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Global Solvability for the
Degenerate Kirchhoff Equation

FUMIHIKO HIROSAWA

1. - Introduction

We shall consider the Cauchy problem

where

is the inner product of Au(x) and u(x) in L 2 (I~x ) , is
a nonnegative function in C 1 ([0, cxJ)). When
8hk, Kronecker’s 8) equation (1) is called the Kirchhoff equation, which has
been studied by many authors (cf. [2], [3], [5], [12], [13], [14], [16], etc.).
The problem which we shall treat in this paper is a generalization to

a degenerate elliptic operator A, where [ahk(x)]hk is a real symmetric matrix
which satisfies

We know some results for the problem (1), that are the following. When
the coefficients ahk and the Cauchy data uo and ul 1 belong to real analytic class,
Kajitani-Yamaguti [9] proved global existence and uniqueness for the solution
of (1) in case E C 1 ([o, oo)) ~ 0, and later Hirosawa [7]
relaxed the assumption on 4) to 4$(q) E Co([O, oo)). In case of quasi-analytic
class data, Yamaguti [17] proved the global solvability for (1) in case that uo
and ul 1 belong to a certain subclass of quasi-analytic functions (for the definition
of quasi-analytic class, see [10]) under the assumptions that (D (17) E Cl ([o, (0)),
1&#x3E;(1]) ~ 3 1&#x3E;0 &#x3E; 0 and that [ahk(x)] is real analytic. Actually in case A = -0,
Nishihara [13] investigated the global solvability for data in the quasi-analytic
class. The class of functions which was introduced in [13] is more general than

Pervenuto alla Redazione il 25 ottobre 1996 e in forma definitiva il 29 aprile 1997.
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Yamaguti’s one in [17]. This paper enhances Nishihara’s work to a general
degenerate elliptic operator A whose coefficients satisfy a particular condition,
specified below, with respect to the space variable x. We remark that the

problem which was treated in [13] is strictly hyperbolic, and the author showed
a sufficient condition for the existence of a local solution in a more general
class. But our problem is weakly hyperbolic, so we can’t get the same result
for local existence in general.

At first we define some function spaces to state our main theorem.

DEFINITION. Let Mo, M1, ... be a sequence of positive real numbers and
p a positive constant.

(i) A Coo (JRn) function f said to belong to the class if there exists
a C &#x3E; 0 independent of a, p and x such that

where a = (al , ~ ~ ~ , an ) is a multi-index of nonnegative integers, D~ =
and lal = a + ... + an. For f (x ) e we define the

norm by

(ii) Let f Mj } be a monotone increasing, logarithmically convex sequence, that
is, )::-1 ::; Mk for any j  k. A C’ (R") function f’ said to belong toJM.1_1 
the class if there is a C &#x3E; 0 independent of a and p such that

were 11 - 11 is the usual norm in Z~(R~). We set
Moreover if the summation

is finite, then we say that f belongs to the class and define the
norm by

We see that the classes and satisfy the inclusion
for 0  ‘d p  p’ (see Lemma D in Appendix) and the

product of a(x) E and v(x) E belongs to for
0  V p  po (see Lemma C).
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MAIN THEOREM. Let po and p be positive numbers satisfying po  p 1, be
2

a positive, logarithmically convex sequence and SUPj Q ( j ) = SUPj / j 2 
00. Assume that [ahk(x)] E satisfies (2), u° (x), u 1 (x) E 
f (t, x) E C 0 ([0, T] ; and that (D (17) E C 1 ([0, oo)) satisfies (D (17) &#x3E;

3 &#x3E; 0 for all 17 E [0, (0). Then there are a positive number = T,
a monotone decreasing positive function p (t) E C 1 ([0, To]) and the unique solution
u (t, x) of ( 1 ) such that

Moreover, if satisfies a quasi-analytic condition, that is, Ei = Mj I Mj+1 = 00
(see Theorem A) and Q ( j ) - 0 as j -&#x3E;. 00, then we can take To = T.

REMARK 1. Quasi-analytic condition holds for ( j = 1), k

log k ( j &#x3E; 2)}, lmjl = (s  1) and so on. The conditon supj 6j)  o0

holds for = 3/2, and so on. In the linear weakly hyperbolic
case, that is - constant, the condition sup~ (3(j)  oo is optimal
(see [4]).

REMARK 2. Roughly speaking, the class of the solution introduced
in [13] is defined as follows. For a strictly increasing nonnegative continuous
function M(r), is the set of functions f (x )  oo,

where )§ ) = + ... + n2 and /(.) is the Fourier image of f (x). Then the
condition for M(r) which ensures the existence of a global solution is the

following:

for some positive constants c and do, where M-1 is the inverse function of M.
On the other hand, by the Denjoy-Carleman theorem (Theorem A), we can
easily see that the quasi-analytic condition oo is equivalent
to (3) by considering M(r) - here M(r) is the associated
function of fmjl.

REMARK 3. In strictly hyperbolic case (i.e., when the matrix [ahk] is strictly
positive definite), we can omit the assumption sup~ Q ( j )  oo to prove the local
existence of the solution.

ACKNOWLEDGMENT. I would like to thank Prof. K. Kajitani and Dr. T. Ki-
noshita for their encourgement and many helpful conversations.
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2. - Proof of Main Theorem

In case that the coefficients ahk(x) (h, k = 1, ~ ~ ~ , n) and the Cauchy data
are real analytic, we know the following result:

THEOREM 1 (K. Kajitani-K. Yamaguti [9]). Let po and pl be positive constants
satisfying po  pl. Assume E C 1 ([o, (0), 1&#x3E;(1]) &#x3E; 0 and [ahk (x)] E

[C(ij!l)pl I. E E CO([O, 
for some T &#x3E; 0, there is a nonnegative function p (t) E C 1 ([0, T]) such that the
Cauchy problem (1) has the unique solution u (t, x) E C2 ([0, T]; 

We shall relax the assumption of Theorem 1 from { j ! } to general fmjl.
For given uo, u 1, ahk and f satisfying the assumptions of Main Theorem,

we define the real analytic functions ,ahk and as

where is Friedrichs’ mollifier and X (y) satisfies /(y)&#x3E;:0 and J 
!

Note that, is an analytic convolution, so uo"~ (x), 
v

and are real analytic functions, namely, E 

[C({ j !})pl] and e C°([0, for any fixed v.

These regularized functions satisfy the following properties:

LEMMA 1.

(i) converges to (h, k= 1,... , n).

(ii) u6V) (x) and converge to uo (x) and U1(X) respectively in as

v -~ 00.

(iii) f ~"~ (t, x) converges to f (t, x) uniformly with respect to t e [0, T 
as v -~ 00.

PROOF. (i) can be easily seen by using the Lebesgue convergence theorem.
We can prove (ii) by using a property of Fourier transformation. Indeed,

the difference of the a-derivative of u6V) and that of uo can be estimated as
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Using the property

we have

Applying the same argument to (ii), we have (iii). 0

For the real analytic functions u , ul"~, (h, k = 1,... n) and 
constructed above, we shall consider the following Cauchy problem

where Here we remark that condi-

tion (2) is satisfied by the coefficients
Suppose now that u (’) (t, x) is a solution of (4). We define the infinite

order energy and its j-th order element as

where =- (D ((Avu(v)(t, .), u(v)(t, .))). (From now on we write u (v) (t, .) =
u in the norm and inner product.)

We prove here some estimates to the solution of (4), but, in order to obtain
them, we shall introduce a lemma for the Kirchhoff type problem.

LEMMA 2 (Proposition 6.1 [9]). If Uo E u 1 E L2 and f (t, x) E

CO([O, T] ; L2) for T &#x3E; 0, then there is a constant CT independent of t E [0, T] ]
such that the solution of the Cauchy problem (1) satisfies

where H 1 is the Sobolev space defined by i
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PROOF. Let Define e(t) for the solution of (1) as

follows:

Then computing the first order derivative of e(t)2 we have

Applying Gronwall’s lemma, we obtain
for that is, is positive, we have

hence we get

Now we shall estimate the first order derivative Adopting
equation (4), we have

Dividing by we get
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Now, differentiating Ev(t), and applying the above estimate of we obtain

Now we shall calculate the commutator [A", Da] in order to estimate the third
term in (8). Applying Leibniz’ rule, [Av, D"]u can be rewrited as follows:

where

and
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Using the equality and the inequality
we have

where C1 1 is a constant independent of j.
We now introduce the following lemma to estimate (10).
LEMMA 3 (Lemma 2.1 [4] ) . Let (a E be a sequence of non-negative

real numbers. Then, for every integer I and l’ (  I), and every real number 0  K  1,
there is a constant C(n, K) such that

Applying this lemma, (10) can be estimated by

where C2 and C3 are constants independent of j.
For the term I Ia, using an analogous inequality with instead of

we get

Hence we have
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for some constant CS independent of j, where we have used the identity
y - 1 i ‘ 

_- 

1 i’I 

Finally, to estimate the term IIIa, we apply the following lemma due to
O. A. Oleinik.

LEMMA 4 (Lemma 4 [ 15]). Let (x)] be a Hermitian non-negative matrix of
functions in Then, for every n x n symmetric matrix [~hk ], for A = 1, ~ ~ ~ , n,
there is a constant C such that

Applying this lemma, we have

Hence the third term of (8) can be estimated as follows
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Let us consider po. By using Lemma B (ii), the first term of (12) can
be estimated as

first term of ¡

where C9 is a constant independent of t.

Applying the assumption we obtain

the fourth term of

where C 10 is some constant independent of t.
Moreover we have

the fifth term of (8)  C11 I

for some constant C11 independent of v (by the definition of 
Then, taking together the preceeding estimates for the derivative of Ev(t),

we get the following bound

We now proceed to a choice of p (t ) . Applying Lemma 2, in the parenthesis of
the first term of (13) there is a constant C12 independent of j and t such that

the first term in

where Qo = sup 3(j). Let us assume that p (0) &#x3E; 0, then we can easily see
that there is T1 &#x3E; 0 such that the ordinary differential inequality

. 

has a positive decreasing solution on [0, Tl ] . Moreover if Q(j) - 0,
let jo(T) large enough such that the ordinary differential inequality
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has a positive decreasing solution on [0, T] for any j &#x3E; jo. On the other hand,
if j  jo, we obtain

for some constant C13 independent of j and t.

Thus we get the following estimate

Note that Q ( j ) - 0 as j -~ oo and then we can take Tl = T.
Next we estimate the nonlinear part of (15),

We now introduce a lemma, which is classical in convex analysis.
LEMMA 5 (Theorem 243 [6]). Let it and a be continuous and strictly increas-

ing. We define 9NA ( f ) by

where f and p are nonnegative functions such that f p(x)dx = I and f p(x)dx
exists. Then, in order that OO1JL ( f )  ( f ) for all f, it is necessary and sufficient
that or o JL -1 should be convex.

1 1

Using the inequality I (A, u, u t )  (Avu, u) 2 (A, u t, u t ) 2 , the Plancherel
theorem and Lemma 2, we have

where is a constant independent of u.
When we see So

1 
,

where N is a nonnegative function such that h - N (À 2 ) is convex, having used
Lemma 5 for , and When
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let us take where ;
with j and 1 is Friedrichs’ mollifier. It is easy

to see that pe (t, ~ ) satisfies and

Now, by using Lemma 5 with we have

In addition, we choose x~(~) satisfies that supp
and so we have

Hence we obtain

Now we introduce the following lemma. 
’

LEMMA 6. Let v (x ) E and let M(r) be the associated function
Q ( j )  oo, then for any 8 &#x3E; 0, there is a constant C,, n such that

where p = p/ ( 1 + s).
PROOF. The right hand side of (18) can be estimated as the following:
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for any E &#x3E; 0, where we have applied the boundedness of Q ( j ) and the

following inequalities

Now let Rk (k = 0, 1,...) and Qk (k = 1, 2, ~ ~ ~ ) be chosen as follows:

where we note that Qk = R". Hence we have

Here we remark that the estimate (17) remains valid for any continuous
1 

, ,

strictly increasing function N such that h - is convex. Now, considering
that N (r) = M 1+£ jCf:,n r for any fixed t e [0, T and £ &#x3E; 0, then we see

, , , , 
1

that N (r ) is a continuous strictly increasing function such N (À 2) is

convex by definition of M(r), where Ce,n is the constant in Lemma 6. Finally,
applying Lemma 6, we obtain

Therefore we have the estimate
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Now, without loss of generality let 1, and consider the inequality

Next we shall investigate the condition which must be satisfied by N in
order that some estimates on the solution of (4) hold. For this purpose we
introduce the following lemmas.

LEMMA 7. Let f : [0, oo) - [0, oo) be continuous, g : (0, (0) -~ (0, (0)
continuous and nondecreasing, and c a positive constant. Then the inequality

implies that

for any fixed number Go less than G (oo), where
Moreover, if G (oo) = 00, then the inequality

is valid for all t &#x3E; 0.

The proof of Lemma 3 is given in [13].
LEMMA 8. Let M (r ) be a continuous nondecreasing function such that

for some positive constant c and do, then for any positive constant p, the function
N (r) defined by N (r) _--_ 

for some positive constant c’ and for any 0  p  p.

Now we introduce a lemma to prove the Lemma 8.
Let M (r ) be the associated function of We define the regularized

associated function M~(r) of M(r), written in the form M~(r) - xs * M(r)
for X (r) E such that supp X C [-8, 81, f X (r)dr - 1 and XE (r) =-

for E &#x3E; 0 and 8 &#x3E; 0. Then we have the following lemma.

LEMMA 9 (W. Matsumoto [ 11 ]). For 0   1 and V 8 &#x3E; 0, a regularized
associated function M, (r) E satisfies the inequality

for any
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PROOF. For

where we used for -

PROOF OF LEMMA 8. Let N(r) - M(pr)2 and Ne(r) = Me(p(1 - E)r)2,
where M, is a regularized associated function of M defined above. Then we
see that N -1 (s )  and hence we have

where we used the equality and the

inequality Putting E = 1- p / p, we get Lemma 8. D

Let C = C’ p/do in (20) and then (20) can be rewritten as

Then, regarding g ( f ) in Lemma 7 as g ( f ) - and

applying Lemma 8, we see that f °° -~- - oo, where N(r) - and p
is a constant such that 0  p  p(T). Hence, if satisfies a quasi-analytic
condition, by applying Lemma 7, we have the energy estimate

where CT is a constant independenet of v.
By the foregoing arguments, finally we have the following proposition.
PROPOSITION 1. Let po and PI be positive numbers such that po  pl, 

3
be positive, logarithmically convex and SUPj Q ( j ) n SUPj / j 2 Mi I  00.

Assume that [ahk (x)] E satisfies (2), uo and u I E f (t, x) E
CO([O, T]; and E oo)] satisfies the inequality (D &#x3E;

3 &#x3E; 0. Then we get the following estimates of Ev(t) to the solution of (4).
i) There exist positive constants To( T) and C independent of v, and a positive

function p (t) on [0, TO] such that
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ii) If satisfies a quasi-analytic condition and Q ( j ) -~ 0 as j --* 00, there
exists a constant CT independent of v such that

Now we shall show the existence of the solution for the nonlinear Cauchy
problem (1) in case that the data and the coefficients satisfies the assumption
of the Main Theorem. 

Let and be solutions of (4). Define _

_ u (v) (t, x) - u (v’) (t, x). We shall consider the following Cauchy problem for

From now on we will show that the solution of the Cauchy problem (23)
t/~(~) converges to 0 in C~([0, for some &#x3E; 0.

We define the infinite order energy and its j-th order element

J as

with

Then, applying Proposition 1 and the estimate obtained for Ev(t), we conclude
that there is a constant C1 1 independent of v and v’ such that

on
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As to the first term of (26), we see that

first term of

Applying Lemma 1 and Lemma 2 to (27) and (29), we find a constant C2,
independent of v and v’, such that

where 81 (v, v’ ) - 0 as j ~ oo for any t E [0, To].
Next we shall estimate (28) as follows:

Now, applying Lemma 1, Lemma C and the fact c C ( { M~ + 1 } ) p , there
are constants C3 and E2(V) such that can be estimated by

for 0  V K  1, where ~2(v) -~ 0 as v -~ oo and C3 is a constant independent
of v. Similarly, we have

Hence we get the following estimate
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for 0   1, where we have applied the same arguments as the proof
of Lemma 6. Here let us consider that p (t)  K’ p (t), so that we have

Therefore by taking together the previous estimates, there are constants C5
and C6 such that we get the following estimate of E,,,,(t):

Hence by applying Gronwall’s lemma, Lemma 1 and the definition of 81 1 and

E2, there are C and C’ such that

3. - Appendix

THEOREM A (Denjoy-Carleman). The following three statements are equiva-
lent :

is a quasi-analytic class,

where M(r) - 

The proof is given in [ 10] .

LEMMA B (Kinoshita [8]). Let be a positive sequence of real numbers.
Assume that is logalithmically convex. Then the the following inequalities are
established.

for where C is a constant

independent of j .
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PROOF. (i) can be proved by the same argument to (ii). For (ii), we
shall prove that there is a constant C independent of j and v such that

In case that j - v + 1 &#x3E; v + 1, we see that the following inequality holds:

In case that j - 1 - v &#x3E; v, we have the inequality:

Where W e used the logalithmically convexity of that is,
for any j  k.

LEMMA C. The product of a (x) E and v (x) E belongs
to the  V p  po.

PROOF. By applying Lemma B (i), D" (a (x ) v (x ) ) can be estimated as fol-
lows :

-- 1_.1

for any K &#x3E; 1 and a E N", where C is a constant independent of a. Then

using the same method as the proof of Lemma 6, we have

Hence, by choosing K  we have the lemma.

LEMMA D. C  p  p’.
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PROOF. Let f (x) be a function belonging the class C4 (fMj I)p,. Then we
can get the following estimates:

where we used the relations ’ ]
Hence, by choosing I we get the lemma.
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