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Abstract

We conduct an extensive empirical analysis of VIX derivative valuation models before, 

during and after the 2008-2009 fi nancial crisis. Since the restrictive mean reversion and 

heteroskedasticity features of existing models yield large distortions during the crisis, we 

propose generalisations with a time varying central tendency, jumps and stochastic volatility, 

and analyse their pricing performance, and implications for term structures of VIX futures and 

volatility «skews». We fi nd that a process for the log of the observed VIX combining central 

tendency and stochastic volatility reliably prices VIX derivatives. We also uncover a signifi cant 

risk premium that shifts the long-run volatility level.

Keywords: central tendency, stochastic volatility, jumps, term structure, volatility skews.

JEL classifi cation: G13.



Resumen

Realizamos un extenso análisis empírico de los modelos de valoración de los derivados sobre 

el VIX antes, durante y después de la crisis fi nanciera de 2008-2009. Como las características 

restrictivas de reversión a la media y heteroscedasticidad de los modelos existentes generan 

grandes distorsiones durante la crisis, proponemos generalizaciones con una tendencia 

central cambiante en el tiempo, saltos y volatilidad estocástica, analizando la adecuación 

de sus precios y sus implicaciones sobre la estructura temporal de los futuros del VIX y las 

curvas de volatilidad implícita. Nuestros resultados indican que un proceso para el logaritmo 

del VIX que combina una tendencia central y volatilidad estocástica valora adecuadamente 

los derivados sobre el VIX. Asimismo, hallamos una prima de riesgo signifi cativa que desplaza 

el nivel de la volatilidad a largo plazo.

Palabras clave: tendencia central, volatilidad estocástica, saltos, estructura temporal, curvas 

de volatilidad implícita

Códigos JEL: G13.



BANCO DE ESPAÑA 7 DOCUMENTO DE TRABAJO N.º 1232

1 Introduction

It is now widely accepted that the volatility of financial assets changes stochasti-

cally over time, with fairly calmed phases being followed by more turbulent periods of

uncertain length. For financial market participants, it is of the utmost importance to un-

derstand the nature of those variations because volatility is a crucial determinant of their

investment decisions. Although many model-based and model-free volatility measures

have been proposed in the academic literature (see Andersen, Bollerslev, and Diebold,

2009, for a recent survey), the Chicago Board Options Exchange (CBOE) volatility in-

dex, widely known by its ticker symbol VIX, has effectively become the standard measure

of volatility risk for investors in the US stock market. The goal of the VIX index is to

capture the volatility (i.e. standard deviation) of the S&P500 over the next month im-

plicit in stock index option prices. Formally, it is the square root of the risk neutral

expectation of the integrated variance of the S&P500 over the next 30 calendar days,

reported on an annualised basis. Despite this rather technical definition, both financial

market participants and the media pay a lot of attention to its movements. To some

extent, its popularity is due to the fact that VIX changes are negatively correlated to

changes in stock prices. The most popular explanation is that investors trade options on

the S&P500 to buy protection in periods of market turmoil, which increases the value of

the VIX. In fact, as Andersen and Bondarenko (2007) and many others show, the VIX

almost uniformly exceeds realised volatility because investors are on average willing to

pay a sizeable premium to acquire a positive exposure to future equity-index volatility.

For that reason, some commentators refer to it as the market’s fear gauge, even though

a high value does not necessarily imply negative future returns.

But apart from its role as a risk indicator, nowadays it is possible to directly invest in

volatility as an asset class by means of VIX derivatives. Specifically, on March 26, 2004,

trading in futures on the VIX began on the CBOE Futures Exchange (CFE). They are

standard futures contracts on forward 30-day implied vols that cash settle to a special

opening quotation (VRO) of the VIX on the Wednesday that is 30 days prior to the

3rd Friday of the calendar month immediately following the expiring month. Further,

on February 24, 2006, European-style options on the VIX index were also launched on

the CBOE. Like VIX futures, they are cash settled according to the difference between
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the value of the VIX at expiration and their strike price. Importantly, they can also be

interpreted as options on VIX futures, which one can exploit to simplify their valuation

and avoid compounding errors made in valuing futures. VIX options and futures are

among the most actively traded contracts at CBOE and CFE, averaging close to 260,000

contracts combined per day in 2010, with much larger volumes on certain days.1 One of

the main reasons for the high interest in these products is that VIX derivative positions

can be used to hedge the risks of investments in the S&P500 index. Szado (2009) finds

that such strategies do indeed provide significant protection, especially in downturns.

Moreover, by holding VIX derivatives investors can achieve exposure to S&P500 volatility

without having to delta hedge their S&P500 option positions with the stock index. As

a result, it is often cheaper to be long in out-of-the-money VIX call options than to buy

out-of-the-money puts on the S&P500. Due to this possibility, VIX options are the only

asset in which open interest is highest for out-of-the-money call strikes (Rhoads, 2011).

Although these new assets certainly offer additional investment and hedging oppor-

tunities for financial market participants, their correct use requires reliable valuation

models that adequately capture the features of the underlying volatility index. In turn,

the empirical performance of those valuation models can shed some light on the stochas-

tic process for the VIX, and stock market volatility more generally, which is of interest

to academic researchers. Moreover, the prices of volatility derivatives contain valuable

information about the views financial market participants hold about the future, and we

need reliable valuation models to make the correct inferences in a world with risk averse

agents.

Somewhat surprisingly, several theoretical approaches to price VIX derivatives ap-

peared in the academic literature long before they could be traded. Specifically, Whaley

(1993) priced volatility futures assuming that the observed volatility index on which they

are written follows a Geometric Brownian Motion (GBM). As a result, his model does

not allow for mean reversion in the VIX, which, as we shall see, seems to be at odds

with the recent empirical evidence.2 The two most prominent mean reverting models

1For comparison purposes, this value represents about 37% of the average daily volume of S&P500
options, which was 695,000 in 2010. However, the volume of VIX derivatives is growing at a much faster
rate. Specifically, the volume of VIX options already represented 52% of the volume of S&P500 options
during the first ten months of 2011. In this sense, Rhoads (2011) points out that the volume traded is
executed over a smaller time frame (7:20 am - 3:15 pm Central Time) than for other derivatives markets.

2The stationarity of volatility seems to depend on the historical period considered. Schwert (1990)
and Pagan and Schwert (1990) find strong evidence for a unit root in stock volatility if the data spans

the 1930’s. In contrast, Schwert (2011) convincingly argues that during the 2008-2009 crisis volatility
exhibits more mean reversion than in the past.
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proposed so far for volatility indices have been the square root process (SQR) considered

by Grünbichler and Longstaff (1996), and the log-normal Ornstein-Uhlenbeck (LOU)

process analysed by Detemple and Osakwe (2000).

Several authors have previously looked at the empirical performance of these pricing

models for VIX derivatives. In particular, Zhang and Zhu (2006) study the empirical

validity of the SQR model by first estimating its parameters from VIX historical data,

and then assessing the pricing errors of VIX futures implied by those estimates. Following

a similar estimation strategy, Dotsis, Psychoyios, and Skiadopoulos (2007) also use VIX

futures data to evaluate the gains of adding jumps to a SQR diffusion. In addition, they

estimate a GBM process. Surprisingly, this model yields reasonably good results, but

the time span of their sample is perhaps too short for the mean reverting features of the

VIX to play any crucial role. In turn, Wang and Daigler (2011) compare the empirical fit

of the SQR and GBM models using data on options written on the VIX. They also find

evidence supporting the GBM assumption. However, one could alternatively interpret

their findings as evidence in favour of the LOU process, which also yields the Black

(1976) option formula if the underlying instrument is a VIX futures contract, but at the

same time is consistent with mean reversion.

Despite this empirical evidence, both the SQR and the LOU processes show some

glaring deficiencies in capturing the strong persistence of the VIX, which produces large

and lasting deviations of this index from its long run mean. In contrast, the implicit

assumption in those models is that this volatility index mean reverts at a simple, non-

negative exponential rate. Such a limitation becomes particularly apparent during bear-

ish stock markets, in which volatility measures such as the VIX typically experience large

increases and remain at high levels for long periods. Arguably, the apparent success of

those models is to a large extent due to the fact that the sample periods considered in

the existing studies only cover the relatively long and quiet bull market that ended in

the summer of 2007.

In this context, the initial objective of our paper is to study the empirical ability

of existing mean-reverting models for volatility indices to price derivatives on the VIX

over a longer sample span that includes data before, during and after the unprecedented

recent financial crisis, which provides a unique testing ground for our study. To do so,
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we use an extensive database that comprises all futures and European option prices on

the VIX from February 2006, when options were introduced, until December 2010. As

a result, we can study whether the SQR and LOU models are able to yield reliable in-

and out-of-sample prices in a variety of market circumstances.

Our findings indicate that although a LOU process for the VIX provides a better fit

than a SQR model, especially for VIX options, its performance deteriorates during the

market turmoil of the second part of our sample. For that reason, we consider an exten-

sion of the SQR model advocated by Bates (2012) among others, which allows for a time

varying central tendency in the mean as well as stochastic volatility that is unspanned

by the VIX. Similarly, we generalise the LOU process by proposing several novel but

empirically relevant extensions: a time-varying central tendency in the mean, jumps,

and stochastic volatility. A central tendency, which was first introduced by Jegadeesh

and Pennacchi (1996) and Balduzzi, Das, and Foresi (1998) in the context of term struc-

ture models, allows the “average” volatility level to be time-varying, while stochastic

volatility permits a changing dispersion for the (log) volatility index, and together with

jumps, introduces non-normality in its conditional distribution. Importantly, we study

the role that risk premia plays in reconciling the dynamics of the VIX with the prices of

VIX derivatives in order to determine the existence of economically important systematic

risks.

We estimate the SQR and LOU models by maximum likelihood. However, a closed-

form expression for the likelihood is not available for many of the extensions. As a

consequence, following Trolle and Schwartz (2009) among others, we specify our exten-

sions in state space form and calibrate their parameters by pseudo maximum likelihood.

We use both derivative prices and historical observations on the VIX itself since we want

to estimate both real and risk-neutral measures. In order to compute the theoretical

derivatives prices, we often need to invert the conditional characteristic function using

Fourier methods (see Carr and Madan, 1999, and Amengual and Xiu, 2012).

To validate the models, we analyse the discrepancies between actual and theoretical

derivatives prices. But we also go beyond pricing errors, and analyse the implications

of the aforementioned extensions for the term structures of VIX futures, and the option

volatility “skews”, all of which are of considerable independent interest. Since we combine

futures and options data, we can also assess which of those additional features is more

relevant for pricing futures, and which one is more important for options.
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Importantly, our approach differs from Sepp (2008), who prices VIX derivatives by

using data on the S&P500 only. Although the relevant distribution of future values

of the VIX conditional on current information might arguably depend not only on the

current level of the VIX but also on the value of the S&P500, it seems odd to completely

neglect the information content of contemporaneously observed VIX values. This is

particularly relevant in view of the fact that one cannot reproduce the spot VIX index

by using the model proposed by Sepp (2008) for the purposes of obtaining the required

S&P500 option values that feed in the closed-form CBOE formula for this volatility

index.3 In order to avoid compounding valuation errors, therefore, we prefer to treat

the current VIX level as our “sufficient statistic”, and to treat VIX futures likewise for

the purposes of valuing options, instead of assigning that role to the S&P500. The same

assumption has recently been made by Song and Xiu (2012). Ideally, though, one would

like to use both, but we leave this for future research. In this sense, it is important to

emphasise that the univariate stochastic processes that we consider for the VIX are not

necessarily incompatible with models for S&P500 options capable of reproducing this

observed volatility index.

Our analysis can also shed some light on the long-lasting debate surrounding the

modelling and stationarity of the (instantaneous) volatility of this broad stock market

index. In particular, given the relationship between the observed VIX and the unobserved

integrated volatility of the S&P500, our results imply that the sophisticated stochastic

volatility models that many researchers and practitioners use for valuing S&P options

should probably allow for a slower mean reversion than usually considered, as well as for

time-varying volatility of volatility.

The rest of the paper is organised as follows. We describe the data in Section 2, and

explain our estimation strategy in Section 3. Then, we assess the empirical performance

of existing models in Section 4 and consider our proposed extensions in Section 5. Finally,

we conclude in Section 6. Auxiliary results are gathered in several Appendices.

3A relevant analogy would be the use of a model for the dividends and risk premia of the 500
individual stocks that constitute the index for the purposes of valuing S&P500 derivatives discarding
the information in the index itself, even though any such multivariate model would very likely fail to
reproduce the value of the index.
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2 Preliminary data analysis

2.1 The CBOE Volatility Index

VIX was originally introduced in 1993 to track the Black-Scholes implied volatilities

of options on the S&P100 with near-the-money strikes (see Whaley, 1993). The CBOE

redefined the index in 2003, renamed the original index as VXO, and released a time series

of daily closing prices starting in January 1990 (see Carr and Wu, 2006). Nowadays, VIX

is computed in real time using as inputs the mid bid-ask market prices for most calls and

puts on the S&P500 index for the front month and the second month expirations with at

least 8 days left (see CBOE, 2009).4 Since VIX is expressed in annualised terms, investors

typically divide it by 16(=
√
256) to gauge the expected size of the daily movements in

the stock market implied by this index (see Rhoads, 2011).

Figure 1a displays the entire historical evolution of the VIX. Between January 1990

and December 2010 its average closing value was 20.4. As other volatility measures,

though, it is characterised by swings from low to high levels, with a temporal pattern

that shows mean reversion over the long run but displays strongly persistent deviations

from the mean during extended periods. The lowest closing price (9.31) corresponds to

December 22, 1993. Figure 1b, which focuses on the sample period in our derivatives

database, shows that volatility was also remarkably low between February 2006 and July

2007, with values well below 20. During this period, the lowest value was 9.89 on January

24, 2007, in what some have called “the calm before the storm”. Indeed, although the

Dow Jones Industrial Average closed above 14,000 for the first time in history in the

summer of 2007, some warning signals were observed around this period. In particular,

on June 22, 2007, Bear Stearns pledged up to $3.2 billion in loans to bail out one of its

hedge funds, which was collapsing due to bad bets on subprime mortgages. Moreover,

on July 18, 2007, this investment bank disclosed that its two subprime hedge funds

had lost all of their value, and one day later Fed Chairman Ben Bernanke warned the

US Senate Banking Committee that subprime losses could top $100 billion. Perhaps

not surprisingly, over the following year VIX increased to values between 20 and 35.

Finally, in the autumn of 2008 it reached unprecedented levels. In particular, the largest

4Currently, CBOE applies the VIX methodology to 3-month options on the S&P500 (VXV), as well
as 1-month options on the most important US stock market indices: DJIA (VXD), S&P100 (VXO),
Nasdaq-100 (VXN) and Russell 2000 (RVX). They also construct analogous short term volatility indices
for Crude Oil (OVX), Gold (GVZ), Soybean (SIV), Corn (CIV) and the US $/eexchange rate (EVZ).
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historical closing price (80.86) took place on November 20, 2008, although on October 24

the VIX reached an intraday value of 89.53. After this peak, VIX followed a decreasing

trend over the following months until the beginning of April, 2010, when the Greek

debt crisis started worsening. These markedly different regimes offer a very interesting

testing ground to analyse the performance of valuation models for volatility derivatives.

In particular, we can assess if the models calibrated with pre-crisis data perform well

under the extreme conditions of the 2008-2009 financial crisis.

In order to characterise the time series dynamics of the VIX, we have estimated

several ARMA models using the whole VIX historical observations from 1990 to 2010

(see French, Schwert, and Stambaugh, 1987, for a related analysis). Figure 2a compares

the sample autocorrelations of the log VIX with those implied by the estimated mod-

els. There is clear evidence of high persistence, with a first-order autocorrelation above

0.98 and a slow rate of decay for higher orders. Consequently, an AR(1) model seems

unable to capture the shape of the sample correlogram. An alternative illustration of

the failure of this model is provided by the presence of positive partial autocorrelations

of orders higher than one, as Figure 2b confirms. Therefore, it is necessary to introduce

a moving average component to take into account this feature. An ARMA(1,1) model,

though, only offers a slight improvement. In contrast, an ARMA(2,1) model turns out

to yield autocorrelations and partial autocorrelations that are much closer to the sample

values. As we shall see below, our preferred continuous time models have ARMA(2,1)

representations in discrete time. Importantly, this result is not due to the behaviour of

the VIX during the financial crisis, since an ARMA(2,1) is also necessary to capture the

autocorrelation profile when we only consider data from 1990 until the summer of 2007.

We have also analysed the presence of time varying features in the volatility of the log

VIX. In particular, we have tested for Garch effects in the residuals of the ARMA(2,1)

estimation.5 Interestingly, we can easily reject the conditional homoskedasticity of the

log VIX at all conventional levels. As we shall in Section 5.4, the volatility of our

preferred continuous time specification closely matches the volatility of an ARMA(2,1)-

GARCH(1,1) model.

5Following Demos and Sentana (1998), we carry out a one-sided LM test of conditional homoskedas-
ticity against Garch as TR̃2 from the regression of the squared ARMA(2,1) residuals on a constant
and the Riskmetrics volatility estimate (see RiskMetrics Group, 1996).
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2.2 VIX derivatives

Our sample contains daily closing bid-ask mid prices of futures and European put

and call options on the VIX, which we downloaded from Bloomberg. We apply several

filters to ensure the reliability of the data that we finally use. Following Dumas, Fleming,

and Whaley (1998), we exclude derivatives with fewer than six days to expiration due

to their illiquidity. In addition, we only retain those prices for which open interests and

volumes are available. We consider the entire history of these series since options were

introduced in February 2006 until December 2010. In terms of maturity, we have data on

all the contracts with expirations between March 2006 and May (July) 2011 for options

(futures). CFE may list futures for up to 9 near-term serial months, as well as 5 months

on the February quarterly cycle associated to the March quarterly cycle for options on

the S&P500. In turn, CBOE initially lists some in-, at- and out-of-the-money strike

prices, and then adds new strikes as the VIX index moves up or down. Generally, the

options expiration dates are up to 3 near-term months plus up to 3 additional months

on the February quarterly cycle.6

All in all, we have 8,665 and 87,870 prices of futures and options, respectively. Of

those option prices, 58,099 correspond to calls and 29,771 to puts. We have between

4 and 6 daily futures prices during 2006; afterwards, 8 prices per day become available

on average. The number of option prices per day is also smaller at the beginning of

the sample, but it tends to stabilise in 2007 at around 20 for puts and 40 for calls.

The number of call prices per day increases again after mid 2009 and is greater than

60 at the end of the sample. We proxy for the riskless interest rate by using the daily

Eurodollar rates at 1-week, 1, 3 and 6 months and 1 year, which we interpolate to match

the maturities of the futures and option contracts that we observe.7

Figure 3a shows the evolution of the VIX term structure implicit in VIX futures.

Futures prices remained low albeit above the volatility index until mid 2007, which

suggests that market participants perceived that the VIX was too low during those

6VIX futures contracts have a multiplier of 1000, while VIX option contracts have a multiplier of
100. This means that the value of the VIX futures contract is determined by multiplying $1,000 times
the quoted futures price. On March 2, 2009, the CBOE introduced mini-VIX futures, which have a
multiplier of 100 (see Rhoads, 2011).

7Given that Eurodollar and Libor rates are very similar, the results are unlikely to be sensitive to
this choice. As usual in the option pricing literature, we assume constant interest rates in our models.
Although interest rates are of course not constant in practice, we have checked that their changes are
not significantly correlated with changes in the VIX.
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years. For instance, on October 12, 2006, the VIX was 11.09, while the price of VIX

futures expiring on February 14, 2007, was 15.72. The spot price reflected the expected

volatility for the period of October 12 to November 11, while the futures price reflected

the expected volatility for the period of February 14 to March 16, 2007. Figure 3a clearly

confirms that there was an initial increase in the summer of 2007 and a substantial level

shift in the last quarter of 2008. The negative slope during the latter period, though,

indicates that the market did not expect the VIX to remain at such high values forever,

a fact already highlighted by Schwert (2011). Eventually, this prediction turned out to

be on the winning side and futures prices significantly came down until April 2010, right

before the beginning of the European sovereign debt crisis.

Figures 3b and 3c show the average implied volatility skews implicit in VIX option

prices for different times to maturity. We consider low volatility days on Figure 3b and

high volatility days on Figure 3c. We define low (high) volatility days as those in which

the implied volatility of one-month at-the-money options remain below (above) their

average value over the sample. Interestingly, we observe a consistent pattern of implied

volatility smirks with positive slope regardless of the time to maturity and volatility of

the VIX. There only seems to be a small change in slope for deep in-the-money calls (or

out-of-the-money puts). Therefore, any pricing model must adequately capture these

empirical features. Finally, although Figures 3b and 3c show that option prices were

higher for longer maturities on average, this is not necessarily the case on all the days

in the sample. In particular, option prices decreased with maturity at the peak of the

financial crisis (November 2008) because the market expected a fall in the volatility of

the VIX.

3 Pricing and estimation strategy

We assume that there is a risk free asset with instantaneous rate r. Let V (t) be the

VIX value at time t. We define F (t, T ) as the actual price of a futures contract on V (t)

that matures at T > t. Similarly, we will denote the prices at t of call and put options

maturing at T with strike price K by c(t, T,K) and p(t, T,K), respectively. Importantly,

since the VIX index is a risk neutral volatility forecast, not a directly traded asset, there is

no cost of carry relationship between the price of the futures and the VIX (see Grünbichler

and Longstaff, 1996, for more details). There is no convenience yield either, as in the

9
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case of futures on commodities. Therefore, absent any other market information, VIX

derivatives must be priced according to some model for the risk neutral evolution of the

VIX. This situation is similar, but not identical, to term structure models.

Let M index the asset pricing models that we consider. Then, the theoretical futures

price implied by model M will be:

FM(t, T, V (t),φ) = EQ
M[V (T )|I(t),φ], (1)

where Q indicates that the expectation is evaluated at the risk neutral measure, φ is

the vector of free parameters of model M, and I(t) denotes the information available at

time t, which includes V (t) and its past values.

We can analogously express the theoretical value of a European call option with strike

K and maturity at T under this model as

cM[t, T,K, F (t, T ),φ] = exp(−rτ)EQ
M[max(V (T )−K, 0)|I(t),φ], (2)

where τ = T−t. Nevertheless, we can exploit the fact that V (T ) = F (T, T ) to price calls

using the futures contract that expires on the same date as the underlying instrument,

instead of the actual volatility index. In this way, we make sure that the pricing errors

of options are not caused by distortions in our futures valuation formulas. Similarly,

European put prices p(t, T,K) underM can be easily obtained from the put-call-forward

parity relationship

pM[t, T,K, F (t, T ),φ] = cM[t, T,K, F (t, T ),φ]− exp(−rτ)[F (t, T )−K].

We use futures and options prices, as well as data on the VIX index, which allows us

to estimate the risk premia implicit in the market of VIX derivatives. We estimate the

parameters by maximum likelihood for the models whose likelihood is known in closed

form, and by pseudo maximum likelihood for the remaining ones. In both cases, we

assume the existence of pricing errors such that

F (t, T ) = FM(t, T, V (t),φ) + ξft + εft,T ,

c(t, T,K) = cM[t, T,K, F (t, T ),φ] +�(M(t, T )) [(1− ηo)ξot + ηoεct,T (K)] ,

p(t, T,K) = pM[t, T,K, F (t, T ),φ] +�(M(t, T )) [(1− ηo)ξot + ηoεpt,T (K)] ,

where εft,T ∼ N(0, σ2
fε), εct,T (K) ∼ N(0, 1) and εpt,T (K) ∼ N(0, 1) are independent and

iid over time and across strikes and maturities, while ξft ∼ N(0, σ2
fξ) and ξot ∼ N(0, 1)
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are also orthogonal and iid over time but common for all futures and options, respectively.

Thus, we decompose pricing errors into common and idiosyncratic terms. Thanks to this

parametrisation, we allow for contemporaneous correlation between the pricing errors.

As noted by Bates (2000), ignoring this feature would affect the relative weighting that

the options and futures would receive in the estimation. In contrast, the inclusion of

common factors avoids overestimating the amount of truly independent information in

the data.8 In addition, we parametrise the variances of option pricing errors by means

of the quadratic function

�2(M(t, T )) = σa + σb(M(t, T )− σc)
2, (3)

where M(t, T ) = log(K/F (t, T )) measures the moneyness of the option. In this way, we

avoid giving undue weight to higher priced or in-the-money options whose pricing errors

are higher simply because of their larger scale. Importantly, we also employ different

parameters for the pricing error variances of futures and options, thereby implicitly

adjusting their relative weight in the likelihood.

We can write the log likelihood at a particular time t as

l[ot, ft, V (t)|I(t− 1)] = lo(ot|ft, V (t), I(t− 1)) + lf (ft|V (t), I(t− 1)) + lv[V (t)|I(t− 1)],

where ot and ft are, respectively, the set of option and futures prices traded at t,

lo(ot|ft, V (t), I(t−1)) is the log density of the option prices conditional on futures prices

and VIX, lf (ft|V (t), I(t−1)) is the log likelihood of the futures prices conditional on the

volatility index, and lv[V (t)|I(t − 1)] is the log density of the volatility index.9 Thus,

the log likelihood reflects that we price futures conditional on the value of the VIX, in

the same we as we price options conditional on the value of the futures. In addition, we

take into account the contribution of the VIX to the log likelihood in order to obtain the

parameters under the real measure.

A non-trivial advantage of our estimation method over traditional calibration proce-

dures is that we do not have to treat the model parameters as deterministic functions

of time. In addition, we can also obtain standard errors for our parameter estimators,

which can in turn be used to conduct formal hypothesis tests. Furthermore, we can

8Nevertheless, empirical results without the common factors ξft and ξot, which are available from
the authors upon request, yield qualitatively similar results.

9The usefulness of this additive decomposition is limited, though, because most model parameters
affect more than one component.
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exploit the relationship between actual and risk-neutral measures to estimate prices of

risk (see Appendices B and C for details).

We consider two estimation samples that correspond to two distinct volatility phases

described in Section 2: until 15-Aug-2008 and full sample. We use the first sample to

evaluate the out-of-sample empirical fit of the models.10 Thus, we can assess model

performance following a major volatility increase in global stock markets.

4 Existing one-factor models

4.1 Model specification

We first compare the two mean-reverting volatility models that have been used so

far in the literature: the square root and the log Ornstein-Uhlenbeck processes. As we

mentioned before, Grünbichler and Longstaff (1996) proposed the square root process

(SQR) to model a standard deviation index. This model, which was used by Cox,

Ingersoll, and Ross (1985) for interest rates and Heston (1993) for the instantaneous

variance of stock prices, satisfies the diffusion

dV (t) = κP [θ̄P − V (t)]dt+ σ
√
V (t)dW P (t),

where W P (t) is a Brownian motion under the real measure. Following Dai and Singleton

(2000), we specify a price of risk that is proportional to the instantaneous volatility.

Specifically, we assume that Λv(t) = ς
√
V (t), so that dWQ(t) = dW P (t) + ς

√
V (t)dt.

Then, it is straightforward to show that V (t) satisfies the square root diffusion

dV (t) = κ[θ̄ − V (t)]dt+ σ
√
V (t)dWQ(t)

under the equivalent risk neutral measure, where κ = κP + σς and θ̄ = κP θ̄P/κ.

As is well known, the risk-neutral distribution of 2cV (T ) given V (t) is a non-central

chi-square with ν = 4κθ̄/σ2 degrees of freedom and non-centrality parameter ψ =

2cV (t) exp(−κτ), where

c =
2κ

σ2(1− exp(−κτ))
.

10We analyse out-of-sample performance using the parameter estimates obtained in-sample. We also
use the current value of the VIX to compute futures prices and the current value of futures prices to
compute option prices, just as a financial market participant would do in real time. In addition, in the
models with more than one factor we follow the standard procedure of filtering the additional factor
using the past evolution of the VIX and its derivatives with the in-sample estimates.
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As a result, the price of the futures contract (1) can be expressed in this case as

FSQR(t, T, V (t), κ, θ̄, σ) = θ̄ + exp(−κτ)[V (t)− θ̄]. (4)

We can interpret θ̄ as the long-run mean of V (t), since the conditional expected value

of the volatility index converges to θ̄ as τ goes to infinity. In addition, κ is usually

interpreted as a mean-reversion parameter because the higher it is, the more quickly

the process reverts to its long run mean.11 Interestingly, the SQR model introduces

stochastic volatility because the conditional variance of the VIX implied by this model

is an affine function of V (t) (see Appendix D).

The call price formula (2) for this model becomes

cSQR(t, T,K, κ, θ̄, σ) = V (t) exp(−(κ+ r)τ)[1− FNC2(2cK; ν + 4, ψ)]

+θ̄[1− exp(−κτ)] exp(−rτ)[1− FNC2(2cK; ν + 2, ψ)]

−K exp(−rτ)[1− FNC2(2cK; ν, ψ)], (5)

where FNC2(·; ν, ψ) is the cumulative distribution function (cdf) of a non-central chi-

square distribution with ν degrees of freedom and non-centrality parameter ψ. Hence,

it is straightforward to express the call price as a function of F (t, T ) by exploiting the

relationship between futures prices and V (t) in (4).

Subsequently, Detemple and Osakwe (2000) considered the log-normal Ornstein-

Uhlenbeck (LOU) diffusion:

d log V (t) = κ[θ̄P − log V (t)]dt+ σdW P (t).

If once again we follow Dai and Singleton (2000) in specifying the price of risk as Λv(t) =

ς, then V (t) will satisfy the LOU diffusion

d log V (t) = κ[θ̄ − log V (t)]dt+ σdWQ(t)

under the risk neutral measure, where θ̄ = θ̄P − σς/κ

As is well known, this model implies that log V (t) would follow a conditionally ho-

moskedastic Gaussian AR(1) process if sampled at equally spaced discrete intervals.

More generally, the conditional risk-neutral distribution of log V (T ) given V (t) would be

Gaussian with mean

μ(t, τ) = θ̄ + exp(−κτ)[log V (t)− θ̄]

11As remarked by Hansen and Scheinkman (2009), the density of this distribution will be positive at
V (T ) = 0 if the Feller condition 2κθ̄ ≥ σ2 is violated.
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and variance

ϕ2(τ) =
σ2

2κ
[1− exp(−2κτ)]. (6)

As in the SQR process, θ̄ and κ can be interpreted as the long-run mean and mean-

reversion parameters, respectively, but now it is the log of V (t) that mean reverts to θ̄.

And although (6) shows that the LOU model is homoskedastic for the log VIX, it can be

shown that the process followed by the VIX is heteroskedastic due to Jensen’s inequality

(see Appendix D for more details). In this context, it is straightforward to show that

the futures price is

FLOU(t, T, V (t), κ, θ̄, σ) = exp(μ(t, τ) + 0.5ϕ2(τ)),

while the call price can be expressed as

cLOU(t, T,K, κ, θ̄, σ) = exp(−rτ)F (t, T )Φ

[
log(F (t, T )/K) + 1

2
ϕ2(τ)

ϕ(τ)

]

−K exp(−rτ)Φ

[
log(F (t, T )/K)− 1

2
ϕ2(τ)

ϕ(τ)

]
(7)

if we take the futures contract as the underlying instrument, where Φ(·) denotes the

standard normal cdf. This is the well known Black (1976) formula, although in this case

the implied volatility ϕ(τ) in (6) is not constant across maturities. In this sense, the

pricing formula proposed by Whaley (1993) based on a geometric Brownian motion can

also be expressed as (7) if ϕ(τ) is taken as a constant irrespective of τ .

4.2 Empirical performance

We have estimated the parameters of these two models over the two sample periods

described at the end of Section 3. Table 1 reports the in- and out-of-sample root mean

square pricing errors (RMSE). We observe that the SQR model yields larger in-sample

price distortions than the LOU model. Those distortions remain in the out-of-sample

period. We have re-estimated the two models with VIX and futures data only to check

that the use of option data in the estimation of the parameters is not driving the results.

We have found that the LOU model still yields a better performance in that case.

Table 2 reports the parameter estimates that we obtain under the real measure, as

well as the parameters of the pricing error variances. Although the values are not directly

comparable because volatility is expressed in levels in the SQR model and in logs in the

LOU model, in both cases the mean reversion parameter κ is quite sensitive to the sample
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period used for estimation purposes (see footnote 2 and references therein). In contrast,

the volatility parameter σ is more stable for the LOU process, probably because the

log transformation is more appropriate to capture the distortions produced by the large

movements of the VIX that took place at the end of our sample. Table 2 also shows that

the parameters of the quadratic function (3) are highly significant. Therefore, allowing

for different variances of pricing errors across strikes seems to be relevant in ensuring

that higher priced options do not receive undue weight.

An alternative, more illustrative way to assess the validity of the LOU model is by

considering the implied volatilities obtained with the Black (1976) formula (7). As we

mentioned before, the implied volatility of the LOU process is constant for different

degrees of moneyness, but not across different maturities because (6) depends on τ .

Hence, if this model were correct then we should obtain constant implied volatilities for

a given maturity regardless of moneyness. As we have seen in Figures 3b and 3c, this

is not at all the case. In fact, we generally observe that implied vols have a positive

moneyness slope. In addition, the comparison of these figures suggest that the volatility

of the log VIX is not constant over time, as the LOU model assumes. In this sense, the

LOU process is not only unable to generate the observed volatility skews, but it also

fails to capture the average level of implied volatilities. As we will see in Section 5.5,

though, the SQR model generates volatility skews, but they have the opposite slope to

the actual skews in Figures 3b and 3c.

5 Extensions

5.1 Model specification

The results of the previous section indicate that a LOU process offers a better empiri-

cal fit than a SQR process. Unfortunately, their performance tends to deteriorate during

the recent financial crisis. For that reason, in this section we explore several extensions

to those models. For the sake of brevity, though, we focus on the risk-neutral measure

and the prices of risk. Further details can be found in Appendices B and C.

Specifically, we extend the SQR model by considering the concatenated SQR (CSQR)

proposed by Bates (2012) among others:

dV (t) = κ[θ(t)− V (t)]dt+ σ
√
V (t)dWQ

v (t),
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with

dθ(t) = κ̄[θ̄ − θ(t)]dt+ σ̄
√
θ(t)dWQ

θ (t).

We specify the prices of risk that link the Wiener processes under P and Q as

dWQ
v (t) = dW P

v (t) + ς
√

V (t)dt, (8)

dWQ
θ (t) = dW P

θ (t) + ς̄
√

θ(t)dt, (9)

where WQ
v (t) and WQ

θ (t) are independent Brownian motions. These specifications en-

sure that the VIX follows the same process under the real measure. As we mentioned

before, an important deficiency of previously existing models is that they assume that

the volatility index mean reverts at a simple, non-negative exponential rate, which is

in fact 0 in the GBM model proposed by Whaley (1993). However, the long, persistent

swings in the VIX in Figure 1a suggest that we need to allow for more complex dynamics.

In this sense, the CSQR allows the VIX to revert towards a central tendency, which in

turn fluctuates stochastically over time around a long run mean θ̄. As a consequence,

the conditional mean of V (T ) is a function of the distance between V (t) and the central

tendency θ(t), as well as the distance between θ(t) and θ̄.12 More explicitly,

EQ[V (T )|I(t)] = θ̄ + δ(τ)[θ(t)− θ̄] + exp(−κτ)[V (t)− θ(t)], (10)

where

δ(τ) =
κ

κ− κ̄
exp(−κ̄τ)− κ̄

κ− κ̄
exp(−κτ). (11)

Importantly, the CSQR model introduces stochastic volatility that is not spanned by the

VIX, since the conditional variance under this model is an affine function of V (t) and

θ(t) (see Appendix B).

In turn, we add three empirically relevant features to the LOU model: a time varying

mean, jumps and stochastic volatility. We consider these extensions first in isolation,

and then in combination. As a general rule, we model the price of risk of the continuous

part of the diffusions as in the one-factor models, while we assume that jump risk is not

priced. All in all, we compare the following cases:

• Central tendency (CTOU):

d log V (t) = κ[θ(t)− log V (t)]dt+ σdWQ
v (t),

12Unlike in the SQR model, the convergence of (10) to the long run mean is not necessarily a monotonic
function of τ .
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with

dθ(t) = κ̄[θ̄ − θ(t)]dt+ σ̄dWQ
θ (t), (12)

where WQ
v (t) and WQ

θ (t) are independent Brownian motions. We specify the prices

of risk that link the Wiener processes under P and Q as

dWQ
v (t) = dW P

v (t) + ςdt, (13)

dWQ
θ (t) = dW P

θ (t) + ς̄dt. (14)

These specifications ensure that the process followed by the log VIX is also affine

under the real measure.

We show in Appendix C that the exact discretisation of log V (t) in the above model

is a Gaussian ARMA(2,1) process, which is consistent with the evidence reported

in Section 2 (see Figure 2). Therefore, its likelihood function can be computed in

closed form. As discussed in Jegadeesh and Pennacchi (1996) and Balduzzi, Das,

and Foresi (1998), (12) allows the volatility index to revert towards a time varying

central tendency whose long run mean is θ̄. As a consequence, the conditional

mean of log V (T ) is a function of the distance between log V (t) and the central

tendency θ(t), as well as the distance between θ(t) and θ̄.13 More explicitly,

EQ[log V (T )|I(t)] = θ̄ + δ(τ)[θ(t)− θ̄]

+ exp(−κτ)[log V (t)− θ(t)], (15)

where δ(τ) is given by (11). Notice that, although (10) and (15) have a similar

structure, the two formulas are not equivalent because the VIX appears in levels

in (10). In addition, the CTOU model can equivalently be expressed as the “su-

perposition” (i.e. sum) of two LOU factors. Therefore, the structure in (12) is not

restrictive for the CTOU.14

• Jumps (LOUJ):

d log V (t) = κ[θ̄ − log V (t)]dt+ σdWQ
v (t) + dZ(t)− λ

κδ
dt, (16)

13As in the CSQR model, the convergence of (15) to the long run mean is not necessarily a monotonic
function of τ .

14The “component” Garch model proposed by Ding and Granger (1996) to capture “long memory”
features of volatility (see also Engle and Lee, 1999) can be regarded as a discrete time analogue to (12).
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where Z(t) is a pure jump process independent of WQ
v (t), with intensity λ, and

whose jump amplitudes are exponentially distributed with mean 1/δ, or Exp(δ)

for short. Note that the last term in (16) simply introduces a constant shift in the

distribution of log V (t) which ensures that θ̄ remains the long-run mean of log V (t).

Jumps in models for instantaneous volatility have been previously considered by

Duffie, Pan, and Singleton (2000) and Eraker, Johannes, and Polson (2003), among

others, while Todorov and Tauchen (2011) also consider jumps in modelling the

VIX. Unlike pure diffusions, this model allows for sudden movements in volatility

indices, which nevertheless have lasting effects due to the fact that the mean-

reversion parameter κ is bounded. Again, we assume (13) for the price of diffusion

risk.

• Stochastic volatility (LOUSV):

d log V (t) = κ[θ̄ − log V (t)]dt+
√
ω(t)dWQ

v (t)

where ω(t) follows an OU-Γ process, which belongs to the class of Lévy OU pro-

cesses considered by Barndorff-Nielsen and Shephard (2001). Specifically,

dω(t) = −λ̄ω(t)dt+ dZ̄(t) (17)

where Z̄(t) is a pure jump process with intensity λ̄ and Exp(δ̄) jump amplitude,

whileWQ
v (t) is an independent Brownian motion. We use this extension to assess to

what extent the price distortions in the previous models are due to the assumption

of constant volatility over time. Importantly, the model that we adopt is consistent

with the presence of mean reversion in ω(t), since

EQ [ω(T ))|ω(t)] = δ̄−1 + exp(−λ̄τ)
[
ω(t)− δ̄−1

]
. (18)

Hence, δ̄−1 can be interpreted as the long run mean of the instantaneous volatility

of the log VIX, while λ̄ will be the corresponding mean reversion parameter. An-

other non-trivial advantage of this model over other alternatives such as a square

root process for ω(t) is that it allows the valuation of derivatives by inverting the

conditional characteristic function (see Appendix C for details). Once again, we

consider a price of diffusion risk proportional to instantaneous volatility to ensure
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that the log VIX under the real measure remains an affine process (see Dai and

Singleton, 2000). Specifically, we assume

dWQ
v (t) = dW P

v (t) + ςω
√
ω(t)dt. (19)

Under this specification, the price of risk has a stronger impact when the volatility

of the VIX is larger.

• Central tendency and jumps (CTOUJ):

d log V (t) = κ[θ(t)− log V (t)]dt+ σdWQ
v (t) + dZ(t)− λ

κδ
dt (20)

where θ(t) follows the diffusion (12) and Z(t) is a pure jump process with intensity

λ and Exp(δ) jump amplitude, while WQ
v (t) and WQ

θ (t) are independent Brownian

motions. We again introduce a constant shift in (20) to ensure that θ̄ is the long

run mean of both θ(t) and log V (t). As in the CTOU model, we assume that the

prices of risk are given by (13) and (14).

• Central tendency and stochastic volatility (CTOUSV):

d log V (t) = κ[θ(t)− log V (t)]dt+
√
ω(t)dWQ

v (t)

where θ(t) follows the diffusion (12) while ω(t) is defined in (17). As in previous

cases, the jump variable Z̄(t) and the Brownian motions are mutually independent.

Similarly, we consider the prices of risk specifications (14) and (19).

Despite the apparent differences between (13), (14) and (19), they are all special

cases of a generic specification. In particular, following Cheridito, Filipović, and Kimmel

(2007), we can write the risk neutral probability measure in terms of the real measure

for all the extensions that we consider as

q = exp

[
−
∫ T

t

(Λv(s)dWv(s) + Λθ(s)dWθ(s))− 1

2

∫ T

t

(
Λ2

v(s) + Λ2
θ(s)

)
ds

]
,

where Λv(t) = ςω
√

ω(t) and Λθ(t) = ς̄ in our case.15

Except for the CTOU model, it is not generally possible to price derivative contracts

for these extensions in closed form. However, it is possible to obtain the required prices

15Note that ω(t) = σ2 in the extensions without stochastic volatility. Accordingly, we define ς = ςωσ
in those cases.
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by Fourier inversion of the conditional characteristic function. In particular, we use

formula (5) in Carr and Madan (1999) to invert the relevant characteristic functions of

the extensions to the LOU model (see Appendix C). However, this approach is not valid

for the CSQR model, where we need to follow recent results by Amengual and Xiu (2012)

to invert the characteristic function (see Appendix B).

Some of the previous extensions introduce as additional factors a time varying ten-

dency, a time varying volatility or both, which we need to filter out for estimation

purposes. In this regard, we use the standard Kalman filter to “estimate” θ(t). And

although the jump variable Z(t) in (16) can also be interpreted as an additional factor,

its impact cannot be separately identified from the impact of the diffusion shocks dWQ
v (t)

because both variables share the same mean reversion coefficient κ. Finally, following

Trolle and Schwartz (2009) and others, we employ the extended Kalman filter to deal

with ω(t) (see once again Appendix C for further details).

5.2 Empirical performance

Table 3 reports the in- and out-of-sample RMSE’s of the extensions introduced in the

previous section. As expected, the CSQR process is able to yield much smaller RMSE’s

than the SQR and LOU models, both in and out-of-sample. Nevertheless, the CTOU

model achieves a slightly superior fit, especially out-of-sample. In any case, a persistent

time-varying mean seems to capture a crucial feature of the data. On the other hand,

the introduction of jumps in the LOU model does not introduce improvements in the

aggregate RMSE’s. Similarly, adding jumps to the CTOU model does not substantially

improve the fit either. However, it is important to emphasise that Table 3 does not

assess the importance of jumps on the historical dynamics of the VIX, only their pricing

implications.

In contrast, we find significant improvements when we consider stochastic volatility.

The LOUSV introduces important reductions in the RMSE’s, but the combination of

central tendency and stochastic volatility provided by the CTOUSV model yields the

overall best fit. Importantly, this model is able to describe the out-of-sample behaviour

of the VIX during the more extreme periods of the financial crisis.

Figure 4 compares the empirical cdf’s of the square pricing errors of futures and option

prices separately. This figure shows that the CTOUSV model dominates in the first order
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stochastic sense all the other models for both futures and options. The ordering of the

remaining models, though, depends on the type of derivative asset considered. In the case

of futures, the CTOUSV is closely followed by the CSQR and then by the other central

tendency specifications (CTOU and CTOUJ), which display almost identical results. In

turn, they are followed by the LOUSV, LOUJ, LOU, and SQR models. But for options,

the second best model is LOUSV, which is followed by the CTOUJ, LOUJ, CTOU,

LOU, SQR and CSQR models. Thus, we observe that the central tendency is relatively

more important for futures, while stochastic volatility offers greater gains on options.

At the same time, a central tendency does not harm the option pricing performance of

the CTOUSV model, while stochastic volatility does not cause any distortions to futures

prices. This is not surprising, given that we show in Appendix C that option prices for

the extensions of the LOU model do not depend on θ(t) once we condition on the current

futures price. As for jumps, Figure 4 shows that they do indeed help in pricing options

but they hardly provide any improvement for futures. The small impact of jumps on

futures is again to be expected because we can also show that jumps in the LOUJ model

generate identical futures prices as a LOU model up to first order.16 And, compared to

stochastic volatility, jumps seem to yield a minor improvement even for options. In this

sense, Bakshi, Cao, and Chen (1997) find that, once stochastic volatility is modelled,

adding jumps only leads to second-order pricing improvements. Lastly, the SQR model

offers the worst overall results, while the CSQR model also yields a poor fit for option

prices.

Figure 5a compares the “actual” futures prices for a constant 30-day maturity, which

we obtain by interpolation of the adjacent contracts, with the daily estimates of 30-

day futures prices generated by the SQR, LOU and CTOU models. By focusing on

a constant maturity, we can not only compare the absolute magnitude of the pricing

errors, but also their sign and persistence. As can be seen, the pricing errors of the SQR

process are larger than those of the LOU process, especially after mid 2007. In turn,

those of the LOU model are not only substantially larger than those of the CTOU, but

they also display much stronger persistence. For instance, the SQR and LOU models

16Formally, when we consider a Taylor expansion of the futures price formula of model LOUJ around
λ/δ for λ/δ > 0 but small, we only observe deviations from the LOU expression for the second and higher
terms. This probably reflects the fact that the conditional mean of the VIX is essentially unaffected by
the presence of jumps although they alter skewness and kurtosis.
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systematically underprice futures from October 2008 until the end of the sample. The

slower mean reverting properties of the VIX are probably responsible for these persistent

biases in the one-factor models. We can also observe in Figure 5b that the pricing errors

of the CSQR, CTOU and CTOUSV models are almost identical, albeit with slightly

smaller oscillations for the CTOUSV model. This feature confirms once again that

central tendency is the most relevant extension for pricing futures.

Table 4 reports the parameter estimates that we obtain under the real measure in the

extensions to the SQR and LOU models we are considering. In the models with central

tendency we observe fast mean reversion of the VIX to θ(t), which in turn mean-reverts

rather more slowly to its long rung mean θ̄ (i.e. κ � κ̄). Importantly, the estimates

of these parameters are very stable in models with central tendency. In contrast, jump

intensities vary substantially depending on the sample period considered for estimation.

Specifically, we obtain smaller values of λ when we include the crisis period. For the full

sample, we estimate around 5 jumps per year in the LOUJ specification, and almost 7

jumps per year in the CTOUJ model. On the other hand, the estimates of the mean

reversion parameter λ̄ in the stochastic volatility models tend to be larger when central

tendency is not simultaneously included. Since this parameter is also responsible for

jump intensity in the OU-Γ model, this result has two interesting implications. First,

a smaller value of λ̄ tends to reduce jump activity in Z̄(t). Specifically, the expected

number of jumps per year decreases from 15 in the LOUSV model to 2 in the CTOUSV

extension. Second, the deviations of ω(t) from its long run mean are more persistent

in the CTOUSV case because mean reversion is slower the smaller λ̄ is, as (18) indi-

cates. These features are also important from a time series perspective. As mentioned

before, central tendency is consistent with ARMA(2,1) dynamics in discrete time, while

stochastic volatility introduces Garch-type persistent variances for the log VIX.

5.3 Risk pricing

Table 5 shows the point estimates of the price of risk parameters for our preferred

model. We also conduct Wald tests to assess the statistical significance of these estimates.

The price of risk related to the VIX equation (19), ςω, is highly significant in the two

samples. In contrast, ς̄, which is the price of risk related to the innovations in (12), is

insignificant in both cases.
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The negative sign of ςω implies a more adverse distribution in the Q measure, because

the VIX mean reverts towards a higher long run level than in the P measure. This result,

which is consistent with the evidence found by Egloff, Leippold, and Wu (2010), should

be taken into account in inferring the market expectation about future values of the VIX

from its derivatives.

The difference between the properties of the VIX under the real and risk-neutral

measures implies, within the framework of our model, that an economically important

systematic risk is priced in the market of VIX derivatives. In addition, the statistical

significance of the estimate of ςω implies that the impact of the price of risk is larger

when the VIX is more volatile (see equation 19).

5.4 Evolution of the factors

Figure 6a shows that the filtered values of the central tendency factor θ(t) are rather

insensitive to the particular specification that we use. We have also found that our

preferred CTOUSV model generates almost indistinguishable filtered values for θ(t) for

the two estimation samples that we consider. Not surprisingly, Figure 6a also confirms

that the log of the VIX oscillates around θ(t), which in turn changes over time rather

more slowly. In fact, the main reason for central tendency models to work so well during

the recent financial crisis is because they allow for large temporal deviations of θ(t) from

its long term value θ̄, thereby reconciling the large increases of the VIX observed during

that period with mean reversion over the long term.

Figure 6b compares the filtered instantaneous volatilities of the LOUSV and CTOUSV

models. Interestingly, both series display an almost identical pattern, with substantial

persistent oscillations over time. This figure also shows that large increases in the value

of the VIX are associated to volatile periods, as measured by ω(t). This is particularly

visible in August 2007, October 2008 and May 2010. As with central tendency, we have

found that the filtered values of ω(t) obtained from the CTOUSV model are also quite

insensitive to the sample period used to estimate the model parameters.

We compute the 30-day ahead standard deviations of log V (t) implied by the CTOUSV

model to assess the extent to which the filtered values of ω(t) make sense. In Figure

6c we compare those standard deviations with the Black (1976) implied volatilities of

at-the-money options that are exactly 30 days from expiration, which we again obtain



BANCO DE ESPAÑA 30 DOCUMENTO DE TRABAJO N.º 1232

by interpolation. The high correlation between the two series shows that the filtered val-

ues of stochastic volatility are indeed related to the changing perceptions of the market

about the standard deviation of the VIX.

Finally, Figure 6d compares the one-day-ahead standard deviations under the real

measure implied by the models with the standard deviations obtained from a discrete

ARMA(2,1)-GARCH(1,1) model for the log VIX. We only consider the two most relevant

extensions to the LOU model to avoid cluttering the picture. As we have already men-

tioned in Section 4, both the SQR and LOU models yield time varying variances for the

VIX. However, the variance implied by the SQR process seems to be too high until mid

2007 and too low afterwards. The LOU model performs better over tranquil periods, but

it underestimates actual volatility levels in the most severe phases of the financial crisis.

In contrast, the CTOUJ and especially the CTOUSV do a much better job, while the

CSQR significantly overestimates the standard deviations during low volatility periods.

5.5 Term structures of derivatives and implied volatility skews

So far, we have focused on the overall empirical performance of the different models.

In principle, though, our results could change for different time horizons or different

degrees of moneyness. For that reason, Table 6 shows the RMSE’s of futures contracts

for different ranges of maturity. We observe that the models without central tendency

tend to yield larger distortions for longer maturities. In contrast, the models with central

tendency are relatively worse at pricing the shortest maturity. Nevertheless, even the

worst RMSE of the CTOUSV model is still much smaller than the best RMSE of either

the SQR or the LOU models without central tendency.

To gain some additional insight, in Figure 7 we look at the term structure of futures

prices for four particularly relevant days. Futures prices were extremely low on June

21, 2007, even though the first warning signals about the impending crisis were starting

to appear. Prices had already risen significantly by August 15, 2008, one month before

the collapse of Lehman Brothers. Nevertheless, they were much higher on November 20,

2008, which is the day in which the VIX reached its maximum historical closing value

at 80.86. The increase is particularly remarkable at the short end of the curve. Since

then, though, VIX futures prices significantly came down until the beginning of April

2010, right before the European sovereign debt crisis. The figure confirms that a central



BANCO DE ESPAÑA 31 DOCUMENTO DE TRABAJO N.º 1232

tendency is crucial for the purposes of reproducing the changes in the level and slope of

the actual term structure of VIX futures prices. We can also observe that the LOU and

LOUJ processes yield futures prices which are almost identical, while the CTOUJ model

can be barely distinguished from the CTOU extension.

Tables 7 and 8 provide the RMSE’s of calls and puts for different ranges of maturity

and moneyness. In this case, we generally observe the highest price distortions for at-

the-money call and put options. The SQR, CSQR, LOU, LOUJ, CTOU and CTOUJ

models seem to do a better job for moneyness smaller than −0.3. However, once again

we can confirm that stochastic volatility models provide the best fit uniformly across all

moneyness and maturity ranges.

In Figure 8 we assess the ability of the different models to fit the average implied

volatility skews in Figures 3b and 3c. Once again, we only plot the most relevant

extensions to the LOU model to avoid cluttering the pictures. In addition to the average

implied skews of actual prices, we also consider 5% and 95% percentiles as a measure of

dispersion. The figures confirm that the LOU model yields a constant implied volatility

for all strikes. In contrast, the SQR and CSQR yield volatility skews but with a negative

slope, which is inconsistent with the positive slope in the data. In contrast, both the

CTOUJ and CTOUSV models are able to reproduce this positive slope, with the latter

generally providing the best fit. Specifically, the CTOUJ model does not capture the

shifts of the implied skews due to rises in volatility and it also performs poorly for low

strikes.

6 Conclusions

We carry out an extensive empirical analysis of VIX derivatives valuation models.

We consider daily prices of futures and European options from February 2006 until

December 2010. Therefore we not only cover an unusually tranquil period, but also

the early turbulences that took place between August 2007 and August 2008, the worst

months of the recent financial crisis (autumn 2008), as well as the months in 2010 in

which the European sovereign debt crisis unfolded. These markedly different periods

provide a very useful testing ground to assess the empirical performance of the different

pricing models. We estimate the models using not only futures and options data, but

also historical data on the VIX itself, which allows us to look at the relationship between
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real and risk neutral measures. We initially focus on the two existing mean-reversion

models: the square root (SQR) and the log-normal Ornstein-Uhlenbeck processes (LOU).

Although SQR is more popular in the empirical literature, we find that the LOU model

yields a better fit, especially during the crisis. However, both models yield large price

distortions during the crisis. In addition, they do not seem to capture either the level

or the slope of the term structure of futures prices, or indeed the volatility skews. Part

of the problem is that these models implicitly assume that volatility either mean reverts

at a simple exponential rate or does not mean revert at all, which cannot accommodate

the long and persistent swings of the VIX observed in our sample. In this sense, we

show that the simple AR(1) structure that they imply in discrete time is not consistent

with the empirical evidence of ARMA dynamics for the VIX. In addition, these models

are also inconsistent with the strong presence of Garch-type heteroskedasticity that we

find in this volatility index.

We investigate the potential sources of mispricing by considering several empiri-

cally relevant generalisations. In particular, we consider the concatenated SQR process

(CSQR), which substantially extends the SQR model by introducing a time varying

central tendency and allowing for unspanned stochastic volatility. We also extend the

LOU model by introducing a time varying central tendency, jumps and stochastic volatil-

ity. Our parameter estimates indicate that the VIX rapidly mean-reverts to a central

tendency, which in turn reverts more slowly to a long run constant mean. This flexible

structure can reconcile the large variations of the VIX over our sample period with mean-

reversion to a long run constant value. Except for the CTOU model, though, it is not

generally possible to price derivatives in closed form for the extensions that we consider.

For that reason, we obtain the required prices by Fourier inversion of the conditional

characteristic function.

Interestingly, our results indicate that a time varying central tendency is crucial for

pricing futures, regardless of whether the model is expressed in levels or logs. We also

find evidence of time varying volatility in the VIX. As expected, stochastic volatility

plays a much more important role for options while leaving futures prices almost unaf-

fected. The CSQR model, though, seems unable to generate the positive slope of the

option implied volatility skews. It is also worth mentioning that jumps only provide

a minor improvement for options and do not change futures prices (up to first order).
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Nevertheless, we would like to emphasise that jumps seem to be a relevant feature to

describe the historical dynamics of the VIX, even though they only yield second order

gains for pricing VIX derivatives.

Importantly, our results remain valid when we focus exclusively on the out-of-sample

performance with parameters estimated using data prior to the autumn of 2008. In

view of these findings, we conclude that a generalised LOU model that combines a time

varying central tendency with stochastic volatility is needed to obtain a good pricing

performance during bull and bear markets, as well as to capture the term structures of

VIX futures and options, and the positive slope of the implied volatility skews of options.

Interestingly, the price of risk of this specification is highly significant and implies that

the VIX mean reverts towards a higher long run mean under the risk neutral measure

than under the real measure. The difference between the properties of the VIX under

the real and risk-neutral measures implies that an economically important systematic

risk is priced in the market of VIX derivatives.

Given the relationship between the observed VIX index and the unobserved integrated

volatility of the S&P500, our analysis also has important implications for the models

and stationarity of this broad stock index commonly used by participants in markets

for stock index options. Specifically, our results imply that stochastic volatility models

for the S&P500 should allow for slow mean reversion by including two volatility factors,

and a time-varying volatility of volatility. Amengual (2009) considers such a model for

volatility swaps.

We could extend our empirical exercise to other recently introduced volatility deriva-

tives such as binary options or American options on VIX futures, or even the futures and

options on the CBOE Gold ETF Volatility Index. Sophisticated filtering procedures for

the volatility of VIX might also be worth exploring, as well as tractable ways of modelling

jump and stochastic volatility risk for Lévy processes. It would also be interesting to

investigate the incremental information content of the contemporaneous observations of

the S&P500 over and above the spot VIX for pricing VIX futures, and above and beyond

VIX futures for pricing VIX options. This question is also relevant for the purposes of

integrating the valuation of VIX derivatives with the valuation of the underlying options

on the S&P500 that are used to compute this volatility index, as suggested by Lin and

Chang (2009). We plan to address these points in subsequent research.
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A Affine models conditional characteristic function

The extensions that we consider belong to the class of affine jump-diffusion state

processes analysed by Duffie, Pan, and Singleton (2000). In particular, consider an

N -dimensional vector Y(t) that satisfies the diffusion

dY(t) = K(Θ−Y(t))dt+
√
S(t)dW(t) + dZ(t), (A1)

where W(t) is an N -dimensional vector of independent standard Brownian motions, K

is an N×N matrix, Θ is a vector of dimension N , S(t) is a diagonal matrix of dimension

N whose ith diagonal element is ci0 + c′i1Y(t), and finally, Z(t) is a multivariate pure

jump process with intensity λ whose jump amplitudes have joint density fJ(·).
Duffie, Pan, and Singleton (2000) show that the conditional characteristic function

of Y(T ) can be expressed as

φY (t, T,u) = E[exp(iu′Y(T ))|I(t)]
= exp(ϕ0(τ) +ϕ′

Y (τ)Y(t)),

where ϕ0(τ) and ϕY (τ) satisfy the following system of differential equations:

ϕ̇Y (τ) = −K′ϕY (τ) +
1

2
ςY (τ),

ϕ̇0(τ) = Θ′KϕY (τ) +
1

2
ϕ′

Y (τ)diag(c0)ϕY (τ) + λ[J(ϕY (τ))− 1],

where J(u) =
∫
exp(u′x)fJ(x)dx and ςY (τ) is an N -dimensional vector whose kth ele-

ment is ςY,k(τ) = ϕ′
Y (τ)diag(ck1)ϕY (τ).

B The CSQR model

Given the prices of risk (8) and (9), we can write the CSQR process under the real

measure as

dV (t) = κP [θP (t)− V (t)]dt+ σ
√
V (t)dW P

v (t),

with

dθP (t) = κ̄P [θ̄P − θP (t)]dt+ σ̄P
√
θ(t)dW P

θ (t),

where κ = κP + σς, κ̄ = κ̄P + σ̄ς̄,

θ̄ =
κP κ̄P

(κP + σς)(κ̄P + σ̄ς̄)
θ̄P ,

σ̄ = σ̄P

√
κP

κP + σς
,
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and

θ(t) =
κP

κP + σς
θP (t).

Let X(t) = [θ(t), V (t)]′. Following Fackler (2000), it can be shown that the conditional

mean and variance of X(T ) given information known at time t is the affine function of

X(t): [
E[X(T )|I(t)]

vec[V [X(T )|I(t)]]
]
=

[
m0

v0

]
+

[
M1

V1

]
X(t),

wherem0, v0, M1 andV1are 2×1, 4×1, 2×2 and 4×2 vectors and matrices, respectively,

such that [
m0

v0

]
= [exp(τA)− I6]A

−1a,[
M1

V1

]
= exp(τA)

[
I2

04×2

]
,

a is a 6× 1 vector whose first element is κ̄θ̄ and all the other elements are zero; I6 is the

identity matrix of order 6; 04×2 is a 4× 2 matrix of zeros; and

A =

[
R 02×4

Σ (R⊗ I2) + (I2 ⊗R)

]
,

with

R =

[ −κ̄ 0
κ −κ

]
,

Σ =

⎡
⎢⎢⎣

σ̄2 0
0 0
0 0
0 σ2

⎤
⎥⎥⎦ .

It can be tediously shown that m0 +M1X(t) yields (10).

Using the results form Appendix A, we can express the conditional characteristic

function of this model as

φCSQR(τ, u) = E [exp((α + iu)V (T ))|I(t)]
= exp [ϕCSQR,0(τ) + ϕCSQR,θ(τ)θ(t) + ϕCSQR,V (τ)V (t)] ,

where

ϕ̇CSQR,θ(τ) = −κ̄ϕCSQR,θ(τ) + κϕCSQR,V (τ) +
1

2
σ̄2ϕ2

CSQR,θ(τ),

ϕ̇CSQR,V (τ) = −κϕCSQR,V (τ) +
1

2
σ2ϕ2

CSQR,V (τ),

ϕ̇CSQR,0(τ) = κ̄θ̄ϕCSQR,θ(τ).
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with the conditions ϕCSQR,θ(0) = 0, ϕCSQR,V (0) = α+ iu, and ϕCSQR,0(0) = 0. Further-

more, it can be shown that

ϕCSQR,V (t) =
(α + iu) exp(−κτ)

1− (α + iu)
σ2(1− exp(−κτ))

2κ

.

Then, we can follow Amengual and Xiu (2012) in showing that the price of a European

call option with strike K can be expressed as

c(t, T,K) =
exp(−rτ)

π

∫ ∞

0

Re

[
φCSQR(τ, u)

exp[−K(α + iu)]

(α + iu)2

]
du,

where the smoothing parameter α must be such that

α <
2κ

σ2(1− exp(−κτ))
.

C Extensions of LOU processes

C.1 General case

If we place log V (t) as the first element in of Y(t) in (A1), then the conditional char-

acteristic function of log V (t) will be φ(t, T, u) = φY (t, T,u0), where u0 = (u, 0, · · · , 0)′.
Following Carr and Madan (1999), the price of a call option with strike K can then be

expressed as

c(t, T,K) =
exp(−α log(K))

π

∫ ∞

0

exp(−iu log(K))ψ(u)du, (C2)

where

ψ(u) =
exp(−rτ)φ(t, T, u− (1 + α)i)

α2 + α− u2 + i(1 + 2α)u

and α is a smoothing parameter. We evaluate (C2) by numerical integration. In our

experience, α = 1.1 yields good results.

Given that the estimation algorithm requires the evaluation of the objective function

at many different parameter values, we linearise option prices with respect to ω(t) in

the models with stochastic volatility to speed up the calculations. Our procedure is

analogous to the treatment of other stochastic volatility models, which are sometimes

linearised to employ the Kalman filter (see e.g. Trolle and Schwartz, 2009). Specifically,

we linearise call prices for day t around the volatility of the previous day as follows:

cLOUSV (t, T,K, ω(t)) ≈ cLOUSV

(
t, T,K, ω

(
t− 1

360

))

+
∂cLOUSV (t, T,K, x)

∂x

∣∣∣∣
x=ω(t− 1

360)

[
ω (t)− ω

(
t− 1

360

)]
.
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Due to the high persistence of ω(t), its previous day value turns out to be a very good

predictor, which reduces the approximation error of the above expansion. In fact, the

linearisation error, expressed in terms of the RMSE’s of options, is very small (below

0.25%). In any case, we calculate the exact pricing errors once we have obtained the

final parameter estimates.

C.2 Central tendency

Given the prices of risk (13) and (14), the diffusions under the real measure can be

expressed as

d log V (t) = κ[θP (t)− log V (t)]dt+ σdW P
v (t),

dθP (t) = κ̄[θ̄P − θP (t)]dt+ σ̄dW P
θ (t),

where

θ̄P = θ̄ +
σς

κ
+

σ̄ς̄

κ̄
,

and

θP (t) = θ(t) +
σς

κ
.

Following León and Sentana (1997), it can be shown that the conditional distribution

of log V (T ) given information up to time t is Gaussian with mean μCTOU(t, τ) given in

(15) and variance

ϕ2
CTOU(τ) =

σ2

2κ
[1− exp(−2κτ)]

+σ̄2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]
.

By exploiting log-normality, we can write futures prices as

FCTOU(t, T, V (t), κ, θ, σ) = exp(μCTOU(t, τ) + 0.5ϕ2
CTOU(τ)),

while call prices follow the usual Black (1976) formula with volatility ϕCTOU(τ). This

confirms that the prices of options do not depend on θ(t) once we condition on the futures

price.

In terms of time series dynamics, it can be shown that θ(t) and log V (t) jointly follow

a Gaussian VAR(1) if sampled at equally spaced intervals. Specifically,(
θ(T )

log V (T )

)
= gτ + Fτ

(
θ(t)

log V (t)

)
+ ετ ,
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where

gτ =

[
1− exp(−κ̄τ)

1− exp(−κτ)− κ
κ−κ̄

(exp(−κ̄τ)− exp(−κτ))

]
θ̄,

Fτ =

[
exp(−κ̄τ) 0

κ
κ−κ̄

[exp(−κ̄τ)− exp(−κτ)] exp(−κτ)

]
.

and ετ ∼ iid N(0,Στ ), where Στ is a symmetric 2× 2 matrix with elements

Στ (1, 1) =
σ̄2

2κ̄
[1− exp(−2κ̄τ)]

Στ (1, 2) =
κσ̄2

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
andΣτ (2, 2) = ϕ2

CTOU(τ). From here, it is straightforward to obtain the marginal process

followed by log V (t), which corresponds to the following ARMA(2,1) model:

log V (t) = h0(τ) + h1(τ) log V (t− τ) + h2(τ) log V (t− 2τ) + u(t) + g(τ)u(t− τ)

where u(t), u(t− τ), · · · ∼ iid N(0, p2(τ)) and

h0(τ) = θ̄ (1− h1(τ)− h2(τ)) ,

h1(τ) = Fτ (1, 1) + Fτ (2, 2),

h2(τ) = −Fτ (1, 1)Fτ (2, 2),

g(τ)p2(τ) =
(
Fτ (2, 1) −Fτ (1, 1)

)
Στ

(
0
1

)
,

(1 + g2(τ))p2(τ) =
(
Fτ (2, 1) −Fτ (1, 1)

)
Στ

(
Fτ (2, 1)
−Fτ (1, 1)

)
+Στ (2, 2).

C.3 Jumps

Once again, we assume that dWQ
v (t) = dW P

v (t) + ςdt holds and that jump risk is not

priced. Then, it can be shown that log V (t) satisfies the diffusion

d log V (t) = κ[θ̄P − log V (t)]dt+ σdW P
v (t) + dZ(t)− λ

κδ
dt

under the real measure, where θ̄P = θ̄ + σς/κ.

The conditional characteristic function reduces to

φLOUJ(t, T, u) = exp [ϕLOUJ,0(τ) + ϕLOUJ,V (τ) log V (t)] ,

where

ϕLOUJ,0(τ) = iu

(
θ̄ − λ

κδ

)
[1− exp(−κτ)]− σ2u2

4κ
[1− exp(−2κτ)]

+
λ

κ
log

[
δ − iu exp(−κτ)

δ − iu

]
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and

ϕLOUJ,V (τ) = iu exp(−κτ).

C.4 Stochastic volatility

We consider a price of risk such that dWQ
v (t) = dW P

v (t) + ςω
√
ω(t)dt, but we again

assume that jump risk related to Z(t) is not priced. Then, the process under the real

measure can be expressed as

d log V (t) = κ
[
θ̄ +

ςω
κ
ω(t)− log V (t)

]
dt+

√
ω(t)dW P

v (t),

dω(t) = −λ̄ω(t)dt+ dZ̄(t).

Since in this case the processes under the real and risk neutral measures are different,

we will describe them separately.

C.4.1 Risk neutral measure

The conditional characteristic function simplifies to

φLOUSV (t, T, u) = exp [ϕLOUSV,0(τ) + ϕLOUSV,V (τ) log V (t) + ϕLOUSV,ω(τ)ω(t)] ,

where

ϕLOUSV,V (τ) = iu exp(−κτ),

ϕLOUSV,ω(τ) =
u2

2(2κ− λ)
[exp(−2κτ)− exp(−λτ)] ,

and

ϕLOUSV,0(τ) = iθ̄u[1− exp(−κτ)] + λ [κ(τ, u)− τ ] ,

with

κ(τ, u) =

∫ τ

0

δ̄

δ̄ − u2

2(2κ−λ)
[exp(−2κx)− exp(−λx)]

dx. (C3)

C.4.2 Real measure

We can write the characteristic function under the real measure as

φP
LOUSV (t, T, u) = EP [exp(iu log V (T ) + ivω(T ))|V (t), ω(t)]

= exp
[
ϕP
LOUSV,0(τ) + ϕP

LOUSV,V (τ) log V (t) + ϕP
LOUSV,ω(τ)ω(t)

]
,
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where

ϕP
LOUSV,0(τ) = iuθ̄[1− exp(−κτ)] + λ̄[κ(τ)− τ ],

ϕP
LOUSV,V (τ) = iu exp(−κτ),

ϕP
LOUSV,ω(τ) = iv exp(−λ̄τ)− iu

ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
+

u2

2(2κ− λ̄)

[
exp(−2κτ)− exp(−λ̄τ)

]
and

κ(τ) =

∫ τ

0

δ̄

δ̄ − iv exp(−λ̄x) + iu
ςω[exp(−κx)−exp(−λ̄x)]

κ−λ̄
− u2[exp(−2κx)−exp(−λ̄x)]

2(2κ−λ̄)

dx.

Based on the characteristic function, it is possible to show that

E [log V (T )|V (t), ω(t)] = θ̄[1− exp(−κτ)]

− λ̄ςω
δ̄(κ− λ̄)

[
1− exp(−κτ)

κ
− 1− exp(−λ̄τ)

λ̄

]
+exp(−κτ) log V (t)

− ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
ω(t)

E [ω(T )|V (t), ω(t)] =
1

δ̄
[1− exp(−λ̄τ)] + exp(−λ̄τ)ω(t),

V [log V (T )|V (t), ω(t)] =
λ̄

(2κ− λ̄)δ̄

[
1− exp(−λ̄τ)

λ̄
− 1− exp(−2κτ)

2κ

]

+
2ς2ωλ̄

δ̄2(κ− λ̄)2

[
1− exp(−2κτ)

2κ
+

1− exp(−2λ̄τ)

2λ̄
− 2

1− exp(−(κ+ λ̄)τ)

κ+ λ̄

]

+
1

2κ− λ̄

[
exp(−λ̄τ)− exp(−2κτ)

]
ω(t),

V P [ω(T )|V (t), ω(t)] =
1− exp(−2λ̄τ)

δ̄2
,

and

cov [log V (T ), ω(T )|V (t), ω(t)] = − 2ςωλ̄

δ̄2(κ− λ̄)

[
1− exp(−(κ+ λ̄)τ)

κ+ λ̄
− 1− exp(−2λ̄τ)

2λ̄

]

C.5 Central tendency and jumps

For this case we use the same prices of risk as in the CTOU model and assume that

jump risk is not priced. The, we obtain

d log V (t) = κ[θP (t)− log V (t)]dt+ σdW P
v (t) + dZ(t)− λ

κδ
dt,

dθP (t) = κ̄[θ̄P − θP (t)]dt+ σ̄dW P
θ (t),
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under the real measure, where

θ̄P = θ̄ +
σς

κ
+

σ̄ς̄

κ̄
,

and

θP (t) = θ(t) +
σς

κ
.

The conditional characteristic function becomes

φCTOUJ(t, T, u) = E [exp(iu log V (T ) + ivθ(T )|V (t), θ(t)]

= exp [ϕCTOUJ,0(τ) + ϕCTOUJ,θ(τ)θ(t) + ϕCTOUJ,V (τ) log V (t)] ,

where

ϕCTOUJ,0(τ) = ivθ̄ [1− exp(−κ̄τ)]

+iu

(
θ̄ − λ

κδ

)
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]

− σ̄2v2

4κ̄
[1− exp(−2κ̄τ)]− σ2u2

4κ
[1− exp(−2κτ)]

− σ̄2u2

2

(
κ

κ− κ̄

)2 [
1− exp(−2κ̄τ)

2κ̄
+

1− exp(−2κτ)

2κ
− 2

1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]

−uvσ̄2 κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]

+
λ

κ
log

[
δ − iu exp(−κτ)

δ − iu

]

−iu
λ

κδ

κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

ϕCTOUJ,θ(τ) = iv exp(−κ̄τ) + iu
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

and

ϕCTOUJ,V (τ) = iu exp(−κτ).

Using the characteristic function, we can show that

E [log V (T )|V (t), θ(t)] = θ̄

[
1− exp(−κτ)− κ

κ− κ̄
(exp(−κ̄τ)− exp(−κτ))

]

+
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] θ(t) + exp(−κτ) log V (t),

V [log V (T )|V (t), θ(t)] =

(
σ2

2κ
+

λ

κδ2

)
[1− exp(−2κτ)]

+σ̄2

(
κ

κ− κ̄

)2 [
1− exp(−2κ̄τ)

2κ̄
+

1− exp(−2κτ)

2κ
− 2

1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
,

V [log V (T ), θ(T )|V (t), θ(t)] = σ̄2 κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
.
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C.6 Central tendency and stochastic volatility

The price of risk is such that dWQ
v (t) = dW P

v (t)+ςω
√
ω(t)dt and dWQ

θ (t) = dW P
θ (t)+

ς̄dt, which yields

d log V (t) = κ
[
θ(t) +

ςω
κ
ω(t)− log V (t)

]
dt+

√
ω(t)dW P

v (t),

dθ(t) = κ̄[θ̄P − θ(t)]dt+ σ̄dW P
θ (t),

dω(t) = −λ̄ω(t)dt+ dZ̄(t),

under the real measure, where

θ̄P = θ̄ +
ς̄ σ̄

κ̄
.

C.6.1 Risk neutral measure

The conditional characteristic function is

φCTOUSV (t, T, u) = exp

[
ϕCTOUSV,0(τ) + ϕCTOUSV,V (τ) log V (t)
+ϕCTOUSV,ω(τ)ω(t) + ϕCTOUSV,θ(τ)θ(t)

]
,

where

ϕCTOUSV,V (τ) = iu exp(−κτ),

ϕCTOUSV,ω(τ) =
u2

2(2κ− λ)
[exp(−2κτ)− exp(−λτ)] ,

ϕCTOUSV,θ(τ) = iu
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

and

ϕCTOUSV,0(τ) = iuκ̄θ̄
κ

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]

−1

2
σ̄2u2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]

+λ [κ(τ, u)− τ ] ,

with κ(τ, u) defined in (C3).

C.6.2 Real measure

We can write the characteristic function under the real measure as

φP (t, T, u1, u2, u3) = E [exp[iu1 log V (T ) + iu2θ(T ) + iu3ω(T )]|V (t), θ(t), ω(t)]

= exp
[
ϕP
CTOUSV,0(τ) + ϕP

CTOUSV,V (τ) log V (t) + ϕP
CTOUSV,θ(τ)θ(t) + ϕP

CTOUSV,ω(τ)ω(t)
]
,
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where

ϕP
CTOUSV,0(τ) = iu2θ̄(1− exp(−κ̄τ))

+iu1θ̄
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]

−u2
2

σ̄2

2

1− exp(−2κ̄τ)

2κ̄

−u2
1

σ̄2

2

(
κ

κ− κ̄

)2 [
1− exp(−2κ̄τ)

2κ̄
+

1− exp(−2κτ)

2κ
− 2

1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]

−u1u2σ̄
2 κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
+λ̄[κ(τ)− τ ],

ϕP
CTOUSV,V (τ) = iu1 exp(−κτ),

ϕP
CTOUSV,θ(τ) = iu2 exp(−κ̄τ) + iu1

κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)]

ϕP
CTOUSV,ω(τ) = iu3 exp(−λ̄τ)− iu1

ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
+

u2
1

2(2κ− λ̄)

[
exp(−2κτ)− exp(−λ̄τ)

]
and

κ(τ) =

∫ τ

0

δ

δ − iu3 exp(−λ̄x) + iu1
ςω[exp(−κx)−exp(−λ̄x)]

κ−λ̄
− u2

1[exp(−2κx)−exp(−λ̄x)]
2(2κ−λ̄)

dx.

Based on the characteristic function, it is possible to show that

E [log V (T )|V (t), θ(t), ω(t)] = θ̄P
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]

− λ̄ςω
δ̄(κ− λ̄)

[
1− exp(−κτ)

κ
− 1− exp(−λ̄τ)

λ̄

]
+exp(−κτ) log V (t)

+
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] θ(t)

− ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
ω(t)

E [θ(T )|V (t), θ(t), ω(t)] = θ̄P [1− exp(−κ̄τ)] + exp(−κ̄τ)θ(t)

E [ω(T )|V (t), θ(t), ω(t)] =
1

δ̄
[1− exp(−λ̄τ)] + exp(−λ̄τ)ω(t),
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V [log V (T )|V (t), θ(t), ω(t)] =
λ̄

(2κ− λ̄)δ̄

[
1− exp(−λ̄τ)

λ̄
− 1− exp(−2κτ)

2κ

]

+σ̄2

(
κ

κ− κ̄

)2 [
1− exp(−2κ̄τ)

2κ̄
+

1− exp(−2κτ)

2κ
− 2

1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]

+
2ς2ωλ̄

δ̄2(κ− λ̄)2

[
1− exp(−2κτ)

2κ
+

1− exp(−2λ̄τ)

2λ̄
− 2

1− exp(−(κ+ λ̄)τ)

κ+ λ̄

]

+
1

2κ− λ̄

[
exp(−λ̄τ)− exp(−2κτ)

]
ω(t),

V [θ(T )|V (t), θ(t), ω(t)] = σ̄21− exp(−2κ̄τ)

2κ̄

V [ω(T )|V (t), θ(t), ω(t)] =
1− exp(−2λ̄τ)

δ̄2
,

cov [log V (T ), θ(T )|V (t), θ(t), ω(t)] =
σ̄2κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]

and

cov [log V (T ), ω(T )|V (t), θ(t), ω(t)] = − 2ςωλ̄

δ̄2(κ− λ̄)

[
1− exp(−(κ+ λ̄)τ)

κ+ λ̄
− 1− exp(−2λ̄τ)

2λ̄

]

D One-factor models variances and autocorrelations

Let V (t) follow the SQR process. Then, it can be shown that

V [V (T )|V (t)] =
σ2

2κ
(1− exp(−κτ))2 +

σ2

κ
exp(−κτ)(1− exp(−κτ))V (t),

and corr[V (T ), V (t)] = exp(−κτ).

Alternatively, if V (t) follows the LOU process it holds that

V [V (T )|V (t)] = exp

[
2θ̄(1− exp(−κτ)) +

σ2

2κ
(1− exp(−2κτ))

]

×
[
exp

[
σ2

2κ
(1− exp(−2κτ))

]
− 1

]
[V (t)]2 exp(−κτ),

and

corr[V (T ), V (t)] =
exp

[
σ2

2κ
exp(−κτ)

]
− 1

exp
[
σ2

2κ

]− 1
.
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Table 1

Root mean square pricing errors in existing one-factor models

Aug08-Mar10 estimates Full sample estimates
In-sample (Feb06-Aug08) Out-of-sample (Aug08-Dec10) Feb06-Dec10

SQR 0.807 2.037 2.454
LOU 0.779 1.982 1.533

Notes: “SQR” denotes square root model while “LOU” refers to the log-normal Ornstein-Uhlenbeck

process.
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Table 2

Parameters estimates of the existing one-factor models

Real measure parameters Pricing error parameters
Model Estimation κ θ̄ σ σfε σfξ σa ηo σb σc
SQR Full Sample 2.555 24.350 4.504 0.122 0.081 0.006 0.497 0.437 -0.901

(0.071) (0.661) (0.005) (0.001) (0.009) (2.8 10−4) (0.019) (0.017) (0.002)
Until Aug 08 1.495 19.666 2.916 0.040 0.008 0.006 0.369 0.275 -0.727

(0.015) (0.150) (0.006) (4.1 10−4) (0.001) (2.6 10−4) (0.024) (0.009) (0.003)

LOU Full Sample 2.898 3.099 0.884 0.075 0.030 0.006 0.455 0.207 -0.901
(0.004) (0.112) (4.4 10−4) (0.001) (0.003) (2.4 10−4) (0.017) (0.007) (0.002)

Until Aug 08 1.732 2.927 0.710 0.042 0.008 0.005 0.412 0.174 -0.773
(0.009) (0.171) (0.001) (4.2 10−4) (0.001) (2.2 10−4) (0.021) (0.006) (0.005)

Notes: “SQR” denotes square root model while “LOU” refers to the log-normal Ornstein-Uhlenbeck process. Standard errors, displayed in parentheses, have been

obtained by using the outer-product of the score to estimate the information matrix. σfε and σfξ are the parameters of the futures pricing errors. ηo, σa, σb and

σc are the parameters of the option pricing errors, whose variance is the quadratic function of moneyness (3).
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Table 3

Root mean square pricing errors in the extended models

Aug08-Mar10 estimates Full sample estimates
In-sample (Feb06-Aug08) Out-of-sample (Aug08-Dec10) Feb06-Dec10

CTOU 0.348 0.713 0.655
LOUJ 0.837 2.160 1.634
LOUSV 0.664 1.617 1.303
CTOUJ 0.354 0.691 0.631
CTOUSV 0.232 0.344 0.306
CSQR 0.424 1.156 0.691

Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck pro-

cess. “LOUJ” introduces jumps in the LOU model, whose size follows an exponential distribution.

“CTOU” adds central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic

volatility modelled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to

the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is

the concatenated SQR model.
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Table 4. Real measure parameters estimates of the extended models

Extension Estimation κ κ̄ θ̄ λ δ σ σ̄ λ̄ δ̄
CTOU Full Sample 5.827 0.300 3.019 1.037 0.446

(0.017) (0.003) (0.710) (0.001) (0.001)
Until Aug08 6.946 0.422 2.851 1.012 0.447

(0.041) (0.006) (0.867) (0.002) (0.001)
LOUJ Full Sample 3.632 3.093 5.370 4.870 0.728

(0.004) (0.112) (0.109) (0.037) (0.002)
Until Aug08 2.289 2.897 14.621 7.802 0.382

(0.008) (0.159) (0.721) (0.149) (0.010)
LOUSV Full Sample 0.679 2.978 14.937 3.026

(0.004) (0.002) (0.038) (0.007)
Until Aug08 0.573 2.842 15.631 3.474

(0.005) (0.002) (0.126) (0.014)
CTOUJ Full Sample 5.452 0.285 3.021 6.671 5.196 0.836 0.486

(0.011) (0.003) (0.873) (0.071) (0.013) (0.002) (0.001)
Until Aug08 6.094 0.360 2.861 11.382 5.962 0.640 0.450

(0.029) (0.006) (1.055) (0.222) (0.030) (0.004) (0.001)
CTOUSV Full Sample 8.903 0.357 2.934 0.222 2.140 0.271

(0.009) (0.002) (0.163) (0.001) (0.005) (0.001)
Until Aug08 10.029 0.477 2.826 0.227 0.953 0.170

(0.038) (0.006) (0.209) (0.003) (0.013) (0.001)
CSQR Full Sample 3.076 0.673 22.476 6.424 2.145

(0.009) (0.021) (0.645) (0.005) (0.007)
Until Aug08 2.575 0.446 19.795 3.732 1.360

(0.126) (0.032) (1.565) (0.006) (0.013)

Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces jumps in the LOU model, whose

size follows an exponential distribution. “CTOU” adds central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic volatility modelled

with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU model, while “CTOUSV” introduces central tendency and stochastic

volatility. “CSQR” is the concatenated SQR model. Standard errors, displayed in parentheses, have been obtained by using the outer-product of the score to

estimate the information matrix.
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Table 5

Prices of risk in the CTOUSV model

Estimates Wald tests
ςω ς̄ ςω = 0 ς̄ = 0 Joint

Full sample -1.27 0.15 76.35 0.32 76.99
(0.15) (0.26) (0.00) (0.57) (0.00)

Until Aug 08 -1.19 0.14 45.63 0.11 46.67
(0.18) (0.44) (0.00) (0.74) (0.00)

Notes: standard errors are displayed in parentheses below the estimates, and p-values are reported

below the Wald tests. “CTOUSV” introduces central tendency and stochastic volatility in a log-

normal Ornstein-Uhlenbeck process.
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Table 6

Root mean square pricing errors of futures prices by maturity

Maturity N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR

Less than 1 month 1036 2.607 1.957 1.606 2.068 2.552 1.652 0.982 1.109
From 1 to 3 months 2290 6.128 3.953 2.046 4.334 4.332 2.115 0.844 1.029
From 3 to 6 months 3093 9.039 5.250 1.561 5.755 4.797 1.626 0.494 0.696
More than 6 months 2246 9.370 6.054 1.278 6.489 4.031 1.341 0.567 0.743
Total 8665 7.916 4.892 1.645 5.311 4.262 1.708 0.688 0.862

Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces

jumps in the LOU model, whose size follows an exponential distribution. “CTOU” adds central tendency to the LOU process.

“LOUSV” denotes a LOU model with stochastic volatility modelled with a Gamma OU Lévy process “CTOUJ” adds central

tendency and jumps to the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR”

is the concatenated SQR model. The column labeled N gives the number of prices per category. Results are based on full

sample estimates.
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Table 7

Root mean square pricing errors of call prices by moneyness and maturities

(a) τ < 1 month
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 2199 0.155 0.138 0.133 0.142 0.110 0.204 0.142 0.214

[−0.3,−0.1) 2080 0.516 0.373 0.352 0.381 0.140 0.375 0.237 0.601
[−0.1, 0.1) 2260 0.867 0.597 0.527 0.531 0.245 0.509 0.227 0.800
[0.1, 0.3) 2254 0.771 0.615 0.535 0.414 0.344 0.409 0.187 0.640
≥ 0.3 3085 0.389 0.361 0.338 0.214 0.253 0.213 0.160 0.349

(b) 1 month< τ < 3 months
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 3553 0.250 0.176 0.177 0.174 0.151 0.253 0.214 0.390

[−0.3,−0.1) 4217 0.560 0.381 0.384 0.394 0.166 0.372 0.270 0.768
[−0.1, 0.1) 4701 0.787 0.494 0.486 0.495 0.199 0.476 0.173 0.792
[0.1, 0.3) 4638 0.864 0.573 0.557 0.452 0.368 0.434 0.192 0.704
≥ 0.3 8089 0.573 0.448 0.443 0.272 0.328 0.261 0.178 0.482

(c) τ > 3 months
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 3229 0.321 0.198 0.215 0.187 0.195 0.251 0.250 0.606

[−0.3,−0.1) 3719 0.486 0.360 0.356 0.370 0.222 0.351 0.280 0.806
[−0.1, 0.1) 4491 0.614 0.451 0.426 0.430 0.254 0.407 0.256 0.741
[0.1, 0.3) 3971 0.860 0.608 0.583 0.455 0.401 0.432 0.297 0.734
≥ 0.3 5613 0.758 0.564 0.555 0.312 0.395 0.319 0.289 0.648

(d) All maturities
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 8981 0.260 0.176 0.183 0.171 0.160 0.241 0.213 0.451

[−0.3,−0.1) 10016 0.524 0.372 0.367 0.382 0.185 0.365 0.267 0.751
[−0.1, 0.1) 11452 0.742 0.500 0.472 0.479 0.231 0.457 0.219 0.774
[0.1, 0.3) 10863 0.844 0.595 0.562 0.446 0.376 0.428 0.235 0.702
≥ 0.3 16787 0.615 0.476 0.467 0.277 0.340 0.274 0.219 0.524

Notes: Moneyness is defined as log(K/F (t, T )), where K and F (t, T ) are the strike and futures prices,

respectively. “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck

process. “LOUJ” introduces jumps in the LOU model, whose size follows an exponential distribution.

“CTOU” adds central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic

volatility modelled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to

the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is a

concatenated SQR model. The column labeled N gives the number of prices per category. τ denotes

time to maturity. Results are based on full sample estimates.
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Table 8

Root mean square pricing errors of put prices by moneyness and maturities

(a) τ < 1 month
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 457 0.268 0.232 0.212 0.248 0.101 0.345 0.199 0.268

[−0.3,−0.1) 1657 0.568 0.415 0.391 0.425 0.141 0.420 0.259 0.636
[−0.1, 0.1) 2239 0.870 0.598 0.533 0.536 0.242 0.517 0.240 0.813
[0.1, 0.3) 1787 0.833 0.660 0.579 0.464 0.350 0.459 0.192 0.691
≥ 0.3 1385 0.442 0.409 0.386 0.283 0.275 0.281 0.188 0.400

(b) 1 month< τ < 3 months
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 1970 0.304 0.224 0.222 0.231 0.159 0.347 0.244 0.380

[−0.3,−0.1) 4274 0.581 0.399 0.400 0.410 0.160 0.394 0.268 0.746
[−0.1, 0.1) 3966 0.814 0.515 0.507 0.513 0.199 0.496 0.178 0.792
[0.1, 0.3) 2272 0.968 0.663 0.640 0.510 0.373 0.505 0.202 0.765
≥ 0.3 1505 0.651 0.512 0.498 0.333 0.346 0.321 0.218 0.538

(c) τ > 3 months
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 1698 0.366 0.269 0.276 0.279 0.205 0.394 0.260 0.687

[−0.3,−0.1) 2764 0.547 0.411 0.410 0.418 0.240 0.410 0.299 0.810
[−0.1, 0.1) 2174 0.745 0.523 0.515 0.489 0.271 0.476 0.288 0.805
[0.1, 0.3) 990 1.068 0.746 0.730 0.556 0.404 0.542 0.344 0.920
≥ 0.3 633 0.747 0.566 0.548 0.376 0.337 0.368 0.404 0.628

(d) All maturities
Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 4125 0.327 0.245 0.245 0.253 0.175 0.367 0.246 0.521

[−0.3,−0.1) 8695 0.568 0.406 0.402 0.415 0.186 0.404 0.277 0.748
[−0.1, 0.1) 8379 0.812 0.540 0.516 0.513 0.231 0.497 0.228 0.801
[0.1, 0.3) 5049 0.944 0.679 0.638 0.504 0.371 0.497 0.234 0.773
≥ 0.3 3523 0.598 0.485 0.468 0.323 0.318 0.315 0.252 0.507

Notes: Moneyness is defined as log(K/F (t, T )), where K and F (t, T ) are the strike and futures prices,

respectively. “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck

process. “LOUJ” introduces jumps in the LOU model, whose size follows an exponential distribution.

“CTOU” adds central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic

volatility modelled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to

the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is a

concatenated SQR model. The column labeled N gives the number of prices per category. τ denotes

time to maturity. Results are based on full sample estimates.



BANCO DE ESPAÑA 56 DOCUMENTO DE TRABAJO N.º 1232

Figure 1: Historical evolution of the VIX index
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Figure 2: Time series autocorrelations of the log-VIX and estimated ARMA models

(a) Autocorrelations
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(b) Partial autocorrelations
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Note: Results are based on the 1990-2010 sample (5280 daily observations).
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Figure 3a: Term structure of VIX futures
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Figure 3b: Implied volatility smirk on low volatility days
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Figure 3c: Implied volatility smirk on high volatility days
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Note: The lines in panels b and c show the average implied volatility for a certain moneyness and

time to maturity (denoted by τ) within a given interval. Implied volatilities have been obtained by

inverting the Black (1976) call price formula. Moneyness is defined as log(K/F (t, T )). Low (high)

volatility days are those in which one-month at the money implied volatilities are below (above)

their average value over the sample.
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Figure 4: Empirical cumulative distribution function of the square pricing errors

(a) Futures
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Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck

process. “LOUJ” introduces jumps in the LOU model, whose size follows an exponential distri-

bution. “CTOU” adds central tendency to the LOU process. “LOUSV” denotes a LOU model

with stochastic volatility modelled with a Gamma OU Lévy process. “CTOUJ” adds central ten-

dency and jumps to the LOU model, while “CTOUSV” introduces central tendency and stochastic

volatility. “CSQR” is the concatenated SQR model. Results are based on full sample estimates.
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Figure 5a: Differences between model-based and actual one-month futures prices
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Figure 5b: Differences between model-based and actual one-month futures prices for the two
best performing models
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Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck pro-

cess. “CTOU” adds central tendency to the LOU process. “CTOUSV” introduces central tendency and

stochastic volatility in the LOU model. “CSQR” is the concatenated SQR model. Results are based on

full sample estimates. One month actual futures prices have been obtained by interpolation of the prices

of the adjacent maturities.
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Figure 6a: Filtered θ(t) for different log-OU

models with central tendency
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Figure 6b: Filtered ω(t) for different log-OU

models with stochastic volatility
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Figure 6c: One month volatilities of the VIX.

Risk neutral measure
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Figure 6d: Logs of one-day ahead standard

deviations of the VIX. Real measure
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Notes: θ(t) denotes the time varying central tendency around which the VIX mean-reverts in central

tendency models. ω(t) denotes the instantaneous volatility of stochastic volatility models. Different vertical

scales are used for the VIX and the volatilities in panel b. “SQR” denotes square root model and “LOU”

refers to a log-normal Ornstein-Uhlenbeck process. “LOUSV” denotes a LOU model with stochastic

volatility modelled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to

the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is the

concatenated SQR model. One-month implied vols in panel c have been obtained by interpolation of

the implied vols of options with moneyness | log(K/F (t, T ))| < .1, which in turn result from inverting

the Black (1976) call price formula. The black line in panel d is the conditional standard deviation of

the VIX, obtained from an ARMA(2,1)-GARCH(1,1) model estimated for the daily data of the log VIX.

Only Thursdays are plotted on panel d to avoid cluttering the picture. Results are based on full sample

estimates.
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Figure 7: Fit of the term structure of futures prices

(a) 21-June-2007
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(b) 15-August-2008
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(c) 20-November-2008
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Notes: “SQR” denotes square root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck process.

“LOUJ” introduces jumps in the LOU model, whose size follows an exponential distribution. “CTOU”

adds central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic volatility

modelled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU model,

while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is the concatenated SQR

model. Results are based on full sample estimates.
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Figure 8.1: Fit of the implied volatility smirks. Short maturities

(a) Low volatility. 15 ≤ τ < 45
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(b) High volatility. 15 ≤ τ < 45
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(c) Low volatility. 45 ≤ τ < 75
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(d) High volatility. 45 ≤ τ < 75
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Notes: The lines show the average implied volatility for a certain moneyness and time to maturity (denoted

by τ) within a given interval. The thick black lines correspond to the average implied volatilities of the

actual call prices, while the thin black lines show the 5% and 95% percentiles. Grey bars at the bottom

of the plots show the histogram of call prices across maturities. The interval of moneyness in each panel

has been chosen to cover the central 90% section of the data. “SQR” denotes square root model and

“LOU” refers to a log-normal Ornstein-Uhlenbeck process. “CTOUJ” adds central tendency and jumps

to the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is

the concatenated SQR model. Moneyness is defined as log(K/F (t, T ). Results are based on full sample

estimates.
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Figure 8.2: Fit of the implied volatility smirks. Long maturities

(a) Low volatility. 75 ≤ τ < 105
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(b) High volatility. 75 ≤ τ < 105
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(c) Low volatility. 105 ≤ τ < 135
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(d) High volatility. 105 ≤ τ < 135
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Notes: The lines show the average implied volatility for a certain moneyness and time to maturity (denoted

by τ) within a given interval. The thick black lines correspond to the average implied volatilities of the

actual call prices, while the thin black lines show the 5% and 95% percentiles. Grey bars at the bottom

of the plots show the histogram of call prices across maturities. The interval of moneyness in each panel

has been chosen to cover the central 90% section of the data. “SQR” denotes square root model and

“LOU” refers to a log-normal Ornstein-Uhlenbeck process. “CTOUJ” adds central tendency and jumps

to the LOU model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is

the concatenated SQR model. Moneyness is defined as log(K/F (t, T ). Results are based on full sample

estimates.
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