Drug delivery systems based on poly(-caprolactone) for cancer treatment

Autores/as

  • E Sáez-Fernández Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.
  • MA RUIZ Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.
  • JL ARIAS Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.

Palabras clave:

Anti-tumor Drug, Cancer, Controlled Release, Drug Carriers, Drug Delivery, Polymeric Particles, Poly(ε-caprolactone)

Resumen

Chemotherapy agents have little or no specificity over cancer cells, resulting in low therapeutic concentrations at the tumor site (a consequence of a broad systemic distribution), and severe side effects. With the aim of avoiding cancer therapy failure, several approaches such as design of new anticancer drugs, chemical engineering of conventional drugs and development of drug delivery systems have been proposed. The objective is to enhance drug localization at the tumor region (by controlling its biodistribution profile) and, therefore, to increase the anti-tumor efficacy (even in multi-drug resistant tumors), while reducing systemic side effects. One of the most promising approaches to the problem is the development of drug nanocarriers based on the polymer poly(e-caprolactone). In this review we will focus our attention on these polymeric colloids, particularly on the most significant characteristics and formulation procedures, and on their use as nanoplatforms for the delivery of chemotherapy agents to the tumor site. Furthermore, the most recent in vitro and in vivo investigations on the subject are extensively reviewed.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Zhang DY, Shen XZ, Wang JY, Dong L, Zheng YL, Wu LL. Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. World J. Gastroenterol. 2008; 14: 3554-3562.

Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008; 13: 2340-2369.

Durán JDG, Arias JL, Gallardo V, Delgado AV. Magnetic colloids as drug vehicles. J. Pharm. Sci. 2008; 97: 2948-2983.

Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007; 59: 491-504.

Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 2001; 46: 149-168.

Reddy LH. Drug delivery to tumors: recent strategies. J. Pharm. Pharmacol. 2005; 57: 1231-1242.

Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Dicov. 2008; 7: 771-782.

Arias JL, Galllardo V, Gómez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J. Control. Release 2001; 77: 309-321.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002; 54: 631-651.

Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly--caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 2004; 278: 1-23.

Ponsart S, Coudane J, Vert M. A novel route to poly(-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 2000; 1: 275-281.

Kuo-Yung Chang, Yu-Der Lee. Ring-opening polymerization of ε-caprolactone initiated by the antitumor agent doxifluridine. Acta Biomater. 2009; 5: 1075-1081.

Chang RK, Price JC, Whitworth CW. Dissolution characteristics of poly (-carolactone)-polylactide microspheres of chlorpromazine. Drug Dev. Ind. Pharm. 1986; 12: 2355–2380.

Pitt CG. Poly (-caprolactone) and its co-polymers. In: Chasin M, Langer R, eds. Biodegradable polymers as drug delivery systems. New York: Marcel Decker, 1990; 71–120.

Menci P, Crouc A, Daniel V, Pouplard BA, Benoit JP. Fate and biocompatibility of three types of microspheres implanted into brain. J. Biomed. Mater. 1994; 28: 1079–1085.

Luo Q, Chen J, Dai K. Study on the cytocompatibility of biodegradable poly(epsilon-caprolactone) microspheres in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2003; 20: 14–16.

Perez MH, Zinutti C, Lamprecht A, Ubrich N, Astier A, Hoffman M, Bodmeier R, Maincent P. The preparation and evaluation of poly(-caprolactone) microsparticles containing both lipophillic and hydrophilic drug. J. Control. Release 2000; 65: 429–438.

Sah HK, Toddywala R, Chien YW. Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release. J. Microencapsul. 1995; 12: 59–69.

Giunchedi P, Conti B, Maggi L, Conte U. Cellulose acetate butyrate and polycaprolactone for ketoproton spray-dried microsphere preparation. J. Microencapsul. 1994; 11: 381–393.

Bodmeier R, Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoporofen. J. Control. Release 1989; 7: 69–78.

Mathiowitz E, Langer R. Polyanhydride microspheres as drug carrier I. Hot-melt encapsulation. J. Control. Release 1987; 5: 13-22.

Müller CR, Schaffazick SR, Pohlmann AR, DeLucca FL, DaSilveira NP, Costa TD, Guterres SS. Spray-dried diclofenac-loaded poly(-caprolactone) nanocapsules and nanospheres. Preparation and physicochemical characterization. Pharmazie 2001; 56: 864-867.

Espuelas MS, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J. Drug Target. 2002; 10: 593–599.

Lamprecht A, Ubrich N, Hombreiro Perez M, Lehr C, Hoffman M, Maincent P. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int. J. Pharm. 2000; 196: 177–182.

Yadav S, van Vlerken LE, Little SR, Amiji MM. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol. 2009; 63: 711-22.

Kim SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 2001; 22: 1697-1704.

Ryu J, Jeong YI, Kim IS, Lee JH, Nah JW, Kim SH. Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) triblock copolymers. Int. J. Pharm. 2000; 200: 231–242.

XiaWei Wei, ChangYang Gong, Shuai Shi, ShaoZhi Fu, Ke Men, Shi Zeng, XiuLing Zheng, MaLing Gou, LiJuan Chen, LiYan Qiu, ZhiYong Qian. Self-assembled honokiol-loaded micelles based on poly(-caprolactone)-poly(ethylene-glycol)poly(-caprolactone)copolymer. Int. J. Pharm. 2009; 369: 170-175.

Sheikh FA, Barakat NA, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J. Mater. Sci. Mater. Med. 2009; 20: 821-31.

Erem Bilensoy, Can Sarisozen, Güneş Esendağlı A, Lale Doğan, Yeşim Aktaş, Murat Şen N, Aydın Mungan. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int. J. Pharm. 2009; 371: 170-176.

Chawla JS, Amiji MM. Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002; 248: 127-138.

Devalapally H, Duan Z, Seiden MV, Amiji MM. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin. Cancer Res. 2008; 14: 3193-3203.

Chawla JS, Amiji MM. Cellular uptake and concentrations of tamoxifen upon administration in poly(-caprolactone) nanoparticles. AAPS PharmSci 2003; 5: Art. 3.

Shenov DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm. 2005; 293: 261-270.

Guerra GD, Cerrai P, Tricoli M, Maltinti S. Release of 5-fluorouracil by biodegradable poly(ester-ether-ester)s. Part I: Release by fused thin sheets. J. Mater. Sci. Mater. Med. 2001; 12: 313-317.

Martini LG, Collett JH, Attwood D. The release of 5-fluorouracil from a swellable matrix of a tri block copolymer of ε-caprolactone and ethylene oxide. Pharm. Res. 1995; 12: 1786-1790.

Martini LG, Collett JH, Attwood D. The release of 5-fluorouracil from microspheres of poly(epsilon-caprolactone-co-ethylene oxide). Drug Dev. Ind. Pharm. 2000; 26: 7-12.

Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin Loaded Poly(epsilon-Caprolactone) Nanofibers: Diabetic Wound Dressing with Antioxidant and Anti-inflammatory Properties. Clin. Exp. Pharmacol. Physiol. 2009; doi: 10.1111/j.1440-1681.2009.05216.x.

Ameller T, Marsaud V, Legrand P, Gref R, Renoir JM. Pure antiestrogen RU 58668-loaded nanospheres: morphology, cell activity ann toxicity studies. Eur. J. Pharm. Sci. 2004; 21: 361-370.

Devalapally H, Duan Z, Seiden MV, Amiji MM. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int. J. Cancer 2007; 121: 1830-1838.

Shenov DB, Venkatesh M, Udupa N. Optimization and performance evaluation of peptide-loaded monolithic poly-epsilon-caprolactone microspheres in mice bearing melanoma B16F1. Pharmazie 2002; 57: 256-260.

Jackson JK, Gleave ME, Yago V, Beraldi E, Hunter WL, Burt HM. The supression of human prostate tumor growth in mice by the intratumoral injection of a slow-release polymeric paste formulation of paclitaxel. Cancer Res. 2000; 60: 4146-4151.

Sharifi S, Mirzadeh H, Imani M, Rong Z, Jamshidi A, Shokrgozar M, Atai M, Roohpour N. Injectable in situ forming drug delivery system based on poly(ε-caprolactone fumarate) for tamoxifen citrate delivery: Gelation characteristics, in vitro drug release and anti-cancer evaluation. Acta Biomater. 2009; 5: 1966-1978.

Peng CL, Shieh MJ, Tsai MH, Chang CC, Lai PS. Self-assembled star-shaped chlorine-core poly(varepsilon-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials 2008; 29: 3599-3608.

Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem. Photobiol. 2007; 83: 1505-1512.

Hofman JW, Carstens MG, Van Zeeland F, Helwiq C, Flesch FM, Hennink WE, van Nostrum CF. Photocytotoxicity of mTHPC (termoporfin) loaded polymeric micelles mediated by lipase catalyzed degradation. Pham. Res. 2008; 25: 2065-2073.

Shuai X, Ai H, asongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004; 98: 415-426.

Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J. Control. Release 2005; 109: 158-168.

Chen S, Zhang XZ, Cheng SX, Zhuo RX, Gu ZW. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules. 2008; 9: 2578-85.

Xiong MP, Yáñez JA, Remsberg CM, Ohgami Y, Kwon GS, Davies NM, Forrest ML. Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats. J. Control. Release 2008; 129: 33-40.

Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, Hu Y, Jiang X, Guo W, Liu B. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur. J. Pharm. Biopharm. 2008; 70: 726-34.

Prabu P, Chaudhari AA, Dharmaraj N, Khil MS, Park SY, Kim HY. Preparation, characterization, in-vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J. Biomed. Mater. Res. A 2008; doi: 10.1002/jbm.a.32163.

Prabu P, Chaudhari AA, Arval S, Dharmaraj N, Park SY, Kim WD, Kim HY. In vitro evaluation of poly(caprolactone) grafted dextran (PGD) nanoparticles with cancer cells. J. Mater. Sci. Mater. Med. 2008; 19: 2157-2163.

Molavi O, Ma Z, Mahmud A, Alshamsan A, Samuel J, Lai R, Kwon GS, Lavasanifar A. Polymeric micelles for the solubilization and delivery of STAT3 inhibitor cucurbitacins in solid tumors. Int. J. Pharm. 2008; 347: 118-27.

Zhang L, Yang M, Wang Q, Li Y, Guo R, Jiang X, Yang C, Liu B. 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J. Control. Release 2007; 119: 153-162.

Feng N, Wu P, Li Q, Mei Y, Shi S, Yu J, Xu J, Liu Y, Wang Y. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma. J. Drug Target. 2008; 16: 479-485.

Cho H; Chung D; Jeongho A. Poly(D,L-lactide-ran-ε-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-ε-caprolactone) as parenteral drug-delivery systems. Biomaterials 2004; 25: 3733-3742.

Bouclier C, Moine L, Hillaireau H, Marsaud V, Connault E, Opolon P, Couvreur P, Fattal E, Renoir JM. Physicochemical characteristics and preliminary in vivo biological evaluation of nanocapsules loaded with siRNA targeting estrogen receptor alpha. Biomacromolecules 2008; 9: 2881-2890.

Yadav S, van Vlerken LE, Little SR, Amiji MM. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol. 2009; 63: 711-722.

Publicado

2009-06-20

Cómo citar

1.
Sáez-Fernández E, RUIZ M, ARIAS J. Drug delivery systems based on poly(-caprolactone) for cancer treatment. Ars Pharm [Internet]. 20 de junio de 2009 [citado 27 de abril de 2024];50(2):83-96. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5748

Número

Sección

Artículos de revisión