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ABSTRACT

This work focuses on the numerical and experimental study of the effective thermal conductivity in 
materials with heterogeneous composition. The numerical analysis relies in the Boundary Element method 
(BEM) formulation assisted by the sub-regions technique to simulate a two-dimensional square domain, 
with randomly distributed material inclusions. The boundary conditions are set to achieve a unidirectional 
heat flux condition. The Average Field Theory (AFT) is applied to determinate the representative volume 
element (RVE) condition for the studied cases. Finally, the effective heat conduction coefficient is 
obtained from the defined RVE’s. To verify the obtained numerical results, it is proposed an experimental 
procedure based on thermal images. The experimental assembly replicates the unidirectional heat flux 
condition over a steel plate. The experimental effective thermal conductivity is obtained from the analysis 
of the resultant temperature field on the surface of the plate taken by an infrared camera. The comparison 
between the numerical and experimental results showed a 3% difference between both results, pointing 
out for the successfulness of the proposed methodology.

Keywords: Boundary element method, heterogeneous materials, representative volume element, thermal 
images.

RESUMEN

Este trabajo se enfoca en el estudio numérico y experimental de los efectos de la conductividad térmica en 
materiales heterogéneos. El análisis numérico se basa en la formulación de Método de los Elementos de 
Contorno (MEC) basada en la técnica de subregiones con el fin de simular un dominio bidimensional con 
inclusiones de material distribuidas aleatoriamente. Las condiciones de contorno fueron seleccionadas 
adecuadamente con el fin de obtener condiciones de conductividad térmica unidireccional. La Teoría de los 
Campos Medios (TCM) es aplicada para determinar el elemento de volumen representativo (EVR) para los 
casos estudiados. Finalmente, el coeficiente de conductividad térmica efectivo es obtenido a partir del EVR. 
Para la verificación de los resultados numéricos obtenidos es propuesto un procedimiento experimental 
basado en imágenes térmicas. El montaje experimental replica la condición de flujo de calor unidireccional 
en una placa de acero. La conductividad térmica efectiva experimental es obtenida a partir del análisis de 
las imágenes térmicas del campo de temperatura resultante en la superficie de la placa las cuales fueron 
tomadas con una cámara infrarroja. La comparación entre los resultados numéricos y experimentales resultó 
en una diferencia de 3% entre los dos resultados, apuntando el buen desempeño de la metodología propuesta.

Palabras clave: Método de elementos de contorno, materiales heterogeneos, elemento de volumen 
representativo, imágenes térmicas.

1	 Grupo de Mecânica Experimental e Computacional. Universidade de Brasília. 72444-240 PO Box 8114. Campus Gama, DF, 
Brasil. E-mail: matheus.oberg@gmail.com; anflor@unb.br

*	 Corresponding Auhor



Ingeniare. Revista chilena de ingeniería, vol. 25 Nº 2, 2017

218

INTRODUCTION

In face of the current fast-paced technological 
advances, the study and development of new 
high performance materials has been a requested 
field of research lately. The development of new 
“taylor-made” materials optimized for specific 
applications requires the understanding of the material 
composition and the effects of its microstructure 
on its macroscopic properties.

At a microstructural level, engineering materials 
are typically heterogeneous with many possible 
constitutional elements, each with its own 
physical properties. A volume element, defined 
by the observational scale, may contain just a few 
microconstituents. In these cases the effective 
physical properties of this element may be largely 
influenced by the individual properties of the 
microconstituents contained within it.

An industrial application of the effective properties 
concept is presented in [1]. This work proposes 
a study of the effective thermal conductivities of 
porous materials applied on the fabrication of 
Vacuum Insulation Panels (VIPs) using simplified 
cell models. Also considering other heat transfer 
mechanisms, such as gaseous and radiative 
conductivities, the elaborated mathematical models 
provided relatively accurate results compared 
to experimental data for every studied type of 
material, except for powders. This evinced the 
limitation of simplified models and the need for 
other methods for modeling materials with complex 
microstructures.

In face of this, [2] presented a study on the 
development of correlational relations for determining 
the effective thermal conductivity of two-phase 
materials. Based on experimental data, it succeeded 
in developing correlational relations for three specific 
two-phased problems. This work points out the 
need for more accurate and efficient methods for 
prediction of the thermal properties of heterogeneous 
composition materials.

In another work, [3] evinced that most of the available 
methods for the prediction of material properties 
are based on idealized periodic constructions. It 
proposed a computational modeling of open-cell 
foams with random cell generation and growth, 

making possible the analysis of more complex and 
realistic porous structures.

As the observational scale is increased, the 
observed volume element effective properties 
gradually approach the material macroscopic 
physical properties. At these observational scales 
the influence of individual microconstituents tend 
to be less impacting on the element overall effective 
properties, as more microconstituents compose 
it. This variant behavior persists until a certain 
observational scale is reached, and the effective 
properties of the volume element approximate the 
material’s macroscopic properties.

In this way, [4] proposed a homogenization method 
of materials with heterogeneous composition, the 
representative volume element method. It consists 
in determining a characteristic length for the 
observed volume element at which the effective 
properties measured over the volume element 
boundaries approach the macroscopic properties 
of the material. This volume element with the 
characteristic length is named as the representative 
volume element (RVE).

This natural compatibility was explored in [5] and 
[6] where both methods, the BEM and RVE, were 
brought together to elaborate methodologies for the 
prediction of effective properties of micro-porous 
materials. The first one, [5], focused in the elastic 
effective properties of isotropic and orthotropic 
porous materials determining the RVE conditions 
through statistical analysis. In the same way, [6] 
applied a similar methodology for the analysis of 
permanent potential problems and the determination 
of the effective thermal conductivity coefficient for 
micro-porous materials.

Furthermore, [7] presented a modeling of a 
bidimensional heat transfer problem of plate with 
several random generated holes to simulate a RVE 
condition for a micro porous material. The numerical 
analysis proceeded using a “Fast Multipole” BEM 
formulation for increased computational efficiency. 
This work also presented an experimental analysis 
based on thermo graphical imaging to validate 
the obtained numerical results. The confrontation 
between numerical and experimental results showed a 
difference below 5%, indicating a good performance 
of the presented predictive methodology.
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Following that idea, [8] presented a RVE study of the 
effective thermal conductivity property of materials 
composed by two different microconstituents 
with different overall properties. In this case, a 
BEM formulation with sub-regions was applied to 
consider the interaction between two different micro-
constituents that compose the domain. In this work, 
the RVE condition was obtained for different fractions 
of area occupied by less conductive circular inclusions 
randomly distributed over a square domain. The 
behavior observed on the graphical results showed 
that the RVE condition could be achieved at about 
37 inclusions present within the studied domain.

The present work follows as a natural continuation 
of [8], proposing an experimental methodology to 
evaluate the RVE condition and validate the results 
shown in the aforementioned work. Aiming that, an 
experimental assembly is proposed to replicate the 
numerical case of a RVE represented by a square steel 
plate with randomly distributed circular inclusions 
subjected to a unidirectional heat flux condition. 
Thermal images are used to obtain the temperature 
fields over the plate surface. Finally, the effective 
thermal conductivity of the RVE is calculated based 
on these temperature fields. 

REPRESENTATIVE 
VOLUME ELEMENT

In a microscopic scale, several different 
microconstituents compose typical engineering 
materials such as steel and aluminum. Despite the 
isotropic behavior of these materials, when observing a 
microscopic defined region, the mechanical properties 
measured at the edges of it may present different 
values for each direction. This occurs because, at 
this observational scale, the domain is composed 
by just a few micro constituents and hence, their 
geometry, positioning and own mechanical properties 
largely influence its effective properties. Increasing 
the observational scale also increases the number of 
microconstituents located within the observed domain, 
as illustrates Figure 1. As more microconstituents 
become present in the larger domain the individual 
influence of a single microconstituent on the domain’s 
effective properties decreases.

Every observational scale is defined by a characteristic 
length, which corresponds to the length of the edges 
of the square domain (L).

Figure 1. Process of increasing the observation scale.

In [5] and [6] for microporous domains, and 
in [8] for domains composed by two different 
microconstituents, it is noticed that after successive 
increases on the observational scale, the effective 
properties measured tend to converge towards the 
material’s macroscopic overall properties. Based on 
this behavior, [4] proposed a homogenization method 
for materials with heterogeneous composition, the 
RVE technique. It consists of defining the smallest 
observational domain at which the effective properties 
taken at its edges show sufficient convergence to 
the material’s macroscopic properties.

In this sense, [8] presents a RVE determination 
methodology for materials composed by two different 
microconstituents. As done previously in [5], [6] and 
[7] it supposes a square observational domain, but 
with circular material inclusions instead of holes. 
Based on equation (1) and statistical analyses, the 
RVE condition for the effective thermal conductivity 
was obtained for different percentages of area 
occupied by the inclusions (R), being R given by:

	
R =100

n πd2

4
⎛

⎝
⎜

⎞

⎠
⎟

L2
	 (1)

At the end, despite the applied value of R, Oberg et al. 
(2015) concluded that, for the studied cases, the RVE 
condition may be assumed at around 37 inclusions.

BOUNDARY ELEMENTS METHOD

The BEM formulation for potential heat transfer 
problems is, currently, one of the most well diffused 
BEM formulations. It has been featured in several 
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works since the method was firstly developed and 
its detailed elaboration can be found in many books 
such as [9], [10] and [11] among others.

To briefly summarize the BEM formulation for 
potential problems using constant elements, an initial 
domain, as depicted on Figure 2, is assumed. The 
method derivation starts at the Laplace governing 
equation for 2D potential problems given as:

	 ∇2u x( ) = 0∀x ∈Ω 	 (2)

Figure 2.	 Domain Ω and its boundary Γ.

For potential problems, the boundary conditions 
applied to its boundary may be of three types: 
Dirichlet, Neumann and/or Robin. This work 
considers only the first and the second types, 
respectively, imposed as:

	
u x( ) = u x( );             ∀x ∈ Γ1

q x( ) = ∂u
∂η

x( ) = q x( )∀x ∈ Γ2

	 (3)

where u is the potential field in domain Ω, Γ is the 
boundary of Ω, and n is the outward normal. Note 
that the barred quantities are the values imposed 
by the boundary conditions. Given the boundary 
conditions, the solution of equation (3) is presented as:

	

u∗ x, y( ) = 1
2π
ln r( )

q∗ x, y( ) =
∂u* x, y( )
∂n y( )

=
1
2πr

∂r
∂η

	 (4)

where and are the Green’s functions for 2D 
problems while r represents the distance between the 
collocation point x and the field point y, as depicted 
in Figure 2. When x is taken to the boundary, the 

classic boundary integral equation (BIE) formulation 
of BEM is obtained as:

	 C x( )u x( ) =  
u* x, y( )q y( ) − q∗ x, y( )
u y( )dΓ y( )Γ
∫ 	 (5)

Considering a smooth boundary at the collocation 
point x, the coefficient c(x) is assumed as 1/2. For 
the computational implementation of the method, 
the next step consists in discretizing the boundary Γ 
using N constant elements. The following equation 
presents the discretized BIE.

	
1
2
ui = Gijq j

j=1

N

∑ − Hij
j=1

N

∑ u j   i =1,2,3,…,N 	 (6)

In this, and (j = 1,2,…,N) are the nodal values of u 
and q at the element ΔΓj, respectively. Applying the 
boundary conditions at each node and switching the 
columns for grouping the unknown variables, equation 
(6) can be rearranged as linear system of equations. 
The matricial representation of this is given as:

	 Aλ − B 	 (7)

Where A is the coefficient matrix, l is the unknown 
vector and B is the known right-hand side vector.

BEM WITH SUB-REGIONS

In the studied case, the sub-regions are delimited 
by closed boundary regions placed inside a main 
domain, as shown in Figure 3. In this example, a 
circular sub-region (Ω’) is placed inside a square 
domain (Ω). The boundary elements applied to 
discretize the sub-regions are common to bothΩ’ 
and Ω. To better illustrate this, Figure 4 separates the 
domains depicted on Figure 3 to evince the shared 
elements. In this figure, elements i (i = 1,2,3,4) 
and its respective elements i’ are coincident when 
assembled together. Each of these shared elements 
adds two new unknown variables to the linear system. 
To deal with these new variables and couple the 
different regions it is necessary to impose a pair 
of equations to enforce the continuity condition. 
Therefore, for each shared element:

	
u −u’= 0
q+ q’= 0

	 (8)
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where the variables u and q are the variables of the 
shared element related to one region and u’ and 
q’ are the same variables related to the equivalent 
element in the other region. Adding equation (8) to 
equation (6) satisfies the solving criteria, balancing 
the number of unknown variables and available 
equations.

Figure 3.	 Example of a sub-region problem.

Figure 4.	 Sub-regions problem as two separate 
regions.

EFFECTIVE THERMAL CONDUCTIVITY

The effective properties of a RVE are obtained based 
on the information gatherewwd over its boundaries. 
Reached the RVE condition, the effective properties 
tend to represent the macroscopic properties of the 
material as a whole. In sight of this, the study of 
these properties and methodologies assoc   iated 
to their determination have been the focus of many 
recent works. These effective properties are often 
related to mean values of distributions over the RVE 
edges, as observed in [5], [6] and [8]. In [6] and 
[8], a similar technique was applied to obtain the 
material’s effective thermal conductivity. It consists 
of imposing a unidirectional heat flux over a square 
domain, illustrated below, and reading the temperature 
distributions over the heated and cooled edges.

The temperature distributions are composed by 
temperature readings from several points equally 

distributed over the edges of interest. By horizontally 
pairing punctual temperatures on the heated (Tci) 
and cooled (Thi) edges it is possible to calculate the 
local heat conductivity coefficient between the pair 
of points. The following Figure depicts the pairing 
process for a better understanding.

Figure 6.	 Punctual temperature pairing.

In the end, after obtaining the local heat conductivity 
coefficient for each pair of points, the RVE effective 
heat conductivity is calculated as the mean value 
of the local conductivities. This entire process is 
described by equation (9), where is the RVE effective 
heat conductivity coefficient, is the imposed heat 
flux, is the number of pair of points and L is the 
RVE characteristic length.

	 Keff =
L
NE
⎛

⎝
⎜

⎞

⎠
⎟

i=l

NE

∑ qi
Thi −Tci( )

	 (9)

Figure 5.	 Unidirectional heat flux model.
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NUMERICAL ANALYSIS

In accordance with [8], the numerical procedure 
consists in numerically simulating the unidirectional 
heat flux condition using the BEM formulation with 
sub-regions. The object of analysis is a square steel 
plate with randomly distributed less conductive 
round inclusions. The size and quantity of inclusions 
are controlled by equation (1). In each performed 
study, R was kept constant, while the diameter of 
the inclusions (d) was calculated as a function of 
number of present inclusions (n). Therefore the act 
of simply increasing the value of n produces an 
effect similar to the increase of the observational 
scale depicted in Figure 1.

Established the simulation parameters, the next step 
is determining the influence of the observational 
scale over the resultant effective thermal conductivity. 
This is done by statistically evaluating the dispersion 
of the resultant effective thermal conductivity for 
each value of n as a standard deviation. Is this 
sense, as presented in [8], for each value of n, 
34 randomly generated domains are analyzed to 
guarantee the statistical stability of the results. 
Figure 7 graphically demonstrates the variation of 
the calculated mean effective thermal conductivity 
for R = 0,20 and different values of n. In this figure, 
the drawn line conductivity and the vertical bars 
represent, respectively, the resultant mean values of 
the effective thermal conductivity and its associated 
dispersion intervals. From the graphical analysis, 
it is observed that, initially, the intervals tend to 
become smaller as more inclusions are inserted. This 

behavior persists until around n = 37. At this point 
the interval size becomes stabilized characterizing 
the RVE condition.

Repeating this same analysis for different values 
of R, [8] concluded that the RVE condition may be 
assumed at around 37 circular inclusions, regardless 
the value of R.

EXPERIMENTAL ANALYSIS 
AND RESULTS

Based on [7] and on the numerical results presented 
in [8], an experimental assembly was prepared to 
validate the presented numerical methodology. 
The main goal of the experiment was to recreate 
the unidirectional heat flux condition pictured on 
Figure 5.

In order to reproduce the theoretical studied 
domains, it was used square SAE 1020 steel 
plates (155 x 155 x 9,52 mm) with 37 randomly 
12,7 mm diameter holes. These holes were filled 
with same diameter nylon 6.6 cylinders. This 
distribution corresponds to an R value of 0,195. 
Being significantly less conductive than the 
steel, the nylon inclusions are expected to disturb 
the imposed unidirectional heat flux condition 
and produce results similar to the numerically 
observed. To assure the heat conduction between 
the inclusions and the plate, a high performance 
thermal compound was applied to every contact 
region. The top of the plates were painted black 
to increase the uniformity of the thermographic 
readings being taken.

A high watt density cartridge heater (220V) was 
used to uniformly heat one of the sides of the plate. 
The heater was build inside a refractory brick to 
prevent it from damaging the other experimental 
components in case of overheat. The resistance 
was built inside a refractory brick, leaving only 
the surface in contact with the experimental plate 
not insulated, reducing the heat loss in every 
other direction. This also prevents the heater from 
damaging other experimental components in case 
of overheat. The opposed plate side was cooled 
by contact with an aluminum recipient filled with 
water and ice kept at melting temperature. Thick 
100mm Styrofoam walls were used to insulate 
the two remaining sides of the plate and its back 

Figure 7.	 Mean effective thermal conductivity vs. 
number of inclusions inserted for R = 20%.
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to minimize the heat loss in these directions. The 
proposed experimental assembly scheme is shown 
on Figure 8.

Figure 8.	 Third-angle orthogonal drawing of the 
experimental assembly: 1. Styrofoam 
Insulation; 2. Refractory Brick; 3. Car- 
tridge Resistance; 4. Cold water Reservoir; 
5. Experimental Plate.

To evaluate the heat loss through the refractory brick 
holding the cartridge resistance, a solid steel plate (155 
x 155 x 9,34 mm) is mounted on the experiment and 
heated until a permanent heat conduction condition 
is achieved. The thermal images of the top surface 
are taken using a thermographic camera (FLUKE Ti 
125), allowing for relatively precise readings of the 
temperatures on the cooled and heated edges of the 
plate. Figure 9 shows the thermal image taken of the 
solid steel plate along with the maximum, minimum 
and mean temperatures taken at 3 specific drawn 
lines: (a), (b) and (c). The temperature distributions 
over lines (a) and (b) represent the temperature of 
the cooled and heated edges respectively, while (c) 
was traced to evaluate the expected linearity of the 
temperature gradient over the plate. Figure 10 displays 

the graphical analysis of the temperature distribution 
over the traced lines. Minor disturbances shown on 
the graphic lines may be associated with the thermal 
camera precision and possible non-uniformity of the 
applied black paint coat.

Given the steel heat conductivity coefficient () of 
51.9 [W/m.k] and the mean temperatures at the 
heated () and cooled () edges, the heat flux through 
the steel plate () are calculated from equation (10).

	 Qplate =
Ksteel . THmean −TCmean( ). A⎡⎣ ⎤⎦

L
	 (10)

where A corresponds to the plate transversal area 
of the plate while L to its side length.

The comparison between the total expected heat 
flux provided by the resistance and the calculated 
heat flux () determined a 20% heat loss through the 
refractory brick for the tested case.

The same experimental procedure is now repeated 
with steel plate with the randomly distributed nylon 
inclusions. Figure 11 presents the thermal image of 
the temperature field over top surface of the plate. 
As done for the solid steel plate, 3 lines were traced 
over the thermal image to acquire the temperature 
distributions over the cooled edge (a), the heated edge 
(b) and the influence of the inclusions on the overall 
temperature field. The temperature distributions 
for this case are graphically shown on Figure 12.

Figure 9.	 Temperature distribution over the solid 
steel plate.
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Figure 10.	Temperature distributions over lines (a), 
(b) and (c) for the solid plates.

Figure 11.	Temperature distribution over the steel 
plate with 37 randomly distributed nylon 
inclusions.

Figure 12.	Temperature distributions over the lines (a), 
(b) and (c) for the plate with inclusions.

RESULT ANALYSIS

Comparing both graphics displayed on Figures 
10 and 12 it is possible to observe the effect 
on the resulting temperature field caused by 
the presence of less conductive inclusions. The 
distributions on the cooled and heated edges are 
no longer constant. Despite slight disturbances, 
the linear behavior of the distribution over the 
traced line (c) is still predominant. In order to 
achieve the effective thermal conductivity value 
for the experimented case, it is used a technique 
similar to the one used for the numerical analysis. 
Over the cooled and heated edges of the plate, 
99 individual and equally spaced points are 
positioned in the way shown on Figure 2. The 
temperature at the specified points on the cooled 
() and heated () edges are directly obtained from 
the thermal image.

Equation (12) is applied to determine a local heat 
conductivity coefficient between each pair of points 
and. The effective heat conductivity coefficient 
is obtained by the mean result of the local heat 
conductivity coefficients. Equation (11) summarizes 
this procedure.

	 Kexp =
Qplane

Ai=1

99

∑ . L
99
⎛

⎝
⎜

⎞

⎠
⎟ / Thi −Tci( ) 	 (11)

The proposed experimental methodology resulted in 
an effective thermal conductivity of 35,9 ± 4 W/m.K.

The previously proposed numerical methodology 
based on BEM with sub-regions is applied to 
replicate the experimental RVE condition. Following 
the numerical procedure, 34 cases with the same 
experimental 0,195 R value and 37 randomly 
generated inclusions are simulated to obtain the RVE 
effective thermal conductivity with its associated 
statistical dispersion. The mean values of the heated 
and cooled edges measured with the thermal images 
are applied as boundary conditions. This analysis 
resulted in an effective thermal conductivity of 
34,8 ± 0,2 W/m.K.

Confronting the numerical and experimental results 
it is noticed a 3% difference between both mean 
results, pointing out for a good performance of the 
numerical methodology.
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CONCLUDING REMARKS

The numerical analysis presented in that work showed 
that the influence of each individual inclusions 
randomly positioned in the domain reduces as 
more inclusions are added. This analysis led to the 
conclusion that the RVE condition for the effective 
thermal conductivity in a material composed by two 
different constituents can be achieved at around 37 
inclusions. To verify the aforementioned result, this 
work proposed an experimental methodology. In this 
sense, a steel plate with 37 randomly distributed 
nylon inclusions composed the studied domain. 
The size of the applied inclusions produced an 
R value of 0,195. The experimental procedure 
consisted in replicating the unidirectional heat flux 
condition imposed in the numerical analysis. The 
experimental effective thermal conductivity was 
calculated based on the thermal field data obtained 
through thermal images. In the end, for the studied 
case, it resulted in an effective thermal coefficient 
of 35,9 ± 4 W/m.K.

Repeating the numerical analysis for the condition 
produced for the experiment it was found an effective 
thermal conductivity of 34,8 ± 0,2 W/m.K.

The confrontation of both numerical and experimental 
mean results showed up a difference around 3%. 
The achieved proximity of the results points out for 
the successfulness of the proposed methodology.
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