Skip to main content
Log in

Relative Yangians of Weyl type

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathfrak {g}\) be a semisimple Lie algebra. A \(\mathfrak {g}\)-algebra is an algebra R on which \(\mathfrak {g}\) acts by derivations. The diagonal copy of \(\mathfrak {g}\) acting on \(R\otimes U(\mathfrak {g})\) is denoted by \(\mathfrak {k}\). If V is a finite dimensional \(\mathfrak {g}\) module and \(R={\text {End}}V\) (resp. R is the algebra D(V) of differential operators on \(V^*\)) the invariant algebra \((R\otimes U(\mathfrak {g}))^\mathfrak {k}\) is called a relative Yangian (resp. relative Yangian of Weyl type). Extending the essentially complete representation theory of \(({\text {End}}V \otimes U(\mathfrak {g}))^\mathfrak {k}\) inspired by the work of Khoroshkin and Nazarov, a study is made of the representation theory of \(E:=(D(V)\otimes U(\mathfrak {g}))^\mathfrak {k}\). A category \(\mathscr {E}^\star \) of modules for E is introduced and shown to be abelian. Here a number of new techniques have to be introduced because unlike \({\text {End}}V\) the algebra D(V) is infinite dimensional and known to have a rather complicated representation theory. The simples and their projective covers in \(\mathscr {E}^\star \) are described. However an example shows that the simples in \(\mathscr {E}^\star \) do not suffice to exhaust the primitive ideals of E. The description of simple modules for E is reduced to those for D(V). This analysis is valid for certain other \(\mathfrak {g}\)-algebras, notably \(R=U(\mathfrak {g})\). In this it is shown that all the simple modules of \((U\mathfrak {g}) \otimes U(\mathfrak {g}))^\mathfrak {k}\) are finite dimensional and the representation theory of the latter algebra precisely recovers the Kazhdan–Lusztig polynomials. Through Olshanski homomorphisms these results can in principle have applications to the study of Yangians and of twisted Yangians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Perhaps one should add that this was a multiplicity result cited in [2, 1.7] for a simple finite dimensional module occurring in the “harmonic subspace” of \(U(\mathfrak {g})\). This in turn follows from the primeness of a certain ideal in \(S(\mathfrak {g})\). These are amongst the main results of [22]. Much of this theory is described in [6, Chap. 8]. A proof of this key multiplicity result not using primeness and hence free of algebraic geometry can be found in [14, Chap. 8]. Notably it uses ideas of Kostant and of Bernstein and Lunts.

References

  1. Bernstein, J.N.: Analytic continuation of generalized functions with respect to a parameter. Funkcional. Anal. i Prilozen. 6(4), 26–40 (1972)

    MathSciNet  Google Scholar 

  2. Bernstein, J.N., Gelfand, S.I.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Composit. Math. 41(2), 245–285 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Bernstein, J.N., Gelfand, I.M., Gelfand, S.I.: Structure of representations that are generated by vectors of highest weight (Russian). Funckcional. Anal. i Prilozen 5(1), 1–9 (1971)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, J.N., Gelfand, I.M., Gelfand, S.I.: Schubert cells, and the cohomology of the spaces G/P. (Russian) Uspehi Mat. Nauk 28(3(171)), 3–26 (1973)

    MathSciNet  Google Scholar 

  5. Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules. Invent. Math. 69(3), 437–476 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dixmier, J.: Algèbres enveloppantes. Reprint of the 1974 original. Les Grands Classiques Gauthier-Villars. Éditions Jacques Gabay, Paris (1996)

  7. Duflo, M.: Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple. Ann. Math. 105(1), 107–120 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Enright, T.J., Joseph, A.: An intrinsic analysis of unitarizable highest weight modules. Math. Ann. 288(4), 571–594 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabber, O., Joseph, A.: On the Bernstein–Gelfand–Gelfand resolution and the Duflo sum formula. Composit. Math. 43(1), 107–131 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Herstein, I.N.: Noncommutative rings. Reprint of the 1968 original. With an afterword by Lance W. Small. Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC (1994)

  11. Joseph, A.: Dixmier’s problem for Verma and principal series submodules. J. Lond. Math. Soc. 20(2), 193–204 (1979)

    Article  MATH  Google Scholar 

  12. Joseph, A.: Rings of \({\mathfrak{b}}\)-finite endomorphisms of simple highest weight modules are Goldie. Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989). In: Israel Mathematical Conference Proceedings, vol. 1, pp. 124–134. Weizmann, Jerusalem (1989)

  13. Joseph, A.: Quantum Groups and Their Primitive Ideals. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  14. Joseph, A.: Sur l’annulateur d’un module de Verma. With an outline of the annihilation theorem by M. Gorelik and E. Lanzmann. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514. Representation theories and algebraic geometry (Montreal, PQ, 1997), pp. 237–300. Kluwer Acad. Publ, Dordrecht (1998)

  15. Joseph, A.: Selected Topics in Representation Theory. http://www.wisdom.weizmann.ac.il/~gorelik/agrt.htm

  16. Joseph, A.: Analogue Zhelobenko invariants, Bernstein–Gelfand–Gelfand operators and the Kostant Clifford algebra conjecture. Transform. Groups 17(3), 823–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joseph, A.: Modules for relative Yangians and Kazhdan–Lusztig polynomials. Transform. Groups 19(1), 105–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khoroshkin, S., Nazarov, M.: Mickelsson algebras and representations of Yangians. TAMS 364(3), 1293–1367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirillov, A.A.: Introduction to family algebras. Mosc. Math. J. 1(1), 49–63 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Kirillov, A.A.: Family algebras and generalized exponents for polyvector representations of simple Lie algebras of type Bn (Russian). Funct. Anal. Appl. 42(4), 308–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kostant, B.: Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the \(\rho \)-decomposition \(C(\mathfrak{g})=V_\rho \otimes C(P)\), and the \(\mathfrak{g}\)-module structure of \(\wedge \mathfrak{g}\). Adv. Math. 125(2), 275–350 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. In: Small, L.W. (ed.) Pure and Applied Mathematics (New York). Wiley, Chichester (1987)

    Google Scholar 

  24. Levasseur, T., Stafford, J.T.: Invariant differential operators and an homomorphism of Harish-Chandra. J. Am. Math. Soc. 8(2), 365–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Popov, V.L., Vinberg, E.B.: Invariant theory. In: Parshin, A.N., Shafarevich, I.R. (eds.) Encyclopaedia of Math. Sciences, Algebraic Geometry IV, vol. 55. Springer, Berlin (1991)

    Google Scholar 

  26. Wallach, N.R.: Invariant differential operators on a reductive Lie algebra and Weyl group representations. J. Am. Math. Soc. 6(4), 779–816 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zahid, A.: Les endomorphismes \(\mathfrak{k}\)-finis des modules de Whittaker. Bull. Soc. Math. Fr. 117(4), 451–477 (1989)

    MathSciNet  Google Scholar 

  28. Zhelobenko, D.P.: Harmonic Analysis on Semisimple Complex Lie Groups Izdat. Nauka, Moscow (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Joseph.

Additional information

Work supported in part by the Binational Science Foundation, Grant no. 711628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, A. Relative Yangians of Weyl type. Sel. Math. New Ser. 22, 2059–2098 (2016). https://doi.org/10.1007/s00029-016-0270-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0270-x

Keywords

Mathematics Subject Classification

Navigation