
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

M. A. HERRERO

J. J. L. VELÁZQUEZ
Generic behaviour of one-dimensional blow up patterns
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 19,
no 3 (1992), p. 381-450
<http://www.numdam.org/item?id=ASNSP_1992_4_19_3_381_0>

© Scuola Normale Superiore, Pisa, 1992, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1992_4_19_3_381_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Generic Behaviour of One-Dimensional

Blow up Patterns

M.A. HERRERO - J.J.L. VELÁZQUEZ

1. - Introduction

This paper is concerned with the Cauchy problem

where p &#x3E; 1 and uo(x) is a continuous, nonnegative and bounded function. By
standard results, ( 1.1 )-( 1.2) has then a unique positive classical solution u(x, t)
(the solution, for short, in what follows), which exists at least for small times. A
remarkable (and well known) fact is that the solution may develop singularities
in finite time, no matter how smooth uo(x) is. More precisely, we say that u(x, t)
blows up in a finite time T if u(x, t) satisfies ( 1.1 ), ( 1.2) in ST = R x [0, T) and

Notice that this definition does not preclude the possibility of u(x, t) re-
maining bounded at any fixed x E R as t -~ T. A point xo E R is called
a blow up point if there exist sequences ~tn ~ such that zo,

n-·oo

lim tn = T, and lim u(xn, tn) - +oo. The set of blow up points (if any) is
n-~oo n--~oo

then termed as the blow up set.
Since the seminal paper by Fujita ([Fu]), great attention has been devoted

to determining when do solutions of (1.1), (1.2) exhibit blow up, and in such
case, what are the asymptotics of solutions as the blow up time is approached.
To mention but a few results, conditions ensuring the existence of a single
blow up point have been obtained in [W], [MW] and [FM] for various bound-
ary value problems associated to (1.1). It was then shown that, if uo(x) is not
constant, under our current hypothesis the blow up set is bounded and consists
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of isolated points (cf. [CM] - where boundary value problems in finite intervals
are considered - as well as [HV3]; see also [V] for a discussion of the relation
between local and global - in space - properties of blowing up solutions).

In view of these facts, it appears that a basic problem in the study of
blowing up solutions u(x, t) of (1.1) consists in describing the asymptotics of
u(x, t) as t --~ T and x tends to any blow up point. To describe all the possible
cases which may appear, we need to introduce some notation. Following [GP],
[GKI], we define self similar variables as follows. Let Y be a blow up point
of u. We then set

so that in the new variables, (D satisfies

Notice that, for any T &#x3E; 0, the function

is an explicit solution of ( 1.1 ) for t  T, which corresponds to 
I 

_

(p - 1)- p-l in the new variables. Let us linearize about ;5 by setting

Then 1b solves

where.

I and any integer we now consider the weighted
spaces
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It is readily seen that (respectively 1  q  +oo, is
a Hilbert space (respectively a Banach space), when endowed with the norm

On the other hand, for k &#x3E;_ 1, can be given a structure of Hilbert
space in a straightforward way. Since the L2w-norm will be repeatedly used
henceforth, we shall drop the subscripts (2, w) in (1.8) from now on. It is
natural to consider (1.7) as a dynamical system in L~(R), since the operator
A is self-adjoint in and has eigenvalues An = 1 - 2 ; n n = 0, 1, 2, .. . with
eigenfunctions given by 

and Hn(y) is the standard n-th Hermite polynomial, so that IIHnl1 = 1 for any n.
We are now in a position to state some basic results concerning possible

blow up behaviours for ( 1.1 ), (1.2) which have been proved in [HV1] and
[HV2].

THEOREM A. Assume that the solution u(x, t) of ( 1.1 ), (1.2) blows up at
x = x, t = T. Then one of the following cases occurs

There exist an even integer m &#x3E; 4, and a real constant

where convergence takes place in Hw as well as in for any integer k &#x3E; 0
and (o,1 ).

We point out that a related result, namely the fact that (1. lOb) holds unless
T) has exponential-type decay as T 2013~ oo, has been proved simultaneously

and independently in [FK]. As to the asymptotics in larger regions, we have
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THEOREM B. Let u(x, t), x and T be as in Theorem A. Then one of the
following cases occurs

holds, then u(x, t) :

holds, then

uniformly on compact sets of ~,

holds, then

uniformly on compact sets of ç, where m is an even number

and C &#x3E; 0.

As to the precedings of these results, it was already known that, under
fairly general assumptions on the initial values,

provided that u(x, t) blows up at x = x, t = T ; cf. [GP] for the one-dimensional

case, and GK 1 for any space dimension N &#x3E; 1 and p  N + 2 . See also[ ] Y p p 
N - 2

[GK2], [GK3] for a broad discussion of blow up properties for the N-
dimensional version of (1.1). Then it follows that, in the similarity variables
described in (1.3), the asymptotic behaviour of solutions at blow up is uniform
in the first approximation (and coincides with that of the self-similar solution
(1.5)), whereas different behaviours are possible when second-order asymptotics
are considered. The existence of the blow up patterns (1.10b), ( 1.1 oc) was
formally derived (without proofs) in [GHV], by means of the method of
matched asymptotic expansions. The case described by (1.10b) was far from
being unexpected; it has been derived - without proof - in [HSS] for the
particular case p = 3. On the other hand, formal analysis was previously available
for the related equation
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which plays an important role in combustion theory (cf. for instance [BE]).
In [D], higher order asymptotics near a blow up point were derived for (1.13)
which correspond to ( 1 . 10b) for ( 1.1 ). Recently, rigorous results were obtained in
[Bl], where it was proved that there exist solutions (of suitable boundary value
problems) which behave exactly as conjected in [D]. This remarkable result,
however, was obtained in a non-constructive way. In particular the question of
determining whether a given set of initial and side conditions eventually leads to
such behaviour remained open. A classification result analogous to Theorem A
for (1.13) has been also obtained in [HV 1 ], where we also proved that (1. 10b)
actually occurs whenever uo(x) has a single maximum and is symmetric with
respect to some point; this symmetry assumption was later dispensed with in
[HV2].

The reader will notice that no mention has been made yet in these remarks
to the flatter behaviours corresponding to (1.10c). As far as we know, these
have not been conjected in the literature prior to [GHV]. However, the fact
that solutions with such behaviour exist has been proved in [HV2] for problem
( 1.1 ), (1.2) and the particular case m = 4, and in [HV4] for the corresponding
problem for the combustion model (1.13). While the proof of such result is
rather technical, the basic ideas beneath it are simple enough. Suppose that
u(x, t) blows up at x = Y, t = T. Then the blow up profile of u will depend
on the number of maxima which reach x = x at t = T. If only a single max-
imum arrives there, we shall have (1.10b), whereas if two maxima exist for
t  T which collapse exactly at x = x, t = T, we will obtain (1. 1 Oc) with m = 4

(since Hm(y) has (2013) extrema for m even). This strongly suggests that (l.lOc)2

will hold for m = 2k, k &#x3E; 1, if we can prove that there exist solutions for which
k maxima exist for t  T and collapse at the same point at t = T: a question
which remains open as yet.

In view of the previous remarks it seems reasonable to expect that (1 . 10c)
should correspond to unstable behaviours, since circumstances leading to such
patterns look indeed easier to be disturbed that the single-maximum situation
yielding (1.10b), which can be thought of as a stable behaviour. This idea is
made precise in our main result, which we now proceed to state. Let us denote
by Cö(R) the set of continuous, nonnegative and compactly supported functions.
We then have

THEOREM. Let uo(x) E and let u(x, t) be the corresponding solution
of ( 1.1 ), (1.2). Assume that u blows up at a time T  +oo, and let x be a

blow-up point of u. Then for any e &#x3E; 0 there exists uo(x) E Co+(R) such that

(max and the solution of ( 1.1 ) with initial value uo(x) blows
E

up at a single point x such that ( 1.10b) holds and lim x - xl = 0. Moreover,
~-~o

the behaviour corresponding to (1.10b) is stable under small perturbations in
the LOO-norm of the initial value uo.

In an informal way, this Theorem can be restated as saying that
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If uo E C§(R), blow up consists generically in a single point blow
up with the behaviour described in (1. lOb).

Actually, the assumption of uo(x) being compactly supported is unne-

cessarily restrictive. Our arguments apply provided that the blow up set is

bounded, and by the results in [GK3] this holds whenever uo(x) decays fast
enough as Ixl -~ oo. Since blow up points are isolated by the results of [CM]
and [HV3], it follows that, once the blow up set is bounded, there is a finite
number of blow up points. As a matter of fact, it has been recently proved in
[M] that there exist solutions of (1.1) which blow up at any given number of
points X 1, - - - , Xk - Previously, in [B 2] it was proved that there exist solutions
of the higher-dimensional version of (1.13) which blow up at a given point
with the behaviour corresponding to (1.1 Ob) for such equation as in [B 1 ], the
author proves that his result is stable under small perturbations in the class of
data he is considering. Both papers [M] and [B2] deal with boundary value
problems. On the other hand, the fact that single-point blow up of type ( 1 . 10b)
for equations (1.1), (1.13) is stable under small perturbations follows readily
also by our results in [HV2]. Therefore, the main novelty herein consists in
showing the instability of the behaviours corresponding to (1 . 10c), in the sense
made precise in the statement of the Theorem.

In the course of proving the Theorem, however, a number of results
of independent interest are obtained. We shall mention next a few of them.
Here and henceforth, we shall freely use the customary asymptotic notations
o(.), 0(.), ’~’ , «, etc.

1) It is shown in Section 2 that solutions satisfying (1.10c) actually possess

2 maxima for t close to T. Moreover, if x(t) is a local maximumM2 
,

of u(x, t), and u(x(t), t)  ((p - 1 )(T - t))- P-1 at some t  T, then this
maximum dissapears before blow up occurs. Furthermore, local maxima
remaining until blow up are confined for t - T in rather narrow parabolas
near x = x (of C(T - t)1/2).

2) In Section 3 we improve the asymptotic estimates obtained for C in [HV 1 ],
[HV2]. Essentially, we improve the error bounds obtained in such papers,
and in doing so we obtain optimal estimates, which coincide with those
formally derived in [GHV]. We also analyze there an associated linear
problem (cf. (3.19)), which is of the type

where - oo as (x, t) -~ (x, T) is a suitable way. Therefore the

potential becomes singular as blow up is approached.
3) In Section 4 perturbative expansions on the initial values are obtained

which remain valid for times quite close to the blow up time. Results in
this and the following Section are perhaps the more delicate ones in the
paper.
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4) Finally, in Section 5 we obtain perturbative estimates on the variation of
the blow up time and the blow up region with respect to changes in the
initial values. We then show that all behaviours can be altered by small
perturbations on uo(x), except that corresponding to (1.10b).
We conclude this Introduction by sketching briefly the main ideas in the

proof of the Theorem. We start from a solution u(x, t) of ( 1.1 ) with initial value
uo(x) satisfying the assumptions of the Theorem, which is assumed to blow up
at t = T  +oo at points x 1, ... , zk. We then consider initial values

where Ro(x) is some fixed function and e is a small parameter. A formal

asymptotic expansion yields then

where

This is the linear singular problem just mentioned above. We shall see
that

uniformly on sets,

for some real constants 0:1,..., ak.

I

Since ((p - 1 )(T - t))- p-1, one may then expect (1.15) to lose
its validity when u(x, t) - e8(z, t), i.e., for times T - t - E. As a matter of fact,
we shall show (and this is one of the key points in the paper) that there is a
common region of validity for the expansions (1.12), (1.15) where we have

when 0  c « 1, and this enables us to estimate the change in blow up time
= T, - T. By selecting then ai in a suitable way (which is shown to be

done by means of an adequate choice of we will then confine the blow

up region to a small neighbourhood of any of the points x 1, ... , Xk, say x = 0.
We just arrange things for blow up originated by points x2, ... , xk to occur later
than T,, while at the same time reducing the number of local maxima arriving
at blow up. A repeated application of the previous argument eventually leads to
the situation where there is a single point blow-up, say at x = 0, with perhaps
many maxima collapsing there.
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As a next step, we show that a further refinement in the choice of 
leads to the expansion

and t - T. Then, if blow up of type (1. 1 Oc) occurs, we would have

in the common region of validity of expansions ( 1.17). Comparing m the secondand third terms on the right in (1.18), we see that, if (T - t)-T’ » ê, the
structure corresponding to (1 . 10c) prevails, but if (T - t) 2 +1 » 6, the third term
there dominates the second one.

Therefore, maxima located to the left of x = 0 must fall below to level
1

( (p - 1 )(T - t) ) - p-l as 6 10, and they are thus unable to last until the blow up
time. A repetition of this argument obliterates some maxima at any time, until
we are left with the situation consisting of a single maximum arriving to x = 0,
t = T. This is the stable case corresponding to (1.1 Ob).

2. - The number of maxima near a blow up point

In this Section we shall prove the following result.

PROPOSITION 2.1. Let uo(x) be continuous, nonnegative and bounded, and
let u(x, t) be the solution of ( 1.1 ) - (1.2). Assume that u(x, t) blows up at x = x,
t = T  +oo, and let be the function defined in (1.3). Then there exist
6 &#x3E; 0 and q &#x3E; 0 such that

I behaves as in (1.10b), u( - , t) has a single maximum

~] for any t E (T - 6, T),

I behaves as in (1.10c), u( . , t) has exactly 2(m2 )

We shall divide the proof of Proposition 2.1 into a number of steps. To be-
gin with, we consider the following auxiliary functions (cf. [HV 1 ], Section 6):
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so that G satisfies

Assume first that (1 . 10b) holds, and let a(T) E C([- log T, +oo)) be such that

We then have

LEMMA 2.2. Let A(T) be as in (2.4). Then there holds

PROOF. As in [HVl], we use variation of constants formula in (2.3) to
obtain that, whenever - log T  To  T  +oo,

For large enough r, we then set

By (2.4), we readily see that lim To(T) = +00 and To  T for sufficiently large T.
t-&#x3E;oo

We now fix R &#x3E; 0, and split in (2.6) as follows
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Let us denote henceforth by C a generic constant. Using Cauchy-Schwarz
inequality, and recalling that

(cf. [HV 1 ], Lemma 6.3), we see that

where . Since for large T, we arrive at

for large enough T,

where h(R) = o(l) as R -+ oo. On the other hand, it follows from (1.10b) and
(2.2) that, if R,

where

We now substitute (2.9) into the expression for Gfl to obtain that
- 1 

i,i

Since

we finally obtain, after letting R ~ oo,
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We have yet to bound G2(~(T), T). To this end, we proceed as in [HV1, Lem-
ma 6.5]. Namely, we take A &#x3E; 0 such that To + A  T, R &#x3E; 0 arbitrary and 6
large enough, to be selected presently. We then split G2 as follows

We now recall that by the results in [HV1] (cfr. Lemmata 6.1 and 6.2 there)
one has

uniformly on sets Iyl  CqT for large enough T.

whence

On the other hand, so that

where ) for any fixed A &#x3E; 0.

When irl  R, we make use of (1.10b) to obtain that
Kl = Kl (R). It then follows that

where

where K2 = K2 (A, R). Finally, to bound G2,4 we argue as in [HV 1, Lemma 6.5].
To this end, we observe that L(2/,7-) == -2013~ (u(x, t))-(1+p)(ux(x, t))2 and remark
that 

p-1

i) u(x, t) is supercaloric, so that u(x, t) &#x3E; C’e-ez2 for some 0 &#x3E; 0 whenever
and

I 1

ii) Proposition 1 in [GKl ] yields the estimate

Altogether, these bounds give
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for some positive constants C, a and 8. We then readily see that

and therefore, if 6 &#x3E; 0 is large enough,

Letting now T --&#x3E; oo, R -&#x3E; oo and A -&#x3E; oo (in this order), we obtain from (2. 1 l)-
(2.18) that

and the proof is concluded..

We next set out to derive the analogue of Lemma 2.2 for the case where
(1.10c) holds. To this end, we first obtain the following gradient bound.

LEMMA 2.3. Assume that (1.10c) holds, and let ço &#x3E; 0 be fixed. We then
have

whenever and T is large enough.

PROOF. Arguing as in Lemma 2.6 in [HV2] we obtain that

Using variation of constants formula in this inequality gives

For any pair T, y, in the set where

define

we now

so that
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For large enough T, we have that To &#x3E; - log T and

Hence, recalling (1.10c)

is uniformly bounded.

Let now be such that and

for some ~o &#x3E; 0 and T &#x3E; 0 large enough.

We prove

LEMMA 2.4. Let u(-r) be as above, and assume that ( 1. l Oc) is satisfied.
Then there holds

PROOF. It proceeds along the lines of that in Lemma 2.2. We therefore
shall sketch it, to stress only those points where some novelties appear. We
start again from (2.6), and for large enough T &#x3E; 0 we define To by means of
the equation T -TO = log p(T) there. We then split G, = Gfl + GR2 just as

m 1,1 &#x3E; 
just as

before. The bound for GR2 reads now

As a next step, we use (1. 10c) to notice that, if Iyl  R,

for any fixed

We take advantage of (2.19) to estimate GRl as before, and we eventually obtain
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as

Let us split now G2 as follow

where 1 ’4’ and ~ . To bound

G2,1, we use the fact that

positive constants 0 and Q,
to obtain that, for some

As to G2,2, we notice that, by (2.16) and the lower bound for (D derived in [HV2,
Lemma 2.1 ], - -. _/- Frn

whenever

On the other hand

and, since for any fixed a &#x3E; 0, we arrive at

whence
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and, since , we finally obtain

so that I as T ~ oo, and the result follows. ·

Let 6 &#x3E; 0 and ~o &#x3E; 0, and let m be a positive integer, m &#x3E; 4. We now set

For simplicity, we shall normalize the blow up point by setting x = 0 and
prove

LEMMA 2.5. a) Assume that (1. lOb) holds, and let ço &#x3E; 0 be fixed, but
otherwise arbitrary. Then there exists 6 &#x3E; 0 such that, if t is close enough to
T, we have

b) Suppose now that (1. 10c) is satisfied, and let ço, 6 and t be as in part a).
Then (2.21), (2.22) hold true with Lb and Q(~o) replaced by Lm,ö and 
respectively.

PROOF. We begin by part a). As in [HV3], for s E (0, T) we consider the
auxiliary function

where

It has been shown in [HV3] that

as s T T, uniformly on compact sets of R x [0, 1].
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Set now x=À(s), l=s+t(T-s), and take When (s, t) moves
within the cylinder [so, T] x [0, 1], i) varies over the set Q(~o) n {t E [so, T],
lxl  Furthermore, since

for some qo = 7yo($o) &#x3E; 0, uniformly on t E [0,1], it follows from (2.23) that
for some so = (0, T),

which in turn yields (2.21) with 6 =

(2.22), we just remark that, by (2.23),
To obtain

for s close enough to T. Recalling the definition of t), the result follows
at once, since A(s) --&#x3E; 0 (whence s -~ T) whenever i~ --+ 0.

Finally, the proof of part b) is entirely similar. Instead of vs(x, t), we
consider the auxiliary function

and replace (2.23) by

for some C &#x3E; 0 as uniformly on compact sets of R x [0, 1] (cf. [HV3]).
We shall omit further details. ·

End of the proof of Proposition 2.1.

Assume first that (1.10b) holds. Then the result is a consequence of the
following fact

There exists R &#x3E; 0 such that, for t close enough to T, every

(2.24) maximum of u(x, t) lies in the interval
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To obtain (2.24), we argue as follows. By the analyticity of u( . , t) for any fixed
t, there exists at most a countable number of local maxima of u(.,t), 
Moreover, these maxima move smoothly except, perhaps, at points where they
collapse. To avoid relabelling, we will assume that two branches are denoted
by the same symbol after collapsing. Suppose now that (2.24) does not hold.
Then there exist a curve of maxima r(t) such that lim r(t) = 0, and a sequence

t-T
of times such that lim tn = T, and

n-+oo

We then claim that

Indeed, if (2.25) holds, for any fixed ~o &#x3E; 0 we may select a subsequence (also
labelled by {tn }) such that, either

or

If (2.27a) holds, (2.26) follows at once from (2.21) in Lemma 2.5. Suppose now
that (2.27b) is satisfied. We then define a sequence and a function a(T) as
follows 

’

Notice that The desired inequality (2.26) is now a

consequence of Lemma 2.2.
To conclude, we now set M(t) = u(r(t), t), and notice that

whence

1

Since M(tn)  (61 + (p - 1)(T - for some 61 &#x3E; 0, (2.28b) yields that
M(t) stays uniformly bounded as t T T, and this provides a contradiction. The
case where (1.10c) holds is similar.
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3. - Refined asymptotics as T -~ oo. The linearized problem

In this Section we shall derive some asymptotic estimates on the func-
tion R(y, r) described in the Introduction, and which will be recalled below
(cf. (3.20)). To this end, suitable improvements of the convergence results

already obtained in [HV1], [HV2] are required. A first such step is contained
in the following.

LEMMA 3.1. Assume that (1.10b) holds. We then have

(3.1 ) as T -~ oo, where (D is given in (1.3), and convergence takes place in

as well as in C1~~(R) for any k &#x3E; 1 and ï E (0, 1).

PROOF. It consists in a suitable refinement of the arguments in Propositions
5.7 and 5.8 in [HVI]. Recalling ( 1.1 Ob), we set

so that 0 satisfies

where

We can then represent 0(y, T) either as a Fourier series

or by means of variation of constants formula

where SA denotes the semigroup associated to the linear operator A given in
(3.3). From (3.5) and (3.6), we deduce that
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We now remark that, if k = 0,1, 2, I(T; TO) converges as T -~ oo. Indeed, by the
delayed regularizing effect described in [HV 1, Section 2], we have that

where a &#x3E; 0, and from now on C will denote a generic constant, whose
value may possibly change from line to line. Since we know already that

/ 1 B.

it turns out that

whence the result. We now claim that

for large enough T.

To show (3.9), we rewrite (3.7) as follows

We next proceed to estimate the various terms in (3.10). To begin with, we
have shown in [HV1, Proposition 5.8] that
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if T &#x3E; 0 is large enough,

whereas (3.8) yields at once

if T &#x3E; 0 is large enough.

It remains to deal with T4 and Tl. Since (D( ~ , s), Hk) = {/(1/;( . , s)), Hk) for any
k &#x3E; 3, we may use (3.4) to obtain that, for large enough T,

whence

The Hw-bound for T4 is now obtained by noting that T4 solves

for large T. We then use variation of cons-

tants formula in the equation above to deduce that

and since both T4 and 6 are of order 0 1 for large r, standard properties of
evolution semigroups (cf. for instance Appendix A in [HV 1 ) ) yield at once that

for large enough T.
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Since , we then have that

Taking into account (3.10), we readily see that (3.9) follows from (3.11 ). Con-
sider now the equation satisfied by a2(,r), namely

where As a next step, we shall- ..

prove that

To derive (3.13), we first recall the following estimates obtained in [HV1, Propo-
sition 5.8]

For fixed R &#x3E; 0, we then write

The second term in the right above can be bounded by (cf. (5.31) in
[HVl]), whereas the results in [HV 1, Section 2] yield that, if R &#x3E; 0 is suitably
chosen

Inequality (3.13) is now a consequence of (3.14) and (3.15), since we already
know that = 0 ( 1 ) as T - oo. We now set

where K is the coefficient of Plugging (3.16) into (3.12)

gives
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where we have used the fact that Kv(Hi,H2) = 1. We thus have

for large T.

Multiplying both sides in (3.17), by (sgn w(T)) we obtain that, for large r &#x3E; 0
and some - &#x3E; 0, 

-1

whence Or-(2-ê) in such case. We then may select c &#x3E; 0 such that

W (T )2  CT-3 for large T, whereupon (3.17) reads

which, after multiplication by (sgn w(T)) and integration, yields

and putting together (3.9) and (3.18), (3.1 ) holds in Hw, whence also in Co,"
for some I E (0, 1). Standard bootstrap arguments for parabolic equations yield
then convergence in for any k &#x3E; 1 and any E (o,1 ). ·

Suppose now that u(x, t) solves ( 1.1 ), and let R(x, t) be a solution of

when

when

where

We then have

PROPOSITION 3.2. Let R(y, T) be the function given in (3.20). Then there
exists a real constant a such that

where convergence takes place in well as in C~ for any k &#x3E; 1 and

1 E (o,1 ).

PROOF. To begin with, we readily see that R satisfies
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Since (D is bounded, arguing as in [HV1, Section 2], we obtain that

For any r &#x3E; 1, q &#x3E; 1 and L &#x3E; 0 there exists a = a(q, r) and

1

Assume now that (1. lOb) holds, and let K, = p(p - where K is the

positive coefficient in (3.1). We then rewrite (3.22) as follows
T

We now claim that

, there exists C = C(q) such that

for large enough r &#x3E; 0.

To prove (3.25), we notice that if we define w(y, T) by

we have that, by Taylor’s expansion,

for large enough T, uniformly on compact sets in Iyl.

Then, if 0(y,,r) is the function defined in (3.2), we see that

Arguing as in Lemma 3.1 (cf. for instance (3.15) therein), it follows that, for
any q &#x3E; 1

if T is large enough,
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whereas (3.1 ) yields

and (3.25) follows now at once from (3.26) and (3.29). We now set out to
obtain

for some u &#x3E; 0 and any r &#x3E; 0 sufficiently large. To this end, we multiply both
sides of (3.24) by R(y,r)e-y2/4, , integrate over the whole line, and use (3.25)
and delayed LW -estimates ([HV1, Section 2]) to deduce that

for some a &#x3E; 0. Setting y(T) = IIR( . , r)112, we are thus led to

and (3.30) follows now from the differential inequality (3.32a). Indeed, for

T &#x3E; To &#x3E; a, we have that, since (s + a)-1  s-1

Therefore, if we set G satisfies
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whence

for some M &#x3E; 0 and C &#x3E; 0. Substituting this in (3.32b) gives (3.30) with

(1 = 2013. The next step consists in improving the bound (3.30). To do this, we write2

and estimate separately bo(T) and X(y,7) as follows. Let P be the orthogonal
projection over the subspace spanned by Ho(y), and let Q = I - P. Then, in
view of (3.24), X satisfies

By (3.30) and delayed Lg-estimates,

whereas, by (3.25) and (3.30)

We now multiply both sides of (3.34) by X(y, r)e-y2/4, integrate over the line,
and use the fact that (Ho, X) = 0 together I - I I R( - , I to arrive
at

which in turn yields

On the other hand, by (3.22) and (3.33), we have that

We have shown in [GHV], [HV 1 ] that, if we write
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then if and only if (n + m + f) is even and n  m + t, m  n + t,
.~  m + n, in which case we have

so that the differential equation for bo(T) actually reads

whence, for T &#x3E; To

We now use (3.35b) to estimate h (T) as follows

Replacing u by a +e (ë &#x3E; 0) if necessary, it may always be assumed that a ~ 1/2,
in which case the above inequality yields

As to we readily check that

for any

so that
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From (3.36) and (3.37), it follows that

where 0 is as in (3.36a).

We now substitute (3.35) and (3.38a) in (3.33) to obtain that, if i

Iterating the previous argument, we then obtain after a finite number of steps
that

for some I

. 1 .

Obviously, no iteration is required if 0’  2. To conclude the proof in our case,
we still have to show that (3.38b) holds also in Hj. This follows, however, by
standard semigroup theory. Indeed, by (3.33), for any T &#x3E; To &#x3E; 0, we may write

whence

(cf. for instance [HV 1, Appendix A]). It then follows at once that 
o(eT ) as T - oo. 

"

It remains to consider now the case where (1.10c) holds. Since the argu-
ments are quite similar to those just explained before, we shall sketch briefly
the main differences, and dispense with most of the details. To begin with, we
replace (3.24) by

We now consider the auxiliary given by

so that ~.
that

Arguing as for (3.28a), we then obtain

For any q &#x3E; 1, there exists C = C(q) such that

for large enough T.
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We use the particular case q = 2 of (3.40) (which follows from ( 1.10)) to deduce
from (3.39) that

Setting , we are thus led to the functional inequality

which can be dealt with as in the previous case to obtain

We next write = ao(r)Ho(y) + Xl(y,r), where 0. Keeping to
our previous notations, and dropping the subscript 1 for convenience, we see
that x satisfies

Instead of (3.35a) we now derive

Estimates (3.40) and (3.41) together with delayed Lw-bounds, repeatedly used
so far, yield then

It is an easy matter to obtain now that

where and ,

&#x3E; -1. In particular,
be replaced by

On the other hand, (3.36) is to
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Using (3.40) (with q = 2) and (3.41), it follows that the integral above converges
as T -~ oo, and

Finally, convergence in H~ and are obtained as in the previous case..

Our next Lemma provides an estimate on on regions y - 
which improves the results already obtained in [HV1], [HV2].

LEMMA 3.3. For any R &#x3E; 0, there exists M = M(R) &#x3E; 0 such that

a) 7/’(1.10b) holds,

uniformly on sets l~l :5 R, provided that T is large enough.

b) If ( 1. l Oc) holds

uniformly on  R, provided that T is large enough.

PROOF. We know that (D satisfies

Assume that ( 1.1 ob) holds. We then define

where

Notice that

and
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whereas, by (1. 10b),

Therefore, by Lemma 3.1,

Actually, to derive (3.45) we split the integral in the left-hand side into two
parts, on regions y (  . f and jyj &#x3E; f respectively. We then use Lemma 3.1
and Taylor’s theorem to estimate the first part. The integral in the external region
can be estimated in a straightforward way. On the other hand, taking into ac-
count (3.44), we readily check that

where Set now

We now subtract the differential equations satisfied by 0 and CD, and multiply
both sides in the resulting equation by (sgn W). A routine computation reveals
then that Z = I satisfies
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We want to derive (3.42a) by means of application of variation of constants for-
mula in the above inequality. To this end, some manipulations will prove use-
ful. Firstly, we notice that

On the other hand, for any fixed when , and

Therefore, adding and subtracting
for any R &#x3E; 0 fixed,

in L(y, T) yields that,

where I otherwise.

Set now S = Since (
we have that if 

whenever and

We now recall that there exists C &#x3E; 0 such that

(cf. estimate (2.20) in [HV2]). It is readily checked that such a bound also
holds for C(~/, T), whence

Substituting all these bounds in (3.46), and recalling that y = ~1/7~, one is then
led to
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hence, for any T &#x3E; To &#x3E; 0,

Following [HV 1 ], we now relate T and To by

so that T = To + log T = To + log To + .- . as To -~ oo, and there exist constants Cl ,
C2 such that T  C2To. By (3.45), we then have that, if To &#x3E; 0 is large
enough

As to 12, we see that

Setting we thus obtain
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Notice that I for To large enough, so that if

and since

We finally obtain

uniformly on sets lçl  R and (3.42a) follows.
Assume now that (1. 10c) holds. A careful examination of the proof of

Proposition 5.8 in [HV1] reveals then that

We now adapt our previous argument as follows. First, we replace G defined
in (3.43b) by 

1 , , 

,
I I - I --

As in case a), G(~) is even and we now have

and

uniformly on sets I Moreover, we have that

as T -~ oo, where equality is understood in L~. Therefore, if we define
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we obtain from (3.50) that

Set 2 - and let = 1 if 
otherwise. Taking advantage of (3.52) and using Hermite’s equation, we obtain

We now subtract the equations for C and 1&#x3E;, and multiply then by sgn(
throughout to obtain

Therefore, for T &#x3E; To &#x3E; 0 and To large enough, there holds

We now set

Then, since it follows from (3.53) that
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To estimate 12, we proceed as follows

Recalling (3.55), we obtain

whereas

so that

and (3.42b) follows from (3.56)..

We next improve the convergence result in Proposition 3.2 as follows

PROPOSITION 3.4. Let R(y, r) be the function given in (3.20), and let a
be as in (3.21 ). Then

a) If (1. lOb) holds, we have

uniformly on sets r with
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b) If ( 1. l Oc) holds, we have that for some real C

uniformly on sets  M with M &#x3E; 0.

PROOF. Assume first that ( 1.1 ob) holds. Consider the auxiliary function

so that H satisfies

Define

Using (3.58), we see that

Therefore, if we write W satisfies

so that , ’ ~ ] satisfies
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Let K &#x3E; 0 be fixed, and let X3 (y, T) =
Recalling (3.42a), we finally arrive at

otherwise.

whence, if T &#x3E; To &#x3E; 0 and To is large enough

As we have repeatedly done so far, we set = T, y = and notice that

by Proposition 3.2 (cf. the remarks following (3.45))

We then obtain that

whereas

whence (3.57a). To derive (3.57b), we replace our former choice of H by

and proceed exactly as before..

We shall require later a refinement of (3.57b). Assume that (1.10c) holds,
a = 0 in (3.21) and

where convergence takes place in Hw

Let = ciy. We shall prove
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LEMMA 3.5. Suppose that ( 1.1 Oc) and (3.60) hold. Then

for some real C uniformly on  M with M &#x3E; 0.

PROOF. We merely sketch it, since it is similar to that of Proposition 3.4.
and notice that

We then write

Since

standard computations show then that 2 e’ satisfies

where X4(Y,r) = 1 if and X4(2/~) = 0 otherwise, M &#x3E; 0 being
fixed but arbitrary. Arguing then as in Proposition 3.4, b), the result follows. ·

At this stage, the reader might think that (3.60) is a rather artificial as-

sumption. This is not the case, however, as shown by the following

LEMMA 3.6. Assume that (1.10c) is satisfied and a = 0 in (3.21). Then
(3.60) holds.

PROOF. As in that of Proposition 3.2, the startpoint is the differential

equation for R (cf. (3.22)), which we rewrite in a slightly different way, namely

so that, for T &#x3E; 0, we can represent the solution as follows
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Set = L, and let us denote by C a generic positive constant depen-
ding on L. Arguing as in [HV1] (cf. Proposition 5.8 there), we readily see that

Assume now that T &#x3E; To + a*, where a* is the time required for delayed regula-
rizing effects to take place. There holds

As recalled in Corollary 2.2 of [HV 1 ],
king use of our assumptions, we obtain that
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whence

Since R(., ~) = in Hw as T --~ oo, it follows from (3.62) and (3.63) that

which, after substitution in (3.62), gives

Using (1. 10c), we readily check that

On the other hand, arguing as for (3.63b), (3.63c), we now obtain

Since obviously i yields at once

depending on L)
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which in turn can be used to improve (3.65c) as follows. Let us split the integral
in J5 into two parts, performed over (To, To + a*) and (To + a*, T) respectively,
where a* is as before. Then

We have then obtained that

where

Notice that in (3.66b), the integral is considered for any s &#x3E; To. This is consi-
00 T 00

stent, since it is readily seen that /(’’ -) = f ( ~ ~ ~ ) + f ( ~ ~ ~ ), and the second integral
To To T

is bounded in the Finally, convergence in Hw and is obtained
as in similar situations considered before..

We conclude this Section with the following

and assume that
’u

Then

PROOF. Let a &#x3E; 0 be arbitrarily small. Then, for T &#x3E; To + a, a careful
examination of the results in [HV 1, Section 2] shows that

for some

Let q be given by
as follows

We can then bound
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Since we see that

where we need to assume To » 1. since the regularizing time for the L;(1+ê)/ê
norm in J.t2 is very long indeed if 0  6- « 1. s -  OLe(s-ro)/2,
we arrive at

Taking then a c 1 and To » 1, the result follows. ·

4. - Approximation properties

Consider the auxiliary function G(x, t) given by

where u, u and R are as in the previous Section. Our goal here consists in
providing estimates of R and G in terms of u. To this end, we shall assume
that the following assumptions hold

(4.2a) There exists ?7 &#x3E; 0 such that &#x3E; 0 for any x E R,

(4.2b) The blow up set of u(x, t) remains in a compact subset

of the real line.

We then show

LEMMA 4.1. Let u, jR be as in (4.1), and let T &#x3E; 0 be the blow up time

of u. There exists M &#x3E; 0 depending on Ro and q such that

PROOF. As a starting point, we shall prove that
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Since we are assuming that (4.2b) holds, and we know that blow up points are
isolated (cf. [CM], [HV3]), it turns out that there is a finite number of blow

up points xi, 1  i  n. For simplicity, we shall assume throughout that there
is only one such point, located at x = 0. Clearly, it suffices to prove (4.3) for t
close enough to T. We have already seen in Section 2 that there exists C &#x3E; 0

such that

On the other hand, we have just shown in Section 3 that there exists A &#x3E; 0

such that

Let satisfies

We now observe that

which by comparison implies that, if B &#x3E; A is large enough,

An immediate consequence of (4.6) is that

for any such that

and

so that (4.4) follows. We next proceed to prove (4.3). Assume first that (1. lOb)
holds. Then, by (l.llb) we have that

There exists a &#x3E; 0 such that

and t close enough to T.

From (4.7) and (4.8), we conclude that

for some ~3 &#x3E; 0,

and t close enough to T.
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Following [HV3], we next define

As shown in [HV3], there holds

Consider now the auxiliary function

Clearly, Hs satisfies

so that, using (4.10b) we see that H(x, t) = I is such that

’ ’ 

whenever I x  K and 0  t  1, uniformly as s -&#x3E; T.

On the other hand, by Proposition 3.4 and estimate (4.6a)

1. -1. 1 
H(x, 0) is uniformly bounded on sets x (  K, and

Since HI(x,t) = e-Klt H(x, t) is subcaloric on the set described in (4.11 a) as

s T T, we may use explicit representation formulae for solutions of the heat
equation on bounded domains to obtain that

There exists o such that

uniformly as s - T.

In particular, setting x = 0 and recalling that
deduce that

Back to the original variables, this gives

and s close enough to T
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and in turn, (4.13) can be restated as follows

and

provided that 6 &#x3E; 0 is small enough.

Putting together (4.9) and (4.14), we readily see that (4.3) holds indeed on
some cylinder Qi  6, T - 6  t  T} with 6 &#x3E; 0 small enough.
However, since u(x, t) is bounded whenever I x &#x3E; 6, we see at once that W = I f? I
satisfies there 

-

for some C &#x3E; 0. An argument analogous to that leading to (4.12b) yields then
that IR(x, t)1  C2 for some C2 &#x3E; 0 and any (x, t) outside of Q 1, and the result
follows under our current assumptions. On the other hand, it is obvious that
the previous argument carries over when blow up occurs at a finite number of
points. Finally, the case where (1. 10c) holds is similarly dealt with. ·

We next obtain the main result in this Section, which yields an estimate
for the error term G in (4.1 ).

PROPOSITION 4.2. Let u, u, R and G be as in (4.1), and assume that (4.2)
holds. Then for any - &#x3E; 0 small enough, there exist positive constants C and
0, depending on Üo but not on ê, such that

PROOF. As before, we examine first the case where blow up occurs at

x = 0 only. We begin by remarking that the inequality in (4.15) can be recast
as follows

Since G(x, 0) = 0 and u(x, t) &#x3E; q &#x3E; 0, it follows by continuity of blow up time
with respect to the initial values (cf. for instance [HV2]) that for any given
~ &#x3E; 0 and C &#x3E; 0, (4.16) holds for any x E R and any t &#x3E; 0 sufficiently small,
say 0  t  s, where 6 possibly depends on e. On the other hand, G satisfies

1

Since d(T - for some d &#x3E; 0 (cf. for instance (3.47)) and (4.3)
holds, we now have that
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Suppose now that , where 9 &#x3E; 0 is such that

We can then estimate the term h(x, t) in (4.17a) as follows

for some K¡ = KI(p) &#x3E; 0, and any t  min{
that W = ~G~ [ satisfies

We then have

in the strip S.,. = R x (0, T). Furthermore, recalling (4.17b) and selecting K = 
we obtain

Notice that C does not appear in (4.18). We now clain that

There exists 01 &#x3E; 0 independent of C such that

in any strip ,5~,

provided that (4.18) is satisfied there.

Once the claim has been established, the result follows from a typical conti-
nuation argument. Indeed, we select C = 2Ci, and denote by t* the supre-
mum of those times t for which (4.16) holds in St. Now, if t*  T - 06, we
would obtain (4.19) in St, and by continuity (4.16) would be satisfied for some
t &#x3E; t*, which contradicts the choice of t*.

To prove (4.19), we proceed in several steps. First, we show that

for some A &#x3E; 0 large enough

in any strip S’~ where (4.18) holds.

This is achieved as follows. First, for fixed a  T, ii(x, t) is bounded in Su.
Therefore, if (4.18) holds in Su we have that
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Standard caloric estimates yield then

which implies (4.20) if t is not too close to T. When t - T, we use (3.47)
to remark that there exists then 6 &#x3E; 0 (which can be supposed as small as we
want) such that

We then consider the auxiliary function f (x, t) = Ai &#x3E; 0
to be selected presently, and take advantage of (4.22) to compute

so that 1. We then deduce (4.20) from (4.21) and
(4.22).

Having shown (4.20), we continue with the proof of (4.19) by special-
izing to the case where (1. lOb) occurs. We then take up an argument already
used in the proof of our previous Lemma. Clearly, (4.19) holds in the set

Ixl ~ (T-t)1/2110g(T-t)11/2, since ii(x, t) ~~ there for some w &#x3E; 0,
and (4.20) is satisfied. We then consider the function given in (4.10a)
and define

where is given in (4.10a). We readily check that

for some A &#x3E; 0. By the results in [HV3], is bounded in cylinders
QR - { (x, t) : ~ H ~ R, 0  t  1 } as s - T, whereas (4.20) implies that

~1E2 1- t - pp I -1. We then repeat the steps leading to 4.12 to conclude
that

for some ï &#x3E; 0, uniformly as s ~ T.

On the other hand, by (4.10b), 11 &#x3E; 0 as s -~ T. It then follows that

for some
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Back to the original variables, this means that

for some q3 &#x3E; 0, whence (4.19). In the region away from the blow up point
x = 0, the bound is obtained as in the corresponding result in Lemma 4.1.
Clearly, the argument extends to the case of a finite number of blow up points.
The case where ( 1.1 Oc) holds is similar..

We next derive a refinement of (4.15) for the case where R(y, T) = 
in Hw as T -i 00.

LEMMA 4.3. Let the assumptions in Lemma 3.5 be satisfied, and assume
that ê, 0 are as in the statement of Proposition 4.2. Then for any fixed ti &#x3E; 0,
there exists to = to(it, uo) such that for 6 &#x3E; 0 small enough there holds

whenever and to  t  T - where the constant C does not

depend on 6 nor a.

PROOF. We have shown in the course of the proof of Proposition 4.2 that
Z = ICI ] satisfies

for x e R, 0  t  T - Os, where 01 is independent of e (cf. (4.16), (4.17)).
Recalling (3.57b), it follows that under our current assumptions

for any given ~o &#x3E; 0. Taking into account (4.15), we obtain from (4.24) that

1 
. 

when lxl  E0 (T - t) m and 0  t  T - with tt &#x3E; 0, where lim g(t) = 0,’-T
and here and henceforth C will denote a generic constant which is independent
of c and it. We now claim that it is possible to select constants A and 6, 6  1,
and a nonnegative function A( ~) such that
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satisfies

for some to &#x3E; 0, where ~o will be selected later. We shall derive (4.26) by
means of a typical comparison argument in the cylinder Qo,~. Recalling (4.15),
we see that, in order to obtain

it suffices to require that
function W reads

With such a choice, our auxiliary

On the other hand, the desired inequality at the parabolic boundary of Qo,~
holds provided that

where C is this time the constant in (4.15). Having obtained (4.27), (4.26) will
follow from the maximum principle as soon as we have

We now compute
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Notice that we may assume without loss of generality that to is close enough to
T (this amounts in practice to restrict our attention to sufficiently small values
of E). Then there exists -1 &#x3E; 0 small enough such that

in Qo,¡.¡, and S5 in (4.29) if 8. Furthermore, there exists r E (o,1)
such that S’2 - 86 ~ rS2 in (4.29). As a matter of fact, this inequality holds

provided that 1- r &#x3E; rp +p"y. Since (T - t is small, t  2013r, and we are1 - 
p1’ ( o) ~ 9()_ 

~"
thus led to

We now select A(~) in the form

for some large enough ~o . With such a choice, we obtain

so that (4.28) and (4.26) follow. Finally, in Qo,~ we certainly have

which yields (4.23). ·

5. - Generic blow up behaviour

In this Section we shall proceed to complete the proof of our main result.
This will be done in several steps, each of which is taken care of in the

following paragraphs.
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5.1. - Perturbation theory for the linearized problem

Let ü(x, t) be a solution of (I - 1) which blows up at t = T, and assume
that R(x, t) solves (3.19). For any given point xi E R, we set

We then have

PROPOSITION 5.1. Assume that ?lex, t) ~ 1/ &#x3E; 0 and ?lex, t) blows up at
points x 1, ... , Let R, (y,,r) (i = 1, ... , j ) be as above, and let a 1, ... , aj be

given real constants. Then for any 6 &#x3E; 0 there exists Ro(x) E with

compact support such that, for i = l, ... , j,

Before proving Proposition 5.1, two auxiliary results will be established.
For t &#x3E; to &#x3E; 0, let E(t, to) be the evolution operator associated to (3.19a) in
L2(II~ ), i.e., for any f (x) E L2(R), E(t, to) f (x) is the solution R(x, t) of (3.19a)
such that R(x, to) = f (x). Then there holds

LEMMA 5.2. Let u be as in the statement of Proposition 5.1, and let
T be its blow up time. Then, for any 6  T, the set 1: = {h(x): there exists

g(x) E such that h = E(T - 6, is dense in L2(I1~).

PROOF. Let G(x, ç; t, r) be Green’s function associated to (3.19), i.e., let
G be a solution of

where 6(z - ~) is Dirac’s delta centered at ~. Let H be a solution of the adjoint
problem

Standard arguments (cf. for instance [F, Chapter I, Theorem 5]) yield then

Suppose now that the result is false. Then there exists and 
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h(x) 0- 0, such that

Using Fubini’s Theorem and (5.5), we then obtain

whence

Set now

Then V solves

Since u &#x3E; q &#x3E; 0, classical uniqueness results for backward evolution problems
(cf. for instance [LM]) yield then that h(x) e 0, and the proof is concluded.

We next recall some bounds on the evolution in time of R(y, T). More
precisely, let R be a solution of

Keeping track of the arguments in Proposition 3.2, we notice that the following
estimates hold

Assume that IlRoII  L for some L &#x3E; 0. Then there exist positive

constants A = A(L), ao and a E (o,1 ) such that, for T &#x3E; To,
11 -1
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Consider now the linear problem

We then have

LEMMA 5.3. Assume that I I Ro I I  L and R(., T) solves (5.6). Then there
exists C = C(L) independent of To, such that

a) If (1. lOb) holds, then

where a is as in (5.7).

b) If (1.10c) holds, then

PROOF. Suppose that (1. 10b) holds, and set j Then solves

where K is the coefficient of H2 in (3.1). Since H2 Ho = 0, we obtain that
T

We have already shown in (3.25) that
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On the other hand, using (5.7) and delayed estimates (cf. [HV 1, Section 2]) we
see that

We now claim that

Assume that (5 .11 ) holds. Then substitution of the previous inequalities in (5.10)
yields

whence (5.9a) follows. To obtain (5.11 ), we set
and notice that

which implies

where t &#x3E; f, and S 0 is the semigroup associated to -Z yy We now

set T = T + a*, where a* is as in (3.23), and take advantage of the following
estimate
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(cf. (5.29) in [HVI]). On the other hand, an argument similar to the one leading
to (3.25), gives

Using (5.7) and (5.13) in (5.12), we arrive at

whence (5.11 ). The proof of (5.9b) is similar, and will be omitted. ·

End of the proof of Proposition 5.1

Let ~ E Cg°(R) be a standard nonnegative cutoff function such that

0  ~ ~  1, ~ = 1 if x ~ I  1 and ~ = 0 if I x I &#x3E; 2. Let p, e be positive
constants to be selected later, and consider the function

Pick now set and define

We readily check that

We now select p &#x3E; 0 large enough so that A  -, and then 0 &#x3E; 0 small enough
6
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so that ~ a We thus obtain that at the time

Let E(t, 0) be the evolution operator associated to (3.19), which has been re-
called in this paragraph right after the statement of Proposition 5.1. By Lemma
5.2 and the continuity properties of E, we see that there exists ho(x) E Co(R)
such that h(x) - E(T - 0, O)ho(x) satisfies

where g(x) is given in (5.14). Notice that

For T &#x3E; To, we now consider the following functions

i) Gi(y, T) defined as the solution of (5.8) such that

Suppose now that (1. 10b) holds. Recalling (5.8a), we have

On the other hand by (5.17), A To) - To) I I 8 Furthermore weOn the other hand, by (5.17), o) II -33. Furthermore, we

clearly have  C where C depends only on 
Since IIRï(y, To) 11 c IIGi(y, To)11 + To) - To) 11, we deduce that To)11 I
can be bounded by some constant L uniformly as To --~ oo, and therefore
we may assume that the two last terms in the right-hand side in (5.18) are
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bounded above by - if 0 is small enough (i.e., To is large enough). It then

follows that 
3 

11 -~

whereas, by (5.16),

which gives (5.2) (with convergence taking place in Lw instead of H.1). The
rest of the proof is obtained as in Proposition 3.1 in Section 3. Finally, the case
where (1.10c) occurs is similar..

5.2. - How is blow up affected by small changes on the initial values

The main result in this paragraph is

PROPOSITION 5.4. Let u(x, t) be a solution of ( 1.1 ) with initial value

ii(x, 0) = uo(x), such that u blows up at t = T  +oo, and u(x, t) &#x3E; 1] &#x3E; 0

for any t E (0, T). Moreover, assume that the blow up set of u consists of
k points, x 1, ... , Xk. Then, for any u &#x3E; 0 and any fixed j E [ 1, k], there
exists uo(x) E OCR) such that max luo(x) - 6, and the blow up set

XER

of the solution u(x, t) of ( 1.1 ) with initial value uo(x) is contained in the ball

Bô(xj) = ix - xj (  b}.
We shall obtain Proposition 5.4 after some elaboration. First, we notice

that it may be assumed that j = 1 and x 1 = 0. We then use Proposition 5.1
with al = 2, an = -2 for n = 2,..., k, to deduce that there exists a compactly
supported function such that the corresponding functions R,(y,,r) given
in (5.1 ) satisfy

Consider now functions uo,,(x) = uo(x) + êÏ4J(X), where - &#x3E; 0 is small

enough, and let u, (x, t) be the solution of (1.1) with initial value Pick
now p &#x3E; 0 such that the balls are disjoint for i = 1, ... , k. As shown in

f k 1
[HV3], is bounded in UT = {(xt): x c- R B U 0  t  T - UsingL k=1 

~ 
J

Lemma 4.1, it then follows that the solution of (3.19), R(xt), is also bounded
in UT. Recalling (4.15), we then deduce that there exist positive constants C,M
and 0, independent of e, such that
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Assume now that (1. 10b) holds at xl, ... , xk. By the results of [HV3], we have
that

for some a &#x3E; 0, whenever

which in turns implies

at the intervals  Ix-xii  p, t = T-Ae, where A &#x3E; 0 &#x3E; 0
is large enough, 0 is as in the statement of Proposition 4.2, and i = I, ... , k.
Indeed, setting t = T - Ae and taking into account the results in Section 4, we
readily check that

and (5.22) follows then from (5.21) and (4.15). Consider now the regions where
t)I)1/2. As it has been noticed several times before,

ü(x, t) &#x3E; C(T - for some C &#x3E; 0 in such regions. Therefore (4.3) and
(4.15) yield at once

whenever -  ((T - t) 1) 1/2 and t = T - Ae, where a &#x3E; 8 &#x3E; 0 is

large enough, 0 is as in the statement of Proposition 4.2, and i = 1, ... , k.
Let us denote now by T, the blow up time of u,(x, t). By the continuity

of the blow up time with respect to initial values (cf. for instance [HV2]), we
have that

Actually, there holds

LEMMA 5.5. Let 0 be as in Proposition 4.2. Then under our previous
assumptions we have that

where (31 is as in (5.19).
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PROOF. The first inequality in (5.24) has been already obtained as a

consequence of Proposition 4.2. As to the second one, let us begin by showing
that there exists v &#x3E; 0 such that

To this end, let g(x, t) be the solution of the Cauchy problem

when ;

elsewhere,

where C is as in (5.23). Set now

Then x t solves (I.I) with initial value x 0 - C if x  and9( xt ) ( ) 9( x,o ) 
2 |x | 1o g(

g(x,O) = 0 otherwise. Take now. A &#x3E; 0 &#x3E; 0 large enough, so that (5.22) and
(5.23) hold. For 6 &#x3E; 0 sufficiently small, g(x, t) will then blow up in a time
T = 0(1), whence so does g at Tg = O(Ae). Inequality (5.25) follows then by
comparison. As a next step, we remark that by (3.57a) and (5.1)

uniformly on sets - ((T - as t - T and i = 1, ... , k.
We now make use of (4.15), together with (1 . 10b) and (5.26), to obtain that

uniformly on sets - ((T - i = 1,... ,&#x26;,
where o(1) - 0 as ê -+ 0 (so that t is allowed to tend to T). Setting t = T - Ae,
the previous formula reads
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Consider now the function

in the interval  1. Clearly, f (s) has a maximum at s = 0 (recall that {3l &#x3E; 1;
cf. (5.19)). Therefore (5.27) gives

whereas, by (3.47),

Moreover, by (5.25), 0   qAe for some -1 &#x3E; 0, provided that - &#x3E; 0
T,5

is small enough. From (5.28) and (5.29) it then follows that

where This gives
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multiplying throughout by A and letting A - oo, we are done. The case where
(1 , 10c) is satisfied is similar..

End of the proof of Proposition 5.4

Let us prove now that there are no blow up points in the balls BP(xi)
for i = 2,..., k. By the results of Section 2 (cf. the argument following (2.28)
there), it suffices to show that

This is achieved as follows. Consider the functions fi(s) (i = 2,..., k) given
by (5.28) with ,Qi there. For any such i, , is decreasing in 181 for s ~  1

provided that A is large enough. We thus see that

uniformly for I x - xi 1 :5 where o(l) - 0 as (Ac) 2013~ 0. We now

select first A &#x3E; 1 so that +0 (1/2A) 8i Ho  0, and take then e &#x3E; 0
A (A2 ) - 2A

such that (Ac) is small, and Bi ho/2A + o(l)  0. By the upper bound in (5.24),
(5.32) yields now 

I 1

This estimate together with (5.20) and (5.22)
yields (5.31) at t = T - Ae. Finally, the case where not all points are

of type (1.10b) is similar. *

We shall require later a refined version of (5.24) for the case where ( 1 . 10c)
takes place

LEMMA 5.6. Assume that ( 1.1 Oc) is satisfied, in (3.21 ), and let AT,..
be as in Lemma 5.5. Then

PROOF. Let us denote by the auxiliary functions defined in (1.3)
corresponding to u. By (4.15), we then have

in . By (3.61), there holds
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It then follows that

so that, denoting by
that

we readily see

for some C &#x3E; 0, which gives

We now define

Notice that

standard estimates yield then

whereas, by the basic estimate (1.1 Oc),

Taking into account (5.33), we arrive at

Suppose now that m &#x3E; 6. Then and the previous inequality yields
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Consider now the auxiliary function

As recalled in [HVI] (and readily checked by inspection), is a subso-
lution of ( 1.1 ). On the other hand,

uniformly when As

we obtain that

so that w,(x, t) (and hence v,(x, t)) blows up in a time t*  1 + 0(e2/3). Back
to the original variables, this means that

for some k.

To proceed further, we use (4.23) together with (4.15) (this last one in the

region where lxl &#x3E; M(T - to obtain

large,

where

We now define tE by T - te = Àe2/3, , where A &#x3E; 0 will be selected presently,
and take ve as in (5.37). Using (5.42) we now obtain

for any fixed A &#x3E; 0. As in the previous case, we now estimate the blow up
time of Vg, by
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since this implies that

so that, letting first &#x3E; - oo and then A - 0, we deduce that

and the proof is concluded..

We next show

PROPOSITION 5.7. Let u(x, t) and T be as in Proposition 5.4, and assume
that u has a single blow up point at x = 0 such that ( 1. l Oc) holds for some
m &#x3E; 4. Then, for any 6 &#x3E; 0, there exists an initial function uo(x) such
that (uo(x) - uo(x)) has compact support, max luo(x) - 6, and the

XER

corresponding solution u(x, t) has a single point blow up where the solution
behaves as indicated by ( 1. l Ob).

In the course of proving the Proposition, we shall use the following
auxiliary result.

LEMMA 5.8. Let u be as in the statement of Proposition 5.7. Then there
exists a compactly supported function Ro(x) such that

where R(y,,r) is given by (3.19), (3.20).

PROOF. It consists in a suitable modification of that of Proposition 5.1.
Keeping to the notations used therein, we take a nonnegative cut-off function
~(x) just as before, as well as positive parameters p, 0 to be selected later, and
consider the function

We now define

For any given 6 &#x3E; 0, we can select p &#x3E; 0 large enough so that
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By Proposition 5.1, there exists an initial value with compact support
such that the corresponding function satisfies

On the other hand, exactly as in the case of Proposition 5.1, we have that there
exists ho(x) e such that = E(T - 0, O)ho(x) satisfies

and

Denoting by R(x, t) = E(t, 0)ho(x), we readily see that

- 

Take now L = Then, if 6 is small enough we have that

 L. By (5.44) and (5.9b) (this last one with G replaced by
we obtain that .

Furthermore, by Proposition 3.2 we also have that

for some real /3 (actually, (5.46) yields at once the bound 1/31  2:). Consider- 

3
now the initial value 

- -

_ 

Clearly, Ro(x) has compact support, and (5.45) together with (5.47) yield
R( - , -r) = o(e’--) as T -~ oo. It then follows from Lemma 3.6 that

where al is given by (3.66b). To conclude with the proof, we just need to
show that ai f0 in (5.48). To this end, we notice that
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whence

To)11 I is bounded (actually, T) = h( ~ , T) r)11 
CeT , cf. (5.7)), we obtain

On the other hand, al - (R( , + (cf. (Lemma 3.7)), where for To
6

large enough the result follows. ·

Proof of Proposition 5.7

We select

where Îlo(x) is as in Lemma 5.8. If e &#x3E; 0 is small enough, the change in blow
up time (T~ 2013 T) is small, and by standard continuous dependence results, the

number of maxima at t = T does not change at all. Moreover, if at such a time2 
g 

,

u(x, t)  ((p - 1 )(T - t))- P-1 , we also have that u,(x, t)  ((p - t))- In

particular, any maximum where such inequality holds will never move towards
a blow up point.

To proceed further, we make use of the basic asymptotic formula (1 . 10c).
Together with the results in Section 4, this yields

uniformly one sets y ~  M and T - t for e &#x3E; 0 small and it &#x3E; 0 arbitrarily
large, so that in particular T - t for 0  {3  1. Making use of (4.23), we
obtain

We now select

A &#x3E; 0 to be precised later.
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The motivation for this choice is that then (5.50) reads as follows

uniformly on sets /y/  M. Let us write

As a matter of fact, the proof under consideration will be finished as soon as
we can show that

Only one maximum of Uê(X, t) arrives to the blow up point
lG Gnl

(cf. ( 1.1 ob)). Notice that 0 as e - 0 by the continuous dependence of
blow up regions on initial values (cf. [HV2]). To show (5.54), we first remark
that

Either some maxima of u,(x, t) collapse at a time t  Tg, or

there is at least one maximum Y such that

for some

and

and

Actually, this fact follows from inspection of (5.52). Assume without loss
of generality that al &#x3E; 0. Let y  0 be such that Oe( . , r) has a maximum
located at p at some time r » 1. Such maximum may indeed collapse as r
increases. If this does not happens, though, it follows from (5.52) and (5.53)
that, taking A &#x3E; 0 small enough, (5.55) should be satisfied, and we are done.

We then claim that, for i - Te,

To this end, we notice that

therefore, by convexity,
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whence

since , we finally obtain

Recalling the bounds for AT, obtained in Lemma 5.6, (5.56) follows at once
from (5.57). Putting together (5.55) and (5.56), we have reduced the number
of maxima which collapse at ze, at least by one. It is clear that we can repeat
now the previous argument as many times as required, so that we eventually
obtain that a single maximum of 4Se arrives to ze as T -~ oo, in which case

(1.10b) necessarily holds..

End of the proof of the Theorem

Assume that uo(x) has compact support, and the corresponding solution
u(x, t) blows up at n different points xl, ... , xn. Take "1 &#x3E; 0, and replace uo(x)
by If we denote the corresponding solution of (1.1) with such initial
value by u1J(x, t), we readily see that if "1 &#x3E; 0 is small enough, the blow up set
of u1J lies in a compact subset of R (cf. for instance [GK3], [HV2]), the new
blow up time T1J remains close to T ([HV2]), and for any T*  T),
the number of maxima of does not change with respect to that of
u( . , T*). We then make use of Proposition 5.4 to show that a slight perturbation
of (uo(x) + "1) localizes the blow up set in a small neighbourhood of one of the
new blow up points, say x 1. By iterated application of Propositions 5.4 and
5.7, we can then change blow up behaviours (and if necessary, eliminate blow
up points) until a single blow up point, where ( 1.10b) holds, is obtained. We

finally truncate the initial value far enough from the origin to conclude. The
fact that this last can be actually done follows from the arguments recalled in
the proof of our next result, where stability under small perturbations of the
patterns (1.1 Ob) is proved.

PROPOSITION 5.9. Let uo(x), x and T be as in the statement of the Theo-
rem, and suppose that there is a single point blow up at x and ( 1. l Ob) holds
there. Then there exists 6 &#x3E; 0 small enough (depending on uo(x)) such that, for
any E C0+(R) satisfying max lüo(x)-uo(x)1  e, the corresponding solution

XEJR
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of (1. 1) with initial value uo(x) has single point blow up x, where (1.10b) holds.
Moreover, lim(x - x) = 0.

~-~o

PROOF. We shall merely sketch it, since the corresponding arguments have
been already explained in detail. Keeping to our previous notations, we see that
by assumption there exists 6 &#x3E; 0 small enough such that

For t E (T - 6, T), u( ~ , t) has only one maximum x(t) such that
/C 1:0B

Indeed, if we replace &#x3E; by &#x3E; there, (5.58) follows at once from (2.28) and
(2.29). Strict inequality is then obtained by noting that, should it not hold,
then the corresponding blow up time of u(x, t) would be strictly less than T.
This follows at once from the separation properties obtained in [GP] (cf. also
Appendix in [HV2]).

Using now standard continuous dependence results and regularizing ef-
fects for parabolic equations, together with the continuity of blow up time with
respect to initial data (cf. [HV2] for this last point), we readily see that for
uo(x) E close enough to üo(x), the corresponding solution u(x, t) blows
up at some T  +oo, and for (T - t) small enough, it has only one maximum
y(t), where

_ I
t) &#x3E; ((p - l)(T - t)) p &#x3E;

whence the result..
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