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Abstract

This paper is concerned with an extension of the notion of Pareto efficiency, referred to
as Millian efficiency, to evaluate the performance of symmetric allocations in an overlapping
generations setting with endogenous fertility. The criterium of Pareto dominance underlying
the notion of Millian efficiency is based exclusively on preferences of those agents who are
actually born, and allows only for welfare comparisons of symmetric allocations (i.e, allocations
in which all living individuals of the same generation take the same decisions). The main
contributions of the paper are the following. First, we provide necessary (static) and sufficient
(dynamic) conditions to determine whether an allocation is Millian efficient or not, and we
show that the sufficient conditions for dynamic efficiency offered by Cass (1972) and Balasko
and Shell (1980) cannot be straightforward applied when fertility decisions are endogenous.
Second, we extend the two Fundamental Theorems of Welfare Economics to a framework
with endogenous population by characterizing Millian efficient allocations as the equilibria
of a decentralized price mechanism. Finally, we present a condition to identify equilibrium
allocations as dynamically efficient that exclusively uses the sequence of prices associated to
such decentralized equilibria.
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1 Introduction

This paper studies a notion of efficiency, which we refer to as Millian efficiency, applicable to

evaluate equilibrium allocations in an overlapping generations framework with endogenous fertility

decisions and capital accumulation. In our model: (i) all agents of a given generation have the

same preferences on consumption bundles, represented by a well behaved utility function; (ii)

children are a costly consumption good, and parents derive utility from the number of children

they bear, but not from the utility of their descendants and, (iii) fertility choices are selected

from a continuum. In this setting, the notion of Millian efficiency results from combining:

a) an extension of the Pareto dominance criterium, referred to in the literature as the A−dominance

criterium, which compares any two allocations of different population size by comparing ex-

clusively the welfare profiles of those agents who are alive in the two allocations; and,

b) a constraint on the set of allocations that can be compared using the A−dominance criterium,

which is restricted to be formed by all feasible allocations in which i) every two living

agents of the same generation are treated equally and therefore obtain the same consumption

bundles; and, ii) the population size of each generation is strictly positive.

To be more precise, a Millian efficient allocation is a symmetric allocation with positive fertility

rates for every period that is not A−dominated by any other symmetric allocation that also yields

positive fertility rates. As it is shown in the paper, restricting welfare comparisons to allocations

with strictly positive fertility rates is necessary in order to have a well defined efficiency criterium,

since otherwise the A−dominant criterium induces a non-transitive relation on the set of feasi-

ble allocations. Despite other names (such as, for example, constrained A−efficiency) might be

more informative of the normative principles underlying this notion of efficiency, we use the term

Millian efficiency because it generalizes a notion of optimality, referred to as Millian optimality.

This criterium might be regarded as a form of utilitarianism, called average utilitarianism, of-

ten associated to John Stuart Mill, which postulates that welfare judgments involving different

generations should be independent of the population size of each generation.1

Once we adopt this extension of the notion of Pareto efficiency, we explore its properties in

the framework studied in the paper. First, we obtain a set of conditions that are necessary for

achieving statically efficient, i.e., an allocation that cannot be improved upon by a reallocation of

resources of a finite number of generations. Second, we provide sufficient conditions guaranteeing

that a statically efficient allocation is in fact efficient (or dynamically efficient): a statically
1See Razin and Sadka, 1995, ch.5). See also Nerlove, Razin and Sadka (1982), Cigno (1992, 2003) or Groezen,

Leers and Medjam (2003).
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efficient allocation that might not be improved upon a reallocation of resources involving an infinite

sequence of intergenerational transfers. Some authors have presented necessary and sufficient

conditions for Pareto efficiency in different overlapping generation settings, but all of them consider

fertility as exogenous. The best known criterium to determine whether or not a stationary path is

dynamically efficient with exogenous fertility was found by Phelps (1965), Koopmans (1963) and

Diamond (1965) in different settings, and imposes that the long run interest rate exceeds the rate

of population growth. Other well known results are those by Cass (1972), who provided the first

complete characterization of dynamically efficient paths in a production economy, or Balasko and

Shell (1980), who studied dynamic efficiency of exchange economies in an overlapping generations

model.

As we show in the paper, considering fertility as an endogenous decision introduces non con-

vexities on the sequence of inequalities characterizing the set of feasible allocations, because some

aggregate variables are the product of two endogenous variables. Due to these non-convexities,

standard criteria based on the ratio of the long run interest rate to the rate of population growth

are no longer valid to identify efficient paths. In view of this, we provide a sufficient condition for

efficiency in non-convex settings.

Next, endowed with the tools necessary to determine what fertility choices might be consid-

ered efficient, we explore under what conditions decentralized decisions lead to efficient choices.

To do this, we adapt the Fundamental Theorems of Welfare Economics to a setting with endoge-

nous fertility by characterizing every (statically) Millian efficient allocation as the equilibrium of

a decentralized sequential price mechanism. Analogous to the case of economies with exogenous

population, every Millian efficient allocation can be decentralized by initially selecting an appro-

priate sequence of intergenerational transfers, and by allowing then the agents to determine their

consumption and investment decisions at competitive markets. Differently from the standard ex-

ogenous population case, in which non-distorting intergenerational transfers must be lump-sum

for all agents, an incentive scheme that links intergenerational transfers with fertility decisions is

needed. More precisely, for every system of intergenerational transfers that achieves Millian effi-

ciency, every middle-aged adult has to pay a lump-sum tax (or, in some cases, receive a lump-sum

subsidy), while every old adult has to receive a subsidy (or pay a tax) which depends linearly of

the number of children she decided to have. As a particular case, we also show that the allocation

corresponding to a decentralized equilibrium with no intergenerational transfers (for which there

is no need to subsidize or tax children) is (statically) Millian efficient. In contrast with other

environments with incomplete markets, this particular case shows that the absence of a market

(in this case, a market where offspring may bargain with their parents the right to be born) does

not yield any efficiency loss, at least if one is concerned with Millian efficiency.

8



To conclude the paper, we find a simple criterium to identify dynamically efficient paths

for any competitive decentralized equilibrium. We show that the standard criterium to define

dynamic efficiency for the case of exogenous fertility decisions should be replaced by an alternative

criterium, that states that the rate of return to physical capital should be higher than the highest

rate of return to invest in children.

In the literature of overlapping generations economies with endogenous fertility, two differ-

ent approaches to provide normative principles can be distinguished: a first approach identifies

socially optimal allocations with steady state optimal allocations (also referred to as golden rule

allocations), that is, allocations that maximize the utility obtained by a representative consumer

among those feasible stationary allocations;2 while a second approach identifies optimal alloca-

tions with those maximizing a certain class of social welfare maximization problems, referred to

as Millian or Benthamite depending on whether or not the welfare weight given to a generation

in the social welfare function depends on the size of that generation.3 Neither one of these two

approaches takes explicitly into account the problem of dynamic efficiency, nor the fact that the

standard Pareto criterium is not straightforward applicable to environments in which the set of

agents is endogenous.

An interesting exceptions within the literature of endogenous fertility are the papers by Michel

and Wigniolle (2003) and Golosov, Jones and Tertilt (2004). Golosov et al consider a general over-

lapping generations economy in which fertility decisions are discrete, and assume that all potential

agents –included those that will never be born– have well defined preferences. In this context,

they analyze two extensions of the Pareto-dominance criterium. However, their assumption of

a discrete set of potential agents brings with it considerable difficulties if one is concerned with

identifying efficient allocations in overlapping generations settings with non-altruistic agents, as

the one studied in this paper. Besides, the dynamic efficient problem do not arise in their frame-

work because individual agents are linked intertemporally in such a way that their individual

problems can be jointly solved by an infinitely-lived dynastic family problem. Michel et al have

also proposed a notion of efficiency, referred to as Pareto optimality, which coincides with our

notion of Millian efficiency, although it is not explicitly deduced from an extension of the Pareto

criterium as it is in this paper. In addition, their treatment of the dynamic efficiency problem is

substantially less general, since they restrict the analysis to equilibrium paths –with no intergener-

ational transfers– that converge to stationary states, and making use CES utility and production

functions.
2See e.g., Samuelson (1975, 1976), Deardoff (1976), Eckstein and Wolpin (1985), Bental (1989) or Michel and

Pestieau (1993).
3See e.g., Nerlove, Razin and Sadka (1982, 1985), Cigno (1993), and Groezen, Leers and Medjam (2003), or

Razin and Sadka (1995, Ch.5) for a survey.
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The paper is organized as follows. In section 2, we introduce the model. Next, in section

3, we present the notion of Millian efficiency and provide necessary and sufficient conditions

to determine whether an allocation is efficient in this sense. In section 4 we characterize Millian

efficient allocations as the equilibria of a decentralized sequential price mechanism. Finally, section

5 presents the main conclusions of the paper and discusses possible extensions.

2 The Model: Assumptions and Definitions

Consider an overlapping generations economy with three generations of consumers (referred

to as old, middle-aged and children) coexisting at each period t = 0, 1, 2, ... In each period t there

exist Nt−2 ∈ �+ old adults (who were born at date t− 2), Nt−1 middle-aged adults (born at date

t − 1) and Nt ∈ �+ children (born at t). For each t = 0, 1, 2, ...,write

nt =

{
Nt

Nt−1
, if Nt−1 > 0

0, otherwise.

The number of old adults at t = 0 is normalized to one, and the number of middle-aged adults at

t = 0 is given by the initial condition N−1 = n−1 > 0.

Resources available can be described as follows. Middle-aged agents are endowed with one

unit of time to work, which is supplied inelastically. At each period t = 0, 1, 2..., a perishable

consumption good is produced using labor (Nt−1) and physical capital (Kt) invested in previous

period t − 1 as inputs, that is,

Yt = Ft(Kt,Nt−1),

where Yt is total output, and Ft : �2
+ → � is a differentiable concave and constant return to scale

production function. Physical capital is fully depreciated in the production process, and the stock

of capital at period t = 0 is given by the initial condition K0 = K0.

Throughout the paper, we will restrict attention to symmetric allocations in which any two

agents of the same generation who get to be alive take the same consumption and investment

decisions. The aggregate output of the homogeneous good is used to finance aggregate investments

in capital, denoted by Kt+1, to finance aggregate consumption by old adults (denoted by C o
t ) and

by middle-aged adults (denoted by Cm
t ), and to cover costs of rearing children. Rearing children

is a production activity that takes place within each household and its costs (per middle aged

adult of every family) depend on the state of technology and the number of children raised within

the family. More precisely, costs per middle aged adult of raising nt children at time t are given

by bt(nt), where bt is a differentiable non-decreasing, and convex function satisfying bt(0) = 0.

At any period, the aggregate resource constraint is

Co
t + Cm

t + Nt−1bt(nt) + Kt+1 ≤ Ft(Kt,Nt−1), (1)

10



which for allocations exhibiting positive fertility rates at every period can be equivalently written

as

co
t + nt−1

[
cm
t + bt(nt) + ko

t+1

] ≤ Ft(ko
t , nt−1), (2)

where co
t = Co

t /Nt−2 represents average consumption per old adult, cm
t = Cm

t /Nt−1 represents

average consumption per worker, and ko
t = Kt/Nt−2 represents capital invested per old adult.

A feasible symmetric allocation will be represented by a sequence a ≡ {at}∞t=0 = {(cm
t , co

t , nt, k
o
t )}∞t=0

satisfying, for each t = 0, 1, 2..., the resource constraint in (1) and the initial condition

(n−2, n−1, k
o
0) =

(
1, n−1,K0

)
. (3)

Denote by S the set containing all feasible symmetric allocations. For each agent born at

t = −2, preferences on S are represented by a utility function U−2 : S → � defined, for each

a ∈ S, by U−2(a) = co
0, where co

0 denotes the old adult’s consumption at period t = 0. For each

agent born in period t − 1 with t = 0, 1, 2, ..., preferences are represented by a utility function

Ut−1 : S → � defined, for each a ∈ S, by Ut−1(a) = u(xt) = u(cm
t , co

t+1, nt), so that individuals

may receive direct utility from consumption as well as the number of descendants they bear.

We assume that the function u : �3
+ → � is differenciable, continuous, strictly increasing and

quasiconcave on �3
++.

Two final observations are in order. First, notice that this representation imposes that agents

cannot obtain resources for their old without having children, i.e., for every allocation for which

nt−1 = 0 one necessarily has yo
t = co

t = 0. Thus, such representation seems inadequate to represent

allocations for which nt−1 = 0 for some period t in environments where Ft(Kt, 0) �= 0 for some

Kt > 0. Finally, note that the term nt−1

[
cm
t + bt(nt) + ko

t+1

]
in the left hand side of (2) is a

quasiconcave function of the endogenous variables nt−1, c
m
t , nt and ko

t+1. Due to this fact, the set

of sequences a =
{(

cm
t , co

t , nt, k
o
t+1

)}∞
t=0

satisfying the resource constraint in (2) and the initial

condition (3) is not a convex set, as it would if the sequence {nt}∞t=0 were fixed exogenously.

3 Millian Efficient Allocations

The most commonly used optimality notion in standard normative economic analysis is that

of Pareto efficiency. This notion of efficiency relies in turn on the well known Pareto criterium

to compare social alternatives, a criterium that allows one to construct a partial ordering on the

set of alternatives from the complete preference orderings (defined on such consumption set) of a

fixed group of agents. An efficient allocation can be described as a maximal element of the partial

order induced by the Pareto criterium on the set of feasible allocations.

With endogenous populations, we can still use the Pareto criterium to rank feasible allocations

using the partial orderings of all potential agents, represented by the utility functions of the

11



living agents. That is, an allocation can still be ranked as Pareto superior to another one if it

is unanimously preferred by all potential agents according to their partial preference ordering.

However, this implies that any two allocations with different population size cannot be ranked,

since we do not know whether or not an agent who lives in one allocation a but not in other

allocation a′ is better off in the latter than he is in the former. To avoid this problem and

preserve the partial order induced by the Pareto criterium, one needs to extend it to compare also

allocations of different population size.

A possible general extension of the Pareto criterium, applicable to any environment with

endogenous fertility, can be constructed by ranking any two allocations making use of the Pareto

criterium when the information of the preference profiles of those agents who are born in the two

allocations is considered. This extension has recently been used also by Golosov, Tertilt and Jones

(2004), who refer to it as the A−dominance criterium (where A stands for alive agents). More

precisely, the notion of A−dominance can be defined as follows.

Definition 1 For any two feasible allocations a,a′ corresponding to an environment with en-

dogenous fertility, a is said to A−dominate an allocation a′ if a is unanimously preferred to a′ by

all agents who are born in both a and a′, and it is strictly preferred by some of these agents.

Observe that the A−dominance criterium is a general criterium, applicable to any two fea-

sible allocations corresponding to an environment with endogenous population. The criterium

can therefore be applied to rank any pair allocations. To avoid notational costs and make the

A−dominance criterium suitable to undertake welfare comparisons of symmetric allocations with-

out specifying the identity of every potential agent, we will adopt in what follows the following

convention: for every two symmetric allocations a, a′ ∈ S for which the size of a given generation

t is strictly positive (that is, such that Nt > 0 and N ′
t > 0), there exists a positive measure of

agents born at t in the two allocations.

With this convention, the restriction of the relation induced by the A−dominance criterium

to the set of symmetric allocations S can be defined formally as follows.

Definition 2 A feasible allocation a ∈ S is said to A−dominate an allocation a′ ∈ S if

i) for every t = 0, 1, 2, ... for which nt > 0 and n′
t > 0 one has

Ut(a) ≥ Ut(a′);

and,

ii) there exists at least one period τ satisfying

nτ > 0,

12



n′
τ > 0, and

Uτ (a) > Uτ (a′).

Thus, according to the A−dominance criterium, a symmetric allocation a dominates another

one a′ if it provides all agents living under the two allocations with at least the same welfare, and

some of them with more utility.

The following example shows that even if we restrict its scope to compare only symmetric

allocations, the notion of A−dominance brings with it an important difficulty: it induces a non-

transitive relation on S.

Example 1. Non transitivity of the A−dominance relation. Consider a stationary economy

described by a constant utility function u(xt) = 2 (cm
t )1/2 + 2

(
co
t+1

)1/2 + (nt)
1/2 , a constant pro-

duction function Ft(kt, nt−1) = 2kt+2nt−1, and a constant cost function bt(nt) = nt. Observe that

the stationary allocation a =
{(

cm
t , co

t+1, nt, k
o
t+1

)}∞
t=0

such that
(
cm
t , co

t+1, nt, k
o
t+1

)
= (1, 1, 1, 1)

for all t ≥ 0 gives all agents who get to be alive a utility level U−2 = 1 and Ut−1(a) = 5 for all

t ≥ 0.

Consider now a date τ > 0 and an allocation ã =
{(

c̃o
t , c̃

m
t , ñt, k̃

o
t+1

)}∞
t=0

such that

(
c̃m
t , c̃o

t+1, ñt, k̃
o
t+1

)
=

⎧⎨⎩
(1, 1, 1, 1) , if t = 0, 1..., τ − 1
(2, 2, 0, 1) , if t = τ
(0, 0, 0, 0) , if t > τ.

Such allocation yields U−2 = 2 and

Ut−1(ã) =
{

5, if t = 0, 1..., τ − 1;
4
√

2 > 5, if t = τ ;

which taking into account that only those agents born at t ≤ τ are alive in both ã and a, implies

that ã A−dominates a. But then let a =
{(

co
t , c

m
t , nt, k

o
t+1

)}∞
t=0

be an allocation such that

(
cm
t , co

t+1, nt, k
o
t+1

)
=

⎧⎨⎩
(1, 1, 1, 1) , if t = 0, 1..., τ − 1(
3
2 , 3, 1

2 , 1
)
, if t = τ

(0, 0, 0, 0) , if t > τ.

Such allocation yields U−2 = 2 and

Ut−1(a) =

⎧⎪⎨⎪⎩
5, if t = 0, 1..., τ − 1√

6 + 2
√

3 +
√

1
2 > 4

√
2, if t = τ

u(0) = 0, if t = τ + 1

Hence, a A−dominates ã. However, it is not the case that a A−dominates a, since nτ > 0 and

Uτ (a) = 0 < Uτ (a) = 5. Therefore the notion of A−dominance induces a non-transitive relation

on S.�
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It should be noticed that the type of inconsistency appearing in the previous Example 1 is

present only if the A−dominance criterium is used to compare allocations (like the allocation ã

in the example) for which the economy collapses at a given date and no more individuals are

born. If this type of allocations are ruled out as socially undesirable and one restricts the set of

allocations that can be compared to the set S∗ formed by symmetric allocations a ∈ S such that

nt > 0 for all t ≥ 0, such inconsistencies are no longer present. Observe that an allocation a ∈ S ∗

A−dominates an allocation a′ ∈ S∗ if for all for all t = 0, 1, 2, ... one has Ut(a) ≥ Ut(a′) and this

inequality is strict for some period t. Thus, the restriction of the A−dominance relation to the

set S∗ is transitive and anti-symmetric, and therefore constitutes a partial ordering on S ∗.

With this restriction, the A−dominance criterium gives rise to an efficiency criterium, which

we refer to as Millian efficiency (or simply, M−efficiency), to identify the set of maximal elements

of the partial order induced by the A−dominance criterium on the set S ∗. Formally, the notion

of Millian efficiency can be defined as follows.

Definition 3 A feasible allocation â ∈ S∗ is said to be Millian efficient if there does not exist

another feasible allocation a′ ∈ S∗such that:

i) for all t = −1, 0, 1, 2, ... one has

Ut−1(a′) ≥ Ut−1(â); and

ii) there exists at least one period τ such that

Uτ−1(a′) > Uτ−1(â).

Therefore our notion of Millian efficiency results from combining two elements. First, the

direct extension of the Pareto dominance criterium to compare population of different sizes, the

A−dominance criterium, defined only through comparisons among agents, who are born. Second,

the set of the allocations that can be compared is constraint to: i) symmetric allocations (i.e. every

two living agents of the same generation are treated equally); and, ii) the population size of each

generation is strictly positive.4

Thus, if an allocation is Millian efficient, then there is no way to make all living agents of every

generation better off without making some living agents of a generation worse off. Although some

other authors (i.e. Raut, 1992, and more recently, Michel and Wigniolle, 2003) have also used

this criterium under the name of “Pareto optimality,”we use a different name to make clear that

it results from restricting a particular extension of the Pareto criterium to the set S ∗ of feasible
4In Conde-Ruiz et al (2004, Sec.5), we show that if one keeps the symmetry restriction on the set of feasible

allocations, then Millian efficient allocations may also be efficient under an alternative extension of the Pareto
criterium obtained when an explicit specification of the preferences of non-born agents is introduced.
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allocations. Also, although other names (such as, for example, S ∗−constrained A−efficiency)

might be more informative of the normative principles underlying this notion of efficiency, we use

the term Millian efficiency because it generalizes a notion of optimality, referred to as Millian

optimality, which has been frequently used in the literature. Finally, note that a Millian optimum

is an allocation maximizing a function of the form Vλ(a) =
∑∞

t=−1 λt−1Ut−1(a) for a strictly

positive sequence of intergenerational weights λ = {λτ}τ≥−2. Clearly, a Millian optimum must

be a Millian efficient allocation, but the converse is not in general true. Since the set of feasible

allocations is unbounded, Millian social welfare functions may be not well defined for many feasible

paths, including some that are Millian efficient ones.

In the following sections, we provide necessary and sufficient conditions characterizing Millian

efficient allocations.

3.1 Necessary conditions. Static M−efficiency.

For every allocation a ∈ S and every t ≥ 0, write et for the amount of physical resources at

period t not devoted to feed the old generation, that is,

et = cm
t + bt(nt) + ko

t+1.

With this notation, the necessary conditions for Millian efficiency can be stated as follows.

Proposition 1 Every M−efficient allocation â ∈ S∗ verifies for each t ≥ 0,

u (x̂t) = max
(xt,ko

t+1)∈�4
+

{
u (xt) : cm

t + bt(nt) + ko
t+1 ≤ êt; (4)

Ft+1(ko
t+1, nt) − co

t+1 ≥ ntêt+1

}
= Wt−1(êt, êt+1).

Proof. By contradiction. Suppose that â is an M−efficient allocation, and suppose there exists a

period τ for which the 4-upla (x̂τ , k̂o
τ+1) corresponding to the allocation â is not a solution to the

optimization problem in (4). Select now a point (x̃τ , k̃
o
τ+1) ∈ �4

+ satisfying the two constraints in

(4) in such a way that u (x̃t) > u (x̂t) is satisfied, and let ã be the allocation obtained from â by

replacing the term (x̂τ , k̂
o
τ+1) by such point. Such allocation is feasible because (x̃τ , k̃

o
τ+1) must

verify c̃m
t +bt(ñτ )+ k̃o

τ+1 ≤ êτ and Ft+1(k̃o
t+1, ñt)− c̃o

t+1 ≥ ñtê. Note that ã has been constructed in

such a way that it satisfies Ut−1(ã) = Ut−1(â) for all t �= τ and Uτ−1(ã) = u(x̃τ ) > u(x̂τ ) = Ut−1(â)

for t �= τ , which implies that â is not Millian efficient, a contradiction that establishes Proposition

1.�

Since the preferences and technologies are differentiable, an interior solution (xt(et, et+1),

kt+1(et, et+1)) >> 0 to the optimization problem in (4) is characterized by its first order conditions,
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given by:
u′

1(x̂t)
u′

2(x̂t)
= D1F (k̂o

t+1, n̂t); (5)[
b′t(n̂t) − u′

3(x̂t)
u′

1(x̂t)

]
u′

1(x̂t)
u′

2(x̂t)
= D2F (k̂o

t+1, n̂t) − êt+1; (6)

and the two feasibility constraints

ĉm
t + bt(n̂t) + k̂o

t+1 = êt (7)

and

Ft+1(k̂o
t+1, n̂t) − ĉo

t+1 = n̂têt+1. (8)

Thus, for every interior, Millian efficient allocation, marginal rates of substitution between

current and future consumption must be equal to marginal return to investments in physical

capital. Note also that marginal willingness to pay for children (given by u′
3(x̂t)/u′

1(x̂t)) is not

necessarily equal to marginal costs of rearing children; in this case, marginal rate of return to

investments in children must be equal to the rate of return to any other investment:

D2F (k̂o
t+1, n̂t) − êt+1

b′t(n̂t) − u′
3(x̂t)

u′
1(x̂t)

=
u′

1(x̂t)
u′

2(x̂t)
= D1F (k̂o

t+1, n̂t).

Observe that Wt−1(êt, êt+1) is the maximum utility that an individual born at t− 1, endowed

with êt units of physical resources, can obtain if they are constrained to provide each agent of the

next generation with êt+1 units of resources. Notice also that by monotonicity of preferences, each

function Wt−1 must be strictly increasing on et and strictly decreasing on et+1. By Proposition 1,

the question of whether an allocation â satisfying the necessary conditions in (4) can be reduced to

a issue on whether or not there exists a sequence {ẽt}∞t=0 such that Wt−1(ẽt, ẽt+1) ≥ Wt−1(êt, êt+1)

for all t ≥ 0, and Wτ−1(ẽτ , ẽτ+1) > Wτ−1(êτ , êτ+1) for some τ ≥ 0.

Observe that an allocation satisfying the necessary condition in Proposition 1 cannot be im-

proved upon by a reallocation of resources involving a finite number of generations. However,

this condition does not guarantee that such an allocation is efficient, as a reallocation of resources

involving an infinite sequence of intergenerational transfers might improved on it. This is stated

formally in the following Lemma, closely related to Balasko and Shell (1980, Lemma 5.4).

Lemma 1 Let â ∈ S∗ be an allocation satisfying the necessary conditions in Proposition (1), and

suppose â is M−inefficient. Then there exists an allocation ã ∈ S ∗ that Millian dominates the

allocation â, and some period T ≥ 0, such that,

ẽt ≤ êt for all t ≥ 0, and eτ < êτ for all τ ≥ T. (9)
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Proof. Let â ∈ S∗ be an inefficient allocation satisfying the conditions (5)–(8), and let ã be an

allocation that Millian dominates the allocation â, that is, an allocation satisfying

Wt−1(ẽt, ẽt+1) ≥ Wt−1(êt, êt+1) and WT−1(ẽT , ẽT+1) > WT−1(êT , êT+1) for some t = T .

To show ã satisfies condition (9), observe first that ã verifies ẽ0 ≤ ê0, where the inequality

must be strict if U−2(ã) > U−2(â). Taking into account that W−1 (·) is strictly increasing in e0

one obtains

W−1(ẽ0, ê1) ≤ W−1(ê0, ê1).

Also, since W−1 (·) is strictly decreasing in e1, the inequality W−1(ẽ0, ẽ1) ≥ W−1(ê0, ê1) is only

satisfied if ẽ1 ≤ ê1, where the last inequality must be strict if either W−1(ẽ0, ẽ1) > W−1(ê0, ê1)

or ẽ0 < ê0 is satisfied. Proceeding analogously, since W0 (·) is strictly decreasing in ê2 and the

inequality W0(ẽ1, ẽ2) ≥ W0(ê1, ê2) must be satisfied one must have ẽ2 ≤ ê2 (with ẽ2 < ê2 if either

W0(ẽ1, ẽ2) > W0(ê1, ê2) or ẽ1 < ê1 holds). By applying the argument recursively one obtains

êt − ẽt ≥ 0 for all t ≥ 0

and

êτ − ẽτ > 0 for some T and all τ ≥ T,

which establishes condition (9) and, therefore, completes the proof of Lemma 1.�

In view of Lemma 1, we will adopt the terminology proposed by Balasko and Shell (1980)

and refer to an allocation satisfying the necessary conditions in Proposition 1 as a statically (or

short-run) M−efficient allocation.

Remark 1. Recall that given a sequence {λτ}τ≥−2 of intergenerational weights, a Mil-

lian social welfare function Vλ : S −→ � is a function defined, for every a ∈ S, by Vλ(a) =∑∞
t=−1 λt−1Ut−1(a). It is straightforward to show that any interior allocation â maximizing a

Millian welfare function among those feasible symmetric allocations must satisfy the necessary

conditions (5)–(8). However, even if Vλ(â) < ∞ is satisfied for an allocation â verifying the first

order conditions (5)–(8), it is not in general true that such an allocation maximizes Vλ on the set

of feasible allocations S. As we mentioned above and will become clear along the paper, the set

S is non-convex, and therefore first order conditions might be not sufficient for a maximum. For

this reason, the previously mentioned result stating that a Millian optimum must be a Millian

efficient allocation is not particularly useful, since it says nothing on whether or not an allocation

verifying the first order conditions of a Millian optimization problem is indeed a Millian optimum.
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3.2 Sufficient conditions. Dynamic M−efficiency.

In the previous subsection we have obtained necessary conditions for Millian efficiency, but

those conditions do not guarantee that an allocation solving the sequence of optimization problems

in the statement of Proposition 1 is actually M−efficient. Well known theoretical work deals with

the issue of efficiency in dynamic models, such as Cass (1972) in the context of a simple physical

capital growth model, and Balasko and Shell (1980) who focus on an overlapping generations

exchange economy. These papers show that, despite an allocation can be short-run efficient (or

statically efficient), i.e., it cannot be improved upon by a reallocation of resources of a finite

number of generations, it might not be long-run efficient (or dynamically efficient), that is, fully

efficient. In this subsection, we extend these previous results to an environment of endogenous

population.

Recall from the previous section that if preferences and technologies are represented by differ-

entiable functions, then an interior solution (xt(êt, êt+1) , kt+1(êt, êt+1) >> 0 to the optimization

problem in the definition of Wt−1 (êt, êt+1) is characterized by its first order conditions (5)–(8).

Since Wt−1 is strictly monotonic, the indifference curve given by all pairs (et, et+1) such that

Wt−1 (et, et+1) = Wt−1 (êt, êt+1) implicitly defines et+1 as a continuous, strictly increasing func-

tion of et. Define mt−1(êt, êt+1) as the slope of this indifference curve at the point (êt, êt+1), which

is always well defined. The Implicit Function Theorem yields

mt−1(êt, êt+1) = −
∂Wt−1(êt,êt+1)

∂et

∂Wt−1(êt,êt+1)
∂et+1

= − λt(êt, êt+1)
λt+1(êt, êt+1)

,

where λt(êt, êt+1) and λt+1(êt, êt+1) are the Kuhn-Tucker multipliers for which the first order

conditions of the optimization problem (4) are satisfied. Taking this into account we obtain, by

the Envelope Theorem,

λt(êt, êt+1) = u′
1(xt(êt, êt+1)),

and

λt+1(êt, êt+1) = −u′
2(xt(êt, êt+1))nt(êt, êt+1),

which by letting Rt+1(êt, êt+1) = u′
1(xt(êt, êt+1))/u′

2(xt(êt, êt+1)) yields

mt−1(êt, êt+1) =
Rt+1(êt, êt+1)
nt(êt, êt+1)

. (10)

In an exogenous population setting, the ratio mt(êt, êt+1) defined above is crucial to determine

whether or not a an allocation is dynamically efficient. As we show below, things are slightly

different when the rate of population growth is endogenous.
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3.2.1 Dynamic efficiency in the stationary case. We will first gain some intuitions by

considering stationary allocations (that is, allocations such that at = at+1 for all t ≥ 0) in a

stationary economy (i.e., such that Ft ≡ F and bt(nt) ≡ b(nt) for all t ≥ 0). Note that in this

case one has Wt−1 ≡ W and mt−1 ≡ m for all t ≥ 0, that is, the indirect utility function and the

function determining the slope of the indifference curve passing through any point are the same

for all generations. Since for any such stationary allocations one has et = et+1 = e for all t ≥ 0,

the set of stationary allocations is represented by the line et = et+1 in �2
+.

To simplify things, assume first that W is strictly quasiconcave, that is, the slope of any

indifference curve (which is given by m(et, et+1) = R(et, et+1)/n(et, et+1)) decreases as et increases.

Consider now a point like (e′, e′) in Figure 1, corresponding to a stationary allocation a′ satisfying

the necessary conditions (5)–(8), with e′t = e′t+1 = e′. Note that for such allocation one has

m(e′, e′) < 1. Clearly, such allocation a′ is not efficient since by reducing e′ towards the point eg in

the figure, all agents are better off. By contrast, consider now a point like (e′′, e′′), corresponding to

an allocation a′′ for which e′′t = e′′t+1 = e′′ and m(e′′, e′′) > 1. Apparently, it is possible to improve

all agents by increasing e′′ in the direction of eg. However, achieving Pareto improvements by

increasing e′′ is impossible, because increasing e′′ in period t = τ implies that agents born at time

t = τ − 2 (i.e., the old generation at period τ) necessarily decrease their consumption and, hence,

their utility. Thus, such allocation a′′ cannot be dominated by any other stationary allocation.

To summarize, it is straightforward to prove that if W is quasiconcave, then a necessary

and sufficient condition ensuring that a stationary allocation â is not dominated by any other

stationary allocation is

m(ê, ê) ≥ 1.

In what follows, we will refer to this condition as the Phelps-Koopmans-Diamond [PKD] condition

(see Galor and Ryder, 1991). Note that if W is quasiconcave, condition PKD can be written

equivalently as e′′ ≤ eg, where eg is the endowment corresponding to a stationary allocation ag

for which m(eg, eg) = 1. Such allocation ag has been referred to as the golden rule allocation,

since it maximizes the utility obtained by a representative agent among those feasible stationary

allocations.

In the case that the indirect utility function is not quasiconcave, condition m(e, e) = R(e, e)/n(e, e) <

1 is still valid to conclude that a statically efficient stationary allocation â is not dynamically ef-

ficient. However, condition m(e, e) = R(e, e)/n(e, e) ≥ 1 no longer guarantees that a statically

efficient stationary allocation a is also dynamically efficient. This case is illustrated in Figure 2, in

which a point (ẽ, ẽ) corresponding to an allocation verifying condition PKD does not correspond

to an efficient allocation. Observe that the line with slope m(ẽ, ẽ) passing through (ẽ, ẽ) does not

separate the upper contour set of this point. The flattest line passing through the point (ẽ, ẽ)
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separating the upper contour set of (ẽ, ẽ) is given by the dotted line in the figure. We will use the

slope of this line to provide an alternative criterium ensuring that an allocation is efficient.

Given a pair (êt, êt+1), define

πt−1 (êt, êt+1) = inf
(et,et+1)<<(êt,êt+1)

{ êt+1 − et+1

êt − et
: Wt−1 (et, et+1) ≥ Wt−1 (êt, êt+1)

}
(11)

That is, πt−1 (êt, êt+1) is the flattest line that can be drawn by joining (êt, êt+1) with a pair

(et, et+1) << (êt, êt+1) in the upper contour set of (êt, êt+1). Notice that

πt−1 (êt, êt+1) ≤ R̂t+1 (êt, êt+1)
n̂t (êt, êt+1)

= mt−1 (êt, êt+1) ,

where the inequality above holds as a strict equality whenever Wt−1 is quasiconcave.

With this notation, the set of stationary allocations that are not Millian dominated by any

other stationary allocation is characterized as follows.

Proposition 2 (i) Let â ∈ S∗ be a stationary allocation (of a stationary economy) such that

êt = êt+1 = ê for all t ≥ 1. Then â is not M−dominated by any other stationary allocation if

and only if

πt−1 (ê, ê) = π (ê, ê) ≥ 1. (12)

(ii) Let â ∈ S∗ be a stationary allocation for which êt = ê for all t, and suppose that m(e, e) > 1

for all 0 ≤ e ≤ ê. Then, the stationary allocation â verifies π t (ê, ê) = π (ê, ê) > 1.

Proof. The proof of (i) is straightforward from the definition of π t−1 and Lemma 1. In order

to prove (ii) first observe that, given that Wt−1 is increasing in et and decreasing in et+1, any

stationary point below (ê, ê) belongs to an indifference curve that provides strictly lower welfare;

that is, given that (ê, ê) belongs to an indifference curve Iŵ, then any (ẽ, ẽ) with ẽ < ê verifies

ẽ ∈ Iw̃, with w̃ < ŵ. Consequently, the slope of the line defined above passing through (ê, ê) will

be strictly larger than 1: π(ê, ê) > 1.�

To conclude the analysis of the stationary case, we illustrate our results through three ex-

amples. In Example 1 we identify the stationary Millian allocations in an environment with a

Cobb-Douglas production function. In Examples 2 and 3, with a CES and a linear production

function, respectively, we show that the standard PKD condition may fail to identify efficient

allocations.

Example 2. A Cobb-Douglas production function. Let u(xt) = (cm
t )1−δ−γ (co

t+1

)δ (nt)γ

with δ + γ < 1, and δ, γ ∈ (0, 1); F (ko
t , nt−1) = A (ko

t )
α (nt−1)

1−α with α ∈ (0, 1) and A > 0; and

bt(nt) = βnt. To simplify the algebra we will write the necessary conditions (5)–(8) in terms of
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capital per worker, km
t = ko

t /nt−1. Let f(km
t ) = F (km

t , 1) = A (km
t )α. In this economy, x(et, et+1)

is given by

cm(et, et+1) = (1 − δ − γ) et; co(et, et+1) = δetf
′(km(et+1)); and,

n(et, et+1) = (δ + γ)
(

et

β + km(et+1)

)
where km (·) is an increasing function of et+1 implicitly defined, for all et+1 ≥ 0, by

f(km (et+1)) −
(

δ

δ + γ

)
f ′(km (et+1)) [β + km(et+1)] = et+1.

By substituting in the definition of km(e) we get

z(e) = m(e, e) =
R(e, e)
n(e, e)

=
1

(δ + γ)
(β + km(e)) f ′(km (e))

e
=

=
[
(δ + γ)

f(km (e))
f ′(km (e)) [β + km(e)]

− δ

]−1

.

Thus, the behavior of m(e, e) depends of the behavior of the function H(km) = f(km)
f ′(km)[β+km] ,

which for this case it is given by H(km) = km

α[β+km] and H ′(km) = β

α[β+km]2
> 0. Since km (·) is

a strictly increasing function satisfying km(0) = 0, the function z(·) must also be decreasing on

�++ and satisfies z(0) > 0. In this case the PKD condition m(ê, ê) ≥ 1 (i.e., z(ê) ≥ 1) correctly

identifies efficient allocations, since for every ê such that m(ê, ê) ≥ 1 one must have m(ê, ê) > 1

for every ê < e, which in turn by Proposition 2.(ii) yields π(ê, ê) ≥ 1. Finally notice that if(
δ+γ
1−δ

)
< α, then m(ê, ê) > 1 for all e ≥ 0, which implies that every stationary allocation is

dynamically efficient (or, to be more precise, no stationary allocation can be dominated by any

other stationary allocation).�

Example 3. A CES production function. Consider the same economy as that in Example

2 but with a CES production function F (ko
t , nt−1) = [A (ko

t )
ρ + B (nt−1)

ρ]1/ρ with ρ ≤ 1 and

A,B > 0. Let f(km
t ) = F (km

t , 1) = [A (km
t )ρ + B]

1
ρ . The functions H() and m() are defined as in

Example 2. For this case, the function H is given by

H(km) =
[A (km)ρ + B]

1
ρ

A (km)ρ−1 [(km)ρ + B]
1
ρ
−1 [β + km]

=
km

β + km
+

B (km)1−ρ

A [β + km]
,

and therefore the equation m(e, e) = 1 can be written equivalently as

(δ + γ)
(
Akm(e) + B (km(e))1−ρ

)
= (1 + δ)A [β + km(e)]

Observe that, in this case, the functions H and m are not increasingly monotonic, and therefore

equation m(e, e) = 1 might have two positive solutions. For the particular case in which δ = 1/3,

γ = 1/3, A = 1, B = 3, ρ = 1/2, and β = 1 equation z(e) = 1 can be written as

0 = km(e) + 2 − 3 (km(e))
1
2 ,
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and it has two positive roots at e = 12 and e = 18.75, such that km(e) = 1 and km(e) = 4 respec-

tively, and one has m(e, e) = m(e, e) = 1. We show in Figure 3 that the PKD criterium might fail

to identify efficient allocations. Figure 3.a displays the value of the R(e, e)/n(e, e) ratio for each

of the stationary allocations, and indicates those stationary allocations e ∈ [0, 12]
⋃

[18.75,+∞)

that fulfill the PKD criterium, i.e., m(e, e) ≥ 1. Figure 3.b represents the welfare obtained at

each stationary allocation, W (e, e), and identifies that not all of these stationary allocations are

efficient. Since W achieves a local maximum at e = 12 and there exists a stationary amount

of resources e∗ = 24.84 such that W (e, e) = W (e∗, e∗), it is easy to identify that the region of

(dynamically) efficient allocations stands for e ∈ [0, 12]
⋃

[24.84,+∞), while the allocations that

fall into the region e ∈ (12, 24.84) are dynamically inefficient. The latter region includes those

allocations verifying the PKD condition, but they are not dynamically efficient, in particular

e ∈ [18.75, 24.84) .�

Example 4. A linear production function. Consider the same economy as that in Example

2 but with a linear production function Ft(ko
t , nt−1) = Rko

t + ωnt−1, where R, ω > 0. Let

f(km
t ) = F (km

t , 1) = Rkm
t +ω. Observe that here the optimization problem (4) in the definition of

W requires additionally the non-negativity constraint for capital accumulation. Consequently, we

had to distinguish between two cases, whether the capital per worker is positive or zero. First, the

equation that defines implicitly the function km() in Example 2 sets a lower threshold, such that

if et+1 ≥ ω − δ
δ+γ βR ≥ 0 the capital per worker is strictly positive, and then x(et, et+1) is found

as indicated there. However, whenever et+1 ∈
[
0, ω − δ

δ+γ βR
)

is satisfied, the non-negativity

constraint on capital is binding, i.e., km(et+1) = 0, and one has cm
t (et, et+1) = (1 − δ − γ)et,

co
t+1(et, et+1) = nt(et, et+1) (ω − et+1), and nt(et, et+1) = ((δ + γ)/β) et. Therefore, the indirect

utility function W adopts the form

Wt−1(et, et+1) =

{
Θ1 [ω − et+1]δ et if et+1 ∈

[
0, ω − δ

δ+γ βR
)
;

Θ2 [βR + et+1 − ω]−γ et if et+1 ≥ ω − δ
δ+γ βR ≥ 0

where Θ1 and Θ2 are constants depending on the parameters. It follows that Wt−1 is strictly

quasiconcave on the set
{

(et, et+1) : 0 ≤ et+1 < ω − δ
δ+γ βR

}
, and strictly quasiconvex on the set{

(et, et+1) : et+1 ≥ ω − δ
δ+γ βR

}
.

To conclude the example, consider the stationary allocation a∗ for which e∗ = w−βR
1−γ verifies

m(e∗, e∗) = 1; that is, a∗ would be identified as a “dynamically efficient” allocation according

to the PKD criterium. Suppose that w−βR
1−γ ≥ w − δ

δ+γ βR ≥ 0 is satisfied. Since W is strictly

quasiconvex around e∗, this allocation must be a local minimum and, therefore, any stationary

allocation a′ such that for a sufficient close e′ < e∗, M−dominates the allocation a∗.�
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3.2.2 A sufficient condition for dynamic efficiency of non-stationary paths. Although

non-convexities arising in the model make it difficult to extend the analysis of stationary paths to

provide a complete characterization of (non necessarily stationary) dynamic efficient paths, the

following proposition provides a sufficient condition that guarantees that an allocation is efficient

even if the indirect utility function Wt−1 fails to be quasiconcave.

Proposition 3 Consider an allocation â ∈ S∗ satisfying the necessary condition in Proposition

1. If

lim
T→∞

inf

(
êT∏T

t=0 πt (êt, êt+1)

)
= 0, (13)

then â is Millian efficient.

Proof. Consider an allocation â ∈ S satisfying conditions (5)–(8), and (13), and suppose now that

it is not efficient. To show that this yields a contradiction, let ã be an allocation dominating the

allocation â, and let τ be the first period for which Wτ−1(ẽτ , ẽτ+1) > Wτ−1(êτ , êτ+1). Observe that

by Lemma 1, ẽτ < êτ must be satisfied, and therefore there exists ετ such that ετ = êτ − ẽτ > 0.

Since â satisfies condition (13), there must exist a sufficiently large T ∗ such that, for each T > T ∗

one has (
êT∏T

t=0 πt (êt, êt+1)

)
< ετ = êτ − ẽτ .

Use now condition (9) in the statement of Lemma 1 and the definition of π t (êt, êt+1) to obtain

the chain of inequalities

0 < (êτ − ẽτ ) = ετ ≤ (êτ+1 − ẽτ+1)
πτ (êτ , êτ+1)

≤ êτ+2 − ẽτ+2

πτ (êτ , êτ+1) πτ+1 (êτ+1, êτ+2)
≤

≤ ... ≤
≤ êT − ẽT∏T

t=τ πt (êt, êt+1)
<

êT∏T
t=τ πt (êt, êt+1)

,

which contradicts condition (13) and, therefore, establishes that â is Millian efficient.�

4 A characterization of M−efficient allocations as decentralized equilibria

In this section, we provide an alternative characterization of interior statically efficient alloca-

tions as the equilibria of a decentralized price mechanism with intergenerational transfers.

This price mechanism is described as follows. There are two markets operating at each date

t ≥ 0: a financial market, that allows agents to lend (or borrow) an arbitrary amount st of the

homogeneous good in period t, and obtain (or pay back) a return equal to Rt+1 units of the same

good in period t+1; and, a spot job market, in which labor is exchanged against the homogeneous
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good at a price wt. In addition, there exists an intergenerational transfer program, represented by

a sequence T = {Tt}t≥0, that collects a lump sum tax Tt from every middle-aged adult living at

t, and gives every old adult a transfer Pt that depends linearly on the number of children that he

has, according to the rule Pt = nt−1Tt. Note that such intergenerational policy is balanced every

period.

With these two markets operating at each date, the life-cycle optimization problem for an

agent born in period t − 1, with t = 0, 1, ..., is

Vt−1(wt − Tt, Rt+1, Tt+1) = max
(xt,st)

u(cm
t , co

t+1, nt) (14)

subject to: cm
t + st + bt(nt) ≤ wt − Tt

co
t+1 ≤ Rt+1st + ntTt+1;

given Rt+1, wt, Tt and Tt+1; and where st represents the middle-aged agent’s savings at period t.

Labor and physical capital are purchased by firms at competitive prices equal, respectively,

to wt = D2Ft(ko
t , nt−1) and Rt = D1Ft(ko

t , nt−1); and, aggregate savings finances investment in

physical capital, st = ko
t+1. For the initial condition (n−2, n−1, k

o
0) =

(
1, n−1,K0

)
, and a given

sequence of contracts T = {Tt}∞τ=0, a decentralized equilibrium (generated by T ) is an allocation

a∗ and a sequence of prices {w∗
τ , R∗

τ}∞τ=0, which are characterized by

u′
1(x

∗
t )

u′
2(x

∗
t )

= R∗
t+1; (15)[

b′(n∗
t ) −

u′
3(x

∗
t )

u′
1(x

∗
t )

]
u′

1(x
∗
t )

u′
2(x

∗
t )

= Tt+1; (16)

w∗
t+1 = D1Ft+1(ko∗

t+1, n
∗
t ); (17)

R∗
t+1 = D2Ft+1(ko∗

t+1, n
∗
t ); (18)

s∗t = ko∗
t+1; (19)

and, the two individual budget constraints in (14) for all t ≥ 0.

Observe that the second condition holds for any fees pattern, including Tt+1 = 0. These

equations provide a straightforward characterization of statically M−efficient interior allocations

as the equilibria of the sequential price mechanism described above, as the following result states.

Theorem 4

(i) Consider an arbitrary sequence T ∗ of intergenerational contracts, and let a∗ be an interior

decentralized equilibrium generated by T ∗. Then a∗ is statically M−efficient.

(ii) For every statically M−efficient interior allocation a∗, there exists a sequence T ∗ of intergen-

erational contracts generating a∗ as a decentralized equilibrium.
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Proof. To prove (i), let (a∗, {w∗
t , R

∗
t }t≥0) be an interior decentralized equilibrium generated by

a sequence T , and denote et = w∗
t − Tt as this equilibrium net resources owned by a middle-aged

agent born at period t − 1. First, it is straightforward to check that a∗ is a feasible allocation

satisfying (5)–(7) for each t ≥ 0. Then, in order to show that a∗ satisfies also (8), we make use

the budget constraint for the old adult agent in (14), the condition (19), and the fact that at

competitive equilibrium prices maximum profits are equal to zero at all periods.

To prove (ii), let a∗ be an interior statically M−efficient allocation verifying the necessary con-

ditions (5)–(8). Then, it is straightforward to check that a sequence of intergenerational transfers

{Tt+1}∞t=−1 defined by (16) generates a∗ as an interior decentralized equilibrium allocation.�

Thus, the notion of Millian efficiency admits a characterization that is closely analogous to

the one provided by the two fundamental Theorems of Welfare Economics. Nevertheless, two

important differences arise.

With respect to the statement (i) in Theorem 4, that can be regarded as a version of the

First Fundamental Welfare Theorem, it is important to observe that the equilibrium generated

without an intergenerational transfer program Tt = 0 for all t, is statically M−efficient; that is,

there is no need to subsidize children on (static) efficiency grounds. Despite Groezen, Leers and

Medjam (2003) have arrived to similar conclusions in the context of a small open economy with

Cobb-Douglas utility functions, they regard as efficient any allocation satisfying the first order

conditions of a Millian welfare maximization problem, which might be incorrect. In fact, their

parametric small open economy is essentially equivalent to the economy with linear technology

and exogenous wages and interest rates that we study in our Example 4 above, which yields

indirect utility functions that are not quasiconcave.

The statement (ii) of Theorem 4 can be regarded as a version of the Second Fundamental

Theorem of Welfare Economics. Similar to the case of economies with exogenous population,

every Millian efficient allocation can be decentralized by initially selecting an appropriate sequence

of intergenerational transfers, and then allowing the agents to determine their consumption and

investment decisions at competitive markets. Differently from the standard, exogenous population

case, in which non-distorting intergenerational transfers must be lump-sum for all agents, an

incentive scheme that links intergenerational transfers with fertility decisions is needed. More

precisely, for every system of intergenerational transfers that achieves Millian efficiency, every

middle-aged adult has to pay a tax Tt > 0 (or, in some cases, receive a lump-sum subsidy given

by Tt < 0), while every old adult has to receive a subsidy (or pay a tax) which depends linearly

of the number of children she decides to have.
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4.1 Dynamic efficiency and competitive prices.

The characterization given above refers to statically M−efficient allocations. Of course, many

of those equilibria described above might be dynamically inefficient, and therefore it is worth

exploring which of these equilibria ensure that dynamic efficiency is achieved. One way to proceed

consists in computing the sequence
{
πt(e∗t , e∗t+1)

}
t≥0

associated to an equilibrium path and then

apply Proposition 3. However, computing each πt(e∗t , e∗t+1) may involve some difficulties since it

requires computing Wt−1(et, et+1) for every pair (et, et+1) ≤ (e∗t , e∗t+1). The Proposition stated

below provides a simpler condition for dynamic efficiency that exclusively uses the sequence of

prices p∗ = {w∗
t , R

∗
t }∞t=0 associated to any decentralized equilibrium. In order to prove this result,

we need to introduce the following technical assumption, which implies that an individual is able

to achieve any utility level by having enough children.

Assumption 1 For every u in the range of u, and every (cm
t , co

t+1) ∈ �2
+, there exists a nt such

that u(cm
t , co

t+1, nt) ≥ u.

Proposition 5 Assume that the utility function u satisfies Assumption 1, and let (a∗, p∗) be a

decentralized equilibrium generated by a sequence T ∗ of intergenerational transfers. Then a∗ is

Millian efficient if

lim
T→∞

inf

⎛⎜⎝ e∗T∏T
t=0

e∗t+1+(βtR
∗
t+1−w∗

t+1)
e∗t

⎞⎟⎠ = 0

is satisfied, where e∗t = w∗
t − T ∗

t and βt = b′t(0) for all t.

Proof. By Lemma 7, which is formally proved in the technical appendix, for every t and every

(êt, êt+1), πt−1(êt, êt+1), defined as in (11), is bounded by

πt−1(et, et+1) ≥
e∗t+1 +

(
βtR

∗
t+1 − w∗

t+1

)
e∗t

,

and then, the proof is completed by applying the sufficient condition in Proposition 3.�

Finally, an interesting result for stationary economies, straightforward proved from the previ-

ous proposition, is the following;

Proposition 6 An interior decentralized equilibrium a∗ (generated by T ∗) that converges to a

steady state with constant competitive equilibrium prices (w∗, R∗) is Millian efficient if

R∗ − w∗

b′(0)
> 0, .
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Consequently, the PKD criterium defined for the case of exogenous fertility must be replaced

by this alternative criterium, that states that the rate of return to physical capital should be

highest than a term that corresponds to the highest rate of return (in terms of goods) to invest

in children, i.e., w∗/b′(0).

5 Conclusions

This paper is concerned with Pareto efficiency in an overlapping generations setting with

endogenous fertility decisions. In an environment in which the set of agents is endogenous, we

explore the properties of an extension of the notion of Pareto efficiency, referred to as Millian

efficiency. The notion of Pareto dominance underlying the Millian notion is based exclusively on

the preference profiles of those agents alive, and allows only to ranking symmetric allocations with

positive fertility rates through every period. We show that when fertility decisions are endogenous,

the set of feasible allocations in overlapping generations economies is non-convex, and the standard

sufficient conditions for dynamic efficiency in an exogenous population environment cannot be

straightforward applied. In the paper, we provide necessary conditions that every Millian efficient

allocation must verify, and a sufficient condition determining whether a given allocation that

satisfies these necessary conditions is Millian efficient.

With these results at hand, we adapt the Fundamental Theorems of Welfare Economics to a

setting with endogenous population by characterizing every (statically) Millian efficient allocation

as the equilibrium of a decentralized sequential price mechanism. Similar to the case of economies

with exogenous population, every Millian efficient allocation can be decentralized by initially

selecting an appropriate sequence of intergenerational transfers, and then allowing the agents to

determine their consumption and investment decisions at competitive markets. Differently from

the standard exogenous population case, an incentive scheme that links intergenerational transfers

with fertility decisions is needed. More precisely, for every system of intergenerational transfers

that achieves Millian efficiency, every middle-aged adult has to pay a tax (or, in some cases, receive

a subsidy), and every old adult will receive a subsidy (or pay a tax) which depends linearly of the

number of children she decided to have. As a particular case, we also show that the allocation

corresponding to a decentralized equilibrium with no intergenerational transfers, for which there

is no need to subsidize or tax children, is (statically) Millian efficient.

To summarize, the theoretical study on the notion of efficiency with endogenous populations

presented in this paper has relevant implications for analyzing the role of social security programs

in achieving optimal intergenerational redistribution. First, empirical tests of dynamic efficiency

based on the PKD criterium might be no longer valid. Second, optimal intergenerational trade

might be reached by spontaneous agreement of the agents involved. Third, if a government wishes
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to enforce intergenerational transfers, a mechanism linking these transfers with fertility decisions

is needed.

Several extensions, such as allowing for more general forms of altruism between the agents

and their descendants or introducing human capital accumulation by children, would be worth

exploring. These two extensions would provide a more general setting to discuss any proposal on

the role that some institutions, such as the family or the institutions comprising the welfare state,

should play in achieving optimal intergenerational trade. Some authors have pointed out that,

in addition to the market failure caused by dynamic inefficiencies, other types of market failures

might affect intergenerational trade. For example, Becker and Murphy (1988), or Boldrin and

Montes (2005) have argued that children might not have access to capital markets to finance their

human capital accumulation; and, Rangel (2003) has argued that the elderly cannot rely on the

markets to obtain some goods. If the optimal rate of return to investment in children is affected

by intergenerational transfers (as it occurs in the setting studied in this paper) any public policy

that enforces intergenerational transfers on efficiency grounds should take into account the effect

of intergenerational transfers on fertility choices.
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Technical Appendix

Lemma 7 For every t and every (êt, êt+1), πt−1(êt, êt+1), defined as in (11), is bounded by

πt−1(et, et+1) ≥
e∗t+1 +

(
βtR

∗
t+1 − w∗

t+1

)
e∗t

. (20)

Proof. We begin by defining, for an arbitrary period t and a given pair (w∗
t , R

∗
t+1), the function

W ∗
t−1(et, et+1;w∗

t , R
∗
t+1) = Vt−1(et, R

∗
t+1, w

∗
t+1 − et+1)

= max
(xt,ko

t+1)∈�3
+×�

{
u (xt) : cm

t + βtnt + ko
t+1 = et;

co
t+1 = R∗

t+1k
o
t+1 + w∗

t+1nt − ntet+1

}
. (21)

To prove (20) we proceed by steps.

Step 1. We first prove that, for every (et, et+1) ≤ (e∗t , e∗t+1

)
, we have W ∗

t−1(et, et+1;w∗
t , R

∗
t+1) ≥

Wt−1(et, et+1), where Wt−1(et, et+1) is defined as in (4).

To prove Step 1, let (et, et+1) ≤ (e∗t , e∗t+1

)
be arbitrary and let xt = xt(et, et+1) and ko

t+1 =

ko
t+1(et, et+1) be a solution to the optimization problem in the definition of Wt−1(et, et+1). Since,

at competitive equilibrium prices, maximum profits are achieved at (ko∗
t+1, n

∗
t ) and are equal to

zero, we have

Ft+1(ko∗
t+1, n

∗
t ) − R∗

t+1k
o∗
t+1 − w∗

t+1n
∗
t = 0 ≥ Ft+1(ko

t+1, nt) − R∗
t+1k

o
t+1 − w∗

t+nt.

Therefore, the pair (xt, kt+1) satisfies

co
t+1 ≤ Ft+1(ko

t+1, nt) − ntet+1 ≤ R∗
t kt+1 + w∗

t−1nt−1 − ntet+1

and, since bt is a convex function satisfying bt(nt) ≥ βtnt, we know that cm
t + βtnt + ko

t+1 ≤ et.

Thus, the pair (xt, kt+1) is also feasible in the optimization problem in the definition of W ∗
t−1, a

contradiction that establishes that W ∗
t−1(et, et+1;w∗

t , R
∗
t+1) ≥ Wt−1(et, et+1) must be satisfied.

Step 2. We now show that πt−1(e∗t , e∗t+1) ≥ π∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1), where π∗

t−1 is defined as

π∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1) =

= inf
(et,et+1)<<(e∗t ,e∗t+1)

{e∗t+1 − et+1

e∗t − et
: W ∗

t−1(et, et+1;w∗
t , R

∗
t+1) ≥ W ∗

t−1(e
∗
t , e

∗
t+1;w

∗
t , R

∗
t+1)
}

.

To prove Step 2, first note that W ∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1) = Wt−1(e∗t , e∗t+1) is satisfied from

Theorem 4.i). This fact implies that the indifference curves I(e∗t , e∗t+1) and I∗(e∗t , e∗t+1) defined as

I(e∗t , e
∗
t+1) ≡ {

(et, et+1) ≥ 0 : Wt−1(et, et+1) = Wt−1(e∗t , e
∗
t+1)
}

I∗(e∗t , e
∗
t+1) ≡ {

(et, et+1) ≥ 0 : W ∗
t−1(et, et+1;w∗

t , R
∗
t+1) = W ∗

t−1(e
∗
t , e

∗
t+1;w

∗
t , R

∗
t+1)
}

(22)
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coincide at (e∗t , e∗t+1); and, by Step 1, the indifference curve I(e∗t , e∗t+1) lies below I∗(e∗t , e∗t+1) for

any pair (et, et+1) ≤ (e∗t , e∗t+1). Since for any pair (et, et+1) ≤ (e∗t , e∗t+1), π∗(e∗t , e∗t+1;w
∗
t , R

∗
t+1) and

π(e∗t , e∗t+1) are the slopes of the flattest lines above I∗(e∗t , e∗t+1) and I(e∗t , e∗t+1) respectively, this

establishes Step 2.

Step 3. It only remains to be shown that

π∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1) =

e∗t+1 +
(
βtR

∗
t+1 − w∗

t+1

)
e∗t

(23)

is satisfied. To prove this statement, we will specify the properties of the indifference curve

I∗(e∗t , e∗t+1), namely it is convex and it crosses the et+1−axis at the point βtR
∗
t+1 − w∗

t .

First define the vector of prices p∗
t = (p∗mt, p

∗
nt(et+1), p∗ot) = (1, βt − (w∗

t+1 − et+1)/R∗
t+1, 1/R

∗
t )

for all t. Then the maximization problem (21) can be equivalently written at the standard

consumer problem

W ∗
t−1(et, et+1;w∗

t , R
∗
t+1) = max

xt∈�3
+≥0

{
u(xt) : cm

t + p∗ntnt + p∗otc
o
t+1 = et

}
,

whose corresponding expenditure minimization problem is

E(pt;u) = min
xt∈�3

+≥0

{
pmtc

m
t + pntnt + potc

o
t+1 : u(xt) ≥ u

}
.

Since the utility function is non-decreasing and satisfies Assumption 1, the expenditure func-

tion E (pt;u) verifies the standard properties: it is non-decreasing in pt, concave and contin-

uous in pt, and satisfies limpn→0 E (1, pc, pn;u) = 0. Notice also that for the given level of

u = W ∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1), the expenditure function E(p∗

t ;W ∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1)) = et de-

fines implicitly the indifference curve I∗(e∗t , e∗t+1) in (22). Concretely, the implicit relationship

between et and et+1 is

E((1, p∗nt(et+1), p∗ot);W
∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1)) − et = 0.

Applying the Implicit Function Theorem to the indifference curve defined implicitly in the previous

equation, it is easy to see that I∗(e∗t , e∗t+1) is convex and increasing.

Finally, in order to prove that the indifference curve crosses the et+1−axis at the point

βtR
∗
t+1 − w∗

t , notice that at any period t the unique way to achieve a positive level of welfare

u = W ∗
t−1(e

∗
t , e

∗
t+1;w

∗
t , R

∗
t+1) > 0 is for p∗nt(et+1) = βt − (w∗

t+1 − et+1)/R∗
t+1 = 0.

Consequently, (23) defines π∗(e∗t , e∗t+1;w
∗
t , R

∗
t+1), i.e., the flattest slope that pass through the

pair (e∗t , e∗t+1) and leaves below the indifference curve I∗(e∗t , e∗t+1) for (et, et+1) ≤ (e∗t , e∗t+1). This

concludes Step 3.

The proof is complete by making use Steps 2 and 3.�
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Appendix of Figures

Dynamic Efficient Allocations
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Figure 1: Stationary Dynamic efficient allocations when W is strictly quasiconcave.
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Figure 2: An example when W is not strictly quasiconcave of a stationary allocation ẽ that verifies
the P-D-K condition, but is not efficient .
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Figure 3: Numerical example where the PKD criterium fails to identify dynamically efficient allo-
cations. Above the R(e, e)/n(e, e) function. Below the indirect utility function for the stationary
allocations. (Parameters δ = 1/3, γ = 1/3, A = 1, B = 3, ρ = 1/2, and β = 1.)
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ÁREA DE ECONOMÍA APLICADA
19. THE EVOLUTION OF INSTITUTIONS AND STATE GOVERNING PUBLIC CHOICE IN THE SECOND HALF OF TWENTIETH-CEN-

TURY SPAIN (Gonzalo Caballero Miguez)
20. A CALIDADE DE VIDA COMO FACTOR DE DESENVOLVEMENTO RURAL. UNHA APLICACIÓN Á COMARCA DO EUME. (Gonzalo

Rodríguez Rodríguez.)
21. CARACTERIZACIÓN SOCIOECONÓMICA Y DESARROLLO DEL TURISMO EN LA "COSTA DA MORTE". (Begoña Besteiro

Rodríguez)
22. OS SERVIZOS A EMPRESAS INTENSIVOS EN COÑECEMENTO NAS REXIÓNS PERIFÉRICAS: CRECEMENTO NUN CONTEXTO DE

DEPENDENCIA EXTERNA? (Manuel González López)
23. O PAPEL DA EMPRESA PÚBLICA NA INNOVACIÓN: UNHA APROXIMACIÓN Á EXPERIENCIA ESPAÑOLA (Carmela Sánchez

Carreira)

ÁREA DE HISTORIA
13. EN TORNO Ó ELDUAYENISMO: REFLEXIÓNS SOBRE A POLÍTICA CLIENTELISTA NA PROVINCIA DE PONTEVEDRA. 1856-1879.

(Felipe Castro Pérez)
14. AS ESTATÍSTICAS PARA O ESTUDIO DA AGRICULTURA GALEGA NO PRIMEIRO TERCIO DO SÉCULO XX. ANÁLISE CRÍTICA.

(David Soto Fernández)
15. INNOVACIÓN TECNOLÓXICA NA AGRICULTURA GALEGA (Antom Santos - Pablo Jacobo Durán García - Antonio Miguez Macho)
16. EL BACALAO EN TERRANOVA Y SU REFLEXIÓN DE LAS ZEE (Rosa García-Orellán)
17. LA ORGANIZACIÓN DEL TRABAJO EN LA GALICIA COSTERA: UNA REVISIÓN DEL IMPACTO DE LA INDUSTRIALIZACIÓN

CONSERVERA EN ILLA DE AROUSA, 1889-1935 (Daniel Vázquez Saavedra)

ÁREA DE XEOGRAFÍA
18. "TOWARDS A NEW MODEL FOR THE EVOLUTION OF TOURISM DESTINATIONS. THE EXAMPLE OF THE "UNIVERSAL'S PORT

AVENTURA" IN SALOU, TARRAGONA." (Martin Scheer)
19. LAS FORMAS Y TIPOS DE GESTIÓN DE LAS COMPETENCIAS DE LOS GOBIERNOS LOCALES EN GALICIA: LA DINÁMICA DE

LA GOBERNANZA Y EL MARCO DE LAS POLÍTICAS PÚBLICAS. (Guillermo Márquez Cruz)
20. EMIGRACIÓN DE RETORNO NA GALICIA INTERIOR. O CASO DE ANTAS DE ULLA (1950-2000) (Francisco Xosé Armas Quintá)
21. A MOBILIDADE EN TAXI EN SANTIAGO DE COMPOSTELA. (Miguel Pazos Otón - Rubén C. Lois González)
22. A SITUACIÓN DA INDUSTRIA DA TRANSFORMACIÓN DA MADEIRA E A SÚA RELACIÓN CO SECTOR FORESTAL EN GALIZA

ANTE A CHEGADA DO SÉCULO XXI (Ángel Miramontes Carballada)

XORNADAS DO IDEGA
3. AS PRESTACIÓNS POR DESEMPREGO A DEBATE (Santiago Lago Peñas, Rosa María Verdugo Matês)
4. INTERNET I EDUCACIÓN. I XORNADAS SINDUR (Carlos Ferrás Sexto)
5. RESÍDUOS SÓLIDOS URBANOS: A SUA PROBLEMÁTICA E A SUA GESTIÓN (Marcos Lodeiro Pose, Rosa María Verdugo Matês)
6. CINEMA E INMIGRACIÓN (Cineclube Compostela, Rosa Maria Verdugo Matés e Rubén C. Lois González)
7. NOVAS TECNOLOXÍAS E ECONOMÍA CULTURAL. II Xornadas SINDUR (Carlos Ferrás Sexto)

EDICIÓN ELECTRÓNICA
Tódolos documentos de traballo pódense descargar libremente da páxina web do instituto
(http://idegaweb.usc.es)
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Normas para os autores:

1. Os autores enviarán o seus traballos, por correo electrónico á dirección (idegadt@usc.es)
en formato PDF ou WORD. O IDEGA poderá solicitar o documento en papel si o esti-
ma convinte.

2. Cada texto deberá ir precedido dunha páxina que conteña o título do traballo e o nome do
autor(es), as súas filiacións, dirección, números de teléfono e fax e correo electrónico.
Así mesmo se fará constar o autor de contacto no caso de varios autores. Os agradece-
mentos e mencións a axudas financeiras se incluirán nesta páxina. En páxina aparte se
incluirá un breve resumen do traballo na lingua na que estea escrito o traballo e outro en
inglés dun máximo de 200 palabras, así como as palabras clave e a clasificación JEL.

3. A lista de referencias bibliográficas debe incluír soamente publicacións citadas no texto.
As referencias irán o final do artigo baixo o epígrafe Bibliografía ordenadas alfabetica-
mente por autores y de acordo co seguinte orden: Apelido, inicial do Nome, Ano de
Publicación entre parénteses e distinguindo a, b, c, en caso de máis dunha obra do mesmo
autor no mesmo ano, Título do Artigo (entre aspas) ou Libro (cursiva), Nome da Revista
(cursiva) en caso de artigo de revista, Lugar de Publicación en caso de libro, Editorial en
caso de libro, Número da Revista e Páxinas.

4. As notas irán numeradas correlativamente incluíndose o seu contido a pe de páxina e a
espacio sinxelo.

5. As referencias bibliográficas deberán facerse citando unicamente o apelido do autor(es) e
entre parénteses o ano.

6. Os cadros, gráficos, etc. irán numerados correlativamente incluíndo o seu título e fontes.

7. O IDEGA confirmará por correo electrónico o autor de contacto a recepción de orixinais.

8. Os orixinais serán remitidos para a súa avaliación anónima. O informe de avaliación se
enviará os autores que, xunto ca versión revisada, deberán contestar as suxerencias que
se lles fixeran, incorporando unha carta de resposta o avaliador. Os editores, a vista dos
informes dos avaliadores, resolverán sobre a súa publicación nun prazo prudencial. Terán
preferencia os traballos presentados as sesións Científicas do Instituto.

9. Para calquera consulta ou aclaración sobre a situación dos orixinais os autores poden
dirixirse o correo electrónico do punto 1.

10. No caso de publicar unha versión posterior do traballo en algunha revista científica, os
autores comprométense a citar ben na bibliografía, ben na nota de agradecementos, que
unha versión anterior publicouse como documento de traballo do IDEGA.
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