skip to main content
research-article

RFID-data compression for supporting aggregate queries

Published:04 July 2013Publication History
Skip Abstract Section

Abstract

RFID-based systems for object tracking and supply chain management have been emerging since the RFID technology proved effective in monitoring movements of objects. The monitoring activity typically results in huge numbers of readings, thus making the problem of efficiently retrieving aggregate information from the collected data a challenging issue. In fact, tackling this problem is of crucial importance, as fast answers to aggregate queries are often mandatory to support the decision making process. In this regard, a compression technique for RFID data is proposed, and used as the core of a system supporting the efficient estimation of aggregate queries. Specifically, this technique aims at constructing a lossy synopsis of the data over which aggregate queries can be estimated, without accessing the original data. Owing to the lossy nature of the compression, query estimates are approximate, and are returned along with intervals that are guaranteed to contain the exact query answers. The effectiveness of the proposed approach has been experimentally validated, showing a remarkable trade-off between the efficiency and the accuracy of the query estimation.

Skip Supplemental Material Section

Supplemental Material

References

  1. Acharya, S., Poosala, V., and Ramaswamy, S. 1999. Selectivity estimation in spatial databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aggarwal, C. and Yu, P. S. 2007. In Data Streams - Models and Algorithms: A Survey Of Synopsis Construction In Data Streams, C. Aggarwal, Ed., Advances in Database Systems Series, vol. 31, Springer, 169--207.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bai, Y., Wang, F., and Liu, P. 2006. Efficiently filtering RFID data streams. In Proceedings of the CleanDB Workshop. 50--57.Google ScholarGoogle Scholar
  4. Bai, Y., Wang, F., Liu, P., Zaniolo, C., and Liu, S. 2007. RFID data processing with a data stream query language. In Proceedings of the International Conference on Data Engineering. 1184--1193.Google ScholarGoogle Scholar
  5. Bleco, D. and Kotidis, Y. 2009. RFID data aggregation. In Proceedings of the 3rd International Conference on GeoSensor Networks. 87--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Buccafurri, F., Furfaro, F., Mazzeo, G. M., and Saccà, D. 2011. A quad-tree based multiresolution approach for two-dimensional summary data. Inf. Syst. 36, 7, 1082--1103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buccafurri, F., Furfaro, F., and Saccà, D. 2012. A probabilistic framework for estimating the accuracy of aggregate range queries evaluated over histograms. Inf. Sci. 188, 121--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cao, H., Wolfson, O., and Trajcevski, G. 2006. Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15, 3, 211--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cao, Z., Diao, Y., and Shenoy, P. J. 2009. Architectural considerations for distributed RFID tracking and monitoring. In Proceedings of the International NetDB Workshop.Google ScholarGoogle Scholar
  10. Chawathe, S. S., Krishnamurthy, V., Ramachandran, S., and Sarma, S. 2004. Managing RFID data. In Proceedings of the International Conference on Very Large Databases. 1189--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cocci, R., Diao, Y., and Shenoy, P. 2007. Spire: Scalable processing of RFID event streams. In Proceedings of the RFID Academic Convocation.Google ScholarGoogle Scholar
  12. Cocci, R., Tran, T. T. L., Diao, Y., and Shenoy, P. J. 2008. Efficient data interpretation and compression over RFID streams. In Proceedings of the International Conference on Data Engineering. 1445--1447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2009. Introduction to Algorithms. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cormode, G., Garofalakis, M. N., Haas, P. J., and Jermaine, C. 2012. Synopses for massive data: Samples, histograms, wavelets, sketches. Found. Trends Datab. 4, 1--3, 1--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cuzzocrea, A., Furfaro, F., and Saccà, D. 2009. Enabling olap in mobile environments via intelligent data cube compression techniques. J. Intell. Inf. Syst. 33, 2, 95--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eavis, T. and Lopez, A. 2007. Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation. In Proceedings of the International Conference on Information and Knowledge Management. ACM, New York, 475--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fazzinga, B., Flesca, S., Furfaro, F., and Masciari, E. 2009. Efficient and effective RFID data warehousing. In Proceedings of the International Database Engineering & Applications Symposium. 251--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Floerkemeier, C. 2003. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Frentzos, E., Gratsias, K., and Theodoridis, Y. 2007. Index-based most similar trajectory search. In Proceedings of the International Conference on Data Engineering. 816--825.Google ScholarGoogle Scholar
  20. Furfaro, F., Mazzeo, G. M., Saccà, D., and Sirangelo, C. 2008. Compressed hierarchical binary histograms for summarizing multi-dimensional data. Knowl. Inf. Syst. 15, 3, 335--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Giannotti, F., Nanni, M., Pinelli, F., and Pedreschi, D. 2007. Trajectory pattern mining. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 330--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gonzalez, H., Han, J., and Li, X. 2006a. Flowcube: Constructing RFID flowcubes for multi-dimensional analysis of commodity flows. In Proceedings of the International Conference on Very Large Databases. 834--845. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gonzalez, H., Han, J., and Li, X. 2006b. Mining compressed commodity workflows from massive RFID data sets. In Proceedings of the International Conference on Information and Knowledge Management. 162--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gonzalez, H., Han, J., Li, X., and Klabjan, D. 2006c. Warehousing and Analyzing Massive RFID Data Sets. In Proceedings of the International Conference on Data Engineering. 83--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gonzalez, H., Han, J., and Shen, X. 2007. Cost-conscious cleaning of massive RFID data sets. In Proceedings of the International Conference on Data Engineering. 1268--1272.Google ScholarGoogle Scholar
  26. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., and Wolle, T. 2009. Compressing spatiotemporal trajectories. Comput. Geom. Theory Appl. 42, 9, 825--841. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Guha, S., Shim, K., and Woo, J. 2004. Rehist: Relative error histogram construction algorithms. In Proceedings of the International Conference on Very Large Databases. 300--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gunopulos, D., Kollios, G., Tsotras, V., and Domeniconi, C. 2005. Selectivity estimators for multidimensional range queries over real attributes. VLDB J. 14, 2, 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hardgrave, B. and Miller, R. 2006. The myths and realities of RFID. Int. J. Global Logistics Supply Chain Management 1, 1, 1--16.Google ScholarGoogle Scholar
  30. Hu, Y., Sundara, S., Chorma, T., and Srinivasan, J. 2005. Supporting RFID-based item tracking applications in oracle dbms using a bitmap datatype. In Proceedings of the International Conference on Very Large Databases. 1140--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jeffery, S. R., Franklin, M. J., and Garofalakis, M. N. 2008. An adaptive RFID middleware for supporting metaphysical data independence. VLDB J. 17, 2, 265--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kankonsae, S., Choeysuwan, P., and Choomchuay, S. 2010. A 2-stage compression for RFID tags data. In Proceedings of the International Workshop on Information Communication Technology.Google ScholarGoogle Scholar
  33. Kanne, C. C. and Moerkotte, G. 2010. Histograms reloaded: the merits of bucket diversity. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 663--674. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Law, A. M. and Kelton, W. D. 2000. Simulation Modeling and Analysis. McGraw Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Lee, C. H. and Chung, C. W. 2008. Efficient storage scheme and query processing for supply chain management using RFID. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 291--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Liu, Y., Chen, L., Pei, J., Chen, Q., and Zhao, Y. 2007. Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. In Proceedings of the International Conference on Computational Creativity. 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Megiddo, N. and Supowit, K. J. 1984. On the complexity of some common geometric location problems. SIAM J. Comput. 13, 1, 182--196.Google ScholarGoogle ScholarCross RefCross Ref
  38. Poosala, V. and Ioannidis, Y. 1997. Selectivity estimation without the attribute value independence assumption. In Proceedings of the International Conference on Very Large Databases. 486--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Roh, Y. J., Kim, J. H., Chung, Y. D., Son, J. H., and Kim, M. H. 2010. Hierarchically organized skew-tolerant histograms for geographic data objects. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 627--638 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tran, T. T. L., Sutton, C., Cocci, R., Nie, Y., Diao, Y., and Shenoy, P. J. 2009. Probabilistic inference over RFID streams in mobile environments. In Proceedings of the International Conference on Data Engineering. 1096--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Turcu, C. 2009. Development and implementation of RFID technology. Intechweb.Google ScholarGoogle Scholar
  42. Virgilio, R. D., Sugamiele, P., and Torlone, R. 2009. Incremental aggregation of RFID data. In Proceedings of the International Database Engineering & Applications Symposium. 194--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, F. and Liu, P. 2006. Temporal Management of RFID Data. In Proceedings of the International Conference on Very Large Databases. 1128--1139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wu, M. and Jermaine, C. 2009. Guessing the extreme values in a data set: A Bayesian method and its applications. VLDB J. 18, 2, 571--597. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. RFID-data compression for supporting aggregate queries

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Database Systems
          ACM Transactions on Database Systems  Volume 38, Issue 2
          June 2013
          245 pages
          ISSN:0362-5915
          EISSN:1557-4644
          DOI:10.1145/2487259
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 July 2013
          • Accepted: 1 March 2013
          • Revised: 1 March 2012
          • Received: 1 September 2011
          Published in tods Volume 38, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader