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NUMERICAL REPRESENTATION OF CHOICE FUNCTIONS

Josép E. Peris, M.C. Sanchez and Begofia Subiza

ABSTRACT

Numerical representations of choice functions allow the expression of a problem of
choice as a problem of finding maxima of real valued functions, which requires less information
to be defined and which is easier to work with. In this paper, the existence of numerical
representations of choice functions by imposing assumptions directly on the choice function, is
obtained. In particular, it is proved that (IIA) is a necessary and sufficient condition for a choice
function to be representable, if the set of alternatives is countable, while the conjunction of (ITA)

and a “continuity condition” is sufficient to ensure it in separable topological spaces.
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1. INTRODUCTION

In Social Sciences, the most common description of individual choice
consists of assuming that the agent has an "a priori" ordering, or a ranking
over the different alternatives, that is, the agent knows his preference
relation. Then, "rational" behavior requires choosing the "best" elements,
according to this criterion, in every feasible set presented for choice

(i.e., to choose the maximal elements).

A different approach is given by removing the assumption that the
agent knows "a priori" his preference relation. In this case, the way of
analyzing the rationality of the choice function consists of observing the
different choices individuals make when different subsets of alternatives
are presented for choice, and comparing them. Thus, rationality is based on
the analysis of some coherent properties between the different choices

individuals make when the feasible set changes.

The relationship between these two ways of analyzing the choice problem
has been one of the most important subjects in the theory of choice. Thus,
although it is clear that from a preference relation we can define a choice
function by maximizing it in each feasible set of alternatives, the converse
(that is, given a choice function to find a preference relation whose
maximal elements define the choice set) is not always so obvious. This is
the problem of the rationality of choice functions (a revision of the most

important results on this topic can be found in [4,5,8]).




However, there are some economic models of choice in which the
existence of additional information about what the choice, the preferences
or the feasible sets are like, allow the problem to be analyzed in a
different way. This is the case, for instance, of models of applied
mathematics or control theory where the best options are chosen by means of
an optimization process of a particular real function (vectorial or scalar);
or the usual economic models of consumer and demand theory, where the
decision of the agents is based on the maximization of a utility function on
the budget sets. In all of these choice problems, it is assumed that the
choice of the best alternatives is achived by the maximization of a real
valued function. This approach is known in the literature as the problem of

numerical representation of a choice function.

The interest of numerical representations of choice functions is clear.
On the one hand, they transform a choice problem into a problem of the
existence of maxima of a real valued function, which is, in general, easier
to formulate and solve, due to the mathematical tools which can be applied
to them. On the other hand, the use of numerical representations has the

additional advantage of requiring less information to be defined.

The analysis of numerical representations of choice functions is
closely related to another independent field of the literature, devoted to
the analysis of binary relations: numerical representations of binary

relations.

Results on numerical representations of binary relations, together with

those on the rationality of choice functions, provide an indirect way of




analyzing the existence of numerical representations of choice functions.
Thus, by imposing conditions on a choice function its rationality can be
obtained and, once we know it is rationalized by a binary relation, the
existence of a numerical representation of this relation will guarantee the
existence of a numerical representation of the choice function. In this
line, we have to mention the work of Deb [3], who analyzes the existence of
numerical representations of choice functions by means of this indirect way,

in contexts with finite or countable sets of alternatives.

However, in order to obtain this kind of result in non-countable sets,
it is necessary to impose additional assumptions of separability,
continuity, etc., on both the relation which rationalizes the choice
function, as well as on the set where it is defined, but not on our initial
"input": the choice function. So it seems interesting to analyze directly
(without making use of rationality results) the existence of numerical
representations of choice functions. This kind of analysis is not usual in
the literature and has been only analyzed in some particular contexts (see
for instance [6,7], where the numerical representation of bargaining

solutions, taken as choice functions, is analyzed).

The aim of this work is, therefore, to state sufficient conditions for
a choice function to be numerically representable in general contexts
(countable and non-countable ones) only by means of assumptions directly
imposed on the choice function (without considering any kind of conditions

over possible rationalizations of the choice function).




2. PRELIMINARIES

Let X be the set of alternatives and P(X) the family of non-empty subsets of
X. A choice function F:D(X) — X, D(X) < P(X), is a functional relationship
that associates a non-empty subset of A, F(A), to each choice situation
A € D(X). As is usual in the literature, it is assumed throughout the paper
that D(X) contains all finite subsets of X (in many contexts it is assumed
that D(X) = P(X)). Let us denote by 92(X) the set of complete binary

relations defined over X.

Given a complete binary relation R € 92(X) we denote by M(A,R) the set

of maximal elements over A € P(X),

M(AR) = {a e A] aR x, Vx € A}.

In a similar way, given a real valued function u:X — R, we denote by

M(A,u) the set of maxima of the function over A € P(X), that is,

M(Auu) = {a € A] u(a) 2 u(x), Vx € A}.

A choice function F is rational if there exists a binary relation
R € 92 (X) whose maximal elements define the choice set in each feasible set

of alternatives, that is

3 R € R (X) such that VA € D(X), F(A) = M(A,R)




In this case, R is called a rationalization of the choice function.

The most well-known kind of rationality of choice functions is that of
rationality by means of a preorder (that is a complete, reflexive and

transitive binary relation).

In the literature about rationality of choice functions, many papers
have dealt with the problem of characterizing it by means of axioms that
explain the choice function behavior when the set of alternatives changes.

The following assumption is one of the most usual in these results,

(ITA) Independence of Irrelevant Alternatives (Arrow, [1])
If Ac B, F(B) " A # J, then F(A) = F(B) N A

In other words, if the set of feasible alternatives contracts, but some
of the chosen alternatives remain in the new feasible set, then these
alternatives are the only chosen ones in the new set. This assumption is a
necessary and sufficient condition for the rationality of a choice function

by means of a preorder.

Theorem 1. (Arrow, [1])
Let F:P(X)— X be a choice function. Then

F is rationalized by a preorder < F satisfies (IIA)

In order to prove the existence of numerical representations of a

choice function, one possibility consists of making use of the results




concerning the numerical representation of preference relations. In this
context, a real valued function u:X — R is called a utility function which

represents the binary relation R, if for every x,y € X, it is satisfied that

xRy & u®x 2uy).

In a similar way, real valued functions which characterize choice
functions are known in the literature as numerical representations of choice

functions (see [3]).

Definition 1.
A choice function F:D(X) — X is said to be representable iff there
exists a real valued function u:X — R such that for all A € D(X) it is

satisfied that

@ # M(Au) = F(A)

Then u is called a representation of F.

Remark: It is easy to prove that, in contexts in which the domain of the
choice function is P(X), or at least contains all finite subsets of X,
numerical representations of a choice function are unique, unless they are
monotone transformations (in the same way as happens with utility
functions). In more general domains, it is only satisfied that any monotone
transformation of a numerical representation of a choice function is also a

numerical representation.

10



Deb [3] obtains some results about representations of choice functions
by analyzing the relationship between the representation of a choice
function and its rationality. Thus, he proves that the existence of the
representation of a choice function implies its rationality by a preorder
and that the converse is also true in the case of considering countable sets
of alternatives, (in this case any preorder has an associated utility
function, see [2]). Therefore, all of the results known in the literature
about rationality by a preorder of a choice function can be presented as

results about representability of choice functions in this particular

context.

Proposition 1. (Deb,[3])

Let F:D(X) — X be a choice function.
i). If w:X— R is a representation of F, then F is rationalized by a
preorder and u is a utility function of this preorder.
ii). If X is countable, then F is representable if and only if it is

rationalized by a preorder.

As a consequence of this result and Theorem 1, Deb [3] obtains that the
representability of a choice function is provided by (IIA) when X is a
countable set of alternatives. However, in non-countable contexts, this

result is not true as the following example shows.

Example 1.

Consider X = Rx{0,1} and the choice function F:D(X) — X defined as

follows:
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FA) = ((@i) € Al a2b V(bj e A izj V(aj e A)

where the domain of the choice function D(X) consists of all D ¢ X such that
F(D) # &. On the one hand, it is clear that F satisfies (ITA). But, on the
other hand, if there exists a representation of this choice function,

u:X — R, it has to satisfy

u(b,0) < u(b,1) Vb e R

since if we consider A = {(b,0),(b,1)}, then F(A) = ((b,1)}. So, the open
interval of real numbers (u(b,0),u(b,1)) is non-empty and we can define a

function g:R — @ as follows,
g(b) = g € @ N (u(b,0),u(b,1))
This is a one-to-one function, since if a>b, then
F({(a,0),(b,1)} = {(a,0)}, so g(b) < u(b,1) < u(a,0) < g(a). But it implies

that R is countable, a contradiction. Therefore we can conclude that there

does not exist a representation of the choice function.
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3. RESULTS

This section is devoted to proving the existence of numerical
representations of choice functions directly, without making use of
rationality results. It allows us to observe explicitly the way of defining
the real valued function (the representation) from the choice function. We
present results about the existence of representation, for both the case of
countable sets of alternatives, as well as for the case of separable

topological spaces.

The first result we present assumes that the set of alternatives is
finite or countable, X = {xi, i e I €N}, and that the choice function is
defined in a domain D(X) which contains all finite subsets of X (in fact, to
obtain our results, it is sufficient to consider that each subset of X with
three or less alternatives belongs to D(X)). In this context the equivalence
between Arrow’s axiom (IIA) and the representability of a choice function is

proved.

Theorem 2.
Let X be a countable set of alternatives and F:D(X) — X a choice function.

Then, F is representable < F satisfies (IIA).

Proof.
It is clear that the existence of numerical representation of a choice
function implies that it satisfies (IIA) due to the properties of the maxima

of a real valued function.

13




Conversely, assume that F satisfies (IIA). In order to define its

representation, we associate the following set with each alternative x € X,

A) = {ie ] {x} =F(xx})) ]

where X = {xi, i € I ¢ N} and then, we define the following function:

wx) = T (12

i€ AX)

We are going to prove that this function is a representation of F.

In order to prove that F(A) € M(A,u) it is sufficient to show that if
x € F(A) then A(y) <€ A(x), Vy € A. Consider x € F(A) and y € A. By

applying (ITA) we can ensure that x € F({x,y}), since

F(A) v (xy} = F((xy})

Let i € A(y), that is {y} = F((y,xi)). If we consider the subset {x,y,xi},
then we can ensure that x € F({x,y,xi}); if not, since {xi,y} c {x,y,xi} and

F({x,y,xi}) M {xi,y} # J, by (ITA)

F(xyx D) A (x,y) = F((y.x))

which implies {y} = F({x,y,xi}). But then, by applying (IIA), to the subsets

(x,y), {x,y.x) we obtain

F({xyx}) n {xy} = B({x,y})

i
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and then x ¢ F({x,y}), a contradiction. Therefore x € F({x,y,xi}) and, by

applying (ITA) to the subsets {x,xi), (x,y,xi},

F({xy.x ) N {xx) = F({xx}),
that is x € F({x,xi}); but since L F({y,xi}), (ITA)  implies

X € F({x,y,xi}), so {x} = F(x,xi), which implies i € A(x).

Conversely, consider x € M(A,u) and assume that x ¢ F(A). Since
F(A) # @, let y € F(A); then, by reasoning as above, we know that
u(y) 2 u(x). Now, let k € I be such that y = X, SO k € A(y). Suppose that
k € A(x), that is {x} = F({x,xk}); since F(A) N {x,xk} # (J we can apply
(ITA) and obtain that

F(A) N (xx ) = F((xx )
which implies x € F(A), a contradiction. Then k ¢ A(x) and u(y) > u(x),

which is not possible, since x € M(A,u).g

Now, we analyze the representability of a choice function in the case
of considering the set of alternatives as being a separable topological
space, and that the choice function is defined on a domain D(X) which
contains all finite subsets of X. Unlike the discrete case, as Example 1
shows, (ITA) is not a sufficient condition (although it is a necessary one)
to ensure the existence of a representation. In order to know the role
played by each of the used assumptions, the proof of the existence of

numerical representation is given by means of some previous lemmas.
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Lemma 1.
Let X be a separable topological space and F:D(X) — X a choice
function. If F satisfies (ITA), then there exists a real valued function

u:X — R such that
F({x,y})) = {y} = u@y) 2u®x)

Proof.
Let Q = {qk, k € N} a countable and dense subset of X (provided by the
separability of X). For each x € X, we define A(x) = {k € N| {x} = F((qk,x})}

and the following function:

ux) = Y (12)

i€ Ax)

In order to show that this function satisfies the required property,
consider x,y € X such that F({x,y}) = {y} and j e A(x), that is
{x} = F({qj,x}). Then, by applying (IIA) we know that x ¢ F([qj,x,y)) and
q ¢ F({qj,X,y)), therefore F({qj,x,y}) = {y}, and, by (IIA), we obtain
F({qj,y}) = {y}, that is j € A(y). So we can conclude that u(x) < u(y).g

In order to obtain the discrimination between u(x) and u(y) whenever

F({x,y}) = {y}, we need to introduce a continuity assumption.

(C1) If F({x,y}) = (v}, then there exists a nonempty open set A ¢ X

such that for all z € A

x ¢ F({x,z}) and z ¢ F({y,z}}

16




In other words, if x is rejected in the presence of y, then it is
possible ("by continuity") to find an open set where x is rejected and y is

chosen in front of any other alternative of such an open set.

Lemma 2.
Let X be a separable topological space and F:D(X) — X a choice
function satisfying (ITA) and (C1). Then there exists a real valued function

u:X — R such that

F({x,y) = {y} = u(y) > ux)

Proof.

Let x,y € X such that F({x,y}) = {y}. By applying (C1), there exists an
open set A such that z ¢ F({zy}), x ¢ F({x,z}) for all ze A. Let
Q={ q,. k € N} a countable and dense subset of X. Then, since Q is dense
and A open, Q N A # &, so there is some k such that q € A and then
k € A(y), k ¢ A(x), where the sets A(.) are defined as in Lemma 1. By
considering now the function defined in the proof of Lemma 1, u(x) < u(y) is

obtained.g

The next result shows that the maxima of the real valued function

"determine the choice” in the case of binary sets.

Lemma 3.
Let X be a separable topological space and F:D(X) —s X a choice function

satisfying (IIA). Then, there exists a real valued function u:X — R such

that
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u(y) > ux) = F({xy}) = {y}

Proof.
Let u(x) be the function defined in Lemma 1 and x,y € X such that

u(x) < u(y). By the way of contradiction, assume that x € F({x,y}). Then if

j € Ay,
x € F({gx.y})
if not, by applying (ITA) we know that y € F({ qj,x,y}), and then
F({xy}) = F({q,xyh N {xy} = {y)
a contradiction. But then, by applying (IIA) again, (x} = F({qj,x}), SO
j € A(x) and we obtain u(x) = u(y), also a contradiction. Therefore

x & F({x,y}), that is F({x,y}) = {y}.a

The following proposition summarizes the results proved in the previous
lemmas and proves the existence of representation of choice functions for

binary sets:
Proposition 1.
Let X be a separable topological space and F:D(X) — X a choice

function satisfying (ITA) and (C1). Then, there exists a function u: X — R

such that
F({x,y}) = max {u(x),u(y))

18



Finally, the following theorem extends the previous result to

non-binary sets.

Theorem 3.
Let F:D(X) — X be a choice function satisfying (IIA). If a topology on
X can be defined such that the space is separable and F satisfies (C1), then

there exists a function u:X — R such that

F(B) = M(B,u) VB e D(X)

Proof.
Let u(x) be the function defined in Lemma 1, B € D(X) and a € F(B). If
there exists x € B such that u(a) < u(x), then Lemma 3 implies that

F({x,a}) = {x}, a contradiction with (ITA). Therefore, F(B) < M(B,u).

Consider a € M(B,u). If a ¢ F(B) and z € F(B), by applying (IIA),
F({a,z}) = {z}, so by Lemma 2 u(a) < u(z), a contradiction. Therefore

M(B,u)  F(B).g

As we have mentioned, (ITA) is also a necessary condition for the
existence of the representation of a choice function; however (C1) is not a

necessary condition as the following example shows.

Example 2.
Consider X = [0,1]U[2,3], endowed with an arbitrary topology, and the

choice function defined as follows:

F(D) = argmax {x, x € D}
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where the domain of the choice function D(X) consists of all D < X such that
F(D) # &. In the way that it has been defined, function u(x) = x is a
representation of the choice function; however (C1) is not satisfied since

F({1,2)) = {2} and we can not find a nonempty open set A ¢ X satisfying that

for every z € A,

1 ¢ F({z,1}) and z ¢ F({z2}).

20




4. FINAL COMMENTS

Throughout this work, the existence of representations of choice functions
has been analyzed. This problem consists of finding a real valued function
which totally characterizes the choice function, in the sense that the
maxima of the function coincide with the choice set in each particular
situation considered. However, just as in the case of representations of
binary relations, there exist other kinds of representations of choice
functions (weaker than the one considered in this work) which, on the one
hand, provide less information about the choice function but, on the other
hand, exist in more general contexts. In particular, we have to mention the
notion of weakly representable choice function introduced in [3] which
consists of finding a real valued function whose maxima are a selection of
the choice set (u:X —— R such that @ # M(A,u) < F(A) VA € D(X)). The
interpretation given to this kind of representation is clear: by means of
the real valued function we have a quick process for selecting some of the
alternatives chosen by the choice function. In [3] some results about the
existence of weak representations for choice functions are proved in the
particular case of considering finite and countable sets of alternatives. It
would be interesting to obtain the same kind of results on the existence of
weak representations of choice functions in non-countable sets of
alternatives and, as we have done for the existence of representations,

without making use of the results about the rationality of choice functions.
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