Skip to main content
Log in

Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For each integer \(k\ge 4\), we describe diagrammatically a positively graded Koszul algebra \(\mathbb {D}_k\) such that the category of finite dimensional \(\mathbb {D}_k\)-modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type \(\mathrm{D}_k\) or \(\mathrm{B}_{k-1}\), constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. see, e.g., [19, 9.4] with the notation \(\tilde{\Omega }_\lambda \) there.

  2. This condition arises also in the context of blob algebras as studied for instance in [32], and of generalized Temperley–Lieb algebras [21]. It is derived naturally from the theory in [7] by a “folding” procedure, see [30, 5.2].

  3. In case C has no dots, this agrees with the obvious notion of (anti)clockwise.

  4. The artificially looking choice of only allowing admissible surgeries between admissible stacked circle diagrams becomes transparent and consistent with [7] if we use the approach from [30]. Rewriting the dotted cup diagrams in terms of symmetric cup diagrams, as in [30], turns neighbored cup–cap pairs into nested ones, and our admissibility assures that we only use those that are applicable for surgery in the sense of [7].

  5. This definition of outer circle makes sense when we work with symmetric diagrams as in [30] where it would turn just into a circle which is not nested inside any other circle.

  6. We tried to clarify the misleading formulation of the analog of (R-5) (iii) in [4].

References

  1. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boe, B.D., Collingwood, D.H.: Multiplicity free categories of highest weight representations. I. Commun. Algebra 18, 947–1032 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boe, B.D., Hunziker, M.: Kostant modules in blocks of category \({\cal O}_S\). Commun. Algebra 37, 323–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braden, T.: Perverse sheaves on Grassmannians. Canad. J. Math. 54, 493–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Math. Z. 231, 301–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan, J.: Symmetric functions, parabolic category \(\cal O\), and the Springer fiber. Duke Math. J. 143, 41–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra I: cellularity. Mosc. Math. J. 11, 685–722 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra III: category \(\cal O\). Represent. Theory 15, 170–243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cline, E., Parshall, B., Scott, L.: The homological dual of a highest weight category. Proc. Lond. Math. Soc. 68, 296–316 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Cox, A., De Visscher, M.: Diagrammatic Kazhdan–Lusztig theory for the (walled) Brauer algebra. J. Algebra 340, 151–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cox, A., De Visscher, M., Martin, P.: The blocks of the Brauer algebra in characteristic zero. Represent. Theory 13, 272–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, A., De Visscher, M., Martin, P.: A geometric characterisation of the blocks of the Brauer algebra. J. Lond. Math. Soc. (2) 80, 471–494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrig, M., Stroppel, C.: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality. arXiv:1310.1972 (2013)

  14. Ehrig, M., Stroppel, C.: 2-row Springer fibres and Khovanov diagram algebras for type \(D\). arXiv:1209.4998 to appear in CJM (2015)

  15. Ehrig, M., Stroppel, C.: Koszul gradings on Brauer algebras. arXiv:1504.03924 to appear in IMRN (2015)

  16. Fan, Z., Li, Y.: Geometric Schur duality of classical type, II. Trans. Am. Math. Soc. Ser. B 2, 51–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frenkel, I., Khovanov, M., Stroppel, C.: A categorification of finite-dimensional irreducible representations of quantum \(\mathfrak{sl}_2\) and their tensor products. Sel. Math. (N.S.) 12, 379–431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenkel, I.B., Khovanov, M.G., Kirillov Jr, A.A.: Kazhdan–Lusztig polynomials and canonical basis. Transform. Groups 3, 321–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fulton, W.: Young Tableaux, vol. 35 of LMS Student Texts. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Green, R.M.: Generalized Temperley–Lieb algebras and decorated tangles. J. Knot Theory Ramif. 7, 155–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hotta, R., Takeuchi, K., Tanisaki, T.: \(D\)-Modules, Perverse Sheaves, and Representation Theory, vol. 236 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (2008). Translated from the 1995 Japanese edition by Takeuchi

  23. Hu, J., Mathas, A.: Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of type \(A\). Adv. Math. 225, 598–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \(\cal {O}\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  25. Irving, R.S.: Projective modules in the category \({\cal O}_S\): self-duality. Trans. Am. Math. Soc. 291, 701–732 (1985)

    MathSciNet  MATH  Google Scholar 

  26. Khovanov, M.: A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665–741 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolb, S.: Quantum symmetric Kac–Moody pairs. Adv. Math. 267, 395–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. König, S., Xi, C.: On the structure of cellular algebras. In: Algebras and Modules, II (Geiranger, 1996), vol. 24 of CMS Conference Proceedings, pp. 365–386. American Mathematical Society, Providence (1998)

  30. Lejczyk, T., Stroppel, C.: A graphical description of \(({D}_n,{A}_{n-1})\) Kazhdan–Lusztig polynomials. GMJ 55, 313–340 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Letzter, G.: Coideal subalgebras and quantum symmetric pairs. In: Montgomery, S., Schneider, H.-J. (eds.) New Directions in Hopf Algebras. Mathematical Sciences Research Institute Publications, vol. 43, pp. 117–165. Cambridge University Press, Cambridge (2002)

  32. Martin, P., Saleur, H.: The blob algebra and the periodic Temperley–Lieb algebra. Lett. Math. Phys. 30, 189–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mazorchuk, V.: Lectures on Algebraic Categorification, QGM Master Class Series. European Mathematical Society (EMS), Zürich (2012)

    Google Scholar 

  34. Rouquier, R.: 2-Kac-Moody algebras (2008). arXiv:0812.5023

  35. Sartori, A.: Categorification of tensor powers of the vector representation of \({U}_q(\mathfrak{gl}(1|1))\). arXiv:1305.6162 to appear in Selecta Math., May (2013)

  36. Shigechi, K.: Kazhdan-Lusztig polynomials for the Hermitian symmetric pair \(({B}_{N},{A}_{{N}-1})\). arXiv:1412.6740 (2014)

  37. Soergel, W.: Kategorie \(\cal O\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3, 421–445 (1990)

    MathSciNet  Google Scholar 

  38. Soergel, W.: Kazhdan–Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. Theory 1, 83–114 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stroppel, C.: Parabolic category \(\cal O\), perverse sheaves on Grassmanninans, Springer fibres and Khovanov homology. Compos. Math. 145, 954–992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wilbert, A.: Topology of two-row Springer fibers for the even orthogonal and symplectic group. arXiv:1511.01961 (2015)

Download references

Acknowledgments

We like to thank Jon Brundan, Ngau Lam, Antonio Sartori, and Vera Serganova for many helpful discussions and Daniel Tubbenhauer for comments on the manuscript. We are in particular grateful to the referee for his/her extremely careful reading of the manuscript and for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Stroppel.

Additional information

M.E. was financed by the DFG Priority program 1388. This material is based on work supported by the National Science Foundation under Grant No. 0932078 000, while the authors were in residence at the MSRI in Berkeley, California.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrig, M., Stroppel, C. Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians. Sel. Math. New Ser. 22, 1455–1536 (2016). https://doi.org/10.1007/s00029-015-0215-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0215-9

Mathematics Subject Classification

Navigation