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Bartlett and Bartlett-type corrections for censored

data from a Weibull distribution

Tiago M. Magalhães1 and Diego I. Gallardo2

Abstract

In this paper, we obtain the Bartlett factor for the likelihood ratio statistic and the Bartlett-type

correction factor for the score and gradient test in censored data from a Weibull distribution. The

expressions derived are simple, we only have to define a few matrices. We conduct an extensive

Monte Carlo study to evaluate the performance of the corrected tests in small sample sizes and

we show how they improve the original versions. Finally, we apply the results to a real data set

with a small sample size illustrating that conclusions about the regressors could be different if

corrections were not applied to the three mentioned classical statistics for the hypothesis test.
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1 Introduction

Hypothesis testing is an essential step in statistical inference in order to help investiga-

tors identify and understand the effect of covariates on the response variable. Survival

regression models are required when the response variable is censored, i.e., only partial

information is available. Parametric survival models are often used in health economic

applications (Latimer, 2013) because the survival function is fully specified (Ishak et al.,

2013) and data from multiple time periods can be easily combined (Benaglia, Jackson

and Sharples, 2015).

The likelihood ratio (LR), Wald, score and gradient tests are commonly used for

hypothesis testing. Under the null hypothesis (H), each test statistic is asymptotically

chi-squared distributed, i.e., the four statistics are asymptotically equivalent. Since they

are coupled with asymptotic properties, the chi-squared distribution may not be a good

approximation to the null distribution of each statistic in small or moderate sample sizes,
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then the use of these statistics become less justifiable. In practical situations, this fact

can produce a type I error that should be greater (or less) than the fixed nominal value

(usually 1%, 5% or 10%).

An approach to improve inferences in small/moderate samples using in the LR test is

the Bartlett correction (Bartlett, 1937; Lawley, 1956). In this approach, the LR statistic

is multiplied by a correction factor. Bartlett-type corrections were also developed for

the score and gradient statistics, see Cordeiro and Ferrari (1991) and Vargas, Ferrari and

Lemonte (2013).

Our main goal in this paper is to improve the likelihood inference in censored data

from a Weibull distribution, where the scale parameter is known. Two particular models

are obtained from this case: the exponential and Rayleigh distributions, but if unknown,

the scale parameter may be replaced by a consistent estimate. First, we derive the Bartlett

and the Bartlett-type correction for these censored data models. Next, we perform Monte

Carlo simulation experiments to evaluate and compare the finite-sample performance of

the improved LR, score and gradient tests with the usual LR, Wald, score and gradient

tests. To the best of our knowledge, Bartlett and Bartlett-type corrections for LR, score

and gradient statistics in the Weibull survival model were not specified so far. Moreover,

it is the first presentation of corrections for the gradient statistic in survival models. All

these results are illustrated by a comprehensive simulation study.

The paper is structured as follows. In Section 2, we describe the censored data from

a Weibull distribution and discuss estimation and hypothesis testing inference on the

regression parameters. The Bartlett and the Bartlett-type correction factors are derived

in Section 3. Monte Carlo simulation results are presented and discussed in Section 4.

An empirical application that use real data are presented and discussed in Section 5. The

paper closes up with a brief discussion in Section 6.

2 Weibull distribution

A continuous random variable T is called Weibull, denoted by WE(θ,σ), if its probabil-

ity density function (pdf) is

f (t;θ,σ) =
1

σθ1/σ
t1/σ−1 exp

{
−(t/θ)1/σ

}
, t > 0,

where σ> 0 is the shape parameter and θ> 0 is the scale parameter. Weibull distribution

is commonly used in the analysis of time-to-event or lifetime data and it is still the aim of

several works, as in Jafari and Zakerzadeh (2015), Nekoukhou and Bidram (2015), Lina,

Williamson and Kim (2019), Magalhães, Gallardo and Gómez (2019), for instance. Two

particular models under this parametrization are obtained for σ = 1 and σ = 1/2, which

represent the exponential and the Rayleigh models with mean θ and θ
√
π/2, respec-

tively. In this work, we focused on those models. However, if σ is unknown, we assume

that it can be replaced by a consistent estimate. In lifetime data, censoring is very com-
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mon because of time limits and other restrictions on data collection. To describe these

data, we consider that, for a sample size of n, L1, . . . ,Ln are stochastically independent

random variables representing the failure times and T1, . . . ,Tn are stochastically inde-

pendent Weibull random variables and independent of the L′s, denoting the censoring

times. Under the right censoring, the observed information is

ti = min(Ti,Li) and δi =

{
1, Ti ≤ Li

0, Ti > Li
.

For L1, . . . ,Ln fixed, we have the type I mechanism and if L1, . . . ,Ln = L, a random

variable, type II censoring. Under the assumption that the censoring times L′s do not

depend on θ (known in the literature as a non-informative censoring assumption), we

have that the log-likelihood function for the two types of censoring has the form

L(θ) =
n

∏
i=1

{
1

σθ1/σ
t
1/σ−1
i

}δi

exp
{
−(ti/θ)

1/σ
}

=
(
σθ1/σ

)−r

exp

{(
1

σ
−1

)
W1 −

1

θ1/σ
W2

}
,

where r = ∑n
i=1 δi, W1 = ∑n

i=1 δi log ti and W2 = ∑n
i=1 t

1/σ
i . The regression structure can be

incorporated in the model by making θi = exp
(
x
⊤
i βββ

)
, where βββ is a p-vector of parame-

ters and xi is a vector of regressors related to the i-th observation. Usually, the regression

modelling considers the distribution of Yi = log(Ti) instead of Ti. The distribution of Yi

is of the extreme value form with pdf given by

f (yi;xi) =
1

σ
exp

{
yi −µi

σ
− exp

(
yi −µi

σ

)}
, −∞< yi < ∞,

where µi = logθi = x
⊤
i βββ is the linear predictor related to the i-th observation. The log-

likelihood function derived from this regression model is given by

ℓ(βββ) =
n

∑
i=1

[
δi

(
−n logσ+

yi −µi

σ

)
− exp

(
yi −µi

σ

)]
.

The total score function and the total Fisher information matrix for βββ are given, respec-

tively, by

Uβββ = σ−1
X

⊤
W

1/2
v and Kββββββ = σ−2

X
⊤

WX,

where X = (x1, . . . ,xn)
⊤, the model matrix, assuming the rank(X) = p, W = diag(w1,

. . . ,wn), wi = E
[
exp

(
yi−µi
σ

)]
and v = (v1, . . . ,vn)

⊤, vi =
{
−δi + exp

(
yi−µi
σ

)}
w
−1/2
i . It

can be observed that the value of wi depends on the mechanism of censoring. That means

wi = 1− exp
{
−L

1/σ
i exp(−µi/σ)

}
and wi =

r

n
,
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for types I and II censoring, respectively. The proofs are presented in Magalhães et al.

(2019). The maximum likelihood estimator of βββ, β̂ββ, is the solution of Uβββ = 0. The MLE

β̂ββ cannot be expressed in closed-form. It is typically obtained by numerically maximiz-

ing the log-likelihood function using a Newton or quasi-Newton nonlinear optimization

algorithm. Under mild regularity conditions and in large samples, β̂ββ ∼ Np(βββ,K
−1
ββββββ

), ap-

proximately.

Consider the p-dimensional parameter vector βββ = (βββ⊤
1 ,βββ

⊤
2 )

⊤, where βββ1 is a q-di-

mensional vector and βββ2 is the remaining p−q parameters. In a test of hypotheses, the

interest lies in H : βββ1 = βββ
(0)
1 , the null hypothesis, where βββ

(0)
1 is a known q-vector, in

other words, the null hypothesis imposes q restrictions on the parameter vector. Hence,

βββ2 is the vector of nuisance parameters and βββ1 is the vector of interest parameters. This

partition induces the corresponding partitions

Uβββ =
(

U
⊤
βββ1
,U⊤

βββ2

)⊤
, with Uβββ1

= σ−1
X

⊤
1 W

1/2
v, Uβββ2

= σ−1
X

⊤
2 W

1/2
v,

Kββββββ =

(
Kβββ1βββ1

Kβββ1βββ2

Kβββ2βββ1
Kβββ2βββ2

)
= σ−2

(
X

⊤
1 WX1 X

⊤
1 WX2

X
⊤
2 WX1 X

⊤
2 WX2

)
,

and X = [X1 X2], X1, X2 being n× q and n× (p− q), respectively. The LR, score and

gradient statistics for testing H can be expressed, respectively, as

SLR = 2
[
ℓ
(
β̂ββ1,β̂ββ2,σ

)
− ℓ

(
βββ
(0)
1 ,β̃ββ2,σ

)]
,

SR = ṽ
⊤

W̃
1/2

X1

(
R̃

⊤
W̃R̃

)−1
X

⊤
1 W̃

1/2
ṽ,

ST = σ−1
ṽ
⊤

W̃
1/2

X1

(
β̂ββ1 −βββ(0)

1

)
,

where
(
β̂ββ1,β̂ββ2

)
and

(
βββ
(0)
1 ,β̃ββ2

)
are the unrestricted and restricted MLEs of (βββ1,βββ2),

respectively, R = X1 −X2A, with A =
(
X

⊤
2 WX2

)−1
X

⊤
2 WX1 represents a (p− q)× q

matrix whose columns are the vectors of regression coefficients obtained in the weighted

normal linear regression of the columns of X1 on the model matrix X2 with W as a

weight matrix. Here, tildes and hats indicate quantities available at the restricted and

unrestricted MLEs, respectively. Under the null hypothesis H, these three statistics have

an asymptotic χ2
q distribution with approximation error of order n−1.

3 Improved inference

As discussed in Section 2, when the sample size is not sufficiently large, the chi-squared

distribution may be a poor approximation to the null distribution of the statistics. Thus,

it is paramount to obtain refinements for inference based on these tests.
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From the second-order asymptotic theory, three works can be mentioned: Lawley

(1956), Cordeiro and Ferrari (1991) and Vargas et al. (2013). These works obtained gen-

eral correction factors, respectively, for the LR, score and gradient statistics, which re-

duced the approximation error of the asymptotic χ2
q distribution from n−1 to n−2. Those

correction factors are based on the derivatives of the log-likelihood function.

From the result of Lawley (1956), we derived the specific Bartlett-correction factor

for LR statistic for testing H : βββ1 = βββ
(0)
1 in censored data from a Weibull distribution, it

is given by

εp = (1/4)σ−2tr
{

F1Ż
(2)
}
+(1/12)σ−6

1
⊤

W

(
2Z

(3)+3ŻZŻ

)
W1 (1)

+σ−5
1
⊤

W

(
Z
(3)+ ŻZŻ

)
W

′
1+σ−4

1
⊤

W
′
(

Z
(3)+ ŻZŻ

)
W

′
1,

where F1, W
′, Z and Ż are given in the Appendix and all the algebraic manipulations

are presented in the Supplementary Material, Section D.1. The three Bartlett corrected

test statistics are

SLR*1 =
SLR

(1+ c)
, SLR*2 = SLR× exp{−c} and SLR*3 = SLR× (1− c),

where c = (εp − εp−q)/q, both εp and εp−q, can be obtained from (1). The statistic

SLR*1 is the original Bartlett corrected likelihood ratio statistic. However, the others are

equivalent to order O(n−1). It is noteworthy that SLR*2 assumes only positive values.

From Cordeiro and Ferrari (1991), we have written the specific Bartlett-type cor-

rected score statistic for censored data from a Weibull distribution as

SR* = SR{1−
(
cR +bRSR+aRSR2

)
}, (2)

where aR = AR3/12q(q+ 2)(q+ 4), bR = (AR2 − 2AR3)/12q(q+ 2), cR = (AR1 −AR2 +

AR3)/12q and, for the sake of brevity, the quantities AR1 to AR3 are presented in the

Appendix.

For σ = 1, the expressions (1) and (2) reduce to exponential censored data case,

derived by Cordeiro and Colosimo (1997) and Cordeiro and Colosimo (1999), respec-

tively. For more details on the Bartlett and the Bartlett type corrections, see Cordeiro

and Cribari-Neto (2014).

Finally, using the general result of Vargas et al. (2013), we obtained the specific

Bartlett-type corrected gradient statistic for censored data from a Weibull distribution as

ST* = ST
{

1−
(
cT +bT ST+aT ST2

)}
, (3)

where aT = AT3/12q(q+2)(q+4), bT = (AT2 −2AT3)/12q(q+2), cT = (AT1 −AT2 +

AT3)/12q and the quantities AT1 to AT3 are also presented in the Appendix. For fur-

ther discussion about gradient test and its Bartlett-type correction as well, see Lemonte

(2016).
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4 Simulation studies

In this section, we present four simulation studies to assess different aspects of our

proposal. The first study is related to evaluating the type I error from the different

corrected statistics under different combinations of (p,q), σ, % of censoring (C) and

sample sizes. The second study is devoted to assessing the power of the corrected

statistics. The third study evaluates the behaviour of the corrected statistics if the as-

sumption of known σ is changed by the respective estimate, i.e., σ = σ̂, where σ̂ is

some consistent estimator of σ. Finally, the fourth study assessed the performance of

the corrected statistics if the scheme used to draw the censoring times is random (in-

stead of censoring type I or type II), but considering as they were censoring type I. In

all studies, we considered three values for σ: 0.5,1 and 3; eight combinations for (p,q):

(3,1),(3,2),(5,1),(5,2),(5,3),(7,1),(7,3) and (7,5); 3 values for C: 10%,25% and

50%; and 3 sample sizes: 20, 30 and 40, totaling 216 cases. We also considered βββ = 0p,

i.e., a vector of zeros with dimension p. However, only the first q components of βββ were

tested to be zero. For each combination of σ, (p,q), % of censoring and sample size we

considered 20,000 Monte Carlo replicates. Each vector of covariates xi was drawn from

the multivariate standard normal distribution with dimension p. Values from the Weibull

model were drawn using the inverse transformation method and right censoring type II

scheme was used, i.e., the first n× (1−C/100) times (rounded to the upper whole num-

ber) represented a failure time and the rest of units were censored at the (1−C/100)-th
quantile. The exception was the simulation study 4, where a right censoring scheme was

used. For each sample and considering σ as known (except for simulation study 3 where

such parameter was estimated from the sample) we compute the traditional statistics

SLR, SR and ST and their modified version discussed in Section 3 to test H0 : βββq = 0q

versus H1 : the contrary. In all cases, we reported the percentage of times where the re-

spective test rejected the null hypothesis giving a specified type I error. All simulations

were performed using the R software (R Core Team, 2017).

4.1 Assessing the type I error

In this simulation study, we evaluate the type I error for the usual versions of SLR, SR

and ST and their corrected versions discussed in Section 3 to test H0 : βββq = 0q versus

H1 : the contrary. We consider the four scenarios for (p,q), σ, % of censoring and sam-

ple sizes mentioned in the introduction of this section. We report the percentage of times

where the test rejected the null hypothesis with a 5% significance. Table 1 summarizes

the cases where σ = 0.5, C = 25%, n = 30. The complete results are presented in the

Supplementary Material, Section B.1. In general, the correction produces a rejection rate

closer to the nominal 5% significance in the three tests. Considering the 216 involved

cases, the mean of the rejection rates was 7.9%, 6.1% and 8.1% for the SLR, SR and ST

tests and 5.6%, 5.5%, 5.3%, 5.6% and 5.3% for the SLR*1, SLR*2, SLR*3, SR* and

ST* tests, respectively, showing a better performance in average terms to the corrected
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statistics. We also compute the percentage of times where the corrected version of the

test provides a rejection rate closer (in absolute value) to the nominal value. Such per-

centages were 99.5% for the SLR*1, SLR*2 and SLR*3, 69.0% for the SR* and 98.6%

for the ST* test. Results suggest a huge improvement in the corrected version of the

statistics when compared with their traditional pairs. As p and q increase, the differ-

ences in the rejection rates between the traditional statistics and the corrected ones seem

to be getting larger. There are two possibles reasons, for a fixed sample size n: (a) Fixing

q. As p increases, worse is the model fit and, consequently, the approximation to the null

distribution of each statistic. (b) Fixing p. As q increases, there is the family-wise error

rate (FWER), i.e., more restrictions in the null hypothesis make type I error larger, in-

flated. In the both situations, the corrected statistics seem to be less affected. Finally, we

remark that the SR seems the most robust statistic among the three traditional statistics

in this context.

Table 1: Simulated rejection rates for H0 :βββq = 0q, with σ = 0.5, C = 25%, n = 30 and different values for

p and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 7.0 6.2 7.0 5.8 5.8 5.7 5.9 5.7

2 7.5 6.3 7.6 6.1 6.0 6.0 6.3 6.2

5 1 7.5 6.5 7.7 6.0 6.0 5.9 5.8 5.4

2 8.3 6.5 8.4 6.1 6.0 5.9 6.0 5.9

3 8.7 6.7 9.2 6.3 6.2 6.1 6.5 6.3

7 1 8.4 6.8 8.5 6.3 6.1 5.9 5.7 4.7

3 10.4 7.5 10.7 6.8 6.6 6.4 6.6 6.3

5 10.6 6.6 11.5 6.7 6.5 6.3 6.6 6.8

4.2 Assessing the power of the tests

In this simulation study, we assessed the power of the test for the usual versions of SLR,

SR and ST and their corrected versions. We considered n = 20 and p = 5 in all the cases,

q varying in the set {1,3}, σ in {0.5,1,3} and C in {10%,25%,50%}. To simulate the

data, we further considered βββ = 0p. However, we have an interest in the hypothesis of

the form H0 : βββq = ψ1q, where 1q is a vector of ones with dimension q and ψ is taken

in the set {0.05,0.10,0.25,0.50,1.00,2.00}. Table 2 shows the results for σ = 1 and

C = 10%. The complete results are presented in the Supplementary Material, Section

B.2. As expected, the power of the test is increased when ψ is increased (because the

value being tested is further than the value used to simulate the data) and when q is

increased. We also noted that the power of each test is greater than its corrected version

for some values of ψ and is lower than its corrected version for other values of ψ. There-

fore, as usual in most problems related to hypothesis tests, there is no unique most pow-

erful test. However, the powers of the three ordinary and corrected tests seem similar.
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Table 2: Simulated rejection rates to the corrected version of the SLR, SR and ST tests for H0 : βββq = ψ1q,

with σ = 1, C = 10%, n = 20, p = 5 and different values for q.

ψ

q statistic 0.05 0.10 0.25 0.50 1.00 2.00

1 SLR 6.9 8.0 16.5 42.0 86.9 99.7

SR 5.4 6.6 15.6 41.9 86.3 99.6

ST 6.9 8.1 16.7 41.9 86.9 99.7

SLR*1 7.7 8.7 17.0 41.3 86.1 99.7

SLR*2 7.7 8.7 16.9 41.2 86.0 99.7

SLR*3 7.6 8.7 16.9 41.2 85.9 99.7

SR* 5.4 6.6 15.6 41.9 86.3 99.6

ST* 6.7 7.8 17.3 44.7 88.8 98.5

3 SLR 7.5 10.0 28.9 75.9 99.3 100.0

SR 6.4 9.8 33.0 79.1 99.4 100.0

ST 8.1 10.8 30.1 76.5 99.3 100.0

SLR*1 8.2 10.9 29.3 75.5 99.3 100.0

SLR*2 8.2 10.9 29.3 75.5 99.3 100.0

SLR*3 8.1 10.9 29.2 75.5 99.3 100.0

SR* 6.4 9.8 33.0 79.1 99.4 100.0

ST* 7.8 10.6 31.4 78.8 98.5 98.9

4.3 Changing the assumption of σσσ known

Up to this moment, we considered σ as a known value. However, in practice we also

need to estimate it. An alternative is to fix σ = σ̂ML and apply all the discussed method-

ology, where σ̂ML denotes the ML estimator of σ for the complete model (i.e., with

all covariates). However, as we are working in a framework with a small sample size,

the bias of σ̂ML can be considerable. Previous studies performed by us suggest that the

performance of the corrected statistics does not differ substantially from the traditional

statistics to test βββq = 0q versus H1 :βββq 6= 0q. For this reason, in this simulation study, we

considered fixing σ = σ̂J , where σ̂J is the jackknife estimator for σ. A third alternative

not explored by us was to fix σ = σ̂B, where σ̂B is a bootstrap estimator for σ. However,

σ̂J provides satisfactory results and σ̂J is determined in a unique form to a fixed sample,

whereas σ̂B typically is computed based on B >> n bootstrap resample, which is not

unique and is more expensive in computational terms. We consider the four scenarios

for (p,q), σ, % of censoring and sample sizes mentioned in the introduction of this sec-

tion. We report the percentage of times where the test rejected the null hypothesis with

a 5% significance. Table 3 summarizes the cases where σ = 1, C = 25%, n = 20. The

complete results are presented in the supplementary material, Section B.3. Consider-

ing the 216 involved cases, the mean of the rejection rates was 12.2%, 6.8% and 8.0%

for the SLR, SR and ST tests and 8.8%, 8.5%, 8.2%, 6.3% and 5.6% for the SLR*1,
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SLR*2, SLR*3, SR* and ST* tests, respectively, showing a better performance in aver-

age terms than the corrected statistics. We also compute the percentage of times where

the corrected version of the test provides a rejection rate closer (in absolute value) to the

nominal value. Such percentages were 100% for the SLR*1, SLR*2, SLR*3 and ST*

and 73.6% for the SR*. Results suggest a huge improvement for the corrected version

of the statistics when compared with their traditional counterparts.

Table 3: Simulated rejection rates for H0 :βββq = 0q, with σ = 1, C = 25%, n = 20 and different values for p

and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 6.9 5.6 6.9 5.6 5.5 5.4 5.2 5.2

2 7.1 5.1 7.6 5.5 5.4 5.4 5.1 5.5

5 1 7.8 6.0 7.9 5.9 5.8 5.7 5.0 4.3

2 8.9 6.0 9.1 6.0 5.8 5.5 5.3 5.2

3 8.9 5.3 9.3 5.9 5.7 5.5 5.1 5.6

7 1 9.0 6.7 9.0 6.3 6.0 5.8 5.0 3.3

3 11.5 6.6 12.0 6.7 6.4 6.0 5.6 5.0

5 11.0 4.8 12.3 6.0 5.8 5.4 4.9 6.0

4.4 Changing the assumption of censoring type I or II

Up to this moment, all the development in this work was performed based on the as-

sumption that the censoring scheme is either a type I or II. In this simulation study, we

changed such assumption assuming that the censoring times L1, . . . ,Ln were indepen-

dent random variables and independent from T1, . . . ,Tn. For simplicity, we assumed that

Li ∼ W E(λi,1), i.e., the exponential distribution with mean λ−1
i . If the percentage of

censoring times was fixed at C%, we required that P(Ti > Li) =C/100. It was straight-

forward to show that such a condition was equivalent to

∫ ∞

0
fTi
(u;θi,σ)× e−λiudu =C/100, (4)

where fTi
(·;θi,σ) denotes the density function of WE(θi,σ). Then, for a fixed value for

θi,σ and C it was possible to solve numerically (4) to find λi. The same four scenar-

ios for (p,q), σ, % of censoring and sample sizes mentioned in the introduction of this

section were considered. We reported the percentage of times where the test rejected

the null hypothesis with a 5% significance. Table 4 summarizes the cases where σ = 3,

C = 50%, n = 20. The complete results are presented in the Supplementary Material,

Section B.4. Considering the 216 involved cases, the mean of the rejection rates were

6.5%, 4.8% and 6.4% for the SLR, SR and ST tests and 5.1%, 5.1%, 5.0%, 4.8% and

4.9% for the SLR*1, SLR*2, SLR*3, SR* and ST* tests, respectively, showing a better
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performance in average terms to the corrected statistics. We also computed the percent-

age of times where the corrected version of the test provided a rejection rate closer (in

absolute value) to the nominal value. Such percentages were 84.7%, 84.3% and 83.3%

for the SLR*1, SLR*2 and SLR*3, respectively, 62.0% for the SR* and 73.1% for the

ST* test. Furthermore, results suggest a huge improvement for the corrected version of

the statistics when compared with their traditional pairs. The percentages of times where

the corrected statistics are closer to the nominal value in comparison with the traditional

statistics are lower than in simulation study 1, where σ is assumed as known. However,

such percentages remain high and the correction is suggestible.

Table 4: Simulated rejection rates for H0 :βββq = 0q, with σ = 3, C = 50%, n = 20 and different values for p

and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 7.2 5.8 7.4 5.3 5.2 5.0 5.0 5.6

2 7.5 4.6 7.7 5.5 5.4 5.2 4.7 5.9

5 1 9.0 6.9 9.1 6.2 5.8 5.5 5.3 6.0

2 9.0 5.8 9.3 5.7 5.5 5.2 4.8 5.7

3 10.0 4.8 10.1 6.0 5.7 5.4 4.6 5.9

7 1 10.7 8.2 10.8 6.9 6.4 5.8 5.5 5.8

3 12.8 6.7 12.7 6.9 6.3 5.6 5.3 5.8

5 13.3 4.5 12.3 6.7 6.2 5.6 4.8 5.6

5 Application

In this section we present a real data application related to clams in order to illustrate a

case where conclusions obtained from a hypothesis test may be different if the correc-

tions discussed in Section 3 are not considered in censored data from a Weibull distri-

bution. In Section A of the Supplementary Material, we present a second application.

Clams data set

Bonnail et al. (2016) performed a study to assess sediment quality using the freshwater

clam Corbiculafluminea to determine its adequacy as a biomonitoring tool in relation

to theoretical risk indexes and regulatory thresholds. The clams were exposed to sedi-

ments contaminated with acid mine drainage (polymetallic acid lixiviate derived from

mining activity). The study contains 27 observations with measurements, among other

characteristics, of the dry weight tissue of the clams (dry, in gr), wet weight tissue (wet,

in gr), shell length (length, in mm) and the concentration of scandium (sc), niobium

(nb), beryllium (be) and terbium (tb) bioaccumulated in the soft tissue. These minerals

were considered in micrograms per liter (µg/L). In this case, we focused on modelling

the dry weight of such clams based on the rest of available information considering the

Weibull regression model, i.e., dryi ∼WE(θi,σ), where
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logθi = x
⊤
i βββ = β1sci +β2nbi +β3bei +β4 +β5weti +β6lengthi,

with x
⊤
i = (sci,nbi,bei,1,weti,lengthi) and βββ = (β1,β2, . . . ,β6)

⊤, i = 1, . . . ,27. The

order of covariates was organized in order to test if minerals sc, nb and be explain the

dry weight of the claims, i.e., to test H0 : β1 = β2 = β3 = 0 versus H1 : β j 6= 0, for at least

one 1 ≤ j ≤ 3. For this particular problem p = 6, q = 3 and n = 27, so as the sample size

is small a correction might be required in traditional tests. We estimated σ̂J = 0.0317

based on the jackknife method, which was used as known in the computation of the dif-

ferent statistics to test H0. Results for traditional and corrected versions of the SLR, SR

and ST tests are presented in Table 5. Note that, without correction, only the SR test does

not reject H0 considering a significance of 10%. However, all the corrected versions of

the tests do not reject the null hypothesis with the same level of significance. Therefore,

we cannot conclude that minerals sc, nb and be explain the dry weight of clams. Finally,

to test if the WE model is suitable for this data set, we compute the quantile residuals

(Dunn and Smyth, 1996). If the model was correct, these residuals would behave as a

random sample from the standard normal distribution. The Kolmogorov-Smirnov test

to verify such a hypothesis provides p-values of 0.206 and 0.568 to the complete and

reduced model, respectively. Therefore, the assumption of WE distribution is acceptable

under any usual level of significance.

Table 5: Different statistics to test H0 in the clams data set.

Statistic SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

Observed 6.54 4.98 6.63 5.82 5.78 5.73 5.32 6.00

p-value 0.088 0.173 0.085 0.121 0.123 0.125 0.150 0.112

6 Concluding remarks

Weibull distribution is used for the analysis of time-to-event or lifetime data, with the

maximum likelihood theory as the main methodology to estimate the parameters. Hy-

potheses regarding these parameters are tested using the likelihood, score and gradient

tests. However, in small or moderate sample sizes, these procedures can not be reliable.

In this paper, we derived the respectively corrected versions that improve their perfor-

mance. For simplicity, we focus on the Weibull with known shape parameter (σ) to find

those expressions. Nonetheless, our results show good properties for the situation when

σ can be replaced by a consistent estimate based on the jackknife method. We also

present an application that illustrates the usefulness of the main result of the paper. The

matrices expressions for the Bartlett and Bartlett-type corrections are quite simple to be

implemented in statistical software as R (R Core Team, 2017), together with the library

flexsurv (Jackson, 2016), for instance. Noteworthy, we did not use bootstrap correc-

tions because they have different natures and they add three uncertainties: the number

of replications, the size of each replication and the type, parametric or nonparametric,

besides being computationally costly for practitioners.
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Appendix

In order to express the corrected LR, score and gradient statistics, equations (1) to (3)

, it is helpful to define the quantities w′
i = −σ−1L

1/σ
i exp{−L

1/σ
i exp(−µi/σ)−µi/σ},

w′′
i =−σ−1w′

i

[
L

1/σ
i exp(−µi/σ)−1

]
, f1i =−σ−2wi−4σ−1w′

i−4w′′
i , f2i =−2σ−2w2

i +

6σ−2wi +10σ−1w′
i +5w′′

i , f3i =−3σ−2w2
i +9σ−2wi +14σ−1w′

i +6w′′
i , i = 1, . . . ,n, and

the following matrices:

W
′ = diag(w′

1, . . . ,w
′
n), W

′′ = diag(w′′
1, . . . ,w

′′
n),

F1 = diag( f11, . . . , f1n), F2 = diag( f21, . . . , f2n), F3 = diag( f31, . . . , f3n),

Z = XK
−1
ββX

⊤ = σ2
X
(
X

⊤
WX

)−1
X

⊤, Ż = diagonal{Z},

Z2 = σ2
X2

(
X

⊤
2 WX2

)−1
X

⊤
2 , Ż2 = diagonal{Z2}, Z

(2) = Z⊙Z, Z
(3) = Z

(2)⊙Z,

where ⊙ represents a direct product and 1 is an n-dimensional vector of ones.

The remaining quantities to define an improved statistic in the score test, see equation

(2), are:

AR1 = 3σ−6
1
⊤ (W+2σW

′) Ż2 (Z−Z2) Ż2 (W+2σW
′)1

+6σ−6
1
⊤ (W+2σW

′) Ż2Z2

(
Ż− Ż2

)
(2W+3σW

′)1

+6σ−6
1
⊤ (3W+4σW

′)
[
Z
(2)
2 ⊙ (Z−Z2)

]
(W+2σW

′)1

−6σ−2tr
{

F2Ż2

(
Ż− Ż2

)}
,

AR2 =−3σ−6
1
⊤ (2W+3σW

′)
(
Ż− Ż2

)
Z2

(
Ż− Ż2

)
(2W+3σW

′)1

−6σ−6
1
⊤ (2W+3σW

′)
(
Ż− Ż2

)
(Z−Z2) Ż2 (W+2σW

′)1

−6σ−6
1
⊤ (2W+3σW

′)
[
Z2 ⊙ (Z−Z2)

(2)
]
(2W+3σW

′)1

+3σ−2tr
{

F3

(
Ż− Ż2

)(2)}
,

AR3 = σ−6
1
⊤ (

2W+3σW
′){3

(
Ż− Ż2

)
(Z−Z2)

(
Ż− Ż2

)
+2(Z−Z2)

(3)
}(

2W+3σW
′)

1.

The quantities AT1 to AT3, in the equation (3), to define an improved gradient test are,

respectively:
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AT 1 = 3σ−6
1
⊤

W

{(
Ż− Ż2

)
(Z+Z2) Ż2 + Ż2 (Z−Z2) Ż2 +2(Z−Z2)⊙Z

(2)
2

}
W1

+6σ−5
1
⊤

W

{
(Z2 +Z)⊙

(
Z
(2)−Z

(2)
2

)
+
(
Ż− Ż2

)(
Z2Ż2 +ZŻ

)

+ 2
[
Ż2

(
ZŻ−Z2Ż2

)
+Z

(2)
2 ⊙ (Z−Z2)

]}
W

′
1

+12σ−4
1
⊤

W
′
{

ŻZŻ− Ż2Z2Ż2 +Z
(3)−Z

(3)
2

}
W

′
1

−6σ−4 tr
{

W
(
Ż− Ż2

)
Ż2 +σW

′ (
Ż− Ż2

)(
Ż+3Ż2

)
+2σ2

W
′′
(

Ż
(2)− Ż

(2)
2

)}
,

AT 2 =−3σ−6
1
⊤

W
{
(1/4)

(
Ż− Żp−q

)
(Z−Zp−q)

(
3Ż+ Żp−q

)

+
(
Ż− Żp−q

)
Zp−q

(
Ż− Żp−q

)
+(1/2)(Z−Zp−q)

(2)⊙ (Z+3Zp−q)
}

W1

−6σ−5
1
⊤

W

{
(Z−Zp−q)⊙

(
Z
(2)−Z

(2)
p−q

)
+
(
Ż− Żp−q

)(
ZŻ−Zp−qŻp−q

)}
W

′
1

+3σ−4 tr
{

W
(
Ż− Żp−q

)(2)
+2σW

′ (
Ż− Żp−q

)(2)}
,

AT 3 = (1/4)σ−6
1
⊤

W

{
3
(
Ż− Żp−q

)
(Z−Zp−q)

(
Ż− Żp−q

)
+2(Z−Zp−q)

(3)
}

W1.

Although the expressions for the three corrected statistics entails a great deal of algebra,

the expressions only involve simple operations on diagonal matrices. Additionally, for

type II censoring, i.e., W
′ = 0, the expressions presented in (1) to (3) are simpler. For

instance, the Bartlett-correction factor for LR statistic reduces to:

εp = (1/4)σ−2tr
{

F1Ż
(2)
}
+(1/12)σ−6

1
⊤

W

(
2Z

(3)+3ŻZŻ

)
W1.


