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When multidimensional tests are analyzed, the item structures that are 
obtained by Exploratory Factor Analysis are usually rejected when tested by 
Confirmatory Factor Analysis. This paper analyzes some of the aspects of 
the problem by means of simulation studies, and proposes a procedure that 
may be useful for dealing with the problem. The procedure is illustrated by 
means of an empirical example. 
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A pervasive problem in the structural analysis of items designed to 

measure personality, attitude, psychopathology and other clinical constructs 
is that structures which were obtained using Exploratory Factor Analysis 
(EFA) tend to be rejected when tested statistically using a Confirmatory 
Factor Analysis (CFA) model. A typical scenario of well-planned research 
is as follows. First, an EFA solution which is clear and replicable is 
obtained in a series of preliminary studies, and second, a CFA model based 
on this EFA solution is tested in a new sample with the result that the model 
fits very badly. However, the fit might also be bad when the CFA is fitted to 
the same sample in which the EFA seems to produce a good solution. 

The problem described above is well known among practitioners and 
has provoked different reactions. On the one hand, some authors have 
proposed alternatives to the direct use of the CFA at the item level: for 
example, item parcels (Bagozzi and Heatherton, 1994; Floyd and Widaman, 
1995), or older factor-analytic methods, such as Procrustrean rotations 
(McCrae, Zonderman, Costa, Bond and Paunonen, 1996) or the oblique 
multiple group method (Bernstein and Teng, 1989). On the other hand, 
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some practitioners have proposed models based on very few items because 
these models appear to be more likely to show an acceptable fit. In addition, 
sometimes there is the practice to discard items 'ad hoc' until this acceptable 
fit is reached. These latter procedures lack substantive and theoretical 
foundations, they are likely to capitalize on chance, and, therefore, they 
cannot be recommended. 

The purpose of the present paper is two-fold. Firstly, some of the 
aspects of the problem mentioned above are analyzed in detail by means of 
simulation studies; and secondly, a procedure that can help to solve the 
problem is proposed and illustrated by means of an empirical example. 

Review of published item CFA 
The first step we took to analyze the problem was to review 51 CFA 

published studies, which analyzed personality, psychopathology and attitude 
items, in 8 journals (Anxiety, Stress and Coping, Educational and 
Psychological Measurement, European Journal of Personality, Journal of 
Applied Psychology, Journal of Personality Assessment, Journal of 
Research in Personality, Personality and Individual Differences and 
Psychological Assessment) for the period 1994-1998. 

The main characteristics of the studies reviewed can be summarized 
as follows: (a) the number of factors ranged from 1 to 8 with a median of 3; 
(b) the sample sizes ranged from 57 to 2,026 participants with an average of 
449; (c) the number of items ranged from 7 to 85 with a median of 22, and 
the ratio items per factor ranged from 3 to 21 with a mean of 8. Most of the 
studies were based on previous EFA solutions, but in general they used 
much fewer items than the EFA solutions in which they were based used. 

All of the studies reviewed used item response formats between 3 and 
7 points and the most frequent was the 5 point format which was used in 26 
(51%) of the studies. Of the 51 studies, 24 (47.1%) analyzed a correlation 
matrix while 27 (52.9%) analyzed a covariance matrix; 44 studies (86%) 
used maximum likelihood (ML) estimation; four (7.8%) used robust ML 
estimation; and three (5.9%) used Asymptotically Distribution Free (ADF) 
estimation. Even though ML is a normal theory-based estimation procedure, 
none of the 44 studies that used ML reported that they had tested the 
normality assumption. 

Because the reviewed studies tested models of different sizes, it was 
decided to use the ratio between the chi-square test statistic value and the 
degrees of freedom of the model (χ²/df) as a common measure of fit (χ² and 
df were reported in all of the studies). χ²/df ranged from 1.31 to 19.5 with a 
mean of 3.86. 
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To sum up, our examination of 51 published applications 
demonstrated the magnitude of the problem, because virtually none of them 
reached a good fit from a statistical point of view and in most cases the fit 
was also unacceptable according to measures of fit alternative to the χ² test.  

Delimitation of the problem 
To clearly delimitate the problem, in most cases we will use the 

distinction Unrestricted-Restricted FA (UFA-RFA) solution instead of the 
more usual Exploratory-Confirmatory. We have done this mainly for two 
reasons. First, in most FA applications there is no clear EFA- CFA 
distinction: rather they fall on a continuum running from exploration to 
confirmation (Mulaik, 1972). Second, the distinction EFA-CFA is more 
conceptual than model dependent; for example, a study using traditional FA 
in which the number of factors and the approximate structure are 
hypothesized in advance is more confirmatory than exploratory, while a 
study in which a poor fitting CFA is modified 'ad hoc' is more exploratory 
than confirmatory (see Bollen, 1989). In contrast, the distinction 
Unrestricted-Restricted is clear. An unrestricted solution does not restrict 
the factor space, so unrestricted solutions can be obtained by a rotation of an 
arbitrary orthogonal solution, and, for the same data, all the unrestricted 
solutions will yield the same fit. A restricted solution, on the other hand, 
imposes restrictions on the whole factor space and cannot be obtained by a 
rotation of an unrestricted solution (Jöreskog, 1969). 

When testing a covariance structure model by means of a χ² test of fit 
(or any goodness-of-fit index derived from it), there are two general classes 
of assumptions underlying the estimation procedure: distributional and 
structural (Satorra, 1990). In a typical RFA model the structural 
assumptions which are tested are concerned with: (a) the appropriate 
number of factors, (b) the specific pattern of loadings of each observed 
variable on these factors and (c) the relations among the factors (i.e. 
uncorrelated or correlated factors). So, an RFA may not fit the data because 
the distributional assumptions are violated, the number of hypothesized 
factors is inappropriate, the relations among variables and factors are not 
correctly specified or more than one of these factors occurs simultaneously. 

To concentrate on the main problem considered here, we shall start by 
assuming that the estimation procedure is correctly specified for the 
distribution of the data and the number of factors is correct. If this is indeed 
so, the lack of fit of the model must be due to the additional restrictions 
imposed on the structure by the RFA. That is to say, it is assumed that 
researchers, possibly by means of various preliminary studies, have 
identified the main traits that explain the observed item responses and, also, 
that they know what the main items are that define the different traits. 
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The UFA model in m factors for a given item yj is: 

jmjmjjjy δθλθλθλ ++++= �2211  (1) 
If a clear structure is obtained for this model, then each item will have 

a large loading in only one factor, and small or minor loadings in the 
remaining factors. This is the concept of simple structure (Thurstone, 1947; 
chapter 14), which give rise to the idea of factorial simplicity as stated by 
Kaiser (1974) and Bentler (1977). 

When an RFA structure is prescribed based on such a clear structure, 
the usual practice is to set to zero the 'minor' loadings found in the 
unrestricted solution (typically those below 0.20 ,0.30 or even 0.40). The 
corresponding restricted model is thus given by (for example): 

jmjjy δθθθλ ++++= 00 211 �  (2) 
Expression (2) is Jöreskog's (1971) model for several sets of 

congeneric test (item) scores, and it also corresponds to the maximum 
simplicity of a factorial solution in the sense of Kaiser (1974) and Bentler 
(1977). In model (2) it is hypothesized that the 'minor' loadings found in the 
unrestricted solutions are consistent with exact zeros in the population 
(McDonald, 1985). In other words, in the usual applications each item is 
supposed to be a factorially pure measure of a sole trait, in the sense that 
only this trait contribute to the variance of the item (Thurstone, 1947).  

In general, model (2) is recognized to be the ideal model because it 
assigns meaning to the estimated traits in the most unambiguous fashion 
(Gerbing and Anderson, 1984). However, it is also recognized that this 
model might be unrealistic when applied at the item level. In the cognitive 
and ability domains, it is generally agreed that most items require more than 
one ability to arrive at a correct response, and multidimensional models 
which have items with substantial parameter values in different dimensions 
have been developed for this type of item (Reckase, 1997). Likewise, in the 
personality domain it has been argued that individual items tend to be 
factorially complex (Cattell, 1986; Comrey and Lee, 1992; Floyd and 
Widaman, 1995). This is not to say that almost pure measures of certain 
traits cannot be constructed: rather, that the assumption that all the items in 
a multidimensional questionnaire are pure measures of a single trait is, 
perhaps an unrealistic one. 

If model (1) is correct for the data, and model (2) is fitted, a bad fit 
would be expected due to the errors of specification, which in this case 
would be errors of omission (significant loadings incorrectly omitted or 
fixed to zero). If the misspecifications are not too large and the model is 
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small, perhaps the fit might be still satisfactory. The bigger the 
misspecifications and the more of them are, the worse the expected fit is. 

A second potential problem is the bias on the estimates of free 
parameters (factor loadings, interfactor correlations) due to 
misspecifications. If model (1) is correct and model (2) is imposed on the 
data, then some distortion must be introduced in the estimates to keep the 
fixed parameters equal to zero. This problem is mentioned in Comrey and 
Lee (1992). However, neither this nor the previous problem seem to have 
been systematically studied. 

Review of simulation studies 
The problems which arise from using categorical variables are not a 

direct objective of the present research. However, because the typical item 
response formats reviewed above are polytomous and because 
categorization always poses preliminary problems in the analysis (eg. 
Bernstein and Teng, 1989), we will first consider this issue. 

The conventional FA model is a model for continuous unlimited 
variables, and, strictly speaking, it should never be used with discrete 
variables. Simulation studies about this problem usually consider an FA 
model which holds for continuous variables, and study the robustness of the 
model when these variables are discretized (Bollen, 1989). If the continuous 
variables are normally distributed and the discrete variables are obtained by 
categorization at equal thresholds, then the distribution of the discrete 
variables will be approximately normal. In this case, if a normal theory 
based estimation procedure is used, according to the simulation studies, it is 
expected that: (a) the factor model will hold approximately for the discrete 
variables; (b) the loading estimates will be attenuated with respect to the 
true loadings of the continuous model, but the attenuation factor will be 
constant; and (c) the chi-square test statistic will be approximately correct. 
(Olsson, 1979; Boomsma, 1983; Muthén and Kaplan, 1985, 1992; Green, 
Akey, Fleming, Hershberger and Marquis, 1997). 

We will turn now to the studies concerned with specification error. 
Problems which arise due to errors of omission have been studied 
considerably less than the problem discussed above. Kaplan (1988) used a 
full structural model and ML estimation. The measurement part of Kaplan's 
model was an oblique three-factor model with a total of 7 variables. The 
effects of the errors of omission were studied by fixing to zero a loading 
which was nonzero in the population. Kaplan found that the omission 
produced severe bias not only in certain measurement parameters, but also 
in certain structural parameters as well. The χ² test of fit, however, gave 
acceptable results in some cases. 
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Curran, West and Finch (1996) considered simultaneous violations of 
both the distributional and the structural assumptions in an oblique three-
factor model with three indicators per factor. Their sample sizes ranged 
from 100 to 1000. Their model 3 was the most related to the present 
research and omitted two loadings which were nonzero (0.35) in the 
population. Under multivariate normality, they found that the ML χ² was 
correct for all sample sizes. 

In conclusion, the studies reviewed give little information about the 
consequences of omitting multiple 'minor' but nonzero loadings for 
realistically sized models such as the ones mentioned above. On the one 
hand, Kaplan's results suggest that both the factor loadings and the 
interfactor correlations might be severely biased if a full information 
estimation procedure (such as the usual ML ) is used. On the other hand, the 
χ² appear to be affected very little if one or two nonzero loadings are 
omitted in a small model, but whether it is affected or not under the 
conditions considered here is not known. 

The present study 
A series of Monte Carlo simulation studies were used to study the 

effects of model size and model specification on the assessment of fit and 
accuracy of the estimates. 

Model specification 
The general model considered was the multiple FA model 

corresponding to expressions (1) and (2). The well known covariance 
structure for this model is 

ΨΛΦΛΣ += '  (3) 
In this study, ΣΣΣΣ was a correlation matrix so that the unrestricted and 

restricted solutions could be better compared. Indeed, this is the common 
practice when EFA models are used, but it should not be considered so 
routinely in CFA applications. In the present case, all the CFA models 
considered met the following conditions: (a) ΦΦΦΦ was a correlation matrix (i.e. 
diag(ΦΦΦΦ)=I); (b) ΨΨΨΨ was unconstrained and (c) the only restrictions 
considered in ΛΛΛΛ were fixed zeros. Under these conditions the RFA models 
were scale invariant (see Cudeck, 1989) and so the structure of the models 
was not modified with respect to the structure that would have been 
obtained by analyzing a covariance matrix. However, if other structural 
restrictions had been imposed (such as constraining two loadings or two 
error variances to be equal), the analysis of the correlation matrix would 
have been incorrect. 
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The restricted and unrestricted versions of model (3) were specified as 
follows. In the restricted version, each variable had a principal loading in 
only one factor and zero loadings in the remaining factors. In the 
unrestricted version, each variable had a principal loading in one of the 
factors and 'minor' loadings in the remaining factors.  

Conditions. For both unrestricted and restricted models, two 
parameters were systematically varied: (a) model size and (b) interfactor 
correlations. Three conditions were considered for model size: small model 
( 2 factors, 5 variables per factor), medium model (4 factors, 8 variables per 
factor) and large model (4 factors, 20 variables per factor). There were three 
conditions for the interfactor correlations: orthogonal model (zero 
interfactor correlations), low correlations (all correlations specified to be 
0.15) and medium correlations (all correlations specified to be 0.30). All 
these conditions coincide with the empirical results reviewed above. 
Overall, the design has 2 (unrestricted-restricted) x 3 (size) x 3 (interfactor 
correlations)= 18 cells. The sample sizes (400) and the number of 
replications per cell were kept constant. 

 
METHOD 

For each of the 18 cells, 10 factor solutions were generated in the 
following way: (a) the primary loadings were selected at random from a 
uniform distribution between 0.5 and 0.8; (b) in the unrestricted solutions, 
the minor loadings were selected at random from a uniform distribution 
between 0.1 and 0.4 (in the restricted solutions the minor loadings were 
zero); (c) the signs of the loadings (both primary and minor) were also 
determined at random, so, in each of the solutions, approximately half of the 
loadings were positive and half negative. Once the factor solution had been 
generated, the corresponding correlation matrix was obtained by means of 
equation (3).  

For each of the 10 factor solutions generated in each cell, 10 random 
samples (size 400) were generated from a population of standardized 
variables distributed in multivariate normal form. The correlation matrix 
was obtained from the factor solution (ie. the factor model fitted exactly in 
the population). Then the variables were discretized at four equal thresholds 
and used to compute the sample correlation matrices. So we analyzed 5-
point Likert variables because they are the most frequent in applied 
research. However, the simulated variables are 'ideal' in the sense that they 
were all discretized at the same equal thresholds.  

All of the 1,800 correlation matrices were analyzed with a restricted 
and an unrestricted model, so there was a total of 3,600 factor analyses. In 
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all cases the restricted models specified the primary loadings to be free 
parameters and fixed the minor loadings to zero. So, the restricted models 
were (approximately) correct when the population model was restricted, and 
were misspecified when the population model was unrestricted. The 
misspecifications were the nonzero minor loadings fixed to zero. As for the 
unrestricted models, which were (approximately) correct in all cases, first an 
arbitrary orthogonal solution was obtained, and then the patterns were 
obliquely rotated using direct Oblimin with γ = 0 (Clarkson and Jennrich, 
1988).  

The method of estimation was ML, chosen because it is the most 
widely used in the applications reviewed. ML was assumed to be 
appropriate in the present case because its distributional assumptions were 
met for the original variables and approximately met when these variables 
were discretized. Given that the RFA models were scale invariant, the ML 
goodness-of-fit test statistic was correct in all models, and lead to the same 
values that would have been obtained if covariance matrices had been 
analyzed. Indeed the test statistics were also correct for the unrestricted 
models (see eg. Swaminathan and Algina, 1978). 

All analyses were conducted with the PC versions of PRELIS 2 and 
LISREL 8 (Jöreskog and Sörbom, 1996), and version 4.0 of MATLAB 
(1984) for a Silicon Graphics Computer. Details regarding data generation 
and other procedures are given in the appendix I. 

Measures. The main index of fit considered in this paper is the χ² test. 
However, because we are comparing models in which the associated df vary 
substantially, the χ² should also differ substantially from model to model 
and it is not a useful index for comparisons. Therefore, we chose the χ²/df 
ratio. For the most correctly specified models, the χ²/df ratio was expected 
not to be too different from 1.0. 

Even though the purpose of the present research was not to evaluate 
different fit indices per se, the applications reviewed above tend to rely 
more and more on fit indices other than the χ² test. So, we included two 
more indices for the reasons given below. 

The χ² tests the null hypothesis that the model fits exactly in the 
population. This hypothesis is false for all the models considered here. In 
the most correct of the models (eg. a restricted solution analyzed using a 
restricted model), only the continuous variable solution holds exactly in the 
population; the discrete variable solution that is analyzed is expected to hold 
only approximately. To estimate the approximate fit of the models in the 
population, we used the Root Mean Square Error of Approximation 
(RMSEA), a measure of the discrepancy due to approximation per degree of 
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freedom. RMSEA is bounded below by zero, and is zero only if the model 
fits exactly in the population. Browne and Cudeck (1993) suggested that an 
RMSEA of about .05 or less means that the model has a close fit. More 
recently Hu and Bentler (1999) suggested a cutoff value of about .06. 
Details about RMSEA can be found in Browne and Cudeck (1993). 

The third index considered is the Non-Normed Fit Index (NNFI), an 
incremental fit index which measures how well the model fits relative to a 
null model of uncorrelated observed variables. This particular index was 
chosen because it was first introduced by Tucker and Lewis (1973) in the 
context of factor analysis models, and it appears to be the only alternative fit 
index that is used in EFA applications. For example, the SAS FACTOR 
PROCEDURE (SAS Institute, 1992) output gives the NNFI under their 
original label of the Tucker-Lewis reliability coefficient. Hu and Bentler 
(1999) suggest an NNFI cutoff value of .95 as indicative of a good fit. 
Details about the NNFI can be found in Marsh, Balla and Hau (1996). 

The impact of misspecification on the parameter estimates was 
assessed using two measures of accuracy: an individual measure and an 
omnibus measure. The individual measure was the bias and relative bias of 
parameter estimates, evaluated using 

100
ω
ωω̂RB ×−=  (4) 

where ω̂  is the mean of the parameter estimates obtained across 
replications and ω  is the population parameter value. For each cell, only the 
averages of the RB across the considered parameters will be reported. The 
omnibus measure was Tucker's (1951) congruence coefficient between each 
solution and the population pattern. The coefficient was computed using 
only the major loadings. 

RESULTS 
Figures 1, 2 and 3 show how the different indices of fit behaved. In 

each figure, the left hand side shows the average fit across the different 
interfactor correlation matrices. The right hand side shows the average fit 
across the different model sizes.  

The general results are quite clear. When the model was 
(approximately) correct, the fit was excellent across all the conditions and 
for all of the indices. So, the UFA fitted well in all cases and the RFA fitted 
equally well when the solutions which were analyzed were restricted. As 
expected, these results suggest that when the model is correct, the 
categorization at equal thresholds does not appreciably affect the fit. 
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When the fitted model was not correct, i.e. when a restricted model 
was fitted to an unrestricted solution, the fit was unacceptable according to 
all the indices considered in the study. In the best case, the χ² was four times 
larger than the degrees of freedom, the RMSEA was above 0.10 and the 
NNFI was below .80. As for differential effects, on the one hand the fit 
appeared to be consistently worse when φφφφ was orthogonal. On the other 
hand, the fit tended to get worse when going from the small to the medium 
models but not when going from the medium to the large models. In our 
opinion this last result could be due to a ‘ceiling’ effect.  

 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1. Averaged χ2/df  values for restricted (RFA) and unrestricted (UFA) models 
estimated when the populations models are restricted (RP) and unrestricted (UP) across the 
different conditions in the simulation study. 
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Figure 2. Averaged RMSEA values for restricted (RFA) and unrestricted (UFA) models 
estimated when the populations models are restricted (RP) and unrestricted (UP) across the 
different conditions in the simulation study. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Averaged NNFI values for restricted (RFA) and unrestricted (UFA) models 
estimated when the populations models are restricted (RP) and unrestricted (UP) across the 
different conditions in the simulation study. 

The results of the fit for the simulated RFA were worse, on average, 
than the results in the literature. In our opinion, this indicates that the RFA 
applications reviewed were in general more correct for the data than the 
models used here. In other words, most of the items in the applications may  
have been factorially purer than the ones considered here. Despite the 
results, many of the studies reviewed considered the model to be 
unacceptable and proposed models based on more factors. However, an 
unrestricted model with the same number of factors such as the one which is 
proposed in the next section may have given an acceptable fit in most cases. 

Tables 1 and 2 show the accuracy in the parameter estimates when the 
restricted model was the correct population model (Table 1) and when the 
correct model was the unrestricted one (Table 2).  

The results in Table 1 are quite clear. Both UFA and RFA closely 
approximated the population solutions. RB were small and congruence was 
almost perfect for all pattern sizes and inter-factor correlations. It should be 
pointed out that the pattern loading biases were all negative in sign. This 
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reflects the effect of attenuation due to the fact that the original variables 
had been categorized. However, the small RB and the values of the Tucker 
index near to one suggest that the attenuation factor was small and constant 
as expected. 

The results in Table 2 are quite different. The pattern loading biases 
were larger than those of Table 1 for both UFA and RFA. In medium and 
large patterns, the RB tended to be larger for UFA than for RFA, which, at 
first sight, is an unexpected result given that UFA is more correct for the 
data. This may be because the RFA loadings were slightly overestimated 
due to the zero restrictions and this effect compensated the attenuation 
effect due to categorization. In any case, the RB were still reasonably low 
for both UFA and RFA. 

In contrast to the reasonable accuracy of the loading estimates, 
considerable biases were found in the interfactor correlation matrices, and 
these biases were systematically larger in the RFA solutions. In all 
conditions the UFA tended to underestimate the inter-factor correlations, 
whereas the RFA grossly overestimated them. Finally, it appears that the 
overestimation was larger when lower the interfactor correlations were. 

To summarize, the study shows that if an unrestricted model is correct 
for the data, the use of a restricted model would result in an unacceptable fit 
and biased parameter estimates. The fit will be bad according to the 
different indices considered, and even in small models. However, this last 
result does not directly contradict the idea that small models are more likely 
to reach an acceptable fit. Small models in which most of the items are 
factorially pure, or nearly so, might give a marginally acceptable fit. 

As for the parameter estimates, the results show that even if the fitted 
restricted model is not correct for the data, the loading estimates might still 
be reasonably good. It appears that the main distortions produced by 
misspecification will be found in the interfactor correlation matrix in the 
form of gross overestimates of the correlations between factors. 

 
A suggested procedure for testing an unrestricted model 
Howe (1955) and Jöreskog (1979) gave conditions for uniqueness 

under factor rotation of a factor matrix ΛΛΛΛ containing fixed zero elements. 
These conditions allow an unrestricted model to be specified as if it were a 
CFA model, so that any restricted model with fixed zeros is nested within 
the unrestricted model (i.e. the restricted model is formed by placing 
restrictions on free parameters in the unrestricted model). Tepper and Hoyle 
(1996) credit Stanley Mulaik in his capacity as Editor of Multivariate 
Behavioral Research for the idea of testing the unrestricted model in the 
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context of a nested sequence of models. The unrestricted model would be 
used as a baseline model for testing the hypothesis about the number of 
common factors. 

 
Table 1. Accuracy of parameter estimates when the population models are 
restricted.  

 Loadings Inter-factor correlations 
 Bias % Bias Burt-

Tucker 
Bias % Bias 

Φ Orthogonal
RFA -0.0421 6.7603 0.9980 0.0631
UFA -0.0419 6.7422 0.9979 0.0597

Φ low
RFA -0.0333 6.9651 0.9981 -0.0028 13.2014
UFA -0.0333 6.9594 0.9981 -0.0094 15.1483

Φ Medium
RFA -0.0368 5.5227 0.9999 0.0024 9.7081

Sm
al

l M
od

el
 

UFA -0.0381 5.7080 0.9998 -0.0117 9.8105

 Loadings Inter-factor correlations 
 Bias % Bias Burt-

Tucker 
Bias % Bias 

Φ Orthogonal
RFA -0.0370 5.6818 0.9999 0.0555
UFA -0.0367 5.6381 0.9998 0.0497

Φ low
RFA -0.0370 5.6811 0.9998 0.0002 18.6748
UFA -0.0386 5.9240 0.9998 -0.0182 26.5846

Φ Medium
RFA -0.0369 5.6296 0.9999 0.0003 9.5902

M
ed

iu
m

 M
od

el
 

UFA -0.0430 6.5587 0.9998 -0.0324 21.6416

 Loadings Inter-factor correlations 
 Bias % Bias Burt-

Tucker 
Bias % Bias 

Φ Orthogonal
RFA -0.0356 5.4652 0.9999 0.0423
UFA -0.0357 5.4649 0.9999 0.0392

Φ low
RFA -0.0364 5.5973 0.9999 0.0011 16.5969
UFA -0.0378 5.8034 0.9999 -0.0120 19.9753

Φ Medium
RFA -0.0363 5.6469 0.9999 -0.0016 9.7405

La
rg

e 
M

od
el

 

UFA -0.0422 6.5723 0.9999 -0.0323 21.6484
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Table 2. Accuracy of parameter estimates when the population models are 
unrestricted  

 Loadings  Inter-factor 
correlations 

 Bias % Bias Burt-
Tucker 

Bias % Bias 

Φ Orthogonal
RFA -0.0429 9.3815 0.9927 0.3692
UFA -0.0429 7.6189 0.9966 0.1416

Φ low
RFA -0.0465 11.6415 0.9898 0.1335 228.2194
UFA -0.0455 10.5899 0.9919 -0.0487 102.6353

Φ Medium
RFA -0.0628 22.6733 0.9692 0.2471 176.9209

Sm
al

l M
od

el
 

UFA -0.0777 19.0389 0.9829 -0.1383 102.6171

 Loadings Inter-factor correlations 
 Bias % Bias Burt-Tucker Bias % Bias 
Φ Orthogonal

RFA -0.0502 14.7792 0.9838 0.2623
UFA -0.1011 20.5744 0.9760 0.0617

Φ low
RFA -0.0608 19.8835 0.9721 0.1738 265.8566
UFA -0.1361 25.8235 0.9697 -0.0723 99.3512

Φ Medium
RFA -0.0811 28.1128 0.9419 0.1662 145.2563

M
ed

iu
m

 M
od

el
 

UFA -0.1302 26.2235 0.9682 -0.1893 126.2342

 Loadings Inter-factor correlations 
 Bias % Bias Burt-Tucker Bias % Bias 

Φ Orthogonal
RFA -0.0404 9.4586 0.9944 0.1649
UFA -0.1371 25.2854 0.9666 0.0404

Φ low
RFA -0.0526 15.3560 0.9823 0.1343 215.7496
UFA -0.1307 24.6492 0.9623 -0.0896 119.4152

Φ Medium
RFA -0.0737 22.6780 0.9625 0.1501 114.4882

La
rg

e 
M

od
el

 

UFA -0.1368 24.5755 0.9728 -0.2017 134.4372

 
The testing of the unrestricted model can present two types of 

problem. First, the Howe-Jöreskog conditions are sufficient for the 
uniqueness under rotation, but not for identification as demonstrated by 
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Bollen and Jöreskog (1985) in a counterexample. Second, the procedure 
may led to convergence problems. 

When the procedure is used only to test for the number of common 
factors the specified solution is arbitrary. However, here the procedure is 
also used to obtain a solution which is directly interpretable and which 
makes the subsequent rotations unnecessary. This is the use which was 
originally intended by Jöreskog (1969). Our experience suggests that, used 
in this way, the procedure hardly ever suffers from the aforementioned 
problems.  

The specification of the unrestricted model is based on marker 
variables to give a recognizable factor. Marker variables are variables that 
previous research has shown to load highly on the factor being considered 
and very little on any other factor (Cattell, 1988; Gorsuch, 1974). Carroll 
(1978) points out that the 'ideal' design in FA should conform to a 
hypothesized structure consisting of at least three or four marker variables 
per factor, whereas Cattell (1988) considers two good marker variables per 
factor as a minimum. In the present case only one marker variable is used 
for each factor. These variables are the items which previous EFA-based 
research has shown to be the purest measures of their corresponding factors. 

The unrestricted model is specified as follows: 
1. For each of the common factors, one of the items (the marker) is 

specified to load only on that factor (i.e. the remaining loadings are fixed to 
zero). The remaining items are left free to load on every factor.  

2. The variances of the common factors are fixed to unity. 
If the model converges properly, it is equivalent to an EFA for the 

same number of factors. In other words, it would fit equivalently to any 
rotation of an EFA with the same number of common factors.  

McDonald (1999, p. 181) describes an alternative procedure for 
specifying an UFA which is equivalent to an EFA. The procedure is 
standard in most structural equation programs and is based on an echelon 
pattern matrix in which zero factor loadings are imposed in the upper 
triangle of the factor loading matrix. The main difference between this 
method and the one proposed in our paper is that the constraints imposed in 
the echelon pattern are arbitrary and this fact, according to our experience 
using different datasets, causes the echelon method to be more prone to 
convergence problems. 

An illustrative example 
The smoking habits questionnaire (SHQ) was developed to assess the 

different situations that stimulated the desire to smoke in habitual smokers. 
The SHQ was designed to measure three general dimensions: (a) stress or 
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relief from stress; (b) activity or the commencement of activity; and (c) 
boredom. The items asked the subjects to imagine themselves in a given 
situation and to rate on a 5-point scale their desire to smoke. Nine items 
were intended to be measures of dimension (a), seven items measures of 
dimension (b) and six items measures of dimension (c). The item contents 
are shown in the appendix II. 

A series of previous EFA in different samples resulted in a clear three 
dimensional structure in which the factors were defined by the hypothesized 
sets of nine, seven and six items. From previous EFA results, three items 
were selected as marker variables: item 1 (In the tense meetings) for 
dimension (a), item 16 (Before a very active task) for dimension (b) and 
item 20 (Watching a boring TV program) for dimension (c).  

There were 255 participants for the present administration of the 
SHQ. First, a descriptive analysis was made: the departure of some item 
distributions from normality was found to be considerable and the absolute 
values of skewness and kurtosis were larger than one. The standardized 
multivariate coefficients of skewness and kurtosis were 47.5 and 20.3 
respectively. Because the data was non-normal, normal-based procedures 
such as the usual ML may lead to distorted results. That is to say, the ML 
estimates will be consistent (if the model is correct) but the χ² test of fit and 
the standard errors of the estimates are likely be biased. Given that the 
sample was too small for ADF estimation, we opted for robust ML 
estimation which uses the (consistent) ML estimates obtained under the 
normality assumption. However the χ² and the standard errors are corrected 
for non-normality to provide a scaled χ² statistic (Satorra and Bentler, 1988) 
and robust standard errors (Chou, Bentler and Satorra, 1991). Robust ML 
estimation requires that the covariance matrix, not the correlation matrix, be 
analyzed. 

Tables 3 and 4 show the parameter estimates, 95% confidence 
intervals (based on robust standard errors) and fit indices for the 
Unrestricted and the Restricted analysis of the data. The RMSEA and NNFI 
indices were computed based on the scaled χ². 

At first sight, the differences between the UFA and RFA solutions 
appear not to be very large because the unrestricted solution is close to 
being a simple structure. The simplicity of the unrestricted solution can be 
assessed by inspecting the confidence intervals of the loadings: it appears 
that most of the secondary loadings are statistically non-significant. Even 
so, some of the trends which were found in the simulation study can also be 
found in this example. So, (a) when there are significant minor loadings in 
the UFA, which are fixed to zero in the RFA, the RFA estimates of the 



Unrestricted vs restricted factor analysis 317 

principal loadings are larger than the UFA ones (see for example items 8, 
11, 12, 15 18 and 22) and (b) the interfactor correlations are systematically 
higher in the RFA than in the UFA. 
Table 3. Assessment of fit for the Unrestricted and Restricted Factor 
Analyses 

Unrestricted Factor Analysis 
χ2 df RMSEA 90% CI NNFI 

333.29 168 0.062 (0.053;0.072) 0.912 
Restricted Factor Analysis 

χ2 df RMSEA 90% CI NNFI 
477.04 206 0.072 (0.064;0.080) 0.887 

 
As for the assessment of fit in Table 3, the differences are important 

even if they are not too large. In general, the fit of the UFA model might be 
considered to be in the limit of acceptability: the NNFI is above .9; the 
RMSEA is about .06 and the χ²/df ratio is 1.98, considerably below the 
average value found in the revised applications. On the other hand, the fit of 
the restricted model, although is not much worse, can no longer be 
considered acceptable. Because the models are nested, the χ² difference test 
can be used to assess whether the additional restrictions of the RFA (i.e. 
fixing the minor loadings to zero) significantly worsens the fit. The 
difference in chi squares is ∆χ²= 143.75 with 38 df. (p<.001). So, the fit is 
significantly worsened and at least some of the restrictions are not justified. 
It should be stressed that the differences between chi-squares are more 
important than the χ² values themselves. If the drop in χ² value is large 
compared to the difference in degrees of freedom the restricted model is 
inappropriate because some or all the restrictions are not justified. On the 
other hand, if the drop of χ² is close to the df difference, an unrestricted 
model may be able to increase the goodness of fit by capitalizing on chance. 

The examination of the confidence intervals in the UFA solution 
might allow an intermediate restricted model to be specified. As one 
reviewer pointed out, this intermediate solution is related to the 
Independent-Clusters-Basis (ICB) model proposed by McDonald (1999). In 
an ICB model for correlated factors, at least two measures per factor are 
pure (three measures for uncorrelated factors).  

As table 4 shows, the ICB model appears to be reasonable in the 
present case because we can find at least two measures per factor which 
have nonsignificant minor loadings.  
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As a reviewer suggested, the examination of the item contents is 
important; otherwise, the intermediate ICB model would be completely 
data-driven.  
Table 4. Results of the unrestricted and restricted factor analysis on the 
SHQ data  (95% confidence intervals underneath) 

Unrestricted Solution Restricted Solution
F1 F2 F3 F1 F2 F3

I1 .587 .561

(.418;.756)
I2 .682 -.131 .222 .744

(.351;1.012) (-.381; .119) (-.073; .517)
I3 .722 -.167 .187 .718

(.396;1.048) (-.413; .079) (-.096; .470)
I4 .966 -.105 .030 .880

(.586;1.346) (-.458; .248) (-.353; .414)
I5 .661 .168 .126 .867

(.317;1.005) (-.118; .454) (-.210; .462)
I6 .928 -.318 .281 .927

(.536;1.320) (-.636; .001) (-.096; .658)
I7 .721 .007 .163 .852

(.400;1.043) (-.272; .285) (-.152; .477)
I8 .737 .114 .314 1.086

(.407;1.068) (-.190; .419) (-.021; .649)
I9 .623 .223 .148 .896

(.259; .987) (-.073; .520) (-.196; .491)
I10 -.050 1.126 -.059 1.014

(-.412; .313) (.875;1.377) (-.371; .253)
I11 -.093 .926 .421 1.144

(-.438; .252) (.690;1.162) ( .129; .713)
I12 -.106 .734 .400 .923

(-.449; .237) (.479; .989) ( .104; .696)
I13 -.212 1.008 .278 1.025

(-.530; .107) (.775;1.241) (-.053; .608)
I14 -.012 1.151 -.076 1.048

(-.336; .312) (.906;1.397) (-.338; .186)
I15 -.172 .641 .586 .894

(-.446; .101) (.412; .869) ( .335; .838)
I16 1.025 .998

(.881;1.168)

I17 .219 -.199 .908 .971

(-.072; .510) (-.428; .031) ( .686;1.130)
I18 .667 -.057 .371 .826

( .343; .990) (-.323; .208) ( .070; .673)
I19 .083 -.351 1.282 1.142

(-.261; .426) (-.624;-.078) (1.028;1.536)
I20 1.102 1.085

( .972;1.231)
I21 .105 -.363 1.277 1.163

(-.269; .478) (-.628;-.098) ( .988;1.567)
I22 -.105 .353 .677 .751

(-.379; .169) ( .120; .587) ( .440; .914)
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F1 F2 F3 F1 F2 F3
F1 1 1
F2 .673 1 .696 1
F3 .654 .525 1 .782 .590 1

Table 5. Results of the intermediate independent-clusters-basis model on 
the SHQ data. 

  Restricted Solution 
 F1 F2 F3 

I1 0.563   
I2 0.747   
I3 0.734   
I4 0.893   
I5 0.867   
I6 0.916   
I7 0.843   
I8 1.071   
I9 0.900   

I10   1.069  
I11   0.873 0.377 
I12   0.677 0.350 
I13   1.009  
I14   1.110  
I15   0.526 0.518 
I16   1.042  
I17    0.949 
I18  0.701  0.248 
I19   -0.370 1.353 
I20    1.092 
I21   -0.379 1.365 
I22    0.797 

 F1 F2 F3 
F1 1   
F2 .626 1  
F3 .783 .561 1 

The inspection of table 4 points out that the following items are 
factorially complex: 11, 12, 15, 18, 19 and 21. Items 11 and 15 which were 
intended to measure 'Activity' load on the 'Activity' and 'Boredom' factors, 
and, effectively, their content may refer to both type of situations. Items 19 
and 21 were designed as measures of 'Boredom' but they also load 
negatively in 'Activity'. This is also a plausible result, because both items 
refer to inactive situations. No clear substantive explanations were found for 
the complexity of items 12 and 18. 

The ICB model was specified by constraining to be zero the minor 
loadings which were nonsignificant in the UFA solution. The specification 
and parameter estimates are shown in table 5. 

The intermediate ICB model fitted the data reasonably well. The chi-
square was 391.56 with 200 degrees of freedom. The point estimate of the 
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RMSEA was 0.061 and the NNFI estimate was 0.885. Indeed this model is 
also nested in the UFA, and the difference in chi-squares was ∆χ2=58.27 
with 32 df (p=0.0032), although significant, it appears that the fit does not 
get substantially worse when the additional restrictions are imposed, and the 
RMSEA indicates that the relative fit of the ICB model is even better than 
the fit of the UFA solution. 

The ICB solution is reasonable and more parsimonious than the UFA 
solution. However the intermediate ICB model is an ad-hoc reespecification 
which is in part data-driven, and so the issue of capitalisation on chance 
would have to be addressed somehow somehow (MacCallum, Roznowski 
and Necowitz, 1992) specially in the present case in which the sample is 
quite small. If the intermediate ICB model were to be proposed evidence 
that it generalises beyond the used sample should be provided by cross-
validation analysis. Also the causes of the factorial complexity of items 12 
and 18 should be investigated. 

DISCUSSION 
The simulation study developed in this article is based on a set of 

items which are not all of them factorially pure and which are analyzed 
using a typical CFA model. This is the most usual situation in applied 
research. There are three important conclusions: (a) The CFA solution is 
expected to fit badly, even if the structure of the previous EFA is clear, for 
both big and small models; (b) the parameter estimates of the loadings that 
are not fixed to zero are expected to be reasonably accurate although slightly 
upwardly biased; and (c) the inter-factor correlations are expected to be 
grossly overestimated. To sum up, the results suggest that a CFA solution 
based on a correct EFA solution is likely to produce acceptable loading 
estimates, inflated interfactor correlations, and an unacceptable fit. As a 
result, the model will be rejected, and, as the literature shows, an (incorrect) 
CFA model based on a larger number of factors would probably be 
proposed. 

In this article, we consider that the UFA model is better suited than 
the RFA model to the test items in most applications. Therefore, we propose 
a UFA model which is specified as a CFA model and equivalent to an EFA 
model for the same number of factors. This model can be used as a baseline 
model to test for the number of common factors in the way proposed by 
Mulaik (Tepper and Hoyle 1996), and also to give a meaningful solution 
which makes further rotations unnecessary. The χ² difference test between 
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the RFA and UFA, which are nested models, can be used to test the 
hypothesis that the additional RFA restrictions are justified.  

Because modern CFA is firmly embedded in structural equation 
modeling, the specification of the UFA as a CFA model has several 
advantages, some of which have been exploited in the empirical example. A 
UFA specified as a CFA: (a) can be used in a nested sequence of models; 
(b) allows for correlated measurement errors among items; (c) can be 
estimated using methods for non-normal variables which are not available 
in the usual EFA programs and (d) its fit can be assessed using a variety of 
structural equation model indices which are also not available in standard 
EFA programs. 

RESUMEN 

El modelo factorial exploratorio y el modelo factorial confirmatorio en 
análisis de items. Si un test multidimensional se analiza mediante el modelo 
factorial exploratorio, la estructura obtenida suele ser rechazada cuando se 
somete a un análisis factorial confirmatorio. El presente trabajo analiza 
algunos aspectos de este problema mediante estudios de simulación y 
propone un procedimiento para evaluar la dimensionalidad que puede ser 
útil en investigación aplicada. Este procedimiento se ilustra mediante un 
ejemplo. 

Palabras clave: Análisis Factorial Confirmatorio, Análisis Factorial 
Exploratorio, Evaluación de la Dimensionalidad, Bondad de ajuste en 
modelos de Ecuaciones Estructurales. 
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