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Abstract 
Buckling analysis of arches is an important issue of the design of timber structures containing such structural elements. In the article an analytical 
and an approximate solution is proposed for lateral torsional buckling analysis of truss-braced timber arches. Application of the proposed methods 
was introduced by a numerical example. Critical forces calculated by the analytical and approximate methods were also compared to the results of 
numerical analysis, proving the sufficient accuracy of the different solutions. The effect of different timber truss-bracing solutions on the critical 
force of the examined timber arch was analysed using the introduced analytical method. The critical force of the examined truss-braced arch was up 
to two orders of magnitude greater than the critical force without bracing, proving that the consideration of the lateral bracing is important during 
the design because on the one hand, it ensures the static conformity of the structure, and, on the other hand it leads to more economical structural 
configuration in terms of lateral torsional buckling. Both analytical and approximate method presented in the article can be used to determine the 
optimal geometric configuration of the bracing truss in order to maximize the critical force of the laterally braced arch. 
 
Keywords: timber arch, stability analysis, lateral torsional buckling, elastic bedding, critical force, timber truss-bracing. 
 
Resumen 
El análisis de pandeo de arcos es un tema importante en el diseño de estructuras de madera que contienen dichos elementos estructurales. En el 
artículo se propone una solución analítica y una solución aproximada para el análisis de pandeo lateral torsional de arcos de madera de refuerzo. La 
aplicación de los métodos propuestos se introdujo mediante un ejemplo numérico. Las fuerzas críticas calculadas por los métodos analíticos y 
aproximados también se compararon con los resultados del análisis numérico, lo que demuestra la precisión suficiente de las diferentes soluciones. 
El efecto de diferentes soluciones de braguero arriostramiento en la fuerza crítica del arco de madera examinado se analizó utilizando el método 
analítico introducido. La fuerza crítica del arco de madera reforzado examinado fue de hasta dos órdenes de magnitud mayor que la fuerza crítica 
sin arriostramiento, lo que demuestra que la consideración del arriostramiento lateral es importante durante el diseño porque, por un lado, 
garantiza la conformidad estática de la estructura, y, por otro lado, conduce a una configuración estructural más económica en términos de pandeo 
lateral torsional. Tanto el método analítico como el método aproximado presentados en el artículo se pueden utilizar para determinar la 
configuración geométrica óptima de la armadura de refuerzo para maximalizar la fuerza crítica del arco reforzado lateralmente. 
 
Palabras clave: arco de madera, análisis de estabilidad, pandeo lateral torsional, bedding elástico, fuerza crítica, madera reforzada. 

 

Introduction and problem statement 
 
Due to their favourable strength properties, low self-weight and aesthetic appearance, glulam timber arch girders are 
often used as main load bearing elements of engineering structures like road bridges, footbridges, hall buildings or sport 
facilities (Figure 1). These glulam arches may bridge large spans up to 120 m, yet they have slender cross-sections due to 
economic reasons (Crocetti, 2016). Because of the large span and slender cross section, the stability analysis of these 
girders is essential during the design process. The upper flanges of these arches are often connected by a timber or steel 
truss-bracing system. This bracing system increases the buckling strength of the arches, and also fulfils the function of roof 
carrier, which explains their position at the top flange (Figure 1). Lateral torsional buckling phenomenon of straight timber 
members such as beams has been thoroughly investigated both theoretically and experimentally (Padmoes, 1990; Eggen, 
2000; Bell & Eggen, 2004; Balaž, 2005; Kuhlmann & Teichmann, 2006; Xiao, 2014). Design criteria for lateral buckling of 
such members is also specified in many design codes, such as Eurocode 5 (EN 1995-1-1, 2015) but they are only applicable 
as long as straight, prismatic timber members with simple loading and boundary conditions are analysed, so that the 
effective lateral buckling length can be taken from tables. For more complex timber structures such as arches, the design 
criteria for instability phenomenon are not explicitly presented in the design codes. 
 



324 

Figure 1. Construction of truss-braced timber arches of a sport hall in Hungary. Source: Self-Elaboration. 

 
 
Out-of-plane stability of curved timber beams and arches can primarily be analysed by using the available analytical or 
numerical methods. For practical design of timber arches the lateral torsional stability is usually verified by numerical 
modelling, which allows for the consideration of geometric and material nonlinearities, as well as the influence of lateral 
bracing (e.g. truss-bracing) on the value of critical force (Wollebæk & Bell, 2004; Rodman et al., 2013; Sherzad & 
Imamzada, 2015). The analytical solution for the elastic lateral buckling of standalone curved beams and arches with 
circular or parabolic shape and different end restraints was also discussed (Timoshenko & Gere, 1961; Tokarz &d Sandhu, 
1972; Yoo, 1982; Pi & Bradford, 2004; Lima & Kang, 2004; Pi et al., 2005; Guo et al., 2014). Although these analytical 
approaches primarily deal with the stability of metal arches, they can also be applied to timber arches due to the use of 
the theory of elasticity. An analytical approach for the lateral torsional buckling analysis of arches with continuous lateral 
support was outlined by Kollár (1982). In this approach the effect of lateral bracing on the stability of the structure was 
considered by elastic lateral bedding along the whole length of the arch. This approach was applied for the stability 
analysis of a circular timber arch with hinged supports, laterally braced by a tarpaulin (Kollár & Bódi, 1984). 
 
Within this article an analytical solution is provided for the calculation of the critical force causing the lateral torsional 
buckling of truss-braced timber arches. The stiffening effect of the bracing truss is considered by an equivalent, 
continuous, elastic lateral support for the arch. Based on this solution, an approximate method is also proposed for the 
calculation of the critical force of truss-braced timber arch structures. The effect of applied truss-brace type and 
configuration on the critical force of a circular timber arch is also analysed by a numerical example. 

 

Methodology  
 
Buckling analysis of laterally supported arches 

 
The elastic lateral torsional buckling analysis of arches with continuous lateral support makes it necessary to solve a 

fourth order, linked differential equation system for the lateral shift (vT) and rotation () of the shear centre (Kollár & 
Bódi, 1984): 
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where GIt is the torsional stiffness, EI is the warping stiffness and EIx is the bending stiffness of the arch cross-section, R is 
the radius of the arch, x0 is the vertical distance between the centre of gravity (S) and the shear centre (T) of the arch cross-
section (x0=0 in case of rectangular timber arch cross-sections), N is the axial force causing the lateral torsional buckling of 
the arch, t is the vertical distance between the shear centre and the point where the external load is acting to the arch (P), tc 
is the vertical distance between the shear centre and the location of the elastic lateral support of the arch (C), tg is the 
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vertical distance between the centre of gravity and the location of the elastic lateral support, c and g are the compressive 
and shear stiffness of the lateral support for unit arc length, respectively, ix and iy are arch cross-section's radius of gyration 
values related to the x and y axes. Some of the above mentioned geometrical parameters are illustrated in Figure 2. 

 
Figure 2. Shape and cross section of a circular glulam arch with the corresponding geometrical parameters. Source: Self-Elaboration.  

 
For the solution of the above differential equation system, the following assumptions and approximations were 
made: 
 

 The axis of the arch is circular, it has prismatic cross-section (Más, Torres & Reales, 2017) and the behaviour of 
the timber material is linear elastic. 

 The cross-section of the arch is symmetrical to the plane of the arch. 

 The arch is loaded by a radial, uniformly distributed, conservative load, so there is only axial compression acting in 
it. The external load is acting in the plane of symmetry. 

 The curvature of the arch is not too large, that is, the vertical dimensions of the cross section are negligible 
compared to the arc radius: 1 ± h/R ≈ 1. 

 During lateral torsional buckling of the arch, the fibres parallel to the longitudinal axis elongate to the plane of 
symmetry in accordance with the asymmetry rule. Thus, due to the transverse bending caused by the lateral 
movement of the arch, only the fibres in the plane of symmetry remain strain-free. 

 During lateral deflection, the cross-sections of the arch retain their original shape, apart from warping 
perpendicular to their plane. The change in cross-sectional properties due to this bending is neglected. 

 
With the help of equation system (1) and the boundary conditions corresponding to the chosen support, the critical 
force of the arch (N = Ncr) can always be calculated using the known methods of stability theory (Timoshenko & Gere, 
1961). Assuming fork-like support (rotation around the longitudinal axis of the arch is restrained, but rotation around 
the horizontal axis of the cross section is allowed) at both ends of the arch, the following boundary condition 
equations apply: 
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The unknown displacement functions are taken as: 
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where k = 1, 2, 3, ... is the number of the half-waves during buckling, Lk 
k

, L is the length of the centre 

line of the arch, s is the distance from end of the arch, 
k
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v  are constants. Displacement functions (2) 

satisfy the boundary conditions referring to fork supports, and the differential equation system (1) too. 
Substituting the corresponding derivatives of the displacement functions with respect to s into equation system 
(1), the following expression can be formed: 
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The coefficient matrix A in the previous equation is symmetrical, thus a12 = a21. The elements of matrix A are as 
follows: 

   2

c

x

2

x

0

22

y

2

x

2

0ω

2

kt

2

k11

1
ct

R

EI

R

i
xtN

R
gtiixNEIGIa

g


























  

 
cgxω

2

kt0

2

k2112

1
ctgt

R
EIEIGINxaa 










  

  cgEI
R

EIGINa 











x

2

k2ω

2

kt

2

k22

1
 

 

The homogeneous system of equations for vT and  exists only if the determinant of the coefficient matrix is zero, 
therefore the critical value of the compressive force (N = Ncr) can be calculated from the condition below: 
 

  0det
2

212211
 aaaA  (3) 

 
Substituting the appropriate a11, a12 and a22 coefficients into (3) a second order equation for Ncr can be obtained: 
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Substituting the above K coefficients into equation (4) a closed formula is obtained for the Ncr critical compressive 
force of a laterally braced, circular arch with fork supports. For the determination of the critical force using the 
above method, the compressive (c) and shear (g) stiffness of the lateral support for unit arc length must also be 
known. They can be generally calculated from the geometrical and material properties of the applied bracing 
system. However, the exact solution of equation system (1) usually involves a number of mathematical difficulties 
in case of structural configurations typically used in practice. If we want to consider the elastic supportive effec t of 
discrete structural elements – like stiffening trusses – connected to the arch, the structural model and its analytical 
solution will become much more complicated. In case of such structural configurations, either a numerical analysis, 
or a more simple approach is may be used to take the supporting effect of bracing truss into account. In the 
followings such an approximate method using the addition formulas of elastic stability theory (Timoshenko & Gere, 
1961; Kollár, 1999) and considering an equivalent continuous lateral support for the lateral torsional buckling 
analysis of truss-braced timber arch girders. 
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Approximate buckling analysis and consideration of the effect of truss-bracing  
 
It was assumed, that the lengths of the connected timber arches do not change during the lateral torsional buckling 
and the applied truss-bracing could be replaced by a spring system distributed along the total length of the arches, 
limiting lateral deformations. This way the analysis could be simplified to the examination of a single arch with elastic 
lateral support. The critical force of an elastically bedded arch can be approximately calculated in the following form 
(Kollár, 1999): 
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where Ncr,0 is the critical force of the standalone arch without elastic lateral support, 0 is the centre angle of the arch length 
(Figure 2), k is the buckling mode shape (number of half sinusoidal waves forming the buckling shape of the arch), c [kN/m2] 
is the elastic spring coefficient of the bedding against lateral displacement and g [kN] is the spring coefficient of the bedding 
against lateral angular distortion. In case of truss-braced arches the value of g can be determined from the geometrical and 
material characteristics of the truss-bracing. The value of c is approximately zero for truss-braced arches, where the buckling 
shape of the arch typically consists of two or more half sinusoidal waves, that is the buckling mode shape is k≥2 (Kollár, 
1982). 

 

Determination of the equivalent shear stiffness of the lateral truss-bracing 

 
For the determination of the g spring coefficient of the effective bedding against lateral angular distortion, the 
deformation of the supporting truss was analysed in case of different truss-brace types (Figure 3). First the v 
lateral deformation of a truss-unit of length b of the connected arch pair due to the bar forces produced by an M 
bending moment was determined (Figure 4). For instance, in case of type II bracing the lateral deformation was 
calculated as follows: 
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where d is the length of the diagonal bars, a is the distance of the connected arches,  is the inclination of the 
diagonals, E is the elastic modulus of the corresponding timber material, Ar and Ao are the cross-sectional areas of the 
diagonals and transverse bars, respectively, and V=M/b is the shear force from the M bending moment. 

 
Figure 3. Examined truss-brace types. Source: Self-Elaboration. 

 
 

Figure 4. a) Equilibrium of a unit grid element; b) Deformation of a unit grid element. Source: Self-Elaboration. 
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Using the theory of small deformations the angular distortion of a unit grid element (Figure 4.b) was expressed as the 
ratio of the v lateral deformation and the b length of a truss-unit. In case of type II bracing system the angular 
distortion was expressed in the following form: 
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Taking the value of angular distortion as unit ( = 1), the equivalent specific elastic spring coefficient of truss-bracing 
can be calculated as the ratio of the M bending moment and the b length of a truss-unit. In case of type II truss-
bracing the equivalent g spring coefficient concerning the connected pair of arches was determined from: 
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Most typical structural configurations of truss types (I, II, III and IV) used for the bracing of timber arch pairs are illustrated in 
Figure 3. The equivalent spring coefficients for different truss types can be determined the same manner as described above. 

Introducing the  = Ao/Ar parameter the spring coefficient for a pair of arches in case of different truss-brace types can be 
calculated as: 
 






cotsincos2

cotcossin

2

2

rI
AEg  (6) 

 




cotsincos2

cotcossin

2

2

rII
AEg  

 cossin
2

1 2

rIII
AEg  






cotsincos

cotcossin

2

2

rIV
AEg  

 
Based on the previous equations, the g equivalent spring coefficient depends on the geometry and elastic modulus of 
the bracing truss only. If the g spring coefficient concerning the pair of arches and the Ncr,0 critical force of the original 
arch without lateral support are known, the critical force of the truss-braced arch (Ncr) may be calculated from the 
analytical equation (4) or from the approximate formula (5). This approximation can be also used in case of load 
configurations and support conditions different than the presented one. 
 

Application of the introduced calculation method 
 

Data of the analysed timber arch 
 
The side view and cross-section of the analyzed double-hinged, circle shaped timber arch is shown in Figure 5.a. The 
arch is loaded by the p uniformly distributed radial load, which causes only axial compression in the arch cross-section. 
Two supports restrict horizontal displacements and allow the arch only to rotate around the global out-of-plane axis. 
The arch is laterally braced with type II timber truss (Figure 5.b). 
 
The main geometrical data and material properties of the structure are as follows: radius of the arch is R = 9.30 m, 

span of the arch is l = 18 m, the centre angle of the arch length is 0 = 75.41º, lateral distance of the connected arches 
is a = 2.00 m, cross-sectional size of the arch is 600×160 mm, cross-sectional area of diagonal bars is 

Ar = 50×120 = 6000 mm2, cross-sectional area of the transverse bars is Ao = 50×100 = 5000 mm2, the value of  

parameter is  = Ao/Ar = 0.833, the inclination of the diagonals is  = 39.25º and the elastic modulus of the timber 
material parallel to grain is E = 107 kN/m2. 
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Figure 5. a) Geometry of the analyzed circle shaped arch; b) A pair of arches with the applied lateral truss-bracing. Source: Self-Elaboration. 

 
 

 

Results of analytical and numerical analyses 
 
The critical force of the arch in question was calculated by the analytical method and by the approximate method 
described before and for the sake of comparison, the critical force was also determined by numerical method. 
Numerical analysis was performed with AxisVM 13® finite-element software, taking line elements, linear elastic 
material behaviour and geometric nonlinearity into account. The degree of freedom (DOF) per node was 6 and the 
length of the applied finite elements was about l/120 = 0.15 m. Geometric nonlinearity means that the equilibrium 
was established with respect to the deformed line elements. Depending on the magnitude of displacement second or 
third order analysis was performed. The loads were conservative; they kept their initial direction during the 
deformation. AxisVM software determines the lowest buckling load multipliers and the corresponding mode shapes, 
and it also verifies whether the required number of the lowest eigenvalues has been determined. The buckling load 

multiplier ncr = cr is computed, solving the eigenvalue problem, where cr is the smallest eigenvalue and the 
corresponding eigenvector is the buckling mode shape. In our case is the Ncr critical force for different mode shapes 
was derived as the product of the N axial force in the arch cross-section from the given p load and the corresponding 
ncr load multiplier. The maximum number of iterations needed for stability analysis was about 30. The Eigen value 
convergence criterion was set to 10-10 and the Eigenvector convergence criterion was 10-5. 
 
First the critical force of the arch without lateral support (g = 0) was determined using the above three methods. The first 
ten buckling mode shapes (Figure 6) were examined by the introduced analytical and numerical methods, while the 
approximate method provided the value of critical force for the critical mode shape only. Figure 7 shows the critical 
forces calculated by the analytical and numerical methods in case of different buckling mode shapes. The values of 
critical force causing the lateral torsional buckling of the un-braced arch, calculated by different methods are presented 
in Table 1. It can be seen that the critical force of the arch is rather small without lateral support, because the 

20 = 150.82º the centre angle of the arch length is relatively close to 180º, in which case the critical force is Ncr = 0 kN (in 
case of the applied fork support and 180º centre angle the arch “lies down” like a rigid body without any resistance). 
 

Figure 6. Different buckling shapes and the corresponding critical forces of the un-braced timber arch determined by numerical analysis. 
Source: Self-Elaboration. 

 
 
In the second step, the analysis of a standalone arch with continuous lateral support was carried out. The g equivalent 
shear stiffness provided by the applied type II truss-bracing was determined from (6) and it was taken into account for 
both analytical and the numerical calculations. Figure 7 shows the critical forces obtained by the analytical and 
numerical methods in case of different buckling mode shapes and g = 3566.05 kN equivalent lateral shear stiffness. 
The values of critical force causing the lateral torsional buckling of the continuously supported arch, calculated by 
different methods are presented in Table 1. 
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Figure 7. Critical force of the standalone arch with and without lateral support, obtained by the analytical and numerical methods 
in case of different buckling mode shapes. Source: Self-Elaboration. 
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In case of the introduced analytical and approximate methods the effect of truss-bracing is taken into account by an 
equivalent continuous lateral support only. However, the applied numerical method can also be used to determine 
the critical force of an arch pair that is actually stiffened by a bracing-truss. Therefore, the numerical analysis of the 
truss-braced arch pair (Figure 8.a) was also completed. It is typical in practice that more than two timber arches are 
connected longitudinally (e.g. by purlins) which increases the lateral torsional buckling resistance of the examined 
arch. For this reason, an additional case was also numerically analysed, where the truss-braced arch pair is laterally 
connected to a third arch by the applied transverse bars (Figure 8.b). For practical reasons, in both cases the 
supporting arches were loaded with self-weight only. Taking self-weight into account for supporting arches instead of 
radial load having the same intensity resulted in a difference of about 0.7% in the critical force according to our 
calculations. The values of critical force causing the lateral torsional buckling of the truss-braced arch, calculated by 
different methods are also presented in Table 1. 
 

Figure 8. a) Buckling shape of the analysed truss-braced pair of arches; b) Buckling shape of three connected arches with 
the same truss-bracing. Source: Self-Elaboration. 

 
 
 

Table 1. Values of critical force calculated by different methods. Source: Self-Elaboration. 

Analysed structural configuration 

Critical force, Ncr [kN] 

Analytical 
method 

Numerical 
Method 

Approximate 
method 

Standalone arch without lateral support (g=0) 1.84 1.90 1.84 

Standalone arch with continuous lateral support 
(g=3566.05 kN) 

3500.33 3468.42 3567.89 

A pair of arches with type II lateral  truss-bracing 
(g=3566.05 kN) 

3500.33 3418.02 3567.89 

Three connected arches with type II lateral  
truss-bracing (g=3566.05 kN) 

3500.33 3478.04 3567.89 

 

a) b) 
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According to the results in Table 1 the effect of truss-bracing is significant in case of two or more connected arches. In case 
of the analysed structure the increase of critical force due the application of truss-bracing was up to two orders of 
magnitude greater than the critical force of the un-braced arch. It means that the application of appropriate lateral bracing 
may lead to more economical structural configuration for timber arch structures. Of course, during the design the calculated 
value of critical force may be limited by the strength failure of the arch cross-section or by the buckling truss members. 
Comparing the critical forces obtained by the different methods, it can be stated that the differences are rather small. In 
case of the un-braced arch the analytical and approximate methods yield to the same solution and the value of the 
numerically calculated critical force is only 3.2% higher. In case of the standalone arch with continuous lateral support, the 
numerically and approximately calculated values of the critical force differ from the analytical solution by 0.9% and 1.9%, 
respectively. The numerically calculated critical force of the truss-braced pair of arches differs by 2.4% from the analytical 
solution and 4.4% from the approximate solution. These differences are even smaller if more than two supporting arches 
are considered. Based on these results the proposed approximate method also satisfies the accuracy requirements of the 
engineering practice in case of the analysed timber arch structure. In addition to its simplicity, another advantage of the 
presented approximate method is that the critical force of the un-braced arch (Ncr,0) contains the characteristics of the 
given timber arch only, while the g spring coefficient representing the truss-bracing depends only on the geometrical 
and material properties of the bracing truss. It means that the approximate method can be used for preliminary 
design in many cases where the critical force causing the elastic lateral torsional buckling of the un-braced arch is 
known from the literature. 
 

Results of the parametric analysis of different truss-brace configurations 

 
Buckling of the timber arch in question was analysed in case of different truss-braced configurations using the 
analytical approach. The effect of the truss-bracing type (I-IV) and the ratio of diagonal and transverse bar cross-

sections () on the increase of critical force (n = Ncr/Ncr,0) is presented in Figure 9. The inclination of the diagonals, 

relative to the plane of the arch was  = 45° in each case. 

 
Figure 9. Effect of the bracing type on the critical force increase of the analysed timber arch. Source: Self-Elaboration. 
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According to Figure 9 type IV truss-bracing is the most effective, and type II is the least effective in increasing the critical 
force of the arch. It can also be observed, that the increase of critical force is higher if the cross-section of transverse bars is 
bigger than the cross-section of the diagonals. During the design of timber arch structures, the type of applied truss-bracing 
also depends on the axial strength of the arch. In fact, higher critical force can be achieved using type IV truss-bracing for the 
examined structure, but then the strength failure of the arch cross-section due to compression parallel to grain precedes the 
lateral torsional buckling phenomenon. This means that the application of type II bracing is sufficient for the given structure. 

Cross-sectional dimensions and material properties of the truss members must be of course selected by keeping the ratio  
so that the strength and stability requirements of diagonals and transverse bars are fulfilled. In case of inappropriate 
buckling resistance of the diagonals or transverse bars, their cross-sections must be increased to make them satisfactory. In 
this case the value of calculated critical forces will be higher than the values shown in Figures 9-10. However, increasing the 
cross-sections of the diagonals and transverse bars in the same proportion will not alter the conclusions of the presented 
parametric analysis. 
 

The effect of diagonals’ inclination () and the ratio of diagonal and transverse bar cross-sections () on the increase of 
critical force causing the lateral torsional buckling of the examined arch is presented in Figure 10. According to the figure 
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both  and  factors have a strong influence on the increase of the critical force (n). As already stated above, the increase of 

critical force is higher in case of stronger transverse bars compared to diagonals. While also depending on the value of the  
factor, the proper inclination of the diagonals can help to maximize the increase of the critical force. Figure 10.a shows that 

for the examined arch,  = 40÷50° diagonal inclinations are more effective, while very steep or very flat inclinations are not 

so effective in this area. Related to this, the critical force as a function of the  inclination is presented in Figure 10.b. 

Plotting the curves corresponding to different  ratios, the optimal value of the inclination (opt) can be determined for the 

given structural configuration. For the examined structure the value of  factor is 0.833 and thus based on the 

corresponding curve of Figure 10.b the optimal value of the inclination is opt = 45.76° which is slightly higher than the 
currently applied angle. 
 

Figure 10. a) The effect of the ratio of diagonal and transverse bar cross-sections () and the inclination of diagonals () on the critical force increase; b) The 
effect of diagonals’ inclination on the critical force of the analysed timber arch. Source: Self-Elaboration 

     
 
 

Discussion 
 
An analytical solution, as well as an approximate method was presented for the calculation of critical force causing the 
lateral torsional buckling of truss-braced timber arch structures. According to the analysis of a circular timber arch braced 
with different truss types, the effect of lateral bracing was significant in each case. In most of the examined cases the critical 
force causing the lateral torsional buckling of the truss-braced structure was up to two orders of magnitude greater than the 
critical force without bracing. The analytical and approximate solutions on the critical force were compared to the results of 
numerical analyses. The maximum difference of the results obtained by different methods was less than 5% for the 
examined structure, meaning that also the proposed approximate method satisfies the accuracy requirements of the 
engineering practice. The application of lateral truss bracing is usually necessary for the compliance of a timber arch 
structure, and it may also lead to more economical structural configuration in terms of lateral torsional buckling. Both 
analytical and approximate method presented in the article can be used to determine the optimal inclination of the 
diagonals, and to select the appropriate ratio of diagonal and transverse bar cross-sections in order to maximize the critical 
force of the laterally braced arch. The proposed approximate method can be easily applied for preliminary design of timber 
arches, in case of load configurations and support conditions different than the presented one too. A further advantage of 
both analytical and approximate solutions is that the critical force of the un-braced arch contains the characteristics of the 
given timber arch only, while the spring coefficient representing the lateral supportive effect of truss-bracing depends only 
on the geometrical and material properties of the bracing truss, keeping the assumed simplifications in mind. Thus the 
introduced methods can be used in many cases where the critical force causing the lateral torsional buckling of the un-
braced timber arch is already known from the literature or from another (e.g. numerical) analysis. 
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