To read this content please select one of the options below:

Impact of component losses on the voltage boost properties and efficiency of the QZS‐converter family

Indrek Roasto (Department of Electrical Drives and Power Electronics, Tallinn University of Technology, Tallinn, Estonia)
Dmitri Vinnikov (Department of Electrical Drives and Power Electronics, Tallinn University of Technology, Tallinn, Estonia)
171

Abstract

Purpose

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage boost and buck functions with a single switching stage. As main representatives of the qZS‐converter family, this paper aims to discuss the traditional quasi‐Z‐source inverter as well as two novel extended boost quasi‐Z‐source inverters.

Design/methodology/approach

Steady state analysis of the investigated topologies operating in the continuous conduction mode is presented. Input voltage boost properties of converters are compared for an ideal case. Mathematical models of converters considering losses in components are derived. Practical boost properties of converters are compared to idealized ones and the impact of losses on the voltage boost properties of each topology is justified. Finally, the impact of losses in the components on the boost conversion efficiency is analyzed.

Findings

To demonstrate the impact of component losses on the overall efficiency of the qZS‐converter, a number of experiments were performed. The impact of inductor winding resistance was compared with the forward voltage drop of qZS‐network diodes. It was found that the forward voltage drop of diodes has the highest effect on the efficiency. If the diodes are replaced with high‐power Schottky rectifiers with a low forward voltage drop (UD=0.6 V), the effective efficiency rise by at least 5 percent could be expected for all three qZS‐converter topologies. For the same operating parameters and component values, the traditional qZS‐converter had the highest efficiency of the qZS‐converter family. The boost converter was compared with the traditional qZS converter in terms of efficiency. It was found that the boost converter has an efficiency 2 percent higher in the boost operation mode and approximately the same efficiency in the non‐boost operation.

Practical implications

The paper provides a good theoretical background for further practical studies. qZS‐converters have voltage boost and buck functions with a single switching stage, which could be especially advantageous in renewable energy applications.

Originality/value

The paper presents a detailed study of the qZS‐converter family. Mathematical models of converters considering losses in components are derived. It is the first time the boost converter is compared with the qZS converter.

Keywords

Citation

Roasto, I. and Vinnikov, D. (2012), "Impact of component losses on the voltage boost properties and efficiency of the QZS‐converter family", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 31 No. 6, pp. 1945-1963. https://doi.org/10.1108/03321641211267227

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Related articles