¿From the implicit definition we have ∆o∆

′
o vecA = vecA for all zero-

diagonal A, while for any n× n matrix A,

∆o∆
′
o vecA = vec(A− dg(A)).

Next we study the matrix ∆′oK∆o, where K is the commutation matrix.
While K has the effect K vecA = vecA′ for any A, the matrix ∆′oK∆o has
the effect ∆′oK∆oψo(A) = ψo(A

′) for any zero-diagonal A. It plays the role
of the commutation matrix for zero-diagonal matrices.

Proposition 5. The matrix ∆′oK∆o is a symmetric permutation matrix of
order n(n− 1), and hence orthogonal.

Let M be an n2× n2 diagonal matrix, possibly but not necessarily of the
form M1 ⊗M2 where M1 and M2 are diagonal of order n.

Proposition 6. Let the diagonal n2 × n2 matrix M have diagonal elements
µ11, µ12, . . . , µnn. Then,

∆′oM∆o = diag(µ12, µ13, . . . , µn,n−1), ∆′oM∆d = 0,

and
∆o∆

′
oM∆o = M∆o.

In particular, for any n× n diagonal matrix Λ,

∆′o(Λ⊗ In)∆o = Λ⊗ In−1.

In the last expression, the order of the two diagonal matrices cannot be
reversed in general. So it is not true that ∆′o(In ⊗ Λ)∆o = In−1 ⊗ Λ, unless
Λ = In.
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Proposition 7. If K +M is nonsingular, then

(∆o,∆d)
′(K +M)−1(∆o,∆d) =

(
(∆′o(K +M)∆o)

−1 0
0 (I + ∆′dM∆d)

−1

)
and

(K +M)−1 = ∆o (∆′o(K +M)∆o)
−1

∆′o + ∆d(I + ∆′dM∆d)
−1∆′d.

We can be more precise about the nonsingularity of K + M . Let Aij =
αEij + βEji. Then,

(K +M) vecAij = vec(αµij + β)Eij + vec(α + βµji)Eji = λij vecAij

if and only if
αµij + β = αλij, α + βµji = βλij.

Hence, the eigenvalues of K+M are λii = 1 +µii, λij = pij + qij (i > j), and
λij = pij − qij (i < j), where

pij =
µij + µji

2
, qij =

√(
µij − µji

2

)2

+ 1.

The matrix is nonsingular if and only if µii 6= −1 (i = 1, . . . , n) and µijµji 6= 1
for i 6= j.

5 Zero-diagonality and strict lower triangu-

larity

The classes of zero-diagonal and strictly lower triangular matrices are also
related, which can be exploited in several directions. Here we only mention
the following result.

Proposition 8. The n(n− 1)×n(n− 1) matrix ∆′o(∆l, K∆l) is orthogonal,
and (

∆′l
∆′lK

)
∆oψo(A) =

(
ψl(A)
ψl(A

′)

)
.

This result is analogous to Theorem 7.5 in M88, which explains how to
transform ψl(A) and ψd(A) jointly into vech(A).
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Appendix: Proofs

Proof of Proposition 1: This follows from M88, Theorems 2.3 and 2.4.
Properties (a), (e), and (f) are valid for all basis matrices. Properties (b)
and (d) follow from the fact that the columns of our three basis matrices are
selected columns of the identity matrix. Property (c) follows from (b).

Proof of Proposition 2: See M88, Theorem 7.7(ii).

Proof of Proposition 3: Let ∆′d = (E11, E22, . . . , Enn), ei the ith elemen-
tary vector so that Eii = eie

′
i, and Mi the ith diagonal block (of order n×n)

of M . Then,

∆′dM∆d =
n∑

i=1

EiiMiEii =
n∑

i=1

eie
′
iMieie

′
i =

n∑
i=1

µiiEii

= diag(µ11, µ22, . . . , µnn).

To prove the second equation, write M =
∑

ij µij(Eii ⊗ Ejj) and let A be
diagonal. Then,

∆d∆
′
dM∆dψd(A) =

∑
ij

µij∆d∆
′
d(Eii ⊗ Ejj)∆dψd(A)

=
∑
ij

µij∆d∆
′
d(Eii ⊗ Ejj) vecA =

∑
ij

µij∆d∆
′
d vec(EjjAEii)

=
∑
ij

µij vec(EjjAEii) =
∑
ij

µij(Eii ⊗ Ejj) vecA

=
∑
ij

µij(Eii ⊗ Ejj)∆dψd(A) = M∆dψd(A),

where we have used the diagonality of EjjAEii. Since this holds for all ψd(A),
the proof is complete.

Proof of Proposition 4: Since the matrices ∆d and ∆o select the diagonal
and nondiagonal elements of vecA, respectively, the matrix (∆o,∆d) is a
permutation matrix, hence orthogonal.

Proof of Proposition 5: Since ∆′oK∆oψo(A) = ψo(A
′) for any zero-

diagonal A, the matrix ∆′oK∆o is a permutation matrix. It is symmetric
because K is symmetric. Since all permutation matrices are orthogonal, the
result follows.
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Proof of Proposition 6: As in the proof of Proposition 3, write M =∑
ij µij(Eii ⊗ Ejj). Then,

∆′oM∆o =
∑
ij

µij∆
′
o(Eii ⊗ Ejj)∆o =

∑
ij

µij∆
′
o(ei ⊗ ej)(ei ⊗ ej)′∆o

=
∑
ij

µijψo(Eji)ψo(Eji)
′ = diag(µ12, µ13, . . . , µn,n−1).

Similarly,

∆′oM∆d =
∑
ij

µijψo(Eji)ψd(Eji)
′ = 0,

because either ψo(Eji) = 0 or ψd(Eji) = 0.
The proof of the third statement is the mirror image of the corresponding

statement in Proposition 3. The special case M = Λ ⊗ In follows by noting
that µij = λi for all j, so that

µ12, µ13, . . . , µn,n−1 = λ1, . . . , λ1︸ ︷︷ ︸
n−1 times

, λ2, . . . , λ2︸ ︷︷ ︸
n−1 times

, . . . , λn, . . . , λn︸ ︷︷ ︸
n−1 times

.

Proof of Proposition 7: We have

(∆o,∆d)
′(K +M)(∆o,∆d) =

(
∆′o(K +M)∆o ∆′oK∆d + ∆′oM∆d

∆′dK∆o + ∆′dM∆o ∆′dK∆d + ∆′dM∆d

)
=

(
∆′o(K +M)∆o 0

0 I + ∆′dM∆d

)
,

using the facts that K∆d = ∆d (M88, Theorem 7.4(i)), ∆′d∆d = I (Proposi-
tion 1), ∆′d∆o = 0 (Proposition 4), and ∆′dM∆o = 0 (Proposition 6). Since
(∆o,∆d) is orthogonal, the results follow.

Proof of Proposition 8: We have(
∆′l

∆′lK

)
∆o∆

′
o(∆l, K∆l) =

(
∆′l

∆′lK

)
(In2 −∆d∆

′
d)(∆l, K∆l)

=

(
∆′l

∆′lK

)
(∆l, K∆l)−

(
∆′l

∆′lK

)
∆d∆

′
d(∆l, K∆l)

=

(
∆′l∆l −∆′l∆d∆

′
d∆l ∆′lK∆l −∆′l∆d∆

′
dK∆l

∆′lK∆l −∆′lK∆d∆
′
d∆l ∆′lKK∆l −∆′lK∆d∆

′
dK∆l

)
= In2

because K is orthogonal, ∆′l∆l = In(n−1)/2, and ∆′lK∆l = 0 and ∆′l∆d = 0
by virtue of Theorems 6.9(iv) and 7.4(v) in M88, respectively.

9



Next, let A be zero-diagonal. Then,(
∆′l

∆′lK

)
∆oψo(A) =

(
∆′l

∆′lK

)
vecA

=

(
∆′l vecA
∆′l vecA′

)
=

(
ψl(A)
ψl(A

′)

)
.

Since the zero-diagonality of A does not restrict ψo(A), ψl(A), and ψl(A
′),

the result follows.
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