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Abstract — The restricted Maximum k-Satisfiability MAX-
kSAT is an enhanced Boolean satisfiability counterpart that has 
attracted numerous amount of research. Genetic algorithm has 
been the prominent optimization heuristic algorithm to solve 
constraint optimization problem. The core motivation of this 
paper is to introduce Hopfield network incorporated with genetic 
algorithm in solving MAX-kSAT problem. Genetic algorithm will 
be integrated with Hopfield network as a single network. The 
proposed method will be compared with the conventional Hopfield 
network. The results demonstrate that Hopfield network with 
genetic algorithm outperforms conventional Hopfield networks. 
Furthermore, the outcome had provided a solid evidence of 
the robustness of our proposed algorithms to be used in other 
satisfiability problem.
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I.	 Introduction

Since decades ago, optimization has provided intensified algorithmic 
research for the development of constraint satisfaction and Boolean 

satisfiability. Hybridization between both field are motivated by 
application in scheduling, VLSI circuit, pattern reconstruction and 
many other applications. However, the main problem for both area is to 
assign interpretation or value to variables such that it makes the whole 
system become feasible [1]. Before it can be considered as optimization 
problem, both field must merge their character and able to produce 
their hybridized cost function [2]. Motivated by notable counterpart 
of Boolean satisfiability, restricted maximum k-satifiability (MAX-
kSAT) has been a wide subject in constraint optimization problem. 
Restricted MAX-kSAT can be defined as a problem to assign value to 
Boolean variable with k literal per clause that maximize the number of 
satisfied clauses.

The idea of implementing artificial neural network to provide 
solution to optimization problem has been utilized by various researcher 
in artificial intelligence field. It is a fascinating field of study because it 
provides an alternatives way of doing computation and it is a paradigm 
towards understanding of the intelligence. It is a pursuit to visualize 
and represent information processing capabilities of an actual nervous 
system [3]. Hopfield neural network [4] is a simple recurrent network 
that has an efficient associative memory and resembled the biological 
brain [5]. The important property of the Hopfield neural network is 
the minimization of energy whenever there is any change in inputs. 
Due to effectiveness of energy changes in Hopfield neural network, 
several researchers have merged the idea of logic programming with 
Hopfield neural network. Several celebrated models were developed by 
Sathasivam [6] and Wan Abdullah [3]. Most of the model employed the 
cost function based on inconsistencies of the Horn clauses [5]. The cost 
function of the logic will be exploited in order to find the connection 

strength that act as a building block of the energy minimization. 
Due to the complexity of network when the number of neuron 

increased, method of searching satisfied interpretation in a given 
MAX-kSAT clause should comply with traditional Hopfield network. 
The easiest method that compliment with Hopfield network is 
exhaustive search method (ES). The combination of exhaustive search 
method (ES) and Hopfield network namely HNN-MAXkSATES will 
be utilized to represent the conventional Hopfield network [32].

Genetic algorithm (GA) is increasingly viewed as optimization 
technique to a wide range of problem. Strictly speaking, genetic 
algorithm combines the idea of evolutionary improvement, 
recombination and mutation among the candidate solution. Since 
Hopfield neural network often providing a local minimum to solution 
[7], genetic algorithm will be incorporated with Hopfield network to 
do MAX-kSAT problem. The combination of genetic algorithm and 
Hopfield neural network were proven effective by many researchers 
in solving various optimization problem [8, 9, 10]. Thus, genetic 
algorithm is introduced in this study to supplement the Hopfield neural 
network to facilitate the search process of MAX-kSAT solution. HNN-
kSATGA indicates the combination of Hopfield network and Genetic 
algorithm in solving any given MAX-kSAT problem. Although the 
solution obtained may stuck at local minima, the performance of 
the MAX-kSAT solution based on this hybrid algorithm was indeed 
promising. 

This paper has been organized as follows. Section II introduces the 
k-satisfiability (k-SAT) and maximum k-satisfiability (MAX-kSAT). 
In section III, neuro searching methods including exhaustive search 
(ES) and genetic algorithm method (GA) in doing MAX-kSAT will 
be discussed. In section IV, neuro-logic paradigm comprises of the 
Hopfield model, Wan Abdullah’s method and Sathasivam’s relaxation 
method will be discussed. Furthermore, the implementation of our 
proposed method will be discussed in section V. Finally, section VI and 
VII enclose the experimental results and conclusion.

II.	 Maximum k-Satisfiability Problem

A.	 k-Satisfiability Problem
The k-SAT problem can be delineated as a conundrum of determining 

satisfiability of sets of clauses comprise of at most k literals per clause 
(k-CNF formulas). It is a general form of satisfiability problem that 
can be divided into the randomized satisfiability and maximum 
satisfiability [41]. Additionally, k-SAT problem can be expressed as 
k-CNF (k-Conjunctive Normal Form) or Krom formula [38]. Besides, 
k-SAT problem is considered as a NP problem or non-deterministic 
problem. Hence, the k-SAT problem involves logic formula that can 
be translated into an optimization problem. Therefore, the three core 
components of k-SAT are simplified as follows: 

1.	 Consists of a set of m variables, 1 2, ,......, mx x x
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2.	 A set of literals. A literal is a variable or a negation of a variable.

3.	 A set of n distinct clauses: 1 2, ........ nC C C . Each clause 
consists of only literals combined by just logical OR “V”. Each 
clause must contain of variables. 

In addition, the Boolean values are bipolar, consisting of 1 and -1 that 
could have exemplified the idea of true or false [45]. Hence, the goal 
of the k-SAT problem is to decide whether there exits an assignment of 
truth values to variables that makes the following formula satisfiable. 

 1

n

ii
P C

=
= ∧

 	 (1)

Where ∧ is a logical AND connector, P denotes the entire Boolean 

formula for k-SAT. iC is a clausal form of DNF with k variables. In our 
case, we investigated k=2 and k=3 for our satisfiability problem where 
the clause in randomized 2-SAT and 3-SAT has the following form:
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B.	 Restricted Maximum k-Satisfiability
Restricted maximum k-Satisfiability problem (MAX-kSAT) can be 

defined as generalized form of Boolean satisfiability problem [37]. 
Given a Boolean formula P in conjunctive normal form (CNF) with 
n clauses containing variable each and positive integer g where

g m≤ . MAX-kSAT can be defined specifying implicitly a pair

( ),λ θ  [44] where λ is the set if all possible solution { }1, 1 n−  

and θ  is a mapping λ ξ→ which is denotes the score of the 

assignments. ξ  is scored based on true clauses. Therefore, MAX-
kSAT problem contains of defining the best bipolar/binary assignments 
to the variables in P that simultaneously satisfies at least g of the m 
clauses. Moreover, the mission is to decide the “optimized” assignment 
that can satisfy the maximum number of clauses containing k variables. 

Fundamentally, there are 2n  possible solutions to this problems.  It 
was proven that MAX-kSAT is NP-complete problem for any 3k ≥ . 

There are numerous classifications of the MAX-kSAT namely, 
weighted MAXSAT [42] and Partial MAXSAT [43]. However, 
restricted MAX-kSAT constrained optimization problem that can be 
included in maximization problem [39]. Additionally, restricted MAX-
kSAT can be ventured in logic programming [40]. In this exploration, 
we limit our analysis to k=2 and k=3. For instance, we can form the 
following 2-SAT formula:

( ) ( ) ( ) ( )P x y x y x y x y= ∨ ∧ ∨¬ ∧ ¬ ∨ ∧ ¬ ∨¬ 	 (4)

Equation (4) is not possible to satisfy because no particular 
assignment will drive to all the clauses true. The following Table 1 
portrays the truth table for P. 

Table 1 depicts that entire assignments will not be able to make 
formula P true. Hence, every clause will be checked in order to compute 
the maximum number of satisfied clause. All in all, the maximum 
number of clauses satisfied by the assignment is 3 out of 4. 

TABLE I
Truth Table for P

x y ( )x y∨ ( )x y∨ ¬ ( )x y¬ ∨ ( )x y¬ ∨ P

1 -1 1 1 -1 1 -1

-1 1 1 -1 1 1 -1

-1 -1 -1 1 1 1 -1

1 1 1 1 1 -1 -1

III.	Neuro- Searching Paradigm

Neuro-searching paradigm consists the algorithmic method in 
finding the solutions. Previously, Hopfield neural network alone has 
been utilized in doing logic programming. The usage of Hopfield neural 
network (HNN) in doing logic programming is proven effective when 
the number of neurons were small. In order to make a fair comparison 
between standalone Hopfield neural network and Hopfield neural 
network incorporated with genetic algorithm, we embedded exhaustive 
search technique to enhance the traditional HNN in doing MAXkSAT. 
In this paper, neuro-searching paradigms were used in hunting the 
maximum number of clauses for restricted maximum 2-satisfiability 
and restricted maximum 3-satisfiability problem.

A.	 Exhaustive Search (ES)
Exhaustive search (ES) algorithm can be demarcated as a local 

search technique for an element with a particular property among 
combinatorial forte such as permutations, combinations, logics, 
satisfiability or subsets of a set [32]. 

Roughly speaking, the ES algorithm will brutally hunt for the total 
potential clause, even if the search dimension was getting bigger 
and more complex [5]. Technically, the exhaustive search is the 
most primitive algorithm for checking the logic satisfaction. ES is 
theoretically simple to implement. In our exploration, we embedded ES 
to traditional Hopfield neural network in order to enhance the primitive 
solution checking by Hopfield neural network. The exhaustive search 
will facilitate traditional Hopfield neural network to check the 
satisfaction clause by clause in order to generate the maximum number 
of satisfied clause.

However, the main drawback of exhaustive search (ES) is the speed 
of the algorithm [35]. Subsequently, exhaustive search devours more 
computation time in searching for the maximum number of satisfied 
clauses completely [28]. In this paper, we will generate random bit 
strings and compute the number of satisfied clauses directly, clause by 
clause. It will be a huge possibility that the bit strings are not converging 
to global maxima during the first iteration of ES. Thus, the iterations 
will be repeated 100 times. The ES might look decent for the simpler 
case, but what would happen if we increase the number of clauses? 

We will encounter with the complexity of the hybrid network when 
we attempted with more complex bit strings. Thus, the computation 
time will become very high if we increase the complexity of the hybrid 
network. Therefore, the computation complexity is represented as 

(2 )nO [6]. For the ES algorithm, the satisfied assignment is gained 
after performing a ‘trial and error’ procedure exhaustively. Henceforth, 
the correct assignment will be stored into the Hopfield’s artificial brain 
in the form of content addressable memory (CAM). Some related 
work on exhaustive search has been done by a few neural network 
practicioners such as Aiman & Asrar [27], Kaushik [28], and Zinovik 
et al. [32]. In this paper, we hybridized ES algorithm with the Hopfield 
neural network as a network based on logic programming to solve 
MAX-kSAT problems (HNN-MAX2SATES and HNN-MAX3SATES).
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B.	 .Genetic Algorithm (GA)
Genetic algorithms are robust evolutionary paradigms that 

have attracted a prolific amount of research in optimization and 
maximization problem [46]. According to mathematicians’ standpoint, 
the genetic algorithm is a staple computational paradigm inspired from 
the Darwin’s theory of evolution, namely survival for the fittest model 
[29, 30]. For instance, every generation is represented by an array of 
bit strings similar to the chromosomes of DNA. In our case, we have 
a set of bit string that represent the interpretation of the MAXkSAT. 
This is motivated by the previous work by Aiman and Asrar [27] 
that highlighted on the genetic algorithm to solve randomized 3-SAT 
problem. On the contrary, the fundamental impetus of genetic algorithm 
is to find the bit string that maximize the number of satisfied clauses 
before we incorporate with Hopfield network. Specifically, the genetic 
algorithm in doing MAXkSAT consists of distinctive stages. 

Stage 1: Initialization 
In this stage, 100 random populations in the form of bit strings 

were initialized [27]. Each assignment consists of possible solution to 
randomized MAXkSAT problem. 

Stage 2: Fitness evaluation
Next. all the bit string will undergo fitness evaluation. Each of 

the correct bit which result in satisfied MAXkSAT clause will be 
“awarded”. During fitness evaluation, the number of satisfied clauses 
will represent the fitness of the chromosome (bit string). The fitness 
function is widely used as an objective function by a few notable 
works [46, 47, 48]. The objective function of the genetic algorithm is 
as follows:

1 2 3max[ ( ) ( ) ( )... ( )]MAXkSAT Nf c x c x c x c x= + + +  	 (5)

Where 1 2 3, , ...... Nc c c c are the number of clause checked by genetic 
algorithm and N is the number of clauses present in the formula. 
Specifically, the role of the fitness function is to evaluate the candidate 
bit strings.

Stage 3: Selection
During this stage, 10 candidate bit strings with the highest fitness 

will go to the next generation. The selected candidate bit strings will 
have the privilege to perform the crossover process. 

Stage 4: Crossover
During crossover, bit strings will be chosen randomly and the 

exchange of information between two sub-structure of the bit strings 
occurred. Bit string. For example,

Before crossover
Bit string A =  -1 1 1 1
Bit string B =  1 -1 1 -1

After crossover =
Bit string A =  -1 -1 1 1
Bit string B =  1 1 1 -1

The location of crossover in a particular bit string is randomly 
defined since we want to maintain genetic diversity of the bit strings. 
Crossover usually increase the number of satisfied clause of the 
newly bit strings children. This feature helps the best bit string of 
the generation to survive and improve further. On top of that, the 
crossover operator imitates the biological amalgamation between two 
single-chromosomes (haploid) in organisms. After crossover, all the 
bit strings children undergo fitness evaluation in order to check their 
corresponding fitness.   

Stage 5: Mutation
Mutation operator is the real game changer for genetic algorithm. 

Local maxima could occur during simulation. Local maxima occurred 
when the fitness of the bit string varies significantly to the expected 
maximum fitness. This will create non-improving solution of 
MAXkSAT clauses. In order to create “out of the blue” bit string, we 
utilized mutation. Mutation involve flipping the state of the bit string 
from 1 to -1 or -1 to 1 [27]. Position of the mutation in a particular bit 
string is random. For example,  

Before mutation
Bit string A = -1 -1 1 1

After mutation
Bit string A = -1 1 1 1
The second position of the bit string was flipped from -1 to 1. In this 

case, different bit string was created after mutation. 

Thus, we can calculate the fitness value for the newly formed bit 
strings [27, 36].

Genetic algorithm in doing MAXkSAT has been proven effective 
by previous researchers to avoid global maxima. If the bit string does 
not achieve the desired fitness (local maxima), the current bit string 
will improve further during the next generation via crossover and 
mutation. Most of the researchers set up to 100 to 1000 generations 
in order to improve the solution. Since we are dealing bipolar search 
which only involve 1 or -1, it will be easy for bit strings to converge 
to global maxima (Maximum fitness). In this paper, we hybridized GA 
algorithm with the Hopfield neural network as a network based on logic 
programming to solve MAX-kSAT problems (HNN-MAX2SATGA 
and HNN-MAX3SATGA).

Figure 1 shows the algorithm for this paradigm. 

Fig. 1.  Algorithm/flowchart for genetic algorithm.

IV.	Neuro- Logic In Hopfield Neural Network

A.	 The Hopfield Neural Network
For many years, Hopfield model has been recognized as an effective 

optimization method [4]. Since the first application of Hopfield network 
to optimization problem, this approach has well drawn many attention 
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towards various field such as computer network, pattern recognition 
and scheduling problem.

Theoretically, the model comprises of interconnected unit called 
neurons, forming a network. Computation in Hopfield network is 
executed by collections of interconnected neurons [4, 11]. Most of 
the literature suggest Hopfield network contains good properties 
including parallel execution for fast solutions to computationally 
intensive optimization problems with exceptionally good accuracy 
[9]. In this connection, we choose Hopfield network to do logic 
programming because it is well distributed, consist of CAM [12], 
smooth implementation and easy to blend with other algorithm.

The units in Hopfield nets are called binary threshold unit [13] 
which can only take bipolar values such as 1 and -1. The paramount 

definition for unit I’s activation, ia are given:

1

1

ij j i
ji

if W S
a

Otherwise

ξ >= 
−

∑
	 (6)

Where ijW is the connection strength from unit j to i . jS is 

the state of unit j and iξ is the threshold of unit i . The network 
comprises of N recognized neurons, each is described by an Ising 
spin variable. The connection in Hopfield net contain no connection 

with itself 0ii jjW W= = . Thus it makes the Hopfield connections 
became symmetric or bidirectional [4, 14]. Neuron is basically bipolar 

{ }1, 1iS ∈ − thus it follows the dynamics ( )sgni iS h→

where ih is the local field of the connection. When dealing with 
higher order connection, the local field modifies to

( ) ( ) ( )3 2 1....i j k ij j iijk
j j

h W S S W S W= + + +∑ ∑
 	  (7)

Since the weight (connection strength) in Hopfield network is 
constantly symmetrical, the updating rule maintains as follows [15]:

( ) ( )1 sgni iS t h t + =   	 (8)

The dynamic is to ensure the energy decrease monotonically which 
following the activation system. The generalized lypunov energy 
equation is as followed:

( ) ( ) ( )3 2 11 1
3 2i j k ij i j i jijk

i j k i j i

E W S S S W S S W S= − − −∑∑∑ ∑∑ ∑
	 (9)

This energy function is significant because it establishes the degree 
of convergence of the network [16, 4]. The energy value obtained from 
the equation will be checked through and will be classified as global or 
local minimum energy. As it stands, the network is hunting for global 
minimum energy (correct solution) compared to local minimum energy 
(wrong solution). The process of obtaining global minimum energy 
always associated with how we define the weight of the network. In 
this work, we implemented Wan Abdullah’s updating technique to 
obtain the weights for our network [3, 17]. 

B.	 Wan Abdullah’s Method in Learning MAX-kSAT Clauses
MAX-kSAT can be treated as one of the constrained optimization 

problem that being carried out on Hopfield neural network. Wan 
Abdullah’s method became the pioneer in weight extraction based on 
logical inconsistencies [17]. Truth values were assigned to each atoms. 

The minimized cost function can be created by maximizing the number 
of satisfied clauses.

For example, Consider the following MAX-2SAT and MAX-3SAT 

problem withα and φ  

( ) ( ) ( ) ( )A B A B A B A Bα = ∨ ∧ ∨¬ ∧ ¬ ∨ ∧ ¬ ∨¬ 	 (10) 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

P Q R P Q R P Q R
P Q R P Q R P Q R
P Q R P Q R

φ = ∨ ∨ ∧ ¬ ∨ ∨ ∧ ∨¬ ∨
∧ ∨ ∨¬ ∧ ¬ ∨¬ ∨ ∧ ¬ ∨ ∨¬
∧ ∨¬ ∨¬ ∧ ¬ ∨¬ ∨¬ 	 (11)

Cost function costf for both equation (8) and (9) are as followed

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cost
1 1 1 11 1 1 1
2 2 2 2

1 1 1 11 1 1 1
2 2 2 2

A B A B

A B A B

f S S S S

S S S S

α = − − + − + +

+ + − + + + 	 (12)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

cost
1 1 1 1 1 11 1 1 1 1 1
2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 1 1
2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 1 1
2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 1 1
2 2 2 2 2 2

P Q R P Q R

P Q R P Q R

P Q R P Q R

P Q R P Q R

f S S S S S S

S S S S S S

S S S S S S

S S S S S S

φ = − − − + + − −

+ − + − + − − +

+ + + − + + − +

+ − + + + + + +
	  (13)

By comparing equation (12), (13) with equation (9), we obtained 

synaptic weight for α and φ . The synaptic weights are shown in 
Table 2 and Table 3. 

TABLE II

Synaptic Weight for α based on Wan Abdullah’s Method

W 1C 2C 3C 4C

( )1
AW 1/4 1/4 -1/4 -1/4

( )1
BW 1/4 -1/4 1/4 -1/4

( )2
ABW -1/2  1/2  1/2  -1/2

TABLE III

Synaptic Weight for φ based on Wan Abdullah’s Method

W 1C 2C 3C 4C 5C 6C 7C 8C

( )1
PW 1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 -1/8

( )1
QW 1/8 1/8 -1/8 1/8 -1/8 1/8 -1/8 -1/8

( )1
RW 1/8 1/8 1/8 -1/8 1/8 -1/8 -1/8 -1/8

( )2
PQW -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8 -1/8

( )2
QRW -1/8 -1/8 1/8 1/8 1/8 1/8 -1/8 -1/8

( )2
PRW -1/8 1/8 -1/8 1/8 1/8 -1/8 1/8 -1/8

( )3
PQRW 1/16 -1/16 -1/16 -1/16 1/16 1/16 1/16 -1/16
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Normally, weight can be determined by using traditional Hebbian 
learning concept [18]. Sathasivam has shown that the weight obtained 
by using Wan Abdullah’s method are similar due to clausal MAX-kSAT 
similarity. Although both method is expected to produce the similar 
weight, Wan Abdullah’s method is proven to minimize the spurious 
minima produced by logic compared to Hebbian learning [17, 18]. 

C.	 Network Relaxation
 The nature of the solution obtained by Hopfield network can 

affected by multiple factors. According to Zeng & Martinez [19], 
the firing and receiving information among neurons can influence 
the output of the network. In this case, network relaxation helps 
the network to exchange information efficiently. As the number of 
neuron increased, more interconnected neurons involved in firing and 
receiving information. Without proper relaxation mechanism network 
tend to produce more local minima solution. Since MAX-kSAT 
contain more clausal constrained, we applied Sathasivam’s relaxation 
technique [14] to ensure the network relaxed to equilibrium states. 
Information exchange between neurons will be updated based on the 
following equation

 

new
i idh dh

R
dt dt

=
	 (14)

Where R denotes the relaxation rate and ih refers to the local field 
of the network as listed in equation (7). In this case, we consider a 
constant relaxation R since it will improve the network relaxation 
compared to dynamic relaxation.

D.	 Hyperbolic Activation Function
Other than relaxation rate, the choice of activation function can 

affect the performance of the network. Traditional McCulloch-Pitts 
activation function is prone to few weaknesses such as computational 
burdening and lack of efficiency on producing desired result [20]. In 
order to get network’s full potential, we utilized Hyperbolic tangent 
activation function. The Hyperbolic tangent activation function is 
written as follows:

 
( )

i i

i i

h h

i h h
e eg
e e

h
−

−

−
=

+   	 (15)

Where ih refers to the local field of the network. The Hyperbolic 
tangent can act as an efficient squashing function for local field and 
produce a well-defined output (between 1 and -1). In addition, the 
usage of activation function is to avoid the network from collapse into 
a simple linear function [21]. 

V.	 Implementation

The simulations for HNN-MAXkSATGA and HNN-MAXkSATES 
were executed on Microsoft Visual C++ 2013 for Windows 10. Firstly, 
the restricted MAX-kSAT clauses were generated randomly. After that, 
the initial states for the neurons were initialized in the MAX-kSAT 
clauses. The network evolved until it reached the final state. Once the 
program had reached the final state, the neuron state was updated via 
equation (7). As soon as the network relaxed via equation (14), the 
final state obtained. Furthermore, if the state had remained unaffected 
for five runs, neurons achieved stable states. Hence, by permitting an 
ANN to evolve, sooner or later, shall lead to a stable state where the 
energy function obtained would not change further. Subsequently, the 
corresponding final energy for the stable state was calculated. If the 
difference between the final energy and the global minimum energy is 

within the tolerance value, the solution would be considered as a global 
solution. Both algorithms were repeated 100 times with 100 neuron 
combinations. The termination criteria for the final energy was 0.001. 
Sathasivam et al. [11] highlighted the fact that 0.001 was selected as 
the termination criteria because it could minimize the statistical errors. 
The analysis will involve the global minima ratio, ratio of satisfied 
clause, fitness landscape value, Hamming distance and computation 
time as the performance measure and indicator.

VI.	Result and Discussion

A.	 Global Minima Ratio 
Global minima ratio is defined as the ratio between the global 

solutions over total number of runs [18]. Each simulation will produce 
10000 bit strings solutions. 0.9524 global minima ratio value shows 
9524 bit strings are global minimum and 476 bit strings are local 
minimum.

Fig. 2.  Global minima ratio for HNN-MAX2SATES and HNN-
MAX2SATGA.

Fig. 3.  Global minima ratio for HNN-MAX3SATES and HNN-
MAX3SATGA.

Figure 2 and 3 represent the global minima ratio obtained by HNN-
MAX2SATGA, HNN-MAX2SATES and HNN-MAX3SATGA, HNN-
MAX3SATES. The efficiency of both networks can be determined 
by calculating their global minima ratio. According to Sathasivam 
[18], if the global minima ratio of the proposed network close to one, 
almost all solutions in the network reached global minimum energy 
(global solution). HNN-kMAXGA is able to recall more correct states 
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compared to HNN-MAX-kSATES. The limit for HNN-MAX-kSATES 
is 60 neurons. After 60 neurons, the network in HNN-MAX-kSATES 
trapped in trial and error state and consume more time to find the 
solution. On contrary, HNN-kMAXGA is able to withstand number 
of neurons up to 70 neurons. Genetic algorithm is proven to reduce 
the complexity of the searching technique. Unsatisfied bit string can 
be improved through the crossover among the best offspring (highest 
fitness). The bit strings are expected to improve in term of fitness 
(satisfied clauses) as the number of generation increased. As a result, 
the bit string produced by genetic algorithm achieved global minima 
compared to traditional exhaustive search method.   Mutation in 
genetic algorithm was added to reduce the chances for the bit string 
to reach local maxima (non-improving solution) [22, 23]. Besides, 
less complexity during searching can gives more time for the network 
to relax. Effective relaxation will reduce the number of suboptimal 
solution during the computation [14].  

B.	 Ratio of Satisfied Clauses
Ratio of satisfied clauses can be defined as the total number of 

satisfied clauses over the total number of clauses [24]
TABLE IV

Ratio of Satisfied Clause

NN HNN-
MAX2SATES

HNN-
MAX2SATGA

HNN-
MAX3SATES

HNN-
MAX3SATGA

10 0.745 0.750 0.800 0.875

20 0.723 0.750 0.787 0.850

30 0.716 0.743 0.764 0.834

40
50
60

0.700
0.688
0.632

0.739
0.732
0.728

0.732
0.700
0.688

0.827
0.815
0.799

70 - 0.722 - 0.774

NN=Number of neurons.

Table 4 depicts the ratio of the satisfied clauses over total clause 
obtained HNN-MAX2SATGA, HNN-MAX2SATES and HNN-
MAX3SATGA, HNN-MAX3SATES. In maximum satisfiability 
problem, MAX-2SAT and MAX-3SAT clauses will never be fully 
satisfied. We can further deduce that, the higher the ratio obtained, the 
more clauses will be satisfied in any MAX-kSAT problem. According 
to Table 4, HNN-MAXkSATGA is proven to obtain more satisfied 
clauses in MAX-kSAT compared to traditional exhaustive search 
method. As the number of neurons increased, the HNN-MAXkSATGA 
is still able to maintain the quality of the ratio. On the other hand, HNN-
MAXkSATES will produce a lower ratio of satisfied clauses since most 
of the solution obtained trapped at suboptimal solution (local minima).    

C.	 Fitness Energy Landscape Value
Fitness energy landscape value is associated with each point 

according to the pattern storing capability. Since Hopfield network 
concern about the ruggedness of the energy model, the fitness energy 
landscape must be taken into account. The fitness energy landscape 
value is based on Kauffman’s model [25].  

Figure 4 and 5 depicts the fitness energy landscape value obtained 
for HNN-MAXkSATGA and HNN-MAXkSATES. As observed, the 
difference in energy for HNN-MAXkSATGA is almost flat (zero) 
compared to HNN-MAXkSATES. MAX-kSAT clauses is always 
related to the ruggedness of the energy landscape. The more rugged the 
energy landscape, the harder it will to obtain good solution [26]. Since 
the complexity of the solution searching has been reduce drastically by 
genetic algorithm in HNN-MAXkSATGA, more relaxation time was 
added before the network retrieve the final states. As a result, HNN-

MAXkSATGA has a greater capability to store MAXkSAT pattern 
compared to HNN-MAXkSATES. Hence, more global minimum 
energy produced.  

Fig. 4.  Fitness energy landscape value for HNN-MAX2SATES and HNN-
MAX2SATGA.

Fig. 5.  Fitness energy landscape value for HNN-MAX3SATES and HNN-
MAX3SATGA.

D.	 Hamming Distance
Hamming distance is demarcated as the number of positions 

at which the corresponding binary values between two strings are 
different. In our context, Hamming distance measures the closeness of 
bits between the stable state and the global state of the neurons upon 
relaxation process [14].

TABLE V
Global Hamming Distance

NN HNN-
MAX2SATES

HNN-
MAX2SATGA

HNN-
MAX3SATES

HNN-
MAX3SATGA

10 0.00804 0.00215 0.00986 0.00382

20 0.01558 0.00624 0.01980 0.00845

30 0.02340 0.01002 0.02976 0.01367

40
50
60

0.03478
0.04682
0.06099

0.01555
0.01930
0.02889

0.03867
0.04922
0.07133

0.01822
0.02138
0.02990

70 - 0.03302 - 0.03673

NN=Number of neurons.
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Table 5 portrays the obvious success of genetic algorithm compared 
to exhaustive search in generating the maximum satisfied clauses. 
According to Sathasivam [17], if the Hamming distance of the 
network close to zero, almost all outputs produced by the network are 
considered as global solutions. Based on table 4, Hamming distance for 
HNN-MAXkSATGA and HNN-MAXkSATES are close to zero. 

This is due to the power of GA in ascertaining the satisfied 
clause, especially during the crossover stage where the clause was 
being improved by certain rate to achieve the highest fitness value. 
Additionally, HNN-MAXkSATGA would be able to recall the correct 
states that contributed to the lower hamming distance. Conversely, the 
exhaustive search algorithm emphasized the trial and error process 
during clause satisfaction process. When the complexity increased, 
HNN-MAXkSATES were able to sustain up to 60 neurons and HNN-
MAXkSATGA with the limitation until 70 neurons. The main reason is 
due to the nature of exhaustive search that increased the computation 
burden to get correct neuron states. Hence, the ability to sustain huge 
number of neurons is due to the special ability of GA that reduces the 
computation burden in hunting the correct states.

E.	 Computation Time
 The computation time is an important measure or indicator to 

analyze the performance of our proposed algorithm. According to 
our exploration context, the computation time can be delineated as 
the expanse of time for which our network was used to complete the 
whole computation process [6, 13]. The computation process involves 
the training and generating the maximum satisfied clauses via our 
proposed paradigm [14]. 

TABLE VI
Computation Time

NN HNN-
MAX2SATES

HNN-
MAX2SATGA

HNN-
MAX3SATES

HNN-
MAX3SATGA

10 24 1 32 2

20 108 17 159 23

30 357 76 482 98

40
50
60

2880
11452
88562

280
633
1550

3461
13708
102855

340
784
1699

70 - 3124 - 3322

NN=Number of neurons.

Table 6 depicts the computation time for our proposed algorithms, 
HNN-MAX2SATGA and HNN-MAX3SATGA together with the 
conventional algorithm, HNN-MAX2SATES and HNN-MAX3SATES.  
A nearer look at the running time indicates as the network become more 
complex, more computation time are needed to generate the global 
solutions. Since we deal with MAX-2SAT and MAX-3SAT clauses, 
the training process consumes more time to minimize the logical 
inconsistencies than the randomized k-SAT problem. For instance, as 
the number of neuron increased, the computation time taken to generate 
the maximum number of clauses also increased. 

This is due to the fact that maximum k-satisfiability problem will 
never be fully satisfied, but we can possibly calculate the maximum 
number of clauses that will be satisfied. Hence, the states retrieved 
from the network can improve the global solutions that maximize 
the number of satisfied clauses. Thus, the whole process incurs more 
computation time. Generally, MAX-3SAT requires more time than 
MAX-2SAT due to complexity as the number of literals entrenched in 
the formula also higher.

According to Table 6, HNN-MAX2SATGA and HNN-
MAX3SATGA require less computation time compared to the other 

counterparts, HNN-MAX2SATES and HNN-MAX3SATES. The 
undoubted evidence beyond that results are due to more neurons being 
forced to jump the energy barrier to relax into global solutions during 
the training process [14]. Additionally, the training process by using 
exhaustive search requires more computational time due to the trial and 
error process in hunting the maximum number of satisfied assignments. 
One of the important fact is for the maximum satisfiability problem, 
MAX-2SAT and MAX-3SAT clauses are never be satisfied 100%. On 
the contrary, when we implemented genetic algorithm, the computation 
time was faster due to the crossover and mutation process that speed up 
the training process. This is due to the fact that the unsatisfied bit string 
can be enhanced through the crossover among the finest offspring. 
The mutation process can avoid the bit string to achieve local minima. 
Hence, the bit string created by genetic algorithm achieved global 
minima swiftly compared to traditional exhaustive search method.  

VII.	 Conclusion

 Inspired by the Darwin’s survival of the fittest theory together 
with biological genetic operators and engaging concept in 
artificial intelligence, a hybrid paradigm had been proposed. We 
had successfully develop a network by using genetic algorithm 
incorporated with Hopfield neural network in performing restricted 
maximum k-satisfiability logic programming (HNN-MAXkSATGA). 
The proposed model, later, was compared with a conventional 
technique; ES with Hopfield neural network (HNN-MAXkSATES). 
The work, reported in this paper, revealed decent performances of 
HNN-MAXkSATGA in terms of the global minima ratio, ratio of 
satisfied clause, Hamming distance, fitness landscape value and the 
compuatation time. According to the experimental results, the HNN-
MAXkSATGA outperformed HNN-MAXkSATES in all of those 
measures. In addition, the proposed framework provides solid platform 
for evaluating various type of satisfiability problem. Our future work 
revolves on the robustness of other metaheuristic technique to solve 
restricted maximum k-satisfiability problem.

Acknowledgment

The authors fully acknowledged Ministry of Higher Education 
(MOHE) and School of Mathematical Sciences, Universiti Sains 
Malaysia for the support which makes this important research viable 
and effective.

References

[1]	 D. Givry, Simon, J. Larrosa, P. Meseguer, and T. Schiex. “Solving 
Max-SAT as weighted CSP.” In  Principles and Practice of Constraint 
Programming–CP 2003, Springer Berlin Heidelberg, 2003, pp. 363-376.

[2]	 Papadimitriou, Christos, and M. Yannakakis. “Optimization, 
approximation, and complexity classes.” In Proceedings of the twentieth 
annual ACM symposium on Theory of computing, ACM, 1988, pp. 229-
234.  

[3]	 W. A. T. W. Abdullah, The logic of neural networks.  Physics Letters 
A, 176(3), 1993, pp. 202-206.

[4]	 J.J. Hopfield, D. W. Tank, Neural computation of decisions in optimization 
problem, Biological Cybernatics, 52, 141-152, 1985.

[5]	 R. Rojas, Neural Networks: A Systematic Introduction. Berlin: Springer, 
1996.

[6]	 S. Sathasivam, Learning in the Recurrent Hopfield Network, Proceedings 
of the Fifth International Conference on Computer Graphics, Imaging and 
Visualisation, 323-328, 2008.

[7]	 M. Peng, N. K. Gupta, & A. F. Armitage, An investigation into the 
improvement of local minima of the Hopfield network.  Neural 
networks, 9(7), pp. 1241-1253, 1996.

[8]	 S. Salcedo-Sanz, C. Bousoño-Calzón, & A. R Figueiras-Vidal, A mixed 



Regular Issue

- 59 -

neural-genetic algorithm for the broadcast scheduling problem.Wireless 
Communications, IEEE Transactions on, vol. 2, no. 2, pp. 277-283, 2003. 

[9]	 X. G. Ming and K. L. Mak. “A hybrid Hopfield network-genetic algorithm 
approach to optimal process plan selection.”  International Journal of 
Production Research 38, no. 8, pp. 1823-1839, 2000.

[10]	 C. Y. Ngo, & V. O. Li, Fixed channel assignment in cellular radio 
networks using a modified genetic algorithm. Vehicular Technology, IEEE 
Transactions on, vol. 47, no. 1, pp. 163-172, 1998.

[11]	 S. Sathasivam, P.F. Ng, N. Hamadneh, Developing agent based modelling 
for reverse analysis method, 6 (22), pp. 4281-4288, 2013.

[12]	 U. P. Wen, K. M.  Lan & H. S. Shih, A review of Hopfield neural networks 
for solving mathematical programming problems.  European Journal of 
Operational Research, vol. 198, no. 3, pp. 675-687, 2009.

[13]	 S. Haykin, Neural Networks: A Comprehensive Foundation, New York: 
Macmillan College Publishing, 1999.

[14]	 S. Sathasivam, Upgrading Logic Programming in Hopfield Network, 
Sains Malaysiana, 39, 115-118, 2010.

[15]	 M. Velavan, Z. R. Yahya, M. N. A.  Halif, & S. Sathasivam, (2015). 
Mean Field Theory in Doing Logic Programming Using Hopfield 
Network. Modern Applied Science, vol. 10, no. 1, p. 154, 2015.

[16]	 L. M. Ionescu, A. G. Mazare, & G. Serban, VLSI Implementation of an 
associative addressable memory based on Hopfield network model. IEEE 
Semiconductor Conference, vol. 2, pp. 499-502, 2010. 

[17]	 W. A. T. W. Abdullah, Logic Programming on a Neural Network. 
Malaysian Journal of computer Science, 9 (1), 1-5, 1993.

[18]	 S. Sathasivam, “Learning Rules Comparison in Neuro-Symbolic 
Integration.”  International Journal of Applied Physics and 
Mathematics, vol.1, no.2, pp. 129, 2011.

[19]	 X. Zeng, and T. R. Martinez, “Improving the performance of the Hopfield 
network by using a relaxation rate.” In Artificial Neural Nets and Genetic 
Algorithms Springer Vienna.s, 1999, pp. 67-72.

[20]	 M. S. Kasihmuddin, “Modifying Activation Function in Neuro Symbolic 
Integration,” M.S. thesis, Dept. Mathematical Science., Universiti Sains 
Malaysia, Penang, Malaysia, 2014.

[21]	 M. Velavan, Boltzman Machine and Hyperbolic Activation Function in 
Higher Order Network, 9 (2), 140-146, 2014.

[22]	 E. Elbeltagi, T. Hegazy and D. Grierson, Comparison among five 
evolutionary-based optimization algorithms.  Advanced engineering 
informatics, vol. 19, no. 1, pp. 43-53, 2005

[23]	 C. K. Chong, M. S. Mohamad, S. Deris, M. S. Shamsir, Y. W. Choon, and L. 
E. Chai, Improved differential evolution algorithm for parameter estimation 
to improve the production of biochemical pathway. International Journal 
of Interactive Multimedia and Artificial Intelligence, no.5, 2012.

[24]	 E. Nudelman, K. Leyton-Brown, H. H. Hoos, A.  Devkar, and Y. Shoham, 
Understanding random SAT: Beyond the clauses-to-variables ratio. In 
Principles and Practice of Constraint Programming–CP 2004, Springer 
Berlin Heidelberg, 2004, pp. 438-452.

[25]	 A. Imada and K. Araki, What does the landscape of a Hopfield associative 
memory look like? In  Evolutionary Programming VII, 1998, Springer 
Berlin Heidelberg, pp. 647-65.

[26]	 S. Sathasivam, W. A. T. W. Abdullah, Flatness of the Energy Landscape for 
Horn Clauses. SSJ, vol 1, no. 2, pp. 2, 2008.

[27]	 Aiman, U. and Asrar, N., Genetic Algorithm Based Solution to SAT-3 
Problem. Journal of Computer Sciences and Applications, 3(2), pp. 33-
39, 2015.

[28]	 Zinovik, I., Kroening, D. and Chebiryak, Y., Computing binary 
combinatorial gray codes via exhaustive search with SAT solvers.
Information Theory, IEEE Transactions on, 54(4), pp.1819-1823, 2008.

[29]	 Xie, J. and Dong, J., Heuristic genetic algorithms for general capacitated 
lot-sizing problems. Computers & Mathematics with applications, 44(1), 
pp. 263-276, 2002.

[30]	 Salcedo-Sanz, S. and Yao, X., A hybrid Hopfield network-genetic 
algorithm approach for the terminal assignment problem. Systems, Man, 
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(6), pp. 
2343-2353, 2004.

[31]	 Pooranian, Z., Shojafar, M., Tavoli, R., Singhal, M. and Abraham, A., A 
hybrid metaheuristic algorithm for Job scheduling on computational grids. 
Informatica, 37(2), pp.157, 2013.

[32]	 Kaushik, M., Comparative analysis of exhaustive search algorithm with 
ARPS algorithm for motion estimation. International Journal of Applied 

Information Systems, 1(6), pp. 16-19, 2012.
[33]	 Luke, S., Essentials of metaheuristics, 2nd edition. United States: Lulu, 

2013.
[34]	 Mark, W.G., & Lee C.G., Routing in random multistage interconnections 

networks: Comparing exhaustive search, greedy, and neural network 
approaches. International Journal of Neural System, 2 (3), pp. 125-142, 
1992.

[35]	 Hooker, J.N., Unifying local and exhaustive search. In L. Villasenor and A.I 
Martinez, editors. Proceeding of ENC 2005- Sixth Mexican International 
Conference on Computer Science, p. 237-243, 2005.

[36]	 Kumar, S., and Singh, M. P., Pattern recall analysis of the Hopfield 
neural network with a genetic algorithm. Computers & Mathematics with 
Applications, 60(4), pp. 1049-1057, 2010.

[37]	 Raman, V., Ravikumar, B., and Rao, S. S., A simplified NP-complete 
MAXSAT problem. Information Processing Letters. 65(1), pp. 1-6, 1998.

[38]	 Fernandez, W., Random 2-SAT: Result and Problems. Theoretical 
Computer Science. 265 (1): pp. 131-146, 2001.

[39]	 Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., and Darwiche, 
A., Solving weighted Max-SAT problems in a reduced search space: A 
performance analysis. Journal on Satisfiability, Boolean Modeling and 
Computation. 4: pp. 191-217, 2008.

[40]	 Hansen, P. and Jaumard, B., Algorithms for the maximum satisfiability 
problem. Computing, 44(4), pp.279-303, 1990.

[41]	 Broder, A.Z., Frieze, A.M. and Upfal, E., On the satisfiability and 
maximum satisfiability of random 3-CNF formulas. In  SODA  (Vol. 93, 
pp. 322-330), 1993. 

[42]	 Madsen, B. A., and Rossmanith, P. Maximum exact satisfiability: NP-
completeness proofs and exact algorithms. BRICS Report Series. 11(19), 
2004.

[43]	 Borchers, B., & Furman, J., A two-phase exact algorithm for MAX-
SAT and weighted MAX-SAT problems. Journal of Combinatorial 
Optimization, 2(4), pp. 299-306, 1998.

[44]	 Layeb, A., Deneche, A. H., and Meshoul, S., A new artificial immune 
system for solving the maximum satisfiability problem. Trends in Applied 
Intelligent Systems, pp. 136-142, 2010.

[45]	 Kowalski, R. A., The early years of logic programming. Communications 
of the ACM. 31(1): pp. 38-43, 1988.

[46]	 Gottlieb J., Marchiori E., & Rossi C. Evolutionary algorithms for the 
satisfiability problem. Evolutionary Computation. 2002;10(1):35-50.

[47]	 Rossi, C., Marchiori, E., & Kok, J. N. (2000, March). An adaptive 
evolutionary algorithm for the satisfiability problem. In Proceedings of the 
2000 ACM symposium on Applied computing-Volume 1 (pp. 463-469). 
ACM.

[48]	 Marchiori, E, & Rossi, C. (1999, July). A flipping genetic algorithm for 
hard 3-SAT problems. In Proceedings of the 1st Annual Conference on 
Genetic and Evolutionary Computation-Volume 1 (pp. 393-400). Morgan 
Kaufmann Publishers Inc.

[49]	 J. Singha, & R. H. Laskar, (2016). Hand gesture recognition using two-level 
speed normalization, feature selection and classifier fusion.  Multimedia 
Systems, pp. 1-16.

Mohd Shareduwan bin M. Kasihmuddin received his 
MSc (2014) and BSc(Ed) (2013) from Universiti Sains 
Malaysia. He is currently pursuing Ph.D degree with 
School of Mathematical Science, Universiti Sains Malaysia 
Penang Malaysia. His current research interests include 
neuro-heuristic method, constrained optimization, neural 
network and logic programming.

Mohd Asyraf Mansor was born in Sarawak, Malaysia 
in 1990. He obtained his MSc (2014) and BSc(Ed) 
(2013) from Universiti Sains Malaysia. He is currently 
pursuing Ph.D degree at School of Mathematical Science, 
Universiti Sains Malaysia. His current research interests 
include evolutionary algorithm, satisfiability problem, 
neural networks, logic programming and heuristic method 
especially Artificial Immune System. 



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº2

- 60 -

Saratha Sathasivam is a lecturer in the School of 
Mathematical Sciences, Universiti Sains Malaysia. She 
received her MSc and BSc(Ed) from Universiti Sains 
Malaysia. She received her Ph.D at Universiti Malaya, 
Malaysia. Her current research interest are neural networks, 
agent based modeling and constrained optimization 
problem. 


