Skip to main content

Advertisement

Log in

miR-1 induces endothelial dysfunction in rat pulmonary arteries

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial dysfunction plays a central role in the pathophysiology of pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are small single-strand and non-coding RNAs that negatively regulate gene function by binding to the 3′-untranslated region (3′-UTR) of specific mRNAs. microRNA-1 (miR-1) is upregulated in plasma from idiopathic PAH patients and in lungs from an experimental model of PAH. However, the role of miRNA-1 on endothelial dysfunction is unknown. The aim of this study was to analyze the effects of miR-1 on endothelial function in rat pulmonary arteries (PA). Endothelial function was studied in PA from PAH or healthy animals and mounted in a wire myograph. Some PA from control animals were transfected with miR-1 or scramble miR. Superoxide anion production by miR-1 was quantified by dihydroethidium (DHE) fluorescence in rat PA smooth muscle cells (PASMC). Bioinformatic analysis identified superoxide dismutase-1 (SOD1), connexin-43 (Cx43), caveolin 2 (CAV2) and Krüppel-like factor 4 (KLF4) as potential targets of miR-1. The expression of SOD1, Cx43, CAV2, and KLF4 was determined by qRT-PCR and western blot in PASMC. PA incubated with miR-1 presented decreased endothelium-dependent relaxation to acetylcholine. We also found an increase in the production of O2 and decreased expression of SOD1, Cx43, CAV2, and KLF4 in PASMC induced by miR-1, which may contribute to endothelial dysfunction. In conclusion, these data indicate that miR-1 induces endothelial dysfunction, suggesting a pathophysiological role in PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achcar ROD, Demura Y, Rai PR, Taraseviciene-Stewart L, Kasper M, Voelkel NF, Cool CD (2006) Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension. Chest 129:696–705. https://doi.org/10.1378/chest.129.3.696

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  Google Scholar 

  3. Christou H, Hudalla H, Michael Z, Filatava EJ, Li J, Zhu M, Possomato-Vieira JS, Dias-Junior C, Kourembanas S, Khalil RA (2018) Impaired pulmonary arterial vasoconstriction and nitric oxide-mediated relaxation underlie severe pulmonary hypertension in the Sugen-hypoxia rat model. J Pharmacol Exp Ther 364:258–274. https://doi.org/10.1124/jpet.117.244798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Das S, Kumar M, Negi V, Pattnaik B, Prakash YS, Agrawal A, Ghosh B (2014) MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis. Am J Respir Cell Mol Biol 50:882–892. https://doi.org/10.1165/rcmb.2013-0195OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dharmashankar K, Widlansky ME (2010) Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep 12:448–455. https://doi.org/10.1007/s11906-010-0150-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S (2014) miRNA-1 regulates endothelin-1 in diabetes. Life Sci 98:18–23. https://doi.org/10.1016/j.lfs.2013.12.199

    Article  CAS  PubMed  Google Scholar 

  7. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. https://doi.org/10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  8. Foresman EL, Miller FJ (2013) Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol 1:292–296. https://doi.org/10.1016/j.redox.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Sanchez MAG, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2015) [2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension]. Kardiol Pol 73:1127–1206. https://doi.org/10.5603/KP.2015.0242

  10. Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF (2012) A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 302:L977–L991. https://doi.org/10.1152/ajplung.00362.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hromadnikova I, Kotlabova K, Hympanova L, Krofta L (2015) Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction. PLoS One 10:e0138383. https://doi.org/10.1371/journal.pone.0138383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huertas A, Perros F, Tu L, Cohen-Kaminsky S, Montani D, Dorfmüller P, Guignabert C, Humbert M (2014) Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: a complex interplay. Circulation 129:1332–1340. https://doi.org/10.1161/CIRCULATIONAHA.113.004555

    Article  PubMed  Google Scholar 

  13. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol 100:1–19. https://doi.org/10.1016/j.vph.2017.05.005

    Article  CAS  Google Scholar 

  14. Klinger JR, Kadowitz PJ (2017) The nitric oxide pathway in pulmonary vascular disease. Am J Cardiol 120:S71–S79. https://doi.org/10.1016/j.amjcard.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  15. Klotz L-O (2012) Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 524:23–29. https://doi.org/10.1016/j.abb.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  16. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2014) Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens 28:510–516. https://doi.org/10.1038/jhh.2013.117

    Article  CAS  PubMed  Google Scholar 

  17. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209. https://doi.org/10.1172/JCI14172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Perez-Vizcaino F (2008) Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 295:L727–L732. https://doi.org/10.1152/ajplung.90354.2008

    Article  CAS  PubMed  Google Scholar 

  19. Meloche J, Pflieger A, Vaillancourt M, Graydon C, Provencher S, Bonnet S (2014) miRNAs in PAH: biomarker, therapeutic target or both? Drug Discov Today 19:1264–1269. https://doi.org/10.1016/j.drudis.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  20. Mondejar-Parreño G, Callejo M, Barreira B, Morales-Cano D, Esquivel-Ruiz S, Moreno L, Cogolludo A, Perez-Vizcaino F (2018) miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries. J Physiol (Lond). https://doi.org/10.1113/JP276054

    Article  Google Scholar 

  21. Mondejar-Parreño G, Callejo M, Cogolludo A, Pérez-Vizcaíno F (2019) Chapter 4 - microRNAs in respiratory diseases. In: Ruiz-Cabello J (ed) Filice M, Nucleic acid nanotheranostics. Elsevier, pp 89–131

  22. Morales-Cano D, Menendez C, Moreno E, Moral-Sanz J, Barreira B, Galindo P, Pandolfi R, Jimenez R, Moreno L, Cogolludo A, Duarte J, Perez-Vizcaino F (2014) The flavonoid quercetin reverses pulmonary hypertension in rats. PLoS One 9:e114492. https://doi.org/10.1371/journal.pone.0114492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A, Pandolfi R, Ruperez FJ, Cortijo J, Sanchez-Luna M, Villamor E, Perez-Vizcaino F, Cogolludo A (2014) Ceramide mediates acute oxygen sensing in vascular tissues. Antioxid Redox Signal 20:1–14. https://doi.org/10.1089/ars.2012.4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olave N, Lal CV, Halloran B, Pandit K, Cuna AC, Faye-Petersen OM, Kelly DR, Nicola T, Benos PV, Kaminski N, Ambalavanan N (2016) Regulation of alveolar septation by microRNA-489. Am J Physiol Lung Cell Mol Physiol 310:L476–L487. https://doi.org/10.1152/ajplung.00145.2015

    Article  PubMed  Google Scholar 

  25. Pan F, Xu J, Zhang Q, Qiu X, Yu W, Xia J, Chen T, Pan L, Chen Y, Dai Y (2014) Identification and characterization of the MicroRNA profile in aging rats with erectile dysfunction. J Sex Med 11:1646–1656. https://doi.org/10.1111/jsm.12500

    Article  CAS  PubMed  Google Scholar 

  26. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220–229. https://doi.org/10.1164/rccm.200911-1698OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramiro-Diaz JM, Nitta CH, Maston LD, Codianni S, Giermakowska W, Resta TC, Gonzalez Bosc LV (2013) NFAT is required for spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice. Am J Physiol Lung Cell Mol Physiol 304:L613–L625. https://doi.org/10.1152/ajplung.00408.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhodes CJ, Wharton J, Ghataorhe P, Watson G, Girerd B, Howard LS, Gibbs JSR, Condliffe R, Elliot CA, Kiely DG, Simonneau G, Montani D, Sitbon O, Gall H, Schermuly RT, Ghofrani HA, Lawrie A, Humbert M, Wilkins MR (2017) Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respir Med 5:717–726. https://doi.org/10.1016/S2213-2600(17)30161-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864. https://doi.org/10.15252/emmm.201100899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 218:105–149. https://doi.org/10.1007/978-3-642-38664-0_5

    Article  CAS  PubMed  Google Scholar 

  31. Sarrion I, Milian L, Juan G, Ramon M, Furest I, Carda C, Cortijo Gimeno J, Mata Roig M (2015) Role of circulating miRNAs as biomarkers in idiopathic pulmonary arterial hypertension: possible relevance of miR-23a. Oxidative Med Cell Longev 2015:792846–792810. https://doi.org/10.1155/2015/792846

    Article  CAS  Google Scholar 

  32. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  33. Shamloul R, Ghanem H (2013) Erectile dysfunction. Lancet 381:153–165. https://doi.org/10.1016/S0140-6736(12)60520-0

    Article  CAS  PubMed  Google Scholar 

  34. Shatat MA, Tian H, Zhang R, Tandon G, Hale A, Fritz JS, Zhou G, Martínez-González J, Rodríguez C, Champion HC, Jain MK, Hamik A (2014) Endothelial Krüppel-like factor 4 modulates pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50:647–653. https://doi.org/10.1165/rcmb.2013-0135OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sysol JR, Chen J, Singla S, Zhao S, Comhair S, Natarajan V, Machado RF (2018) Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. Am J Physiol Lung Cell Mol Physiol 314:L461–L472. https://doi.org/10.1152/ajplung.00057.2017

    Article  CAS  PubMed  Google Scholar 

  36. Tabima DM, Frizzell S, Gladwin MT (2012) Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 52:1970–1986. https://doi.org/10.1016/j.freeradbiomed.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  37. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438. https://doi.org/10.1096/fj.00-0343com

    Article  CAS  PubMed  Google Scholar 

  38. Tsang H, Leiper J, Hou Lao K, Dowsett L, Delahaye MW, Barnes G, Wharton J, Howard L, Iannone L, Lang NN, Wilkins MR, Wojciak-Stothard B (2013) Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm Circ 3:675–691. https://doi.org/10.1086/674440

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Zhu H-Q, Wang F, Zhou Q, Gui S-Y, Wang Y (2013) MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Mol Cell Biochem 378:153–159. https://doi.org/10.1007/s11010-013-1606-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Yuan Y, Li J, Ren H, Cai Q, Chen X, Liang H, Shan H, Fu ZD, Gao X, Lv Y, Yang B, Zhang Y (2015) MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress Chaperones 20:411–420. https://doi.org/10.1007/s12192-014-0565-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei C, Henderson H, Spradley C, Li L, Kim I-K, Kumar S, Hong N, Arroliga AC, Gupta S (2013) Circulating miRNAs as potential marker for pulmonary hypertension. PLoS One 8:e64396. https://doi.org/10.1371/journal.pone.0064396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolin MS, Gupte SA, Neo BH, Gao Q, Ahmad M (2010) Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling. Cardiol Rev 18:89–93. https://doi.org/10.1097/CRD.0b013e3181c9f088

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou G, Chen T, Raj JU (2015) MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 52:139–151. https://doi.org/10.1165/rcmb.2014-0166TR

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Authors research is funded by Ministerio de Economía y Competitividad grants (SAF2014–55399-R, SAF2016-77222R), Comunidad de Madrid (B2017/BMD-3727), Instituto de Salud Carlos III (PI15/01100), and Fundación Contra la Hipertensión Pulmonar (Empathy) with funds from the European Union (Fondo Europeo de Desarrollo Regional FEDER). G.M-P, M.C., and S.E-R. are funded by Ciberes grant with funds from Fundación Contra la Hipertensión Pulmonar, UCM predoctoral grant, and a FPU grant from Ministerio de Educación, respectively.

Author information

Authors and Affiliations

Authors

Contributions

GMP, MC, BB, DMC, and SE performed and analyzed the experiments. GMP and MC drafted the manuscript. AC and FPV conceived the study and designed the experiments. FPV wrote the manuscript with significant conceptual contributions from GMP, MC, LM, MF, and AC.

Corresponding author

Correspondence to Francisco Perez-Vizcaino.

Ethics declarations

All experimental procedures utilizing animals were carried out according to the Care and Use of Laboratory Animals and approved by the institutional Ethical Committees of the Universidad Complutense de Madrid (Madrid, Spain) and the regional Committee for Laboratory Animals Welfare (Comunidad de Madrid, Ref. number PROEX-251/15). All investigators understand the ethical principles.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondejar-Parreño, G., Callejo, M., Barreira, B. et al. miR-1 induces endothelial dysfunction in rat pulmonary arteries. J Physiol Biochem 75, 519–529 (2019). https://doi.org/10.1007/s13105-019-00696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00696-2

Keywords

Navigation