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On interpretations of tests and effect sizes in

regression models with a compositional predictor

Germà Coenders1 and Vera Pawlowsky-Glahn2

Abstract

Compositional data analysis is concerned with the relative importance of positive variables, ex-

pressed through their log-ratios. The literature has proposed a range of manners to compute

log-ratios, some of whose interrelationships have never been reported when used as explanatory

variables in regression models. This article shows their similarities and differences in interpretation

based on the notion that one log-ratio has to be interpreted keeping all others constant. The article

shows that centred, additive, pivot, balance and pairwise log-ratios lead to simple reparametriza-

tions of the same model which can be combined to provide useful tests and comparable effect

size estimates.
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1 Introduction

Compositional Data (CoDa) can be defined as positive vectors containing information

about the relative importance of parts of a whole, not necessarily with a constant sum.

The CoDa tradition started with Aitchison’s seminal work in Aitchison (1982), and

Aitchison (1986) e.g. on chemical and geological compositions. There, only the pro-

portion of each part or component is of interest, since absolute amounts are in general

either not available or irrelevant, as they only inform about the size of the chemical or

soil sample. In the last three decades, CoDa have provided a standardized toolbox for

statistical analyses where the research questions concern the relative importance of mag-

nitudes, in both hard sciences and social sciences (Coenders and Ferrer-Rosell, 2020).

The term compositional analysis (Barceló-Vidal and Martı́n-Fernández, 2016) has even

been coined to stress the fact that what is ultimately compositional is not the data, which
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may even not be parts of any whole, but the research objectives, research questions or

hypotheses focusing on relative importance rather than absolute values. Along similar

lines, CoDa have also been defined as “arrays of strictly positive numbers for which

ratios between them are considered to be relevant” without any further requirement

(Egozcue and Pawlowsky-Glahn, 2019). Examples of applications to data which do

not represent parts of any whole can be found in Ortells et al. (2016) and Linares-

Mustarós, Coenders and Vives-Mestres, 2018. Accessible handbooks have contributed

to extending the use of CoDa (Buccianti, Mateu-Figueras and Pawlowsky-Glahn, 2006;

Boogaart and Tolosana-Delgado, 2013; Filzmoser, Hron and Templ, 2018; Greenacre,

2018; Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn, Egozcue and Tolo-

sana-Delgado, 2015), as has dedicated user-friendly software (Boogaart and Tolosana-

Delgado, 2013; Filzmoser et al., 2018; Greenacre, 2018; Palarea-Albaladejo and Martı́n-

Fernández, 2015; Thió-Henestrosa and Martı́n-Fernández, 2005), although in many

cases standard software can be used after transforming the data.

In compositional research problems, most of the basic statistical analysis tools are

flawed unless they are re-expressed by means of logarithms of ratios as proposed in the

so-called log-ratio CoDa methodology.

The appeal of log-ratios is that once they are computed, standard statistical methods

can be used in many cases, as long as the relative character of the information is taken

into account when interpreting the results. Since one component can only increase in

relative terms if some other(s) decrease, the effects of components as explanatory in a

regression model cannot be interpreted in isolation. The effect of increasing one com-

ponent in relative terms unavoidably depends on which other components are reduced

in its stead. We emphasise the phrase “in relative terms” according to a compositional

research focus, because it could be the case that all components increase in absolute

terms.

In this article we stress the importance of the notion that in ordinary-least-squares

multiple regression models interpretation of a predictor is always subject to keeping

all other predictors constant. In log-ratio terms, the effect of increasing one log-ratio is

understood while keeping all other log-ratios constant. The fact that the same log-ratio

can have different effects and interpretations depending on the manner in which the re-

maining log-ratios in the regression model are constructed is frequently overlooked by

applied researchers. This notion may also make interpretation of log-ratios as explana-

tory variables differ from other statistical analyses, which is also often overlooked.

Many ways of constructing and interpreting log-ratios have been suggested in the

literature, which often lead to the same predictions, residuals and goodness of fit of the

model. Given this circumstance, it is difficult to provide arguments to choose among

them, since “there seems to be little to distinguish between forms of comparable good-

ness of fit. Much discussion has turned on attempts to provide interpretations for the

parameters” (Aitchison (1986), p285). In a sense, the alternative log-ratios do not lead

to different models, but to different reparametrizations of one and the same model. Each

reparametrization aims at one particular manner of interpreting the results. The aim of
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this article is to review some of the most common alternative parametrizations and high-

light their implications regarding parameter interpretation, “keeping all other log-ratios

in the model constant”. To the best of our knowledge, some coincidences and similari-

ties between the interpretations of these parametrizations are reported for the first time

in this article, which will hopefully help researchers find their way in the crossroads

of the many methods proposed in the literature. Some of the parametrizations involve

rerunning the model more than once in order to shed additional light on the meaning of

parameters.

The five particular parametrizations chosen in this article are aimed at easing in-

terpretation and all have comparable and readily interpretable effect sizes, which are

obscured in compositional analyses with more complicated alternatives, whose use pre-

vents effect size interpretation from being a common practice in the applied literature

(Müller et al., 2018).

The article starts with the first parametrizations, chronologically speaking (additive

and centred log-ratios) and continues with some more recently proposed alternatives.

Both statistical tests and effect sizes are interpreted and compared. An illustration using

one of Aitchison’s classic data sets follows. The last section concludes.

2 Basic form of the regression model with an explanatory

composition. Additive log-ratios

Consider a composition x, i.e. a vector in the positive orthant of D-dimensional real

space carrying information about the relative importance of its components. For ease of

formulation and illustration, in this article we consider D = 4 components closed to one

without loss of generality:

x = (x1, x2, x3, x4) ∈ R
4

+, with x j > 0, j = 1,2,3,4,
4

∑
j=1

x j = 1. (1)

The most common CoDa approach is to represent x in terms of logarithms of ratios

among its components (Aitchison, 1986; Egozcue et al., 2003). Log-ratios may, for in-

stance, be computed among all possible pairs of components in the so-called pairwise

log-ratios (Aitchison, 1986; Greenacre, 2019). In this article we follow Müller et al.

(2018) in computing logarithms to base 2, which make for a simple interpretation. A

unit increase in the logarithm to base 2 corresponds to a twofold increase in the original

magnitude.

log2

(

x j

xk

)

= log2

(

x j

)

− log2 (xk) , with j < k,k = 2,3,4, j = 1,2,3. (2)
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A particularly interesting case of pairwise log-ratios is that of additive log-ratios (Aitchi-

son, 1982), in which only D−1 pairwise log-ratios are computed with a common com-

ponent in the denominator, for instance the last. This yields an invertible log-ratio co-

variance matrix and additive log-ratios can thus be directly used as predictors in an

ordinary-least-squares regression model:

log2

(

x j

x4

)

, with j = 1,2,3. (3)

The most useful and general expression of a log-ratio is the log-contrast (Aitchison,

1983; Aitchison and Bacon-Shone, 1984):

4

∑
j=1

α jlog2 (x j) , with
4

∑
j=1

α j = 0. (4)

Log-contrasts led to the first formalization of a regression with a compositional explana-

tory variable (Aitchison and Bacon-Shone, 1984). The regression problem can be un-

derstood as obtaining the log-contrast which is maximally correlated with the dependent

variable:

y = α0 +α1log2 (x1)+α2log2 (x2)+α3log2 (x3)+α4log2 (x4)+ ε,

with
4

∑
j=1

α j = 0,
(5)

where ǫ follows the usual assumptions in the linear regression model. The zero-sum con-

straint of the coefficients in Eq. (5) reflects the fact that a component can only increase

its relative importance if one or more of the others decrease. Geometrically, the zero

sum constraint implies that the vector [α1,α2,α3,α4]
T is orthogonal to the unit vector

[1,1,1,1]T as required for a composition, which is key to the scale invariance property in

CoDa (Egozcue and Pawlowsky-Glahn, 2019): multiplying the individual compositions

by arbitrary positive constants will not modify the regression results. The constraint can

be handled by running the regression model by ordinary least squares on the additive

log-ratios (Aitchison and Bacon-Shone, 1984):

y = β0 +β1log2

(

x1

x4

)

+β2log2

(

x2

x4

)

+β3log2

(

x3

x4

)

+ ε. (6)

All formulations presented in this article lead to the same coefficients when re-expressed

according to Eq. (5). In the additive log-ratio case the re-expression and the fulfilment

of the constraint are trivial:

y = β0 +β1log2 (x1)+β2log2 (x2)+β3log2 (x3)+(−β1 −β2 −β3) log2 (x4)+ ε. (7)
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The α4 coefficient corresponding to log2(x4) can also be obtained by rerunning the

model with a different denominator in the additive log-ratio transformation, for instance

as the coefficient of log2(x4/x3) in a model in which all log-ratios have x3 in the denom-

inator.

The interpretation is as follows. The expected value of the dependent variable in-

creases when increasing the relative importance of components with positive α coeffi-

cients in Eq. (5), especially those with the largest coefficients in absolute value, at the

expense of reducing that of components with negative α coefficients (especially those

with the largest coefficients in absolute value). In compositional regression models, the

interpretation can never be that of “increasing one component while keeping all other

components constant” because this statement is, in relative terms, nonsensical.

Overall tests of all D − 1 effects in Eq. (6) simultaneously (e.g., joint F tests in

linear regression) are invariant for all approaches described in this article. Since the

composition is multivariate by nature, the joint test is normally the one with the greatest

interest. Rejecting the null hypothesis means that the composition as a whole has an

effect on the dependent variable.

Having said this, researchers sometimes like to test other more specific hypotheses.

For this purpose, the proper interpretation of the coefficients of each log-ratio is crucial.

Interpretation does change among the alternative approaches discussed in this article.

In this section we interpret the coefficients of additive log-ratios. As in any multiple

regression model by ordinary least squares, the effect of one log-ratio and its test is

understood as the expected change in y for a one-unit change of the log-ratio when the

other log-ratios are held constant (Pindyck and Rubinfeld, 1976).

Accordingly, when using logarithms to base 2, β1 is the effect of doubling the ra-

tio between x1 and x4 while keeping all other log-ratios constant. Keeping the second

log-ratio constant means that x2 can only vary by the same factor as x4. Keeping the

third log-ratio constant means that x3 can only vary by the same factor as x4. The in-

terpretation of β1 is thus the change in the dependent variable expected value when the

ratio between x1 and each of components 2 to D doubles. It is also the change in the

dependent variable expected value when the ratio between x1 and the geometric mean

of all other components doubles, with the restriction that components 2 to D vary by

a common factor. All effect sizes are hence readily interpretable and comparable: the

interpretation of β j is the change in the dependent variable expected value when the

ratio between x j and each and every of the components x1, ...,x j−1,x j+1, ...,xD doubles.

If we consider the fact that in relative terms one component can only increase if other

components decrease, statistically testing the β j parameter means testing if increasing

the x j component at the expense of reducing all other components by a common factor

has any impact on the dependent variable.

Table 1 shows an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 = 3 as in Eq. (6). It can be noted that, as compared to case 1, case 2 doubles the ratio

of x1 over each and every of the remaining components. As compared to case 1, case 2

increases the first log-ratio by one unit while keeping the remaining log-ratios constant.
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As a result, as compared to case 1, case 2 increases the expected value E(y) by β1 = 1.

The interested reader may compare cases 3 and 4 with case 1 to arrive at β2 and β3. The

comparison between case 5 and case 1 leads to α4.

Regression effects can also be interpreted in terms of what in CoDa is known as the

perturbation operator, which can be explained in brief as the product of two compo-

sitions, component-wise. Increases in log-ratios correspond to perturbations when ex-

pressed with respect to the original compositions. Therefore, Table 1 can also be inter-

preted in terms of perturbations. Cases 2 to 4 in the table correspond to the perturbation

of the [x1,x2,x3,x4] composition when increasing each log-ratio by one unit. For in-

stance, increasing log2

(

x1
x4

)

by one unit while keeping all other log-ratios constant is

equivalent to perturbing the original composition with [0.4,0.2,0.2,0.2]. The product of

[0.4,0.2,0.2,0.2] and [0.25,0.25,0.25,0.25] yields [0.1,0.05,0.05,0.05] which is closed

back to a unit sum as [0.4,0.2,0.2,0.2]. The inverse log-ratio transformation is the man-

ner in which log-ratios can be expressed back as the original composition. It should be

clear that these perturbations are nothing other than the inverse log-ratio transformations

of vectors [1,0,0], [0,1,0] and [0,0,1]. Indeed, using logarithms to base 2, the inverse

additive log-ratio transformation of [1,0,0] is [21,20,20,20] which, after closing to unit

sum, equals [0.4,0.2,0.2,0.2].

Table 1: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 = 3. Additive log-ratios.

Case x1 x2 x3 x4 log2

(

x1

x4

)

log2

(

x2

x4

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.400 0.200 0.200 0.200 1 0 0 1

3 0.200 0.400 0.200 0.200 0 1 0 2

4 0.200 0.200 0.400 0.200 0 0 1 3

5 0.200 0.200 0.200 0.400 −1 −1 −1 −6

It must be noted that even if the construction of the log-ratio log2(x j/x4) suggests

increasing x j in relative terms to only x4, this does not correspond to its interpretation

when the composition is explanatory, because control of the other log-ratios is a key

issue.

3 Regression model with explanatory centred log-ratios

Log-ratios are often computed between each component and the geometric mean of all

components including itself, in the so-called centred log-ratio (Aitchison, 1983):

log2

(

x j

4
√

x1x2x3x4

)

, with j = 1,2,3,4. (8)
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In order to prevent perfect collinearity, one centred log-ratio must be dropped from the

regression equation. This is by no means a nuisance, as often argued, but is the key to

the proper parameter interpretation, as shown below. Without loss of generality, if we

leave out the last centred log-ratio, the model formulation is:

y = β0 +β1log2

(

x1

4
√

x1x2x3x4

)

+β2log2

(

x2

4
√

x1x2x3x4

)

+β3log2

(

x3

4
√

x1x2x3x4

)

+ ε.

(9)

By expressing Eq. (9) as a the log-contrast in Eq. (5) we obtain:

y = β0 +

(

β1 −
1

4

3

∑
j=1

β j

)

log2 (x1)+

(

β2 −
1

4

3

∑
j=1

β j

)

log2 (x2)+

(

β3 −
1

4

3

∑
j=1

β j

)

log2 (x3)+

(

−
1

4

3

∑
j=1

β j

)

log2 (x4)+ ε. (10)

Univariate tests referring to each particular log-ratio are interpreted as follows. Since

all four centred log-ratios in Eq. (8) add-up to zero, increasing a given centred log-ratio

while keeping the remaining two log-ratios in the equation constant means increasing

the given centred log-ratio while decreasing the omitted centred log-ratio by the same

amount. Individual coefficients and their tests thus show the existence of significant

trade-offs between pairs of components. A positive significant β j coefficient means that

increasing component x j at the expense of reducing component x4 has a significant pos-

itive effect on the dependent variable. If we use the logarithm to base 2, β j is interpreted

as the expected change in the dependent variable when the ratio between x j and x4

increases fourfold. In this manner effect sizes in the model are once more readily inter-

pretable and comparable. Table 2 has an example of a fictitious population with β0 = 0,

β1 = 1, β2 = 2, and β3 = −1 as in Eq. (9). For instance, as compared to case 1, case 2

increases the first log-ratio by one unit while keeping the remaining log-ratios constant

and shows a fourfold increase in the ratio between x1 and x4. Compared to case 1, the

ratio between x1 and any of the remaining components (x2 and x3) is doubled, while the

ratio between x4 and any of the remaining components (x2 and x3) is halved. It must be

noted that the omitted log-ratio log2

(

x4
4
√

x1x2x3x4

)

is equal to −1.

Table 2: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 =−1. Centred log-ratios, where the one with

x4 in the numerator has been dropped.

Case x1 x2 x3 x4 log2

(

x1
4
√

x1x2x3x4

)

log2

(

x2
4
√

x1x2x3x4

)

log2

(

x3
4
√

x1x2x3x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.444 0.222 0.222 0.111 1 0 0 1

3 0.222 0.444 0.222 0.111 0 1 0 2

4 0.222 0.222 0.444 0.111 0 0 1 −1
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In order to get tests and estimates for all possible pairwise trade-offs, the model can

be rerun D times by dropping each time a different centred log-ratio.

It must be noted once more that even if the construction of the log-ratio log2

(

x j
4
√

x1x2x3x4

)

suggests increasing x j in relative terms to all components, this does not correspond to

its interpretation when the composition is explanatory, because control of the other log-

ratios is a key issue.

4 Regression model with explanatory pivot coordinates

Egozcue et al. (2003) were the first to advocate for an orthonormal basis to compute the

log-ratio transformation. The advantages of this approach in many statistical analyses

can be found in Pawlowsky-Glahn et al. (2015). This recommendation was translated to

models with explanatory compositions by Tolosana-Delgado and Boogaart (2011) in the

form of balance coordinates (Egozcue and Pawlowsky-Glahn, 2005). In short, balance

coordinates are scaled log-ratios of the geometric means of two groups of components,

chosen in such a way that the basis is orthonormal.

Within balance coordinates, one particular form (Egozcue et al., 2003; Fišerová and

Hron, 2011; Hron, Filzmoser and Thompson, 2012) which later became known as pivot

coordinates (Filzmoser et al., 2018), makes it possible to interpret the effect of increas-

ing one component at the expense of decreasing all others by a common factor and has

gained widespread acceptance, partly due to the unawareness that the original formu-

lation as additive log-ratios by Aitchison and Bacon-Shone (1984) is interpreted in the

same manner up to a scaling constant when used as explanatory (Coenders, 2019).

In order to provide an easily interpretable and comparable measure of effect size,

Müller et al. (2018) wisely changed the requirement of orthonormality of the basis to

mere orthogonality by removing scaling constants from pivot coordinates, unaware that

this resulted in the same estimates and test statistics as the additive log-ratio represen-

tation. This approach was first referred to as orthogonal coordinates for compositional

regression (Müller et al., 2018). Henceforth we refer to them as simplified pivots.

The first coordinate under the simplified pivot approach is the log-ratio of the first

component over the geometric mean of all other components, the second is the log-ratio

of the second component over the geometric mean of components 3 to D, the third is

the log-ratio of the third component over the geometric mean of components 4 to D,

and so forth. Constructed as just described, the following log-ratios make it possible to

interpret the first log-ratio, which is the one to be called pivot, as the effect of increasing

the first component while reducing all others by a common factor (Hron et al., 2012;

Müller et al., 2018):

y = β0 +β1log2

(

x1

3
√

x2x3x4

)

+β2log2

(

x2

2
√

x3x4

)

+β3log2

(

x3

x4

)

+ ε. (11)
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The model can be rerun D times by permuting the components so that each time one

different component plays the role of the first, which is in the numerator of the first log-

ratio. The order of all other components is irrelevant. Each run provides one of the α

coefficients in Eq. (5).

Table 3 shows an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 = 3 as in Eq. (11). The reader will note that keeping the second and third log-ratios

constant forces all components in the denominator of the first log-ratio to change by a

common factor. Thus, as compared to case 1, case 2 doubles the ratio of x1 over each

and every of the remaining components, exactly as in Table 1. Also as compared to case

1, case 2 increases the first log-ratio by one unit while keeping the remaining log-ratios

constant. Cases 3 and 4 and coefficients β2 and β3 are usually not interpreted in the pivot

coordinate case.

Table 3: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 = 3. Simplified pivots.

Case x1 x2 x3 x4 log2

(

x1
3
√

x2x3x4

)

log2

(

x2
2
√

x3x4

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.400 0.200 0.200 0.200 1 0 0 1

3 0.240 0.380 0.190 0.190 0 1 0 2

4 0.243 0.243 0.343 0.172 0 0 1 3

Since only the β1 coefficient is interpreted in each of the D model runs, sometimes

researchers compile a table including only these, which can give the misleading impres-

sion that there is only one regression model with D log-ratios while there actually are D

regression models, each with D− 1 log-ratios. We do not discuss further the estimates

and tests and their interpretation because they are identical to the additive log-ratio case,

albeit in the simplified pivot case, interpretation is more intuitive in accordance with the

way in which the log-ratio is constructed.

5 Regression model with other explanatory orthogonal coordinates

Besides pivot coordinates, any balance coordinates can be re-expressed as orthogonal

coordinates for compositional regression (Müller et al., 2018) by just dropping the scal-

ing constants. They are thus just the logarithm of the geometric means of two groups of

components, one in the numerator and one in the denominator taking care that the basis

is orthogonal. As ordinary balance coordinates, they can be formed from a sequential

binary partition of the components (Egozcue and Pawlowsky-Glahn, 2005). There are

potentially many ways in which components can be partitioned, and the choice can be

tailored to the research objectives. We provide only an example: we firstly partition the

whole composition into the group of components x1 and x2 on the one hand and the

group x3 and x4 on the other, we secondly partition the first group into its two single

components, and thirdly we do likewise with the second group, according to the rows of
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the following sign matrix, in which positive signs indicate the numerator of the log-ratio

and negative signs the denominator:

x1 x2 x3 x4

+1 +1 −1 −1

+1 −1 0 0

0 0 +1 −1

. (12)

We get the following reparametrization:

y = β0 +β1log2

(

2
√

x1x2

2
√

x3x4

)

+β2log2

(

x1

x2

)

+β3log2

(

x3

x4

)

+ ε. (13)

Since it is feasible to compute potentially many sets of orthogonal coordinates by par-

titioning the components in different ways, the interpretation has to be tailored to the

particular log-ratios. If we consider what it means to keep the second and third log-

ratios constant while interpreting the first one, the estimates and tests of β1 have to be

interpreted as the effect of increasing x1 and x2 by a common factor and reducing x3 and

x4 by a common factor in such a way that the ratio of the geometric means of the first pair

over the second doubles (assuming we use the logarithm to base 2). A sequential binary

partition chosen by the researcher as in Eq. (12) makes it possible to test the effect of

jointly increasing any subset of components by a common factor while decreasing any

other subset of components by a common factor. If we consider what it means to keep

the first and third log-ratio constant while interpreting the second log-ratio, the estimates

and tests of β2 have to be interpreted as the effect of doubling the x1 to x2 ratio without

modifying the relative importance of x3 to x4, nor the relative importance of x3 and x4 to

x1 and x2 in geometric mean terms, in the same way as in the centred log-ratio case. The

actual estimate is half of that obtained with the centred log-ratio and the test result is

identical. The reader will note that, by coincidence, the formulation of the last log-ratio

in Eq. (13) coincides with the additive log-ratio case in Eq. (6), but not its interpretation.

Table 4 has an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 =−2 as in Eq. (13). For instance, as compared to case 1, case 2 increases the first log-

ratio by one unit while keeping the remaining log-ratios constant and shows a twofold

increase in the ratio between x1 and x2 on the one hand and x3 and x4 on the other.

Summing up, orthogonal coordinates for compositional regression have the attrac-

tive property that effects can always be interpreted as increasing the components in

the numerator by a common factor while decreasing those in the denominator by a

common factor in such a way that the ratio has a twofold increase. The perturbation

[0.333,0.333,0.167.0.167] in the second row of Table 4 associated to the log2

(

2
√

x1x2
2
√

x3x4

)

log-ratio is a good example. In the orthogonal coordinate case, interpretation is intuitive

in accordance with the way in which the log-ratio is constructed.
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Table 4: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 =−2. Orthogonal coordinates for composi-

tional regression.

Case x1 x2 x3 x4 log2

(

2
√

x1x2
2
√

x3x4

)

log2

(

x1

x2

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.333 0.333 0.167 0.167 1 0 0 1

3 0.343 0.172 0.243 0.243 0 1 0 2

4 0.243 0.243 0.343 0.172 0 0 1 −2

Of course, the original balance coordinates which include scaling constants are equiv-

alent up to a change in scale, which preserves the statistical test results but makes effect

sizes less readily comparable.

6 Regression model with explanatory pairwise log-ratios

Greenacre (2019) suggested a general approach to selecting D− 1 pairwise log-ratios,

which, when introduced as explanatory, provide yet another flexible way of testing hy-

potheses that can be tailored to the research objectives. It boils down to taking care that

each component participates in at least one log-ratio and that exactly D− 1 log-ratios

are computed. This results in an acyclic connected graph in which the D components act

as nodes and the D−1 log-ratios as edges (Greenacre, 2019). Once more, this makes for

a very high number of possible reparametrizations. As in the section above, we present

just one example. The reader will note that the formulation of the first log-ratio coincides

with the additive log-ratio case in Eq. (6), but not its interpretation.

y = β0 +β1log2

(

x1

x4

)

+β2log2

(

x2

x1

)

+β3log2

(

x3

x4

)

+ ε. (14)

The log-ratios in Eq. (14) correspond to the graph in Figure 1.

Figure 1: Acyclic connected graph representing the pairwise log-ratios. Arrows point from the denominator

to the numerator.
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When interpreting each log-ratio the researcher will have to be well aware of what

the model is controlling for. If we use the logarithm to base 2, β1 is interpreted as the

effect of doubling the ratio of x1 over x4. However, keeping the second log-ratio constant

means that x2 can only increase by the same factor as x1, and keeping the third log-ratio

constant means that x3 can only decrease by the same factor as x4. The graph in Figure 1

also shows x2 to be connected to x1, and x3 to x4. Thus the estimates and tests of β1

have to be interpreted as the effect of multiplying x1 and x2 by a common factor and x3

and x4 by a common factor in such a way that the ratio of the first pair over the second

doubles. The interpretation is thus not the same as in the additive log-ratio case, even if

the formulation of the log-ratio is the same as in Eq. (6).

Rearranging the components in the pairwise log-ratios makes it possible to test the

effect of jointly increasing any subset of components by a common factor while de-

creasing all the remaining components by a common factor. The remaining log-ratios

and the acyclic connected graph inform the researcher of which other components are

linked to the numerator and which to the denominator of the log-ratio which is being

interpreted, for which purpose great care has to be exerted. When used as explanatory,

pairwise log-ratios are thus more closely related to orthogonal coordinates for compo-

sitional regression than previously thought, although less flexible, because orthogonal

coordinates make it possible to leave certain components out of both the denominator

and the numerator for interpretation.

Because of the way in which the pairwise log-ratios are computed in this particular

example, the reader can apply the reasoning above to find out that the interpretation

of β2 and β3 is the same as in the additive log-ratio case, and also corresponds to two

particular simplified pivots. For instance, when interpreting β2, keeping the first and

third log-ratios constant implies that x4 and x3 vary by the same factor as x1, respectively,

while no component varies by the same factor as x2. The graph in Figure 1 also shows

x4 and x3 to be connected to x1. β2 thus refers to doubling the ratio of x2 over all other

components assuming that they decrease by a common factor.

Table 5 shows an example of a fictitious population with β0 = 0, β1 = 2, β2 = 1, and

β3 =−1 as in Eq. (14), which illustrates the interpretations above.

Table 5: Fictitious population with β0 = 0,β1 = 2,β2 = 1,β3 =−1. Pairwise log-ratios.

Case x1 x2 x3 x4 log2

(

x1

x4

)

log2

(

x2

x1

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.333 0.333 0.167 0.167 1 0 0 2

3 0.200 0.400 0.200 0.200 0 1 0 1

4 0.200 0.200 0.400 0.200 0 0 1 −1

It must be noted again that even if the construction of the log-ratio log2(x j/xk) sug-

gests increasing x j in relative terms to only xk, this does not correspond to its interpre-

tation when the composition is explanatory, because control of the other log-ratios is a

key issue.
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It must be reminded that cases 2 to 4 in all Tables 1 to 5 can also be interpreted in

terms of the perturbation of the [x1,x2,x3,x4] composition when increasing each log-ratio

by one unit while keeping all other log-ratios constant. In all cases, the perturbations are

obtained as the inverse transformations of vectors [1,0,0], [0,1,0] and [0,0,1] according

to the given log-ratio transformation.

7 Illustration

As an illustration we use one of the original simulated data sets provided by Aitchison

(1986), called Bayesite, which is freely available in the R library compositions (Boogaart

and Tolosana-Delgado, 2013).

In the development of bayesite, a new fibreboard, experiments were conducted to

obtain some insight into the nature of the relationship of its permeability (measured in

microdarcies) to the mix of its four ingredients (n = 21):

• Short fibres (x1).

• Medium fibres (x2).

• Long fibres (x3).

• Binder (x4)

All model parametrizations have an intercept term equal to 317.302, a residual stan-

dard error equal to 46.61 on 17 degrees of freedom, multiple R-squared equal to 0.419,

adjusted R-squared equal to 0.316, and a significant joint F statistic (4.078 on 3 and 17

degrees of freedom, p-value = 0.024), telling that the mix as a whole has an impact on

permeability.

Table 6 shows the coefficients. Those in italics are either redundant or not needed for

interpretation. The most correlated log-contrast with permeability is also the same for

all parametrizations:

19.414log2 (x1)+27.406log2 (x2)−25.953log2 (x3)−20.866log2 (x4) . (15)

This means that permeability increases together with increases of x1 and x2 coupled with

decreases in x3 and x4, in terms of relative importance, x2 and x3 having a greater impact

than x1 and x4.

The additive log-ratio results tell that increasing the relative importance of x2 at the

expense of reducing all other components by a common factor in such a way that the ra-

tio of x2 over any other component doubles, leads to an expected increase of 27.406 mi-

crodarcies in permeability, which is statistically significant at the 0.05 level. The results

also tell that relatively increasing x3 at the expense of reducing all other components by

a common factor in such a way that the ratio of x3 over any other component doubles,

leads to a significant expected decrease of 25.953 microdarcies.
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Table 6: Estimates and tests in four alternative reparametrizations. Redundant or not needed effects in

italics.

Additive log-ratios: Estimate Std. Error t-value p-value

Denominator x4

Numerator x1 19.414 11.560 1.679 0.111

Numerator x2 27.406 11.560 2.371 0.030

Numerator x3 −25.953 11.560 −2.245 0.038

Denominator x3

Numerator x1 19.414 11.560 1.679 0.111

Numerator x2 27.406 11.560 2.371 0.030

Numerator x4 −20.866 16.229 −1.286 0.216

Centred log-ratios:

Log-ratio with x4 numerator omitted

Numerator x1 40.281 23.929 1.683 0.111

Numerator x2 48.272 23.929 2.017 0.060

Numerator x3 −5.087 23.929 −0.213 0.834

Log-ratio with x3 numerator omitted

Numerator x1 45.368 17.694 2.564 0.020

Numerator x2 53.360 17.694 3.016 0.008

Numerator x4 5.087 23.929 0.213 0.834

Log-ratio with x2 numerator omitted

Numerator x1 −7.991 17.694 −0.452 0.657

Numerator x3 −53.360 17.694 −3.016 0.008

Numerator x4 −48.272 23.929 −2.017 0.060

Log-ratio with x1 numerator omitted

Numerator x2 7.991 17.694 0.452 0.657

Numerator x3 −45.368 17.694 −2.564 0.020

Numerator x4 −40.281 23.929 −1.683 0.111

Simplified pivots:

x1 in the first place

Pivot 19.414 11.560 1.679 0.111
Second log-ratio 33.877 11.541 2.935 0.009

Third log-ratio −2.544 11.964 −0.213 0.834

x2 in the first place

Pivot 27.406 11.560 2.371 0.030
Second log-ratio 28.550 11.541 2.474 0.024

Third log-ratio −2.544 11.964 −0.213 0.834

x3 in the first place

Pivot −25.953 11.560 −2.245 0.038
Second log-ratio 10.763 11.541 0.933 0.364

Third log-ratio 24.136 11.964 2.017 0.060

x4 in the first place

Pivot −20.866 16.229 −1.286 0.216
Second log-ratio 12.459 10.216 1.220 0.239

Third log-ratio 26.680 8.847 3.016 0.008

Other orthogonal coordinates (example)

log2

(√
x1x2

/√
x3x4

)

46.820 14.880 3.147 0.006

log2(x1/x2) −3.996 8.847 −0.452 0.657

log2(x3/x4) −2.544 11.964 −0.213 0.834

Pairwise log-ratios (example)

log2(x1/x4) 46.820 14.880 3.147 0.006

log2(x2/x1) 27.406 11.560 2.371 0.030

log2(x3/x4) −25.953 11.560 −2.245 0.038
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The centred log-ratio formulation shows that increasing x1 at the expense of reducing

x3 and increasing x2 at the expense of reducing x3 both lead to a significant increase in

permeability. Doubling x1 at the expense of halving x3 (i.e., multiplying their ratio by

four) leads to a 45.368 microdarcy increase in expected permeability, while multiplying

the ratio between x2 and x3 by four leads to a 53.360 increase in expected permeability.

The results with simplified pivots are identical numerically and interpreted in the

same way as those with additive log-ratios.

In this particular example, the second and third orthogonal coordinates are trade-

offs between pairs of components and are thus related to the results of a centred log-

ratio (estimates are halved but test statistics are identical). For instance, the test statistic

for the coordinate log2(x1/x2) is equivalent to the x1 statistic in the centred log-ratio

formulation with x2 omitted.

Also in this particular example, the second and third pairwise log-ratios provide

the same result as in the additive log-ratio case. Researchers need to carefully tailor

interpretation to the particular log-ratios chosen, especially in the pairwise case. For

instance, keeping the first and third pairwise log-ratios constant while increasing the

second implies increasing the ratio of x2 over all other components by the same factor.

Finally, the results of the first log-ratio both in the particular pairwise log-ratio ex-

ample and the particular orthogonal coordinate example we have chosen, show that the

effect of multiplying x1 and x2 by a common factor and x3 and x4 by another common

factor in such a way that the ratio of the geometric mean of the first pair over the sec-

ond doubles is significant, and amounts to 46.820, in terms of expected permeability in

microdarcies.

8 Discussion

One attractive feature of CoDa is that once the raw composition has been transformed

into log-ratios, classical statistical techniques for unbounded data can, in many cases, be

applied in the usual way, and even with standard software. Log-ratio transformations thus

constitute the easy way out in compositional problems. This includes models in which

the composition is the explanatory variable. The applied researcher can concentrate his

or her efforts in interpreting the results taking the compositional nature of the data and

the research questions into account: what does increase at the expense of decreasing

what? Along these lines, some quick and useful highlights to recap the article are:

• All alternatives considered in this article are reparametrizations of the same model.

In a sense, none can be worse or better than any other as long as the parametriza-

tion provides answers to the researcher’s questions and, above all, is interpreted

correctly. If the researcher wants to interpret the results from more than one per-

spective or to test more than one type of hypotheses, he or she can use more than

one parametrization.
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• When used as explanatory variables, additive log-ratios are not interpreted as in-

creasing a component at the expense of reducing the last component, as their for-

mulation suggests, but as increasing a component at the expense of reducing all

other components.

• When used as explanatory variables, centred log-ratios are not interpreted as in-

creasing a component at the expense of reducing all other components, as their

formulation suggests, but as increasing a component at the expense of reducing

the component whose log-ratio is omitted.

• When used as explanatory variables, simplified pivot coordinates are equivalent to

additive log-ratios.

• Orthogonal coordinates can be tailored to testing particular hypotheses of interest

related to increasing any subset of components at the expense of reducing any

other subset. Moreover, the interpretation of the regression coefficients is intuitive

following the formulation of the corresponding log-ratios.

• When used as explanatory variables, pairwise log-ratios are not interpreted as in-

creasing a component at the expense of reducing another component, as their for-

mulation suggests, but as a tailored tool to interpret the effect of increasing a subset

of components at the expense of reducing all the remaining components. Proper

interpretation requires exerting great care.

• It often pays to embed theoretical knowledge or research questions into (possibly

more than one) parametrizations of the model.

• As in any multiple regression, the full formulation of the model has much to tell

about the log-ratio whose effect is being interpreted.

• Using logarithms to base 2 and removing scaling constants enhances interpretabil-

ity and provides comparable effect size estimates.

• Expressing the effects of the log-ratios as the effects of the corresponding pertur-

bations may help clarify their interpretation under all approaches, and even more

so when tailoring orthogonal coordinates and pairwise log-ratios to the research

objectives. The effect of the first log-ratio in the regression equation is that of per-

turbing the composition with the corresponding inverse log-ratio transformation

of vector [1,0,0,0, ...,0], the second log-ratio refers to perturbing the composition

with the inverse of vector [0,1,0,0, ...,0], and so on.

Great care must be taken if using the test results for simplifying the model (Paw-

lowsky-Glahn et al., 2015). The significance of one log-ratio depends both on the com-

ponents present in the analysis and on the remaining D− 2 log-ratios, which jointly

frame the interpretation as the significant effect of relatively increasing what and how

at the expense of relatively decreasing what and how. If we put it otherwise, dropping

log-ratios changes the interpretation and estimates of whatever is left in the model. For

instance, if we drop the second and third log-ratios in the orthogonal coordinate case in

Eq. (13), then the coefficient of the first log ratio loses its original sharpness and shifts its

interpretation into merely increasing the ratio of the product x1x2 over the product x3x4,
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without knowing if increases and decreases are by a common factor. This is so because

the perturbation can no longer be computed from the inverse transformation. If we put it

yet otherwise, all methods are interpreted with respect to the given set of components in

x. For instance, if we drop x1 in the additive log-ratio case in Eq. (6), then the interpre-

tation of the coefficient of log2(x2/x4) is the outcome of increasing x2 while decreasing

only x3 and x4 by a common factor. Besides that, different parametrizations will un-

avoidably suggest different simplifications, and the simplified models will no longer be

equivalent. In the bayesite example, the pivot and additive log-ratio approaches suggest

that x1 may be dropped from the composition whereas the centred log-ratio approach re-

veals a significant trade-off between x1 and x3. The centred log-ratio approach suggests

to drop x4 while in the pairwise log-ratio approach all the coefficients are significant.

The easy way out is not to simplify the model at all. Of course, if the research is carried

out for predictive or exploratory purposes rather than for theory building or theory test-

ing, then simplifying the model can be the wise path to follow (see below) and parameter

interpretation may not be essential.

We have not dealt with the diagnostic tools used in linear regression models with

a compositional predictor because they are the same as in the general linear regression

case, according to the distributional assumptions for the ǫ disturbance term, for instance

the normal distribution. Any of the parametrizations can be obtained from any other

parametrization by linear transformations. Since the regression model is affine equiv-

ariant, this implies that all parametrizations lead to the same goodness of fit, residuals,

predicted values, and even leverage values and Cook’s distances (Filzmoser et al., 2018).

Conversely, the statistical distribution of the compositional variables plays no specific

role. For this reason, orthogonality or isometry do not constitute requirements for using

compositions as explanatory variables.

Having said this, orthogonal isometric log-ratios, among which balance coordinates

constitute a common example, have very desirable properties in other compositional

analyses, and can be blindly applied with virtually any statistical method. In the ex-

planatory role, any orthogonal coordinates, isometric or not, also have the attractive

property that effects can always be interpreted as increasing the components in the nu-

merator by a common factor while decreasing those in the denominator by a common

factor. Both advantages have no doubt contributed to their widespread use.

The extension from a linear model to a generalized linear model is straightforward

(Coenders, Martı́n-Fernández and Ferrer-Rosell, 2017). For instance, if the dependent

variable is a count, a Poisson regression can be specified, or if the dependent variable

is ordinal or binary, an ordered or a binary logit model can be specified. Interpretation

would then refer to the log expected count, to the logit, or to the appropriate expression

in each case, taking the link function of the generalized linear model into account.

Adding non-compositional predictors in the same model can also be done in a straight-

forward manner (Coenders et al., 2017) and nested models can be used to assess the

predictive power of the compositional versus non-compositional predictors. The results

of the non-compositional predictors are invariant under any of the parametrizations of
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the composition presented in this article. The interpretation of the compositional pre-

dictors is the same as outlined in this article “keeping the non-compositional predictors

constant”. A very interesting particular case is including the total as predictor, which Co-

enders et al. (2017) recommend doing when the composition does not have a constant

sum.

This article is by no means comprehensive. We have purposely selected only the

simplest parametrizations with comparable effect sizes and leading to the same predic-

tions. There are other ways to introduce a composition as explanatory in a regression

model. A first group of methods (stability-based model selection, stepwise selection

of the pairwise log-ratios with the highest explanatory power, spike-and-slab lasso re-

gression modelling, principal balances, selection of the balance coordinate with highest

explanatory power, and compositional principal component analysis, among others) al-

ways simplify the model, each in its own way, and thus lead to different predictions,

do not control for all possible components or all possible log-ratios, and modify the

interpretation. The interested reader may resort to the original sources (Combettes and

Müller, 2019; Greenacre, 2019; Lin et al., 2014; Louzada, Shimizu and Suzuki, 2019;

Martı́n-Fernández et al., 2018; Quinn and Erb, 2020; Rivera-Pinto et al., 2018; Solans et

al., 2019). These data-driven approaches are especially useful when the number of com-

ponents is very large, sometimes even larger than the sample size, when the model is

built with predictive purposes, or when theory is weak and the researcher prefers to em-

brace a data mining perspective. A second group of methods does not imply simplifying

the model. Among them we highlight interpreting the effects of balance coordinates,

which up to a scaling constant are equivalent to those of orthogonal coordinates for

compositional regression (Pawlowsky-Glahn et al., 2015), comparing predictions with

different composition values (Dumuid et al., 2019), converting estimates into a gradi-

ent (Tolosana-Delgado and Boogaart, 2011), and converting estimates into elasticities

(Morais, Thomas-Agnan and Simioni, 2018).

Having said this, we hope that by focusing on the most simple alternatives and on

the comparative interpretation of their effect sizes and tests, we make it easier for re-

searchers to draw fruitful, precise and clear conclusions about the influence of a compo-

sition on a dependent variable. Especially, a focus on effect sizes is as of now lacking in

most applications, with few exceptions.

Acknowledgements

The article was supported by the Spanish Ministry of Science, Innovation and Univer-

sities/FEDER (grant RTI2018-095518-B-C21), the Spanish Ministry of Health (grant

CIBER CB06/02/1002) and the Catalan Government (grant 2017SGR656). Acknowl-

edgements are due to Josep Antoni Martı́n Fernández, Michael Greenacre and Juan José
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