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NON-TECHNICAL SUMMARY

This paper explores the properties of several notions of efficiency (A-
efficiency, P-efficiency and Millian efficiency) to evaluate allocations in a general
overlapping generations setting with endogenous fertility and descendant altruism.
The setting includes, as particular cases, environments with infinite horizon,
dynastic altruism & /a Barro and Becker (1988) as well as environments with infinite
horizon or other forms of non-dynastic altruism.

More specifically, we focus on a two-period, overlapping generations setting
in which a) the set of fertility choices is an unbounded interval in the real line; b)
any two agents of the same generation who get to be alive have the same labor
endowment and the same utility function, that depends on their consumption of a
homogeneous good, on the number of children they decide to bear and on the
utility obtained by their descendants.

Initially, we focus on the notion of A-efficiency -proposed by Golosov, Jones
and Tertilt (Econometrica, 2007)- and raise some normative concerns: in many
environments, the set of symmetric, interior, A-efficient allocations is empty. We
show that every symmetric, A-efficient allocation must maximize the utility of the
dynasty head among feasible (but not necessarily symmetric) allocations. A
straightforward implication of this result is that, in many environments, achieving
efficiency without discriminating or exploiting some of the agents is impossible. We
regard these results as reminiscent of the so called Repugnant Conclusion arising in
the Social Choice literature.

To overcome this problem, we then propose to evaluate the efficiency of a
given allocation with a particular specification of P-efficiency -proposed also by
Golosov et al. (2007)-, for which the utility attributed to the unborn depends on the
utility level achieved by those who get to be born in a given allocation. Millian
efficient allocations can be described as P-efficient allocations for which P-efficiency
holds for a wide range of specifications of the utility attributed to the unborn.

To conclude the paper, we explore the efficiency properties of a
decentralized mechanism in which the agents, endowed with well-defined property
rights over the commodities available in the economy, are free to trade these rights
(or transfer them) to pursue their own interests. With this purpose, we slightly
modify the notion of competitive equilibrium proposed by Golosov et al. (2007) and
impose that transfers from parents to their children are non-negative.

We show that if the (constrained) value functions associated to the notion of
competitive equilibrium are concave on a certain range, then there exist
competitive equilibria that are interior and symmetric and, hence, potentially A-
inefficient. In view of our previous results, when altruism is non-dynastic,
symmetric equilibria are always A-inefficient, while if altruism is dynastic,
symmetric equilibria may be A-inefficient if either a) some of the (unconstrained)
value functions associated to A-efficiency are non-concave, or b) some of the non-
negativity constraints on gifts or bequests are binding. In our view, this fact seeds
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some doubts on the notion of A-efficiency as a useful concept to predict the
behavior of the agents in real economies, as the notion of Pareto efficiency does in
the Edgeworth-Coase tradition.

For the notion of Millian efficiency (and, hence, for P-efficiency), however, a
version of the First Welfare Theorem holds. To be more precise, we show that a) a
symmetric competitive equilibrium is a -statically- Millian efficient allocation; and b)
if long-run wages do not exceed the capitalized costs of rearing children, then a
competitive equilibrium is also -dynamically- Millian efficient.
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Abstract

This paper explores the properties of several notions of efficiency (A—efficiency, P—efficiency
and Millian efficiency) to evaluate allocations in a general overlapping generations setting with
endogenous fertility and descendant altruism that includes, as a particular case, Barro and
Becker’s (1988) model of fertility choice. We first focus on the notion of A—efficiency, proposed
by Golosov, Jones and Tertilt (Econometrica, 2007) and show that, in many environments, the
set of symmetric, interior, A—efficient allocations is empty. To overcome this problem, we
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every Millian efficient allocation, that is, every symmetric allocation that is not A—dominated
by any other symmetric allocation, is also P-efficient. Finally, we restate the First Welfare
Theorem by showing that a) every competitive equilibrium is a —statically— Millian efficient
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then competitive equilibria are also —~dynamically— Millian efficient.

Key words: Efficiency, Optimal Population, Endogenous Fertility, A—efficiency, P—efficiency,
Millian efficiency

JEL: D91, H21, H5, E62, J13

*We are grateful for the useful insights of Michele Boldrin, Raouf Boucekkine, Omar Licandro, Juan Rubio-
Ramirez, Manuel S. Santos and Tim Kehoe. Financial support from the Spanish Minister of Economics and Com-
petitivity project EC0O2013-48884-C3-1-P is acknowledged by the first and the third authors, and from the Spanish
Ministry of Science and Technology project ECO2011-30323-C03-01 by the second author.

TUniversidade de Santiago de Compostela; miguel.perez — nievasQusc.es

#Universidad Complutense de Madrid and FEDEA (Fundacién de Estudios de Economia Aplicada);
conde — ruiz@fedea.es

$Universidade de Vigo; egimenez@Quvigo.es



1 INTRODUCTION

This paper explores the properties of the notions of A—efficiency and P —efficiency —proposed
by Golosov, Jones and Tertilt (Econometrica, 2007)—, as well as the notion of Millian efficiency
—proposed by Conde-Ruiz, Giménez and Pérez-Nievas (Review of Economic Studies, 2010)— to
evaluate allocations in a general overlapping generations setting with endogenous fertility and
descendant altruism. The setting includes, as particular cases, environments with infinite horizon,
dynastic altruism a la Barro and Becker (1988) as well as environments with finite horizon or
other forms of non-dynastic altruism.

The most commonly used optimality notion in standard normative economic analysis is that
of Pareto efficiency. This notion of efficiency relies on the well-known Pareto criterion to compare
social alternatives, a criterion that allows one to construct a partial ordering on a set of alternatives
from the complete preference orderings (defined on this set) of a fized group of agents. An efficient
allocation can be described as a maximal element of the partial order induced by the Pareto
criterion on the set of feasible allocations.

With endogenous populations, one can still use the Pareto criterion to rank feasible allocations
using the partial orderings of all potential agents, represented by the utility functions of the
living agents. That is, an allocation can still be ranked as Pareto superior to another one if it
is unanimously preferred by all potential agents according to their partial preference ordering.
However, this implies that any two allocations with different population size cannot be ranked,
since there is no way to know whether or not an agent who lives in one allocation a but not in
other allocation a’ is better off in the latter than he is in the former. To avoid this problem and
preserve the partial order induced by the Pareto criterion, one needs to extend it to compare also
allocations of different population size.

Although the issue seems to concern policymakers everywhere, the theoretical foundations
of many proposals to alter fertility rates are rather weak, and we do not have enough theoretical
grounds to determine what the optimal growth of the population is and, consequently, to claim that
individual fertility choices lead to a too low or a too high population growth. Most of the literature
has simply turned to identify optimal allocations with the solutions to alternative social welfare
maximization problems: a first approach identifies socially optimal allocations with steady state
optimal allocations (also referred to as golden rule allocations), that is, allocations that maximize
the utility obtained by a representative consumer among those feasible stationary allocations;!
while a second approach identifies optimal allocations with those maximizing a certain class of
social welfare maximization problems, referred to as Millian or Benthamite depending on whether
or not the welfare weight given to a generation in the social welfare function depends on the size
of that generation.? Neither one of these two approaches has taken explicitly into account the fact
that the Pareto criterion is not directly applicable to environments in which the set of agents is
endogenous. Besides, a social welfare maximization problem may display two problems: it may
not be well-defined and, if so, its solution identifies a unique “optimal” allocation which might not
be enough for welfare comparisons of any two alternative allocations.

A different approach has emerged in the Social Choice literature.? There, the objective has
been to derive, using different axioms, population principles that extend fixed population social

'See e.g., Samuelson (1975, 1976), Deardoff (1976), Eckstein and Wolpin (1985), Bental (1989), Michel and
Pestieau (1993) and Jaeger and Kuhle (2009).

2See e.g., Nerlove, Razin and Sadka (1982, 1985), Cigno (1992), Groezen, Leers and Medjam (2003) or Razin
and Sadka (1995, Ch.5) for a survey. More recent contributions are those by Renzo and Spataro (2011), Fabri,
Boucekkine and Gozzi (2012), and Bucekkine and Fabri (2013).

3See e.g., Blackorby, Bossert and Donaldson (1995, 2002, 2005)



goodness relations so that they can rank alternatives with different populations. All papers in this
line of research adopt a welfarist approach; that is, they rank alternatives with different population
size using information about all those who ever live together with their levels of lifetime utility,
and derive complete preference orderings on the set of alternatives that are representable by social
welfare functions. As for fixed population environments, deriving a social welfare function might
be too demanding if one is simply interested on a weak criterium to compare allocations —such as
the Pareto criterion. Besides, it typically requires the assumption of interpersonal comparisons of
utility, which is not required for the notion of Pareto efficiency.

Unlike these literature, some recent papers, among which we should mention Schweizer (1997),
Lang (2005), Michele and Wigniolle (2007), and Conde-Ruiz et al. (2010) have provided normative
principles to evaluate population policies in the context of an overlapping generations framework
without altruism. However, these papers restrict their analysis to symmetric allocations, that is, to
allocations in which any two agents of the same generation obtain the same consumption bundle.
They all focus on an extension of the Pareto criterion (which is still referred to as (modified)
Pareto dominance by Schweizer, Lang and Michele et al. and as A—dominance by the latter) that
compares any two allocations of different population size by comparing exclusively the welfare
profiles of those agents who are alive in the two allocations. Given the symmetry restriction on
the set of allocations that are comparable using the A—dominance criterium, a feasible symmetric
allocation is said to be efficient (or, using the term proposed by Conde-Ruiz et al, Millian efficient)
if there does not exist an alternative feasible, symmetric allocation that provides all members of
a generation with higher utility without decreasing the utility obtained by any other generation.?
The name “Millian” refers to the fact that it is a notion of efficiency that generalizes the notion
of Millian optimality mentioned above.

But the restriction to symmetric allocations seems too demanding. To fill this gap, Golosov,
Jones and Tertilt (2007) have proposed two extensions of the Pareto criterion to compare alloca-
tions with different population size. The first of these extensions is referred to as the A—dominance
criterion and, as mentioned above, ranks any two allocations by applying the Pareto criterion using
information of the preference profiles of those agents who are alive in the two allocations, without
restricting welfare comparisons to symmetric allocations. The second extension, referred to as the
P—dominance criterion, is constructed from a previous assumption on the utility level obtained
by potential non-born agents. This assumption, together with the existence of well-defined utility
functions that represent the preferences of all potential agents in those allocations in which they
are alive, provides a complete description of preferences of all potential agents in the economy
across all allocations, which allows the authors to rank any two allocations of different population
size by comparing (using the Pareto criterion and the utility level attributed to the unborn) the
utility profiles of all potential agents in the two allocations. These two extensions of the notion of
Pareto dominance give rise to two notions of efficiency, respectively referred to as A—efficiency and
P—efficiency, to evaluate allocations in environments in which fertility decisions are endogenous.

Golosov, Jones and Tertilt (henceforth GJT) provide partial characterizations of the two no-
tions of efficiency as the solutions to welfare maximization problems, and prove that, under rela-
tively mild assumptions, A—efficient allocations are either P—efficient or are arbitrarily close to
allocations that are also P—efficient(see GJT 2007, Sec.4.3 Result 3). Thus, the P—efficiency of
A—efficient allocations is robust to different specifications of the utility levels attributed to the
unborn. In a framework with dynastic altruism a la Barro and Becker (1989), GJT also explore

4Recent applications —under different names— of this notion of efficiency in applied work, can be seen in Michel
and Wigniolle (2010) and Oguro et al (2013) —who use the name “Representative Consumer Efficiency,” and also in
Fanti and Gori (2012a, 2012b), who use the name A-efficiency. .



the properties of a notion of equilibrium which results from the combination of the notion of com-
petitive equilibria and the notion of subgame perfect equilibria of a voluntary transfer game played
within families. In this environment, they also provide a version of the First Welfare Theorem by
showing that such non cooperative equilibria are both A—efficient and P—efficient (see GJT 2007,
Ths.1 and 2).

In this paper, we consider the properties of different notions of efficiency in a framework
slightly more general than GJT’s extension of Barro and Becker’s model. We focus on a two-
period, overlapping generations setting in which a) the set of fertility choices is an unbounded
interval in the real line; b) any two agents of the same generation who get to be alive have the
same labor endowment and the same utility function, that depends on their consumption of a
homogeneous good, on the number of children they decide to bear and on the utility obtained
by their descendants. The setting covers, as particular cases, a wide range of positive models of
fertility choice, including models with dynastic altruism as well as models with weaker, or non-
dynastic, forms of altruism. In this context, we show that the notion of A—efficiency proposed by
GJT face some important difficulties.

A—Efficiency: normative concerns

Although the notion of Pareto efficiency does not incorporate distributional concerns, it is,
in general, compatible with the existence of individual rights or with certain weak principles of
horizontal equity. For example, in exchange economies, achieving Pareto efficiency does not impede
that the agents are entitled with property rights on the commodities that are traded, because there
are many efficient allocations that are compatible with these rights. Thus, excluding, as socially
undesirable, those allocations in which some of the agents exploit others by appropriating their
entire endowment (which are Pareto efficient) does not bring with it efficiency losses, because
there are many other efficient allocations that compatible with these rights. Analogously, there
are many Pareto efficient allocations for which any two identical agents (that is, agents with the
same preferences and endowments) are treated symmetrically, and it is generally true that if a
symmetric allocation is not dominated by any other symmetric allocation, then it is not dominated
by any other (symmetric or non symmetric) allocation either. Thus, restricting the set of socially
desirable outcomes to the set of symmetric allocations does not bring with it a welfare loss in the
sense given by the Pareto criterion.

Our main concern with A—efficiency is that, in many environments, this notion of efficiency
is incompatible with individual rights or with seemingly weak principles of horizontal equity. To
make this clearer, we explore the properties of the set of allocations that are A—efficient and
symmetric —which, in our setting, means that all agents of the same generation obtain the same
consumption bundle. In Proposition 5, we show that every symmetric, A—efficient allocation
must maximize the utility of the dynasty head among feasible (but not necessarily symmetric)
allocations. A straightforward implication of this result is that, in many environments, achieving
efficiency without discriminating or exploiting some of the agents is impossible. More precisely:

e With finite-horizon altruism, that is, when parents care only about consumption decisions of
their immediate descendants, the set of interior A—efficient allocations is empty (Proposition
6). That is, achieving A—efficient requires that some of the agents devote their entire
environment -or labor capacity- to provide with resources to their parents. Since, in the
context of the setting explored in the paper, the agents do not care on the welfare obtained
by their parents, we regard this property as a form of exploitation. Observe also that if all
the agents of a generation devote all their resources to finance their parents’ consumption



and do not have enough resources to finance the costs of rearing new children, the economy
collapses in finite time.

e With infinite horizon altruism, the set of (interior and non-interior) symmetric allocations
might also be empty (Proposition 7). This occurs in economies for which value functions are
not concave. Since the set of feasible allocations arising in models with endogenous fertility
is non convex, value functions might be non-concave in standard economies, as we show
through a class of examples in the paper.

We regard these results as reminiscent of the so called Repugnant Conclusion (Parfit 1976)
arising in the Social Choice literature (see, e.g., Blackorby, Bossert and Donaldson 1995, 2002,
2005), that applies to social welfare functions that rank allocations with a large number of people
obtaining low utility higher than allocations with few people and high levels of utility. The intuition
of why the notion of A—efficiency reduces to dynastic maximization, which drives these results,
is the following. Even in regular economies for which the dynasty head would not be willing to
discriminate among their descendants if she could freely choose the amount of resources available
to each of these descendants, she might be interested in discriminating among these descendants
if she is forced to provide each of them with more resources than she would like to. In such cases,
starting from an allocation a, it is always possible to find an allocation a’ with more individuals
that makes all people living under both a and o’ better off than they were under a. Welfare
improvements of this type (in the sense given by the A—dominance criterion) can be achieved by
enforcing every newcomer —that is, every individual living under o’ who was not born under a— to
receive fewer resources than those received by their siblings, so that parents are willing to afford
the additional costs that increasing the size of the population might bring with it.

Avoiding repugnant consequences of A—efficiency: Millian efficiency as Robust P—efficiency

Motivated by our previous results, we explore whether or not the notion of P—efficiency pro-
posed by GJT is able to overcome the difficulties described above. As we argue in the paper,
the answer depends on the function determining the utility level attributed to the unborn. If the
utility attributed to the unborn is a constant critical level w (as GJT assume in most of their
applications) which is always lower than the utility obtained by any alive agent, then the notion
of P—efficiency faces the same shortcomings faced by A—efficiency. As % increases, the set of
P —efficient allocations becomes larger and includes all Millian efficient allocations that provide
the living agents with utility levels below the critical level w. In our view, the way by which
the notion of P—efficiency (with a constant critical level) mitigates the problems raised above is
not entirely satisfactory because determining whether or not an allocation is P—efficient becomes
heavily dependent on the critical level u, a cardinal value that, by definition, we cannot observe
by watching the behavior of the agents.

However, other specifications of the utility attributed to the unborn may reduce this depen-
dency, as long as the utility attributed to the unborn is a function of the utility achieved by those
alive at any allocation. To be more precise, if the utility attributed to the unborn is a monotonic,
symmetric function of the utility obtained by the living agents of the same generation, then every
Millian efficient can be regarded as P—efficient (Proposition 8). Thus, the set of Millian efficient
allocations is a proper subset of the set of P—efficient allocations or, put it in other words, Millian
efficient allocation can arise as efficient (in this case, P—efficient) even if the set of allocations that
can be compared using the P—dominance criterion is not restricted a priori. Furthermore, the
P—efficiency of Millian efficient allocations holds for a wide range of specifications of the utility



attributed to the unborn. Assuming the utility attributed to the unborn is a monotonic, symmet-
ric function of the utility obtained by the living agents of the same generation avoids cardinalist
assessments in welfare comparisons.

Equilibrium Behavior: A Failure in The First Welfare Theorem?

To conclude the paper, we explore the efficiency properties of a decentralized mechanism in
which the agents, endowed with well-defined property rights over the commodities available in the
economy, are free to trade these rights (or transfer them) to pursue their own interests. With this
purpose, we slightly modify the notion of competitive equilibrium proposed by GJT and impose
that transfers from parents to their children are non-negative (so that they are voluntarily accepted
by the latter).

First, we show that if the (constrained) value functions associated to the notion of competitive
equilibrium are concave on a certain range, then there exist competitive equilibria that are interior
and symmetric and, hence, potentially A—inefficient. To be more precise, when altruism is non-
dynastic, symmetric equilibria are always A—inefficient, while if altruism is dynastic, symmetric
equilibria may be A—inefficient if either a) some of the (unconstrained) value functions associated
to A—efficiency are non-concave, or b) some of the non-negativity constraints on gifts or bequests
are binding. In our view, this fact seeds some doubts on the notion of A—efficiency as a useful
concept to predict the behavior of the agents in real economies, as the notion of Pareto efficiency
does in the Edgeworth-Coase tradition.

For the notion of Millian efficiency (and, hence, for P—efficiency), however, a version of the
First Welfare Theorem holds. To be more precise, we show in Theorem 1 that a) a symmetric
competitive equilibrium is a —statically— Millian efficient allocation; and b) if long-run wages do
not exceed the capitalized costs of rearing children, then a competitive equilibrium is also —
dynamically— Millian efficient. Therefore, when applied to Millian efficiency, potential markets
failures are of the same nature as those affecting Pareto efficient allocations in dynamic economies
with exogenous fertility: although competitive equilibria are always statically Pareto efficient —i.e,
it cannot be improved upon by a reallocation of the resources available for a finite number of
generations—, they might be inefficient (or dynamically inefficient) —that is, they can be improved
upon by a reallocation of the resources available of all generations.

Our analysis of the efficiency properties of equilibria is related to a recent paper by Schoonbroodt
and Tertilt (2014), who also explore the A—efficiency properties of equilibria in an environment
with dynastic altruism. In this paper, the authors also realize that if parents cannot obtain
resources from their children, then the equilibrium outcome may be both A—inefficient and
P—inefficient —if the utility attributed to the unborn is constant. However, they do not seem
to be aware of the difficulties with the notion of A4—efficiency highlighted in this paper, and
suggest that efficiency could be restored by policy measures such as fertility dependant pension
schemes or a combination of public debt and fertility subsidies. The results obtained in our paper
show that @) in many economies, restoring A—efficiency may have undesirable consequences; b)
symmetric equilibria may be P—eflicient for many specifications of the utility attributed to the
unborn; ¢) if a symmetric equilibrium is Millian efficient, then introducing policies such as fer-
tility dependant pension schemes cannot bring with it net welfare gains —in the sense given by
the A—dominance criterion— unless such policies discriminate among the agents; and, finally, d)
there may exist A—inefficient, symmetric equilibria for which the non-negativity constraints on
gifts is not binding, in which case policies such as fertility dependant pension schemes might be
ineffective.



The paper is organized as follows. In Section 2, we describe the setting and define the notions of
A—efficiency, P—efficiency and Millian efficiency in the context of the setting described. In Section
3, we characterize Millian efficient allocations (in both a static and a dynamic sense). In Section
4, we highlight the above mentioned difficulties faced by the notion of A—efficiency. In Section 5,
we discuss whether or not the notion of P—efficiency can overcome these difficulties and show that
Millian efficient allocations can be regarded as P—efficient for a wide range of specifications of the
utility attributed to the unborn. In Section 6 we explore the efficient properties of decentralized
equilibrium. Finally, Section 7 presents the main conclusions of the paper and discusses further
research.

2 'THE MODEL: ASSUMPTIONS AND DEFINITIONS

Throughout the paper, we present a slightly more general framework than GJT’s extension
of Barro and Becker’s model. To be more precise, we consider a particular class of overlapping
generations economies with infinite periods of time in which each individual lives for at most three
of these periods, so that individuals living at ¢t = 0, 1, 2,... are referred to as children, middle-aged
adults or old adults depending on whether ¢ is their first, their second or their third period of
life. To simplify things, all agents belong to the same dynasty, initiated by the only agent who is
middle aged at t = 0, the dynasty head, hereafter represented by i°.

As in GJT, the set of potential agents that are actually alive at any given period is endogenous
and it depends on fertility plans selected by the agents. For ¢t = 0, 1, 2,..., the set of possible fertility
choices available to every middle-aged adult is Ry, and the set of potential middle-aged agents at
period ¢ is R, . Each middle-aged adult potentially alive at t = 1 is identified by a positive number
i1 € R4 determining the agent’s position in the sibling order. For ¢ = 2, 3..., each middle-aged
adult potentially alive at ¢ is identified by a vector i = (i*~1,i;) € R, where 4; specifies the
agent’s position in the sibling order, and i'~! = (i, ...,4;_1) identifies the agent’s parent. Let
B(RY) the class of Borelian sets in R, . For every set B* € B(R',) of potential middle-aged agents
at t, by the measure of B! we will refer to its Lebesgue measure i {Bt} = th dit.

A fertility plan n is a sequence of integrable functions

n={ng1: R\ — R+}t:0,1,2,...

that determines, for every ¢ and every i* € R , the number of descendants nyy1(i*) that agent i’
decides to have during her second period of life. Hence, for each ¢ and every it = (i'"1,4;) € R’;,
agent i’ is said to be alive with fertility plan n if agent i'~! is also alive and i; < n(i'"!) is
satisfied. For every individual i*~! € R’:l and every 7 > t, the set of descendants of i'~!
belonging to generation 7 is denoted by D, (i*1). The set of middle-aged adults actually living at

t with a fertility plan n is denoted by Z;(n) and its measure, denoted by N;(n), is given by

Ni(n) = p AT} = [ dit = / / diy | dit=! = / g (it V)it 1.
It(n) It_l(n) itgnt(it_l) It_l(n)

With respect to the set of commodities to be allocated, we focus on the particular class of
economies in which, in addition to children, there is only one homogenous good produced at every
period t > 1. This consumption good is produced at each period t = 0, 1, 2, ..., using physical
capital (K3), i.e. the amount of the same good invested in the previous period ¢ — 1, and labor
(L) provided by middle-aged adults as inputs, that is,

Y; < Fy(Ky, Ly),



where Y; is total output and F; : Ri — R4 exhibits constant returns-to-scale.

Rearing children is a production activity that takes place within each household and its costs
are represented by a function b; : R+ — R4, so that a middle-aged adult who decides to rear
n¢4+1 children at period ¢ needs to spend b(n¢41) units of the consumption good. Fertility and
consumption plans of potential agents are represented by a fertility plan n and a sequence of
integrable functions ¢ = {(c?"‘, ) Ry — R?F}t:(),l,z,... that determines, for each t = 0, 1, 2,...
and each potential agent i' € RY, the consumption vector (c*(i'),c?,(i")) chosen by agent 7'
through her life cycle. Thus, it is assumed that children do not take consumption decisions.

The resource constraint faced by potential agents is described as follows. At time ¢ = 0, the
amount of resources available to finance consumption (¢f'(i?)), fertility (n;(i°)) and investment
decisions (k{(i°)) of the dynasty head is bounded by an initial endowment ey available for the
dynasty head, that is,

cg' (i%) + bo(n1 (i) + k(%) <. (1)

For each period t = 0,1, 2, each agent who gets to be alive is exclusively endowed with 1 unit of
labor time when she reaches her middle age. Then, labor is supplied inelastically, so that labor
supply at any given period coincides with the measure of middle-aged agents alive at ¢, that is,
L; = Ni(n). Thus, at each date ¢ > 1, the resource constraint is

/ ( )cf(z’t_l)dz't_l +/ ) (7(i1) + be(neas (i) di* + Kopy < Fy(Ko, Ny(n), @)
Zi—1(n Ze(n

which by writing, for each ¢ and each i* € Zy(n), k¢, (i") for kf, (i) = nt+1(it)ﬁ%, can be
equivalently written as

/ ()c?(z‘“)dz‘t*w / . (e (") + be (e (i) + kg1 (1)) di* < / Fy(kg(i* ), (1)) di* !
Zi—1(n Zt(n

It_l(n)

In what follows, an allocation in the economy described above is a pair a = (x,k%) € X x K,
where X is the set of sequences of the form x = {xt = (" ctpq,ney1) RZL — Ri}t:07172’“_ de-
termining consumption and fertility choices of every potential agent and K is the set of sequences
of the form k® = {k? 1 Ri — Ri} +—0 1o, determining investment decisions in every period.

Without loss of generality, it is also assumed that for every ¢ and every i € R? one has
x;(i") = 0 and kyy1(i") = 0 whenever i* ¢ Z;(n). (4)

An allocation a is said to be feasible if it satisfies the initial condition in (1), the resource constraint
in (3), together with condition (4). The set formed by all feasible allocations is denoted by
FCXxK.

Throughout the paper, we assume that preferences of every potential agent of generation ¢
on the set of allocations in which the agent is alive are represented by a utility function U; :
X x RY — R satisfying, for every x € X and i* € Z;(n)

.+ -t 1 nH—l(it) D 4. .
Up(x;3") = U | xe(3"), (zt)/ Ui (%51 dgg1)digy |
0

N¢1

with U : R® xR — R, and M£L1 is a function representing the agent’s preferences on consumption
bundles made by her alive descendants. We also assume that the welfare that any agent i’ obtains
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from the consumption decisions of all his descendants born after ¢ is represented by a utility
function UP : X x RY. — R satisfying, for every x € X and i' € T;(n)

1 e
)(Z’t)/o Uiy (x; 1" ip1)dietr |

UpP (x;ity =u” <xt(it ,
N¢+1
where UP : R3 x R* — R* is a non-decreasing function and R* = {—oc} UR. Thus, preferences
of the agents of generation ¢ might differ from those of their parents.
To conclude the definitions, we proceed to characterize the maximal utility the dynasty head
can obtain from feasible allocations. For every allocation a € X x K and every ¢t > 0 and i* € Z;(n),
write e;(i') for the amount of physical resources available for agent ' at period ¢, that is,

ee(i') == " (i") + be(ner1 (i) + kf, o (i),

Consider an arbitrary i and e;, and let F(es;4") be the set formed by all sequences {(x;, k%, ;) :
R — R4 }roi41 satisfying ey(i') < e; and, for all 7 > ¢ + 1, the feasibility constraint that agent
i¥’s descendants would face at 7 if they were not allowed to obtain resources from other agents in
the economy, that is

/ ci(iT’l)diT’1+/ [ (iT) + br (g1 (7)) + ko4  (i7)] di” < / Fr(ke(i™ 1), n (i7" 1))dim L
iT—1eD(it) iTeD(it) iT—leD(it)

For each t > 1, e; > 0, let now VP (e;) be defined as the maximal utility that the dynasty head
can obtain from their descendants born at ¢ by endowing any of their immediate descendants with
e; units of resources, that is®

Pieo = s { o W0

which satisfies

1 s N
VP (e) = max { uP (a:t, / Vﬁﬂe(z))dz) : (5)
(ze, k{41) €RY 0
e: R+ — R+

nt41
ci' + be(nesr) + ki <ew e + / e(i)di < Ft—i—l(kg—i-l»nt—&-l)}'
0

With this notation, the maximum utility that the dynasty head can obtain with a feasible allocation
can be written as

1 ™

WVo(eg) = max Um,/ VDeidi>:

= mee (a0 [ VP et
EZR+—>R+

ni
e 4 bo(n) + k9 < 7o 2 +/0 e(i)di < Fi (kg m) b

Throughout the paper, we shall impose the following additional assumptions on preferences
and technologies.

5Since the utility received by the dynasty head from consumption of any of her descendants is the same, any
choice of ¢! in the optimization problem in the definition of VP (e¢) is optimal.



Al For each t =1, 2,..., the function Fj : ’Ri — R is linearly homogeneous, non-decreasing,
concave and continuously differentiable on Ri ey

A2 For each t = 1, 2,..., the cost function b; is strictly increasing, convex and continuously
differentiable on R .

A3 For each uP € R, the functions UP (-,uD ) and U (-,uD ) are non decreasing, concave and
continuously differentiable on Ri L

A4 For each u” € R and any two z, T € Ri, ub (m,uD) > UPb (E, uD) is satisfied whenever
U (:c, uD) >U (Ec', uD) is satisfied.

A5 For any two (:c,uD) and (5, ﬁD) € Ri xR, U (w,uD) > U (f, ﬂD) is satisfied whenever
ub (:c,uD) > UP (EE, ﬂD) and v > 4P are satisfied.

A6 For each t, the function VP is well defined on R.

As we shall see Assumptions A4 and A5 ensure that choices made by agents of generation
t coincide with those that their parents would take if the latter are restricted to provide their
children with a given amount of resources. But preferences of the agents of generation ¢ and those
of their parents might differ. As an example, suppose U and UP” adopt the separable form

Uz, uP) = u(z) + ou®

and
UP (z,uP) = u(z) + pu”,

where 0 < # < d < 1. Thus, our framework allows a wide variety of economies. We distinguish
between four basic environments:

e Environments with no altruism, for which U(z,u”) = wu(x). In this case, our framework
extends the models studied by Eckstein et al. (1985, 1988), Michel et al. (2007, 2010) or
Conde-Ruiz et al. (2010) to allow for non-symmetric allocations.

e Environments with dynastic altruism, for which U(z,u”) = UP(z,u”). In this case, our
framework extends Barro and Becker’s (1988, 1989) model of fertility choice, first studied
by Razin and Ben Zion (1976) and also studied, among others, by Behabib and Nishimura
(1989) or Schoonbroodt and Tertilt (2014).

e Environments with finite-horizon (one-period) altruism, for which U (z,u?) = u(z) + éu” and
UP(z,uP) = u(x).

e Environments with infinite horizon, non dynastic altruism, an example of which arises if U (z, u”) =

u(z) + 6uP and UP (2, uP) = u(x) + BuP , with 0 < g < 6 < 1.
2.1 The symmetric case
Observe that preferences and labor capacities of any two agents of the same generation are
symmetric, that is, if any two alive agents of any generation (and all their descendants) take

the same decisions, then they obtain the same utility. In view of this, it seems innocuous, both
from normative and positive concerns, to restrict attention to symmetric allocations, that is, to
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allocations for which any two agents of the same generation choose the same consumption and
fertility bundles. Moreover, since most (if not all) positive models of fertility choice exclusively
focus on equilibrium notions that select symmetric allocations, restricting welfare comparisons
to this particular class of allocations is still useful to evaluate the equilibrium outcomes of most
models of fertility choice.

Formally, an allocation a € F is said to be symmetric if for any ¢ and any two agents i?,
it € Z;(n) one has x(i') = x¢(i') = ¢ and ky41(i') = ki1 (i) = kyy1. Denote by S ¢ &% x K5
the set containing all feasible symmetric allocations. A symmetric allocation is thus represented
by a pair of sequences (z,k°) € X x K%, where X is the set of all sequences z = {(z4)};%, of
non-negative vectors z; = (¢, ¢f, 1, m41) € R3 and K9 is the set of all sequences k° = {(ki1)};2,
of non-negative real numbers.

Within symmetric allocations, the measure of middle-aged agents alive at ¢ under a symmetric
fertility plan is Nj(n) = [[5_,nr = Ny, and the resource constraint in (2) reduces to

Nt_lc? + Nt [an + bt(nt+1)] + Kt+1 S Ft(Kh Nt)a
which can be equivalently written as
& +mny [ + be(nusr) + kPt ] < Fy(ky,ne), (6)

where kf, | = Ki,1/N; represents capital invested per old adult. A symmetric allocation (z, k?) is
feasible if it satisfies, for each ¢ = 0, 1, 2,..., the resource constraint in (6) and the initial condition
681 + bo(nl) + /{7(1) < €p.

Note that for every t, the utility obtained by the dynasty head from consumption and fertility
decisions of every two alive agents i’ and it of generation ¢ with an allocation a € § satisfies
UP (x;it) = UP (x;it) = UP (x), where UP : X5 x R — R is recursively defined, for each ¢, by

UP(z) =UP (24, Ugl(:c)) .
Thus, the utility obtained by an agent of generation ¢ with a symmetric allocation is
Us(x) = U, US4 (2)).
If the dynasty head is restricted to select among symmetric allocations, the maximum utility
that the dynasty head can obtain with a feasible, symmetric allocation is given by

Vo(eo) = e {U<x0’ ViP(e1)) : " + bo(n1) + kY < €03 f + nyey < F1(/€f7n1)},
(cf kg n1)ERY e1€R 4

where, for each t > 0, V,” : Ry — R is defined, for every e; € R, by

ViP(er) = max UP (2, UR 1 (x)) ¢ "+ be(nesr) + kpyy < @
{(xTak'Z+1)}72t

¢ +n, [CT +b:(nrq1) + k$+1] < F(kZ,n;) VT >t+ 1}.

A final remark is now in order. The assumptions A1-A6 do not guarantee that the dynasty
head will not discriminate among her descendants and, therefore, Vy(eg) = Vo(€p) is satisfied. As
we shall make clear throughout the paper, the set of symmetric, feasible allocations is non-convex,
which in turn implies that the value functions VP and V;P, that would be identical if they were
both concave, might not coincide even when the function U” is concave. In a technical Appendix,
we focus on an extension of Razin and Ben Zion’s model to show that, under relatively weak
conditions on the elasticity of substitution of consumption goods or factors of production, the
value function arising in this environment is not concave.
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2.2  A—efficiency, P—efficiency and M—efficiency

As noted in the Introduction, any two allocations with different fertility choices cannot be
compared using the Pareto criterion, since there is no way to know whether or not an agent who
lives in one allocation a but not in other allocation a’ is better off in the latter than he is in the
former. To avoid this problem and preserve the partial order induced by the Pareto criterion, one
needs to extend it to compare also allocations of different population size. According to GJT,
there are at least two possible extensions of the Pareto criterion, applicable to rank allocations
with different fertility choices.

The first of these extensions, referred to as the A—dominance criterion, ranks any two alloca-
tions by applying the Pareto criterion using information of the preference profiles of those agents
who are born in the two allocations. Thus, an allocation a A—dominates an allocation a’ if for
every t and every i' € Z;(n) N Zy(n’) one has Uy (x;it) > Uy(x'; i), and there exists a period 7 and a
set BT € Z;(n) N Zy(n") of positive measure for which U, (x;:7) > U, (x';4i7) for all i" € B.

The second extension of the Pareto criterion proposed by GJT, the P—dominance criterion,
is constructed from a previous assumption on the utility level obtained by potential, non-born
agents. This assumption, together with the utility functions that represent the preferences of the
agents in those allocations in which they are alive, provides a complete description of preferences
of all potential agents in the economy across all allocations, including those in which they are not
alive. In order to define the notion of P—dominance formally, let Y be a sequence of functions
UN= {L{tN AXRE — ’R} such that each utility function ¥ in the sequence assigns, for every
consumption-fertility path xcX and every i* € R!, a real number U (x; i) that captures social
judgements determining under what circumstances it is worth living.® Then, for any ¢ and any
potential agent of generation ¢, let U : X x N"* — R be defined, for all (x,i!), by

, U(x;i'), it i* € T(n);
Py (X 5 t )
Uy (x;i°) = { UN (x;it),  otherwise.

The notion of P—dominance (which perhaps should be denominated P (V) —dominance to make
explicit the specific assumption on the utility assigned to be unborn implicit in this criterion) can
be defined formally as follows: an allocation a P—dominates an allocation a’ if for every ¢ and
every it € R' one has UL (x;it) > UL (X';i'), and there exists a period 7 and a set of individuals
with positive measure B™ € R7 for which UL (x;i™) > UL (x';47) is satisfied for all i* € B™. In most
of their applications, GJT restrict the use of the term P—dominance to the particular specification
of the utilities attributed to the unborn given by

UN(x;it) =7 for all t = 1, 2,...; and for all (x;4!) € X x R

These two extensions of the Pareto criterion give rise to two notions of efficiency, respectively
called A—efficiency and P—efficiency, to evaluate allocations with different population size. A
feasible allocation is A—efficient if it is not A—dominated by any other feasible allocation, and a
feasible allocation is P—efficient if it is not P—dominated by any other feasible allocation. Observe
that, since conditions establishing P—dominance between any two allocations are stronger than
those establishing A—dominance, every A—efficient allocation must be also P—efficient. Thus,
there is a wide range of allocations that are P—efficient independently of the utility attributed

50f course, any attempt for determining this utility level 4" (x;3%) constitutes a difficult task, since we cannot rely
on the agents’ behavior to obtain that type of information. We would like to point out, however, that being aware of
these difficulties does not mean that the individuals forming a society should not decide under what circumstances
it is worth living.
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to the unborn. In their paper, GJT explore in detail several properties of these two notions
of efficiency: first, they prove that both efficiency notions are well defined (for the notion of
A—efficiency, this property holds generically). In addition, GJT show, in the context of a setting
that includes Barro and Becker’s model of fertility choice as a special case, that non-cooperative
equilibria selected by perfectly altruistic agents are both A—efficient and P—efficient.

Elsewhere (see Conde-Ruiz, Giménez and Pérez-Nievas 2004, 2010),” we have proposed an
alternative notion of efficiency, referred to as Millian efficiency (or Me-efficiency), to evaluate
symmetric allocations with different population size. This notion results from combining the
A—dominance criterion to compare allocations with the restriction of symmetry on the set of
allocations that can be compared using that criterion. To be more precise,® a feasible symmet-
ric allocation a = {(wt, - +1)}:i0 € S is M—efficient if there does not exist any other feasible
allocation a’ € S such that U(z') > U(z) for all t > 0 and U, (2’) > U, (z) for some 7 > 0.

3 M —EFFICIENCY: RELEVANT PROPERTIES

Observe that a symmetric, A—efficient allocation must be Millian efficient. Thus, in order
to explore the properties of symmetric, A—efficient allocations, it is useful to explore first the
properties of Millian efficient allocations. In this section we extend previous results (See Conde-
Ruiz et al. , 2010) on Millian efficiency to environments with altruism.

3.1 Necessary conditions.

In this section, we present two characterizations that any Millian efficient allocation must
satisfy. The first one is a condition on the utility obtained by any agent of every generation ¢ at
period t; while the second one is a condition on the dynasty head’s welfare.

Recall that, for every allocation a € S and every t > 0, e; represents the amount of physical
resources at period t not devoted to feed the old generation, that is,

e = ¢ + be(ner) + kY,
With this notation, a first necessary condition for Millian efficiency can be stated as follows.
Proposition 1 FEvery M—efficient allocation a € S satisfies, for t >0,

Ul(z) = W, (gt,€t+17U£1(®)E

D/~ ~ ~
( gna;c - {U (ifta Ut+1($)) et + be(negr) + Ky < e Ft+1(k§+1,nt+1) — ¢y = nt+1€t+1}
Tt, §+1 € +

Proof. See the Appendix.

Thus, if an agent who spends an amount of resources ¢; in current consumption and invest-
ment decisions provides each of their immediate descendants with €;11 units of resources, then
the pair (Z¢, k¢, ;) must solve the optimization problem in the definition of W (€, &1, UR (21)).

For a given pair (2, kf, ), write Ryp1 for Rip1 = DiFyy1(kfq,ey1) and Weyq for wey =

"See also Schweizer (1997), Michel and Wigniolle (2005, 2007).
8In our original formulation of the notion of Millian efficiency, all those symmetric allocations for which fertility
rates are zero from some period t on are also ruled out from welfare comparisons.
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~

DoFyy1(ky 1, n¢41). Since, utility and production functions are concave and differentiable on
the interior of their domains (assumptions A1 and A3), an interior solution

@ Fesr) = (7@ o, UL @), Tt (B, By, U2 (2)) )

to the optimization problem in the definition of W (€, €141, UL {(Z)) is characterized by the two
feasibility constraints

¢t + bi(Myr1) + kY = e, (7)
and R
Fiia(kfpq, 1) — Cpq = Meig1; (8)

together with the first order conditions

DiU (@, UR, (@) B
= PR - 1,
DU (3, UR (3)

9)

and
D3U(zy, UR (@)
DU (7, UR, (@)

by (Tie+1) — Rep1 = W1 — €41 (10)

Equations (7) to (9) are almost identical to those characterizing symmetric Pareto efficient
allocations in an exogenous fertility setting” (except for the term b;(7;41), which in that case is
assumed to be zero) and are necessary for Pareto efficiency. They simply impose feasibility and
that marginal rates of substitution between current and future consumption must be equal to
marginal return to investments in physical capital. The Millian notion of efficiency imposes an
additional condition stating that if marginal willingness to pay for children is not equal to marginal
costs of rearing children, then the marginal rate of return to investments in children must be equal
to the rate of return to any other investment; that is,

Wit1 — €441
|:b/ (ﬁ ) _ D3U(§tvU£-1(55))
[ANRL D1U (@, UE, (7))

= Rii1-

Recall, from Assumption A4, that UP(z,u”) > UP(z,uP) is satisfied whenever U(x,u”) >
U(z,uP) is satisfied. Therefore, for an allocation satisfying the necessary conditions in Proposition
1 we also have, for every ¢ > 1,

UtD(i’\) = WtD (€t7€t+1aUt21(f))E

D D /~ ~ ~
s {U (2, U1 (@) = " + be(nerr) + kf g < @ Fran (kg meq1) — cfyq > nt+1€t+1}-
TR +

This means that the utility that every alive agent (and, hence, any agent born before her)
obtains from consumption decisions of all her descendants born at t is completely determined
by the path {e:} -,. Taking this into account, the following Proposition 2 restricts the set of
non-negative sequences e = {e},~, that may correspond to an efficient allocation.

We introduce some notation first. Write e’ for the finite sequence ef = (e, e1, e, ..., €;); and,
write e* for the infinite sequence of non-negative real numbers e~ = {e-},~,, 1 = (€441, e~ (D),

9See e.g., Blanchard and Fisher (1989), p.99.
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With this notation, the utility that any agent obtains from consumption plans of all her descen-
dants of generation ¢ in a Millian efficient allocation can be written as

UP@) = WP (@ W (1,8, U@ ) ) =

= wp (€t75t+17 Wi, (€t+1,€t+2, Wi, <€t+27€t+37 Uﬁg(?(tﬁ))))) =
= wl(e,e).
Analogously, the utility obtained by an agent of generation ¢ can be written as
U(z) = Wy (a,a:ﬂ, wﬁ1(€t+1,?(t+1))> = wi(e, e ).

Since, by assumption A6, both wf and w; must be also well-defined functions on the set formed
by all infinite sequences of non-negative real numbers. Using this notation, Proposition 2 provides
a second necessary condition for Millian efficiency: a Millian efficient allocation maximizes the
utility of the dynasty head among all allocations that provide each generation with at least e;
units of for which total resources available to finance their consumption, fertility and investment
decisions.

Proposition 2 Every Millian efficient allocation a satisfies

UPG) =vP@,e ) =  max {th(a,e;t) et > at}, fort>1, (11)

et ={er}22 14
and

Uo(Z) = vo(ep, e °) = maX{Wo(éo,ehvf)(elv?l)) tep > g1}, fort=0. (12)

€1

Proof. See the Appendix.
3.2 Static and dynamic efficiency.

The necessary conditions in Proposition 2 are not sufficient to ensure that an allocation a
satisfying these conditions is M—efficient. In fact, conditions (11) and (12) might not even suffice
to ensure that such allocation @ satisfies a weak notion of Millian efficiency, referred to as static (or
short-run) Millian efficiency which extends the notion of static —or short-run— Pareto efficiency
(see Balasko and Shell 1980) to economies with endogenous fertility. Formally,

Definition 1 A symmetric, feasible allocation a € S is statically M—efficient if there does not
exist another symmetric, feasible allocation a € S and a finite period T > 0 such that

i) ay =ay for allt > T,
i1) for allt such that 0 <t <T one has U(x) > U(Z); and,

i1i) there exists t such that 0 <t <T and Uy(x) > U(T) is satisfied.
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Rather than providing a complete characterization of M —efficient allocations, our main objec-
tive in this section is to provide sufficient conditions for Millian efficiency that can be applied to
explore the M —efficiency of the class of decentralized equilibria analyzed in Section 6. For this rea-
son, we restrict ourselves to allocations satisfying a condition that, in general, is slightly stronger
than that in (11), but that coincides with the latter in environments with dynastic altruism. More
precisely, we focus on allocations satisfying

Ui(Z) = v(e, e ") = max {Wt (é},et+1,v£rl(et+1,’e\_(t+l))> }, for t > 0. (13)
et41>€41

It is straightforward to show that, under assumption A5, an allocation satisfying condition

(13) above satisfies also the necessary conditions (11) and (12). Also, v; is strictly increasing in e;

and non-increasing in e~‘. Proposition 3 below shows that condition (13) ensures static efficiency.

Proposition 3 An allocation satisfying Uy(T) = vi(eg, € t) for t > 0 is statically M—efficient.
Proof. See the Appendix

In the proof of Proposition 3, we show that if a statically efficient allocation @ satisfying
condition (13) is not fully M—efficient (or, as it is usually found in the literature, dynamically
M —efficient) there must exist an infinite sequence {e;},-, satisfying, for some ¢; > 1 and each
t>t B

er < é\t

and
Wt(et7 €41, UtD(?L'\)) Z Wt(/e\ta é\t—O—l: UtD(ZE))

Thus, a sufficient condition ensuring dynamic efficiency of such sequence {e;},~, does not exist.
As we have established elsewhere,' this sufficient condition is exactly analogou_s to the sufficient
condition ensuring dynamic Millian efficiency of an allocation in a pure overlapping generations
environment without altruism. Our results in that framework can be directly extended to the more
general framework with altruism analyzed here. The main difficulty appearing in both frameworks
is that, when fertility is endogenous, the instantaneous indirect utility functions W, (-, UP (%))
are not, in general, quasiconcave. Due to these non-convexities, standard dynamic efficiency
conditions,'! like those requiring that the long-run interest rate R = D1 F(k°, 77) exceeds the rate
of population population growth 7, need not be valid to identify efficient paths.

3.8  Sufficient conditions for dynamic efficiency.

For a pair (€, €4+1), define

o~ ~ . €41 — €it1 ~ ~ o~ ~
¢ (et, €41, Utal('r)) = inf R t#;lit#» : Wt (et, €41, Utal(x)) Z Wt (et, €41, Utal(x)) .
(et et41)<<(€:,€¢41) €t — €

Notice that, when W; (-, UP (%)) is quasiconcave, the number 7 (€, €41, U (%)) corresponds to
the slope of a indifference curve defined by W; (et, €ti1, Ugrl (fﬁ)) =W, (é\t, €11, Ut[}rl (:’f)) evaluated
at (e, €r41). That is, for quasiconcave indirect utility functions we have

_D1Wt (é\tyé\t-‘rl? Utal(f)) _ Et""l
DoWy (€1, €141, UR, (7)) e

(@ €1, USL (7)) =

198ee Lemma 1 in Conde-Ruiz et al. (2010, p.163).
See, e.g., Phelps (1965), Koopmans (1965), and Diamond (1965).
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However, it is not generally true that the indirect utility function is quasiconcave. In this case, the
number (€, é41, U1 (%)) corresponds to the steepest slope (on the set (eg, e441) << (€, €41))
of the indifference curve defined by W; (et, i1, UP (E)) =W (é},é}ﬂ, up (fc\)) Therefore

- DiWi (@601, UP(F) R
DoWy (€r, €141, UP(T)) g

Ft(€t7€t+1,U£1(f)) =

Using this notation, in Proposition 4 below we borrow directly from our previous work and
provide a sufficient condition for dynamic efficiency that uses the sequence of implicit prices
{(R¢41, Wet1) }e>0 associated to a statically M—efficient allocation a satisfying (13).

Proposition 4 Consider a statically Millian efficient allocation a € S satisfying (13). If

o er
lim inf —— — =0 (14)
Toree (H,:To me (8, @1, UiZa (@) >

is satisfied, then a is also (dynamically) efficient. Furthermore, a sufficient condition ensuring
(14) is that

lim [ B(0) — L4l ) L o, 15
TW(TU ) (15)

18 satisfied.

Proof. See the Appendix.

4 A—EFFICIENCY: NORMATIVE CONCERNS

In this section, we criticize the notion of A—efficiency from normative considerations. First,
we show that every symmetric, A—efficient allocation must maximize the utility that the dynasty
head can obtain with a feasible (but not necessarily symmetric) allocation. With this result in
hand, we distinguish between environments with infinite horizon altruism and environments with
finite horizon altruism to show that the notion of A—efficiency faces an important difficulty: in
many environments, A—efficiency imposes that either i) some of the agents living in an economy
obtain different consumption bundles than those obtained by their siblings, which we regard as
discrimination; or ii) some of the agents devote their entire endowment (or labor capacity) to
provide with resources to their parents, which we regard as exploitation.

The following result provides necessary conditions for A—efficiency of a Millian efficient allo-
cation: the only possible symmetric, A—efficient allocation is the one maximizing the utility of
the dynasty head among symmetric (and non-symmetric) allocations.

Proposition 5 FEvery symmetric, A—efficient allocation @ satisfies
UP (@) =V @) =VP (@), fort>1;

and
Uo(z) = Vo(€o) = Vo(€o), fort=0. (16)
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Proof. See the Appendix.

In the proof of Proposition 5, included in the Appendix, we proceed by showing that if a
Millian efficient allocation @ does not satisfy the necessary condition (16) in the statement of
Proposition 5, then it is possible to construct an alternative asymmetric allocation with more
individuals that M—dominates the allocation @. The intuition behind the Proof is simple. Suppose
UP(z) < VP (€1) is satisfied. This means that, in the Millian efficient allocation @, the dynasty
head is endowing her descendants with more resources than those that would be sufficient to
maximize the dynasty head’s utility. Taking this into account, choose €; < €7 in such a way that
VP (e1) = UP(7) is satisfied and suppose that every middle-aged agent creates a new dynasty of
individuals at ¢ = 1. If every immediate descendant in the new dynasty is endowed with €1 units of
resources and uses this endowment to maximize the dynasty head’s utility, the latter would obtain
from the new dynasty at least the same utility than the utility obtained from those descendants
born in a. Moreover, since €1 < €1, this higher utility can be obtained at a lower cost. Finally,
this A—improvement can be achieved without altering the consumption and fertility bundles of
those agents already living in a@. To do this, the dynasty head simply needs to change her fertility
decisions and select n] to maximize

G(m) = {UD (eo ~bo(n1) — k2, Fy (k2. m1) — Aiigo — (1 — 1) €, 11, %UlD(E) + (1 - 2) vf’@)) } :
among all numbers n; > 1. That is, the dynasty head simply has to select her consumption and
fertility plans to maximize her utility, given that she has to provide with €; units of resources to
every agent already born under @ and with €7 units of resources to all agents in the new dynasty.
It is straightforward to show that if the allocation @ is Millian efficient, then the function G is
strictly increasing on the interval [0,7;]. Moreover, its left hand side derivative at n; satisfies
%(1%1) = 0, while the right hand side derivative satisfies CHC?T(ZA“) > 0. Since nj is chosen to
maximize G(n1), this implies that the agents born at ¢ = 1 will obtain at least the same utility
than the utility they obtain with @. Also, the fact that n] > 7, is satisfied implies that each
new dynasty of individuals has positive measure. Thus, a symmetric, A—efficient allocation must
satisfy the necessary condition (16) in Proposition 5. Taking this into account, a similar argument
shows that condition (16) is also necessary for symmetric .A—efficiency.

A straightforward implication of Proposition 5 is that the set of symmetric, A—efficient alloca-
tions is significantly smaller than the set of Millian efficient allocations. This contrasts with the set
of symmetric, Pareto efficient allocations in settings with exogenous populations, which includes
all those symmetric allocations that are not Pareto dominated by any other symmetric allocation.
Observe that achieving welfare gains —in the sense given by the A—dominance criterion— from a
Millian efficient allocation @ makes it necessary to discriminate between those agents who are alive
under @ and those who are not.

The following two results explore the sequences of Proposition 5 in environments with finite-
horizon and infinite-horizon altruism, respectively.

Proposition 6 In an environment with finite horizon altruism, the set of interior, symmetric,
A—efficient allocations is empty. Moreover, in every symmetric, A—efficient allocation, the econ-
omy collapses in finite time.

Proof. To prove Proposition 6, simply observe that on an environment satisfying, for some 8 and
dsuchthat 0 =5 <6§ <1,
UP (z,uP) = u(z) + pul = u(x)
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and
Uz, u?) = u(z) + ou,

Proposition 5 implies that a symmetric, A—efficient allocation a must satisfy
UP (@) =V (@) = V(@) = W (@,0,U7(0)) = wf(€1,0),

which, in turn, yields
x; = 0 for each t > 2,

which establishes that the symmetric allocation maximizing the utility of the dynasty head must
be non-interior and, therefore, completes the proof of Proposition 6.1

Thus, in this type of environments, achieving A—efficiency without discrimination requires
that all agents of a generation are exploited, in the sense that they devote their entire endowment
—or labor capacity— to provide with resources to their parents. This type of exploitation implies
that achieving A—efficiency leads the economy to a collapse in finite time. Furthermore, although
we restrict attention to symmetric allocations that are also A—efficient, the construction in the
proof of Proposition 5 suggests that, even if we allow for discrimination, achieving A—efficiency
in environments with finite horizon altruism imposes some form of exploitation. The following
result shows that the set of symmetric, A—efficient allocations might be empty even if the agents’
preferences exhibit infinite-horizon altruism.

Proposition 7 Leta be the allocation mazimizing the utility of the dynasty head among symmetric
allocations and suppose that there exists a period T and an amount of physical resources epy1 #
er+1 for which

dvp (@
T+ilieT+1) (er1 —ert1) (17)

is satisfied. In this case, the set of symmetric, A—efficient allocations is indeed empty.

VP Er) — VP @r) >

Proof. To prove Proposition 7, it is straightforward to show from (5) and Proposition 1 that the
unrestricted value function VtD satisfies, for every ¢ > 0 and every e; > 0, the Bellman equation

W=, max WP e [ edno). [ VR anto) |,
Ry Ry

where AR represents the set of distribution functions with support in R. Using this represen-
tation of the value function, a straightforward application of Jensen’s inequality makes clear that
a sufficient condition ensuring that the functions VP and V,” coincide is that each function V7
in the sequence {Vf.) }T> +41 IS concave. Conversely, the functions VP and V;” may not coincide

if VP is not concave. To see this, assume, without loss of generality, that each function in the
sequence {%D } 1~ is differentiable and let {€;}, -, be a path corresponding to a solution to the

optimization problem in the definition of V;D (€¢). Then suppose that there exists a period T" and
an amount of physical resources ep;q # épy1 for which (17) is satisfied. Finally, for a number
m € (0,1), write Ug(ﬂ) for

UL (w) = WP (@, mérn + (1 = m)errn, wViFi (6) + (1 = VD (@41)) -
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Observe that Ug, (0) = V;P(€;). Also,

dUg (m)
dm

= DoWP (&, €141, VRL(@)) [6r1 — Era]+DsW,P (€1, €iq1, ViT1 (@) [ViR1 (E141) — ViR 1 (@41)] > 0,
which yields, for some 7* such that 0 < 7* <1,
VP (@) > U/g(ﬁ*) > VP (&)

In view of Proposition 5, this establishes that the set of symmetric, A—efficient allocations is
empty and, hence, completes the proof of Proposition 7.[].

Under what conditions are the value functions concave? Even if we restrict ourselves to envi-
ronments with dynastic altruism, growth models of fertility choice depart from standard growth
models in that 7) the set of feasible allocations is non-convex, and in that i) the factor by which
the dynasty head discounts the utility of her descendants is endogenous, which, in turn, im-
plies that the dynastic utility functions might be non-concave. Although some authors —see e.g.,
Benhabib and Mishimura (1989), or Nishimura and Raut (1999)- have noticed that these non-
convexities may generate strange dynamics, only a few papers have explicitly studied whether or
not value functions arising in standard models are concave. Some exceptions are Alvarez (1999),
Schoonbroodt and Tertilt (2014) and Qi and Kadaya (2010). The first two papers focus on envi-
ronments in which preferences are homothetic, and provide conditions -on the rate of growth of
feasible paths- ensuring that show that value functions are concave. The latter provide conditions
ensuring the concavity of value functions in a general setting, but it does it at a cost: fertility
choices must be bounded from below.

In a Technical Appendix'?, we study whether or not value functions are concave in a setting
in which (a) the agents live for two periods, and (b) preferences are strictly concave, homothetic
and additively separable. As shown in the Appendix, value functions arising in this context are
concave when the interest rate over the rate of population growth is a decreasing function of the
capital stock (in per worker terms). However, as Michel and Wigniolle (2007, 2010) or our own
work (2010) shows, seemingly well-behaved preferences may give rise to economies in which the
the interest rate over the rate of population growth is a non-monotonic function of the capital
stock. In the Appendix, we show that in such economies, value functions may be non-concave.
Of course, problems originated by non convexities may be exacerbated in non-standard models
that take into account other important features of fertility choice, such as non-divisible choice,
externalities, etc.

5 P—EFFICIENCY: AVOIDING SOME REPUGNANT CONSEQUENCES OF A—EFFICIENCY

In the previous section, we have shown that for many allocations, it is possible to find an
asymmetric allocation with more individuals in which some people who were already alive in the
former allocation are better off in the new allocation, and no alive agent are worse-off. Since the
notion of P—dominance limits the way in which new people can be brought up to the economy,
one possible way to avoid the negative results in the previous Section is by using the notion of P-
efficiency instead of A—efficiency. For example, consider a sequence of utility functions satisfying
Assumption 4.a) in GJT; that is, satisfying

UN (x;i') = for all t > 1. (18)

12The technical Appendix is available from the authors upon request.
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With this specification of the utility attributed to the unborn, a Millian efficient allocation a for
which Uy(Z) < @ for all ¢ > 1 cannot be P—dominated by an allocation with higher population
size, because achieving a P—improvement by increasing the population requires to provide all
newcomers with more resources than the resources they have in a. Analogously —at least, in
environments with altruism—, there is no way to achieve a P—improvement by decreasing the
population size because all the remaining living agents (the dynasty head among them) would get
lower utility than that they obtain with @. Hence, the allocation @ is P-efficient.

When the utility function attributed to the unborn adopts the particular specification in (18),
the way by which the notion of P—efficiency mitigates the problems raised in the previous Section
is not entirely satisfactory. First, because if ir is the case that Uy(Z) < w for all t > 1, we find
somewhat strange accepting as optimal an allocation in which all the living agents are strictly
worse off than those who are not born (no matter how the individuals in a society come to that
judgement). Second, and most important, because determining whether or not an allocation is
optimal (i.e. P—efficient) becomes heavily dependent on that judgement.!?

However, other specifications of 4V may reduce this dependency, as long as the utility at-
tributed to the unborn depends on the utility achieved by those alive at any allocation. There are
several possibilities. For instance, the principles

(i) “No one should be born if being born makes her worse-off than any of her living siblings
born before her;”

(13) “Whenever (i) cannot be applied, no one should be born if being born makes her worse-off
than any other member of her generation;” and,

(7it) “Whenever (i) or (i7) cannot be applied, no one should be born if being born makes her
obtain lower utility than a utility threshold w,”

could be captured by selecting a function defined, for every (x,i') € X x R, by

max {Uy(x; 87 ir) tir <idgir <ng(iY)}, i ng (1) >0,
UN (x;i 71 i) = max {Uy(x; i) : i € Ty(n)} if ny(i*=1) = 0 and NV;(n) > 0,

u, otherwise.
(i) and (éi) —and keep principle (iii)—, by

(i) “No one should be born if she enjoys a lower welfare level than the average welfare level
enjoyed by her living siblings born before her;” and

(#7') “Whenever (i) cannot be applied, no one should be born if being born makes her worse off
than a representative member of her generation,”

which can be represented by selecting a utility function for the unborn that adopts the Average
Utilitarianism form,

;

Z'Tgnt(it_l)

UN (x;i 14y =
a ! i / Up(x;1")di" | if ny(s=1) = 0 and Ni(n) > 0,
™\ J iteziin)

\ U,

otherwise.

13In the social choice literature, a similar solution has been proposed, in response to the Repugnant Conclusion,
by the use of critical level population principles (Blackorby, Bossert and Donaldson 2002, 2005) on social welfare
functions.
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Finally, a third possibility arises by replacing (i) and (i7) —and keeping principle (iii)—, by the
principles

(i) “No one should be born if being born makes her worse-off than her living siblings born before
her who obtain the lowest utility;”

(#3") “Whenever (i) cannot be applied, no one should be born if being born makes her worse-off
than any other living member of her generation,”

which can be represented by selecting a utility function for the unborn that adopts the Rawlsian
form,

min {Up(x; 3" ir) s ir <idgyir <ng(i1) ), ifng(i1) >0,
UN (x4t i) = min {U(x;i") : &' € Iy(n), }, if ny(i*=1) = 0 and NMy(n) > 0,
, otherwise.

In all these examples, the function determining the utility obtained by the unborn (as a function
of decisions made by living agents) in a given allocation has the following common property:

Property 1. For all t > 1, every i' = (i'"1,i;) € RY. and any two allocations a and @',
if ir > np(h) > (i) and Up(x; it 0) > U(X i d)  for every iy € [0,4], then

UN (x4 i) > UN ().

Property 2. For every t > 1, every i’ € Ri and every interior, symmetric allocation a such that

x¢(i') = 24 > 0 and ny41(i%) = ng1 > 0 one has

UM (x;1") = Uy(x; ') = Uy().

The first of these properties simply requires that the utility attributed to a particular agent
when she does not get to be born depends (monotonically) on the utility profiles of those that
are born before her. Without this property (for example, if the utility attributed to an agent
it if unborn in a given allocation depends also on the utility obtained by those siblings that
would also be unborn if i* was unborn) the binary relation induced by the P—dominance criterion
might be intransitive, even when we restrict welfare comparisons to symmetric allocations. The
second property simply establishes that the utility attributed to a particular agent if unborn is a
symmetric function of the utility profiles of her living siblings.

Proposition 8 below provides conditions under which, for any specification of the utilities
attributed to the unborn that satisfies the above two properties, every interior, Millian efficient
allocation is also P—efficient. A new definition is needed first. For an arbitrary ¢ > 0, let
vP(e;, e "), be defined, for every sequence (&;,e~"), by

vP(e,e ) = Inax {(x,kog?-‘}((a;it) {Z/ltD(x;it) ce;(i7) > e forall T >t + 1}} .

That is, v (&, e?) is the maximum utility that agents born before ¢ can obtain from con-
sumption decisions of their descendants, provided each of these descendants is endowed with at
least €, units of resources.
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Proposition 8 Let UN be a sequence of functions satisfying Properties 1 and 2, and let @ be a
Millian efficient allocation. If the function v is concave on the set of sequences {e; : ey > €t}t21,
then @ is P— efficient (with respect to U™ ).

Proof. See the Appendix.

That is, Millian efficient allocations may be also P—efficient. Furthermore, they are P—efficient
as long as each function U}V belongs to the class of functions satisfying Properties 1 and 2. Thus,
just as an A—efficient allocation can be described as a P—efficient allocation for which P—efficiency
holds irrespectively of the utility attributed to the unborn, Millian efficient allocations can be
described as P—eflicient allocations for which P—efficiency holds for a wide range of specifications
of the utility attributed to the unborn.

6 EQUILIBRIUM BEHAVIOR: A FAILURE IN THE FIRST WELFARE THEOREM?

After exploring the properties of the three notions of efficiency proposed in the literature, we
conclude the paper by studying the efficiency properties of a decentralized mechanism in which the
agents, endowed with well-defined property rights over the commodities available in the economy,
are free to trade these rights (or transfer them) to pursue their own interests. With this objective,
we explore the efficiency properties of a notion of decentralized equilibrium that, as in GJT,
results from the combination of the notion of competitive equilibrium and the notion of subgame
perfect equilibrium of a voluntary transfer game played within families. Differently from GJT,
we impose that gifts cannot be negative and parents cannot condition their gifts and bequests on
their children’s behavior.

In our notion of decentralized equilibrium, there are two markets operating at each date t > 0:
a financial market, that allows agents to lend (or borrow) an arbitrary amount s? = k7 _; of the
homogeneous good in period ¢, and obtain (or pay back) a return equal to Ryy1k7, | units of
the same good in period t 4 1; and, a spot job market, in which labor is exchanged against the
homogeneous good at a price w;. Since the agents may exhibit descendant altruism, each type i’ of
an agent of generation ¢ might be willing to transfer, at period ¢ + 1, an amount ggy1(it,4;11) > 0
of the numeraire to each of her immediate descendants when they reach their middle age, which
we may refer to as a bequest or a gift depending on whether or not the agents live for one or two

periods.
If the agents hold correct expectations both on future prices (represented by a sequence
p~t = {w,, R:}__, +1....) and on their descendants’ future consumption decisions, represented by a

sequence of functions x ¢ = {xt (RN — R+} T then an agent of generation ¢t who receives a
gift from their parents g;(i’) and transfers resources to her descendants according to a gift scheme

g1 R — R4 will choose her consumption-fertility bundle x} (i*) and her savings k; 1(") to
solve

1 s v . m o )
max {U (CL’t, / Ugl(x; Zt7 Zt+1)dzt+1) N Ct + bt(’nt+1) + kt+1 = Wt =+ gt(zt); (19)
(e, )ERY N1 Jo

MNt41
o o £ . .
Ci41 = Rt+1kt+1 _/ gt+1(l 7Zt+1)dlt+1}-
0

By Assumption A4, any solution (x}(i*), ki, (i")) to the optimization problem above is also
a solution of the optimization problem in which the objective function in (19) is replaced by
UP (24, ﬁ Jo i UR (% it i1 )dig1). By proceeding recursively, it follows that the sequence of
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prices p = {wy, Ri},; ., together with the gift g;(i") that the agent ' receives from her parents
and the sequence of gift schemes g7" = {g; : R" — R} -, 41 determining the gift received by all
her descendants, fully determines both the consumption-fertility bundle x; (i) = z,; (g:(i*),g ™)
as well as the amount saved as capital ki, ; (i) = kp¢1 (gt(it), g_t) selected by i'. Thus, the pair
(g:(i"),g") also determines the (indirect) utility payoffs My (g (i’),g™"*) that agents born at ¢
obtain from a sequence of gift schemes g = {gTH R — R+}T>0.

To obtain an explicit expression of the sequence of payoff functions, write npi+1(ge(it),g™"h)
for the fertility plan that solves the optimization problem in (19) and write 1, ;1 (-/g:(i*), g~") for
the distribution function defined, for each g € R4, by

(9/81). 87" ! @6
Hp.+1(9/8:(7).87) = E— / digy1.
e Top,t+1 (gt (lt)’ g t) it41:8e+1 (i ir41)<g

Also, let Wp; : Ri — R and Wp% : Ri”r — R be respectively defined, for each (e, es41, UtDH),
by

D D
Wypiler €41, Upyy) =  max {U(fﬁta Uii1) o " +be(ner) + Ky = egs
(zt,kf, 1 )ERY

i1 = Repakfy — nira[wipr — €t+1]},
and

D D D D
Wp,t(et7 €t+1, Ut+1) = max {U (¢, Ut+1) Do+ be(neg) + ]fto+1 < ey
(It,ngrl)E%Jr

¢ty = Rep1ky 1 — negr[wipr — €t+1]}.

Using this notation, the (indirect) utility payoffs MM, (g:(i*),g ") that agents born at ¢ obtain
from a sequence of gift schemes g can be written as

Myt (8:(i),87") = Wy (wt + g (i), w1 + \/Rgd:up,t—b—l(g/gt(it)vgit)a /R n;[)),t+1(gvg(t+1))d:up,t+1(g/gt(it)agt))
(20)
where I'Igt +1(gt41, g~ (1) is recursively defined by

no(g(i'),g7") = W), (wt +ge(i'), wepr + Agdup,m(g/gt(it),g‘t%/R ﬂf,m(g,g‘(t“))dup,m(g/gt(it),g‘t)> :
(21)

In our notion of equilibrium, gift schemes chosen by the agents constitute a subgame perfect
equilibrium of the the game of voluntary transfers I',, in which, for each ¢t = 0, 1,..., each living agent
it of generation t decides a gift scheme gt+1:Rf1 — R4, which yields her a payoff determined
by the function M,¢(g:(i*),g~"). To be more precise, we impose that the agents play Symmetric
Markov Strategies [hereafter, SMS], such that, for each ¢ an any arbitrary ', agent i'’s equilibrium
gift scheme satisfies, for each i;11,

g1 (i, ieg1) = Gy (ge(ih)).

If all agents play the strategy determined by G = {Gi41 : R4 — Ry}~ the utility obtained
by an agent of generation ¢t —from the gift schemes chosen by her descendants— by giving g;+1 units
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of resources to each of her immediate descendants depends only on g:;+1 and can be recursively
written as

D D D
Hp,G,t+1(9t+1) = Wp,t+1(wt+1 + ge41, Wer2 + Geya(ge41), Hp,G,t+2(Gt+2(gt+1))-

Thus, the sequence of strategies G corresponds to a Subgame Perfect Equlibria of the game played
within families if for each ¢ > 0 and each g; > 0, Gy4+1(g¢) solves

I, .0 (9¢) = max {Wps(wy + g, Wit + g1, T g 401 (9t41)) = geg1 = 0}, for t > 0; (22)

while the strategy selected by the dynasty head solves

I, ;.0 (0) = max {Wp,¢(€0, w1 + g1, 11 1 (91)) - g1 > 0} (23)

Given a sequence of prices p and a sequence {e;},~, let {wpyt(et, e_t)} 1 be a sequence of
functions recursively defined, for each ¢, by a

D —t _ D D —(t+1 _
wy, (e, e”) = Wy (et, et11, Wy 1€ttt € ( ))) —
— D D P —(t+2
= Wp’t (St, €t+1, Wp,t <€t+1, €142, wt+2(et+2, e ( )))) .

Also, for a given sequence of prices p and a sequence {g:},~, corresponding to a SMS, let {€;},-,
be the sequence defined, for each ¢ > 1, by ¢ = w; + g, and write Vp’DGJ(gt) and V), ¢ (),
respectively, for Vp’DGﬂf(é\t) = H;?,G,t(gt —wt) and V;, g t(€r) = p (€ — wy). Note that, if {&:};5,
is the sequence of income flows generated by a sequence of Symmetric, Markov Strategies {g:},~,

then we have

D~ \_ 7D ~ D [~ = D~ o+ _..D  (~  ~—(t+1
Va1 (@r1) = g o (€1 —wen) = Wy <et7€t+17wp,t+1(€t+17€ ( ))> = )y (@1, 6 V).

With this notation, conditions (22) and (23) can be written, in terms of the sequence {&:};>,
corresponding to an equilibrium as

Vp.ai(er) = Wy (%,&H, w£t+1(€t+1,?(t+1))) = max {Wp,t (gt, €t+17w£t+1(€t+1,?(t+l))> eyl = Wit
(24)
and
~ N _ D a1
V}),G,O(et) = Wp,G,t(e()a €1, wp,l(ela € )) = max {Wp,l(e(Ja €1, wp,l(eb € )) tep 2> wl} (25)

We should point out that conditions (22) and (23) are not sufficient to guarantee that a sequence
of Markov strategies GG satisfying these conditions constitutes a Subgame perfect equilibrium of
I',. A sufficient condition ensuring that a sequence of strategies G satisfying (22) and (23) is a
subgame perfect equilibrium of the dynastic game is that each function H;?G +41 s concave on Ry.
Observe that concavity of H]?,G,t 41 holds if V;f)at 41 is concave on the interval [wy 41, 00).

Moreover, even if we restrict ourselves to payoffs for which each function V}?G’t 41 is concave on
[wit1,00), there might be many equilibria of the dynastic game. To see this, suppose the functions
U and UP (and, hence, the functions V,; and Vpg ) coincide. In this case, any sequence {e;},,
of functions {V}, g ++1 : R+ — R} satisfying

Vp,ae(€r) = max {Wp (€, er1, Vp.giari(ers1)) : €141 > wegr }, for ¢ >0, (26)

may correspond to the payoffs obtained by the agents in an equilibrium with SMS.
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In general, there exist many solutions to the sequence of functional equations in (26), each
of them corresponding to the utility payoffs of a Subgame Perfect Equilibrium (with symmetric,
Markov strategies) of the dynastic game. To select among these, in the notion of decentralized
equilibrium that we propose here we shall assume that, at each point in time ¢, the agents choose
the SMS that maximizes their utilities among all possible sequences of SMS’s that correspond
to Subgame Perfect Equilibria of the game T',.14 In this equilibrium, the utility Vp%(é}) that all
agents born before period ¢ obtain from consumption decisions of their descendants satisfies, for
t>1

t

) e <@ze 2w

Vyr(€) = max { W (et ee1, wpy i1 (€141, €

—(T+1)))

D — (41 ~ D ~ L~
WT(eT7eT+17wp,T+1(eT+l)e (r ))) = maX{WT(eT7eT+17wp,T+1(eT+l7e ter41 > w7'+1}

for all 7> t.}

Therefore,
D/~ D (~ D . .
V(&) = Jmax { Wi (@, eri1s Vprpa(ern)) s ern > wipns
t+1-=

Wi (e, er41, ‘/;)3+1(e7'+1)) = max {W; (&, €41, ‘/;3+1(gt+1)) D €41 > Wign ) }
€t+1=2

Observe that, if U = UP, the equality constraint in the definition of Vlﬁ (e¢) becomes redundant
and, therefore,

V@) = Vpa(@) = max { WP @, ever, wpy s (errn, ™)) e 2w,
which, in turn, implies that the sequence {€;},-, corresponding to the equilibrium satisfies
Vpi(€0) = Vpg(éo) = maX{WOD(EO,el,wgl(el,e_l)) ceTl > w_l}.

Equilibrium behavior, however, differs from dynastic maximization if U # UP. Suppose,
for example, that UP(z,U”) = w(z) + pUP and U(z,UP) = u(z) + SUP are satisfied, with
0 < B <6 < 1. In this environment, we have

Wyaler, err1, UP (w41)) = Wilew errr) + 06U (2141) =
= Wp%(eb €t+1, UtD(.%'t_H)) + (5 — ,B) UtD(xt—l—l)-

Taking this into account, it is straightforward to show that the sequence {€;},-, corresponding to
the equilibrium solves the optimization problem

o
max{z ' Wi(es,erq1) s €0 =€ - ep > wy Vt > 1.} .
7=0

Thus, our notion of symmetric competitive equilibrium generalizes the notion of equilibrium
implicitly used by Barro and Becker (1988) to a setting in which altruism might be of the non-
dynastic type. In our model, however, the nonnegativity constraint on intrafamiliar transfers
might be binding in equilibrium, even when parents exhibit infinite horizon, dynastic altruism.

To summarize, a symmetric decentralized equilibrium can be defined formally as a feasible,
symmetric allocation @ and a sequence of prices p = {wy, Rt}t:l,z,... such that

14Using arguments to those used by Fudemberg and Levine (1983), it can be shown that our notion of equilibrium
corresponds to that Subame Perfect Equilibrium of I',, that is also the limit of the finite horizon truncations of the
game in which transfers are constrained to be zero from some period T on.
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~

i) for each ¢t > 0, the pair (¢, k7, ;) maximizes utility, that is, is selected to satisfy

U (2, UR1(@e41)) = Wpit (€, €141, U1 (Brs1))

o~

and the pair (k¢,,7;11) maximizes profits, that is, satisfies
D1 Fiy1(kiy1,Mep1) = Regr and DoFyyq(key1, Meg1) = wegt;

i1) the sequence {e;} of resources available to each generation corresponds to the Subgame Per-
fect Equilibrium of the dynastic game in which the agents select the strategy that maximizes
their utilities among all possible equilibria of the dynastic game in which the agents play
Symmetric Markov Strategies, that is,

%J(é}) = max {Wpﬂg(é\t, €t+1, ‘/;)g+1(6t+1)) L eE41 Z wt+1} for all ¢ Z 0, (27)
where, for each ¢t > 0, Vzﬁﬂ : Ry — R is defined, for each ey 1, as in (22);

iii) for each t > 0, the function Vz-ﬂj?t is concave on w41, 00).

Thus, even if we allow for non-symmetric strategies, the interaction of markets and families in
the framework analyzed in the paper delivers, under relatively weak concavity conditions on each
value function Vpg, a symmetric, interior allocation. In view of our results in previous sections,
this implies that the First Welfare Theorem does not hold (at least, when applied to A—efficiency)
in environments with non-dynastic altruism. With dynastic altruism, the First Welfare Theorem
might still hold if, at equilibrium prices, the non-negativity constraint on gifts is not binding and
Vpi(€r) = Vi(er) = Vi(ey) is satisfied. Otherwise, competitive equilibria are A—inefficient.

The possibility that competitive equilibria arising with voluntary (and non-negative) trans-
fers are A—inefficient has also been noticed by Schoonbroodt and Tertilt (2014), who view this
possibility as a potential market failure —that arises because parents have no claim on their chil-
dren’s labor income— and propose to correct this market failure with (fertility dependant) pension
schemes. Our previous results, however, suggest that, if altruism is of the non-dynastic type, then
the only way of achieving A—efficiency is by allowing parents to appropriate their children’s entire
labor income (in case parents are not altruistic towards their children) or by allowing parents to
condition the gifts or bequests transferred to their children to the gifts or bequests that the latter
decide to transfer to their own children (in case altruism is non-dynastic). Observe also that,
when agents are not altruistic or their altruism is of the finite-horizon type, the only way of restor-
ing efficiency through the introduction of fertility dependant pension schemes —which delivers a
symmetric allocation— would lead the economy to a collapse in finite time.

Under the assumption that the unborn agents always obtain lower utility that any born agent,
A—inefficient decentralized equilibria are P—inefficient as well. However, Theorem 1 below shows
that decentralized equilibria may be Millian efficient and, hence, P-efficient.

Theorem 1 Let a be an allocation corresponding to a symmetric competitive equilibrium.
i) @ 1is statically Millian efficient;
i1) If a satisfies condition (14) or condition (15), then it is also dynamically efficient.

Thus, in absence of dynamic efficiency problems —that may arise also in economies with exoge-
nous population— the First Welfare Theorem holds for Millian efficiency (or P—efficiency), rather
than for A—efficiency.
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7 CONCLUSIONS

In the paper, we have explored the properties of the notions of A—efficiency and P—efficiency,
proposed by Golosov, Jones and Tertilt (Econometrica, 2007), as well as the notion of Millian
efficiency (Conde-Ruiz, Giménez and Pérez-Nievas, 2010) to evaluate allocations in a general
overlapping generations setting with endogenous fertility and descendant altruism. The setting
includes, as particular cases, environments with infinite horizon, dynastic altruism a la Barro
and Becker (1988), as well as environments with finite horizon or other forms of non-dynastic
altruism. By allowing for general specifications, we have shown that if we evaluate social welfare
without making any judgement on whether or not it is worth living —that is, if we use the notion of
A—efficiency— an important difficulty arises: in many environments, the set of symmetric, interior,
A—efficient allocations is empty. This means that achieving A—efficiency imposes that either 7)
some of the agents living in an economy obtain different consumption bundles than those obtained
by their siblings, even when these siblings have the same tastes and capacities; or i) some of the
agents devote their entire endowment (or labor capacity) to provide with resources to their parents.
Moreover, the class of environments for which either 7), which can be regarded as discrimination,
or i), which can be regarded as exploitation, are necessary conditions for A—efficiency includes
all environments with finite horizon altruism, but also economies with infinite horizon, dynastic
altruism.

Then, we have shown that these difficulties can be overcome if we incorporate principles deter-
mining under what circumstances it is worth living —that is, if we use the notion of P—efficiency.
For a wide range of functions determining the welfare attributed to the unborn, every Millian
efficient allocation, that is, every symmetric allocation that is not A—dominated by any other
symmetric allocation, is P-efficient. Finally, we have provided a version of the First Welfare Theo-
rem by showing that a) every symmetric competitive equilibrium is a —statically— Millian efficient
allocation; and, that b) if long run wages do not exceed the capitalized costs of rearing children,
then competitive equilibria are also —dynamically— Millian efficient.

Thus, the notion of Millian efficiency (or P—efficiency) seems more appropriate than that of
A—efficient to evaluate allocations specially in settings in which altruism is not of the dynastic
type; with the notion of Millian efficiency an important qualitative conclusion of GJT prevails: in
absence of non convexities, externalities, missing markets, dynamic efficiency problems, etc., the
fact that fertility is endogenous does not mean that markets fail to deliver efficient allocations.

There are several directions that might be worth exploring. A first direction would be to
explore whether or not the results arising here can be extended to other models of fertility choice,
for example those in which parents exhibit some form of altruism towards their ancestors, as in
Caldwell (1982). It does not seem that this type of altruism would eliminate all problems raised
in this paper because it does not rule out the possibility that parents “exploit” their descendants
by appropriating their entire endowment. A second direction would be to extend the results to
environments in which the agents are heterogeneous. Here, we should point out that the symmetry
restriction underlying the Millian notion of efficiency imposes that every two agents with the
same characteristics should be treated equally, but it does not preclude that agents with different
characteristics must be treated equally. Thus, in models in which agents are heterogeneous in
their characteristics (preferences, endowments, preferences and endowments of their ancestors and
finally, the agents’ order of birth with respect to their siblings), the Millian notion of efficiency
may be still applicable if we regard the symmetry restriction as imposing that any two agents of
the same generation with the same preferences and endowments —and for whom the preferences
and endowments of all their ancestors are also equal— must be treated symmetrically.
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APPENDIX: PROOFS

Proof of Proposition 1. To prove Proposition 1, suppose that @ is an M—efficient allocation, and
suppose that there exists a period 7 > 0 for which the pair (z,k2,,) corresponding to the allocation

@ is not a solution to the optimization problem in the definition of W, (€;,€,41,U%(Z)). Select now a

solution (Z,,k2,,) € R4 to such optimization problem and let @ be the allocation obtained from @ by

replacing the term (Z,, k2 +1) by such solution. This allocation is feasible because (2, k¢, ;) must satisfy
4+ by (M) + Eﬁ_ﬂ <e, and Ft+1(%§+1, Ni41) — CPpq > Myq16i41. Also, observe that, by assumption A4,
the fact that U, (%) = U(z,UP (7)) > U(z,UP(2)) = U, (7) is satisfied, implies UP (%) = UP(z,UP (7)) >
UP(z,UP(z)) = UP(7) is satisfied. Therefore UP (7) > UP(Z) for all t > 7 and, since both U and UP
are monotonic, UP (%) > UP(z) and Uy(z) > U,(7) for all t < 7. That is, if the term (57,%2“) is not a
solution to the optimization problem in the definition of W, (e;,er41,UZ(Z)), then @ is M—dominated
by an alternative allocation a, a contradiction that establishes Proposition 1.0

Proof of Proposition 2. To prove Proposition 2, let @ be a Millian efficient allocation. Observe that, by
Proposition 1 and Assumption A4 we have UP (Z) = wP(é;,e7!) for each t > 0. To prove that UP () =
vP (€;,€71) must be satisfied for each ¢ > 1, suppose that there exists a period 7 > 0 for which the sequence
{€;:}22, associated to the allocation @ is not a solution to the optimization problem in the definition of
WP (€., e:11,UL | (Z)). Select now a sequence € such that w?(€-,e"7) > wP (e,,e"7) is satisfied for 7 > 0,
and let now @ be the symmetric allocation for which UP (7) = wp (&, ¢ *) is satisfied for ¢+ > 0. Note that

UP (@) = WP (&, €41, U7, (@)) > WP (6, 611, US4 (7)) = UP (@)

must be satisfied for each ¢ > 1. Moreover, the above inequality must be satisfied as a strict inequality for
t = 7. Finally, assumption A5 and the fact that UP (z) > UP () is satisfied implies that

Ut(%) = Wt (gtvgf,—‘rla Ute-l(zf)) Z Wt (€t7€t+17 Ut[-i-l(:f)) = Ut(lx\)

is also satisfied for each ¢ > 1, and with strict inequality for ¢ = 7. This implies that the allocation @ is not
M —efficient, a contradiction that establishes that UP (Z) = v (€;,€~t) must be satisfied. Taking (11) into
account, (12) follows straightforwardly, which completes the proof of Proposition 2.0J

Proof of Proposition 3. Let @ € S be an allocation satisfying condition (13). To prove that @ is statically
M —efficient, we proceed by showing that if there exists an allocation @ that M —dominates the allocation
a, then there must exist an infinite subsequence 7 = {1, ta,t3,...} such that &; < &, and U(Z) > U(Z) for
each t € T. To prove this statement, observe that the fact that Uy(Z) = vo(€p, ¢ ") and the fact that v is
non-increasing in e~ is satisfied imply that &;, < &;, must be satisfied for some period ¢; > 0. Since vy, is
strictly increasing in e;, and non-increasing in e~%', the fact that et > e~ is satisfied yields

Utl (3’1) <y (é\tl ) é¥tl) = Utl (3"\)7

which contradicts the assumption imposing that @ M—dominates the allocation a. Therefore, U;, () >
U, (Z) can be satisfied if there exists ¢o for which €, < &, and W2 (&,,e,11, UL 1 (T)) > Uy, (@) is
satisfied. By applying the argument recursively, the existence of the subsequence 7 is established. Also,
since the allocation @ can only be dominated by a reallocation of resources involving a infinite sequence of
periods of time, the allocation @ must be statically M—efficient, which establishes Proposition 3.0]

Proof of Proposition 4. In environments with no altruism, that is, for which preferences are represented
by a utility function satisfying U(x,u”) = u(z) and the sequence of indirect utility functions adopts the
form Wi (et esy1, UP (2)) = Wiler,err1) and my(es, er1, UP (x)) = mi(es, err1), Proposition 4 corresponds
to Proposition 3 in Conde-Ruiz et al. (2010). The proof proceeds by steps.

Step 1). In a first step, we show that, if there exists an allocation @ that M—dominates the allocation @,
then there must exist an allocation a that also dominates @ and satisfies, for ¢ > 1

Ui(z) = Uy (2), (28)
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UP (x) < UP (@), (29)

and
er < /e\t. (30)

To prove this statement, assume, without loss of generality, that a satisfies the necessary condi-
tions for Millian efficiency in Propositions 1 and 2. Taking this into account, an allocation a satisfy-
ing the required properties can be constructed from the allocation a as follows. Pick up any period
7 > 1 for which U.(Z) = W,(e;,€41,UR4(z)) > U,(Z) is satisfied and select e} < €, in such a
way that W, (e T,eTH,Uﬂl(%)) = U,(Z) is satisfied. Notice that, by Assumption A5 one must have
WP (el e-11,UL (%)) < UP(Z). Then let z' be the allocation obtained from @ by replacing the term
(%,,k2) by the solution (21, k2') to the optimization problem in the definition of W, (el,& 41, U2 (%)).
Note that, since @ satisfies the necessary conditions in Propositions 1 and 2 and w? ; is non-increasing
in e;, we have UP | (2') = WP (€;_1,el, WP (el,e-11,UR (2))) > UP(Z). Thus, UP (z') > UL ()
and, hence, U,_1(x') > U,_1(Z) must be satisfied, that is, the allocation #! dominates the allocation a.
Proceeding iteratively, it is straightforward to construct an allocation @ satisfying the required properties
for each ¢ : 1 <t < 7, which taking into account that 7 has been selected arbitrarily among those periods
for which Uy(Z) > U(%) is satisfied, establishes Step 1).

Step 2). In a second Step, we show that for any allocation a (28) to (30) for ¢t > 1 we have,

€11 — € .
2}7;“ = mi(es, er01, UP (2)), for t > 1.
t— €

To prove Step 2), observe that 7 (es, e;11, U (Z)) has been defined as the highest value of the ratio %
among those pairs (e, er41) << (€4, €:41) in the indifference curve defined by

Wy (e, er41, US4 (B)) = Up(2). (31)

Observe that if UP (z) < UP (%), the indifference curve defined by W, (ey, €441, U, (z)) = Uy () lies below
the indifference curve in (31). Therefore, for any allocation a satisfying (28)-(30) and any ¢ > 1, we have

SO > (@, B, UP(3)), for b2 1.
€t — €t

This establishes Step 2).

Step 3). We now show that if @ is dynamically efficient satisfying (13) and (14) in the statement of
Proposition 4 then an allocation a satisfying conditions (28)-(30) cannot exist. To show that this yields a
contradiction, observe that e, < €, must be satisfied, and therefore there exists € such that e = e; —e; > 0.
Since @ satisfies condition (14), there must exist an infinite subsequence T = {t¢,t1,...} of periods of time
and a sufficiently large T > 1 such that, for each T' € T such that T" > T™* one has

-~

er

e ) <Th e (32)
<Hf=1 ™ <etvet+1,U£1<z>)>

Use Step 2) and the definition of m; (€;, €11, UA | (Z)) to obtain, for any T the chain of inequalities

(é\g 7%2) é\3 753
0 < (e1—e)=€< = ) = ~ = = 2 =y =
T (61,62, UQD(.’E)) ™1 (61762) T2 (627637 UdD(‘r))
< ..<
S €T —gT é\T

)

<
T ~ o~ ~ T o~ o~ ~
[T 7 (€, €41, UR (@) Tlimq e (€1, €041, UR (7))

which, for T € T contradicts condition (32) and, therefore, establishes that a is Millian efficient.
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Step 4). The remaining of the proof follows an exactly analogous argument to that in Proposition 5 in
Conde-Ruiz et al (2010).0

Proof of Proposition 5. To prove Proposition 5, let @ be a symmetric, A—efficient allocation. To show
that UP (7) = VP (e;) must be satisfied for each t > 1, observe that if UP(Z) < VP (€;) for some period
t > 1, then UP(Z) < VP (1) is also satisfied. To show that U (z) = VP (1) must be satisfied, suppose it
is not, that is, suppose U (Z) < VP (1) is satisfied. Then select a pair (7ig,€1) > 0 such that ¢; < €; and
UP(Z) = VP(€1) are satisfied and consider the (possibly, asymmetric) allocation 3 constructed from the
allocation @ and the pair (71,€7) as follows:

i) for t =0,
k(%) = &Y,
M%) = & — bo(i) — kY,
CT(’L'O) = Fl(ki),ﬁl) — h\lé\l — (ﬁl — /ﬁl)gl;

ii) for t =1 and i' € Z;(n),

(71,k9, 1), ifieTi(R),

(xa(i'), k5 (i), en(i')) :{ (71,k9,&1), ifi e T,(AM)\L(R),

/N

where (1, k) corresponds to the solution (7, kS, &, (it )) to

1 [
D/~ D D N -
= U — d :
Vi’ (e) (zl,kIg.I,lg}((il,~)){ (xl, n2/0 Vy (e2(i”,i2)) Zz)

no
et + b1(ne) + kS < ey; < +/0 ex (i, ig)diy < Fg(ké’,ng)};

iii) for t > 1 and each i € Z,(n),

~

(.’/IZ‘\therl,é\t), if ¢ EIt(ﬁ),

(x¢(i), k§y 1 (i), e (i) = { (Fo(i), k001 (1), @), if i € T, (R)\ZL(R),

where (@(i),%fﬂ(i)) corresponds to the solution (%t,Ef+1,Et+1(it, )) to

Nt41 D
/ Vi (e (i, it+1))dit+1) :
0
ci" +b(nigr) + ki < gt(it)Q

i1
t - .
Pt +/ er+1(1", ir1)diry1 < Ft+1(kf+17nt+1)}«
0

D= (it} — D
Vi (e(i')) = max (it,-)){ U (mt,

(mtvk§+1*et+l Ng41

Note that, for m; < 7y, the allocation a is a symmetric allocation with fewer individuals than those
living in @; while for 7y > 71, @ is an asymmetric allocation that splits the population into (at least) two
groups at period t = 1. To be more precise, when n; > 1y is satisfied, those living under @ obtain the same
consumption-fertility bundle that the one they obtain in @, while those who were not living under @ receive
an endowment € (i*) and take the consumption and fertility plans that maximize the utility of the dynasty
head. It is straightforward to see that the allocation 3 is feasible.

Write now G(ny) for the (indirect) utility obtained by the dynasty head with the allocation a for different
selections of 1. Since UP (1) = ViP(¢1) we have

G(ﬁl): U(go_bo(ﬁl)_E?aFl(Egyﬁl)_ﬁlé\hﬁl,UlD(./fl))’ lfﬁl S/ﬁl,
U(éo - bO(ﬁl) - kll)aFl(kf7ﬁl) - ﬁlgl - (51 - ﬁl)gl,ﬁl,UlD(fl)), if ﬁl > ﬁl-
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Since @ is a Millian efficient allocation, it is straightforward to show that G(-) is strictly increasing and
concave on [0,7;]. Moreover, using first order conditions associated that every Millan efficient allocation
must satisfy, we obtain that the left-hand side derivative of G(-) at m; = i is given by

d-G(n ~ . ~ ~ -~ ~ ~ ~ ~ ~
O ) DU V@) + [DaFu(E ) — 8] DU UP @) + DU UP () =
1
= O7
while the right-hand side derivative is given by
d+G(ﬁ1) d_G(ﬁl) ~ 77D/~ —~ ~
—_— = ———+D — .
dny dn, + QU(JJ, Ui (1‘1)) (61 61) >0

Therefore,

G(n1) > G(ny) = Up(2),
for some m1 > n1. Thus, if we select 1 > 1y, the allocation 3 provides all agents already living with the
allocation @ with at least the same utility than the utility they obtain with @ and provides some of these
agents —the dynasty head— with strictly higher utility, which implies that @ is A—inefficient and, therefore,
a contradiction that establishes that UP (z) = V,P(e;) = VP (e;) for t > 1.

To complete the proof of Proposition 5, it only remains to be shown that Uy (Z) = Vy(€g) = Vo(€0) must
be satisfied for every symmetric allocation a. To show Uy(Zy) = Vo (€p) must be satisfied, suppose it is not.
Taking into account that @ satisfies UP () = VP (1), this implies that €; > e;(€), where e; () is the
solution to

max{WO (éo,el,le(el)) L e1 2 0} .

Choose now 7 € (0,1) and €; > 0 be chosen in such a way that e;(€p) < €; < e; and
Wo(eo, me1 + (1 —m) &, 7V (€1) + (1 — 1) VP (€1)) > Wo(eo, &1, Vi (€1))

are both satisfied. Observe that the pair (m,€;) must exist provided e (€p) < €1 < €; is satisfied.
Taking this into account, let 72; be arbitrary and consider the allocation @ constructed from the pair
(n1,€1) as explained above and defined by i) — #i¢). For such allocation we have

U (0 = bo(in) = k¢, Fi(g, i) — i, iin, VP @) if 7y < 7,
G(1) = U (2 — bo(n) — kg, Fu(k,iin) — ey — (i — ) &, 70, 2VP (@) + (1= 2) WP (@),
ifng > ﬁl.

Therefore, if 711 > 77 is chosen in such a way that nym = n; is satisfied, then we have
G(n) = Wo(eo,mer + (1 —m)er, 7Vl (€1) + (1 —m) VP (1)) > Woleo, e1, Vi (€1)) = G(i),

which implies that the allocation @ .A—dominates the allocation a. Thus, the allocation a is A—inefficient,
a contradiction that establishes that Uy(Z) = Vo(€o) = Vo(€p) must be satisfied, which completes the proof
of Proposition 5.7

Proof of Proposition 8. To prove Proposition 8, let "V be a sequence of symmetric functions satisfying
Properties 1 and 2, and let @ be a Millian efficient allocation such that the function v{’ is concave on the
set formed by all sequences {e; : e; > €:},~,. To show that @ is P-efficient, let ¢ be arbitrary and write

VtD(/éh é\_t) as

e )= max WP lE [ e [ vPes i |,
Hyy1:[€t41,00]—[0,1]
e>€ut1 e>€ut1

which taking into account that v (-,€~) is concave on [}, 0o] implies that the allocation that maximizes
the utility of the dynasty head among all allocations satisfying e;(i) > €; for each ¢ and each i € Z;(n) is
symmetric.

To show that this implies that @ must be P—efficient, suppose it is not. That is, there exists an
allocation a such that:
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e All agents living in both a and @ obtain at least the same utility than the utility they obtain with @,
that is
Ui (x;1) > Uy(T) = v (&, e ") for every i € Zy(n) N Zy(R).

o All agents that are not born in @ but are born in a (that is, for which n,(i'~!,i) > 7;) obtain, in the
latter allocation, more utility than the utility attributed to the unborn in the allocation a. Since the
utility attributed to the unborn satisfies Property 1 we have U (X;i) = U;(Z). Therefore,

Uy (x;7) > Uy(T) = vi(€, e ") for every i € Zy(n) and i ¢ Z,(n).

e All agents that were born in @ but are not born in a obtain more utility than the utility attributed
to the unborn in a. By Property 2, we have

UN (x;i710) > Us(x;0) > Up() = v (&, if ne (i) > 0.

Note that if the allocation @ is not P—efficient, the allocation a* that maximizes the utility of the
dynasty head among all allocations a for which Uy (x;7) > U(Z) for each ¢ and each i € Z;(n) should differ
from the allocation a. Proceeding as in Proposition 2, it is straightforward to show that such allocation a*
must maximize the utility of the dynasty head among all allocations satisfying e;(z) > €; for each ¢ and each
1 € Z;(n), which implies that the allocation a* must be symmetric. But then the fact that a* differs from
@ implies that there exists a symmetric allocation that provides all generations of agents with at least the
same utility than the utility they obtain with @, and with strictly higher utility to some of these generations,
which contradicts the initial assumption imposing that @ is Millian efficient. This contradiction establishes
that @ is Millian efficient, and completes the proof.[]

Proof of Theorem 1. To prove theorem 1, let @ be a symmetric, decentralized equilibrium associated to
a sequence of prices p. To show that @ is Millian efficient, we proceed by steps.

Step 1) First, observe that, for

Pry1 = (Rip1,Weq1) = (DlFt+1(Et+1,ﬁt+1)aD2Ft+1(/]’;t+laﬁt+l)) ,

first order conditions associated to the optimization problems in the definition of W), +(e:,€14+1) (or, re-
spectively, W2, (€;,€:41)) coincide with those characterizing a solution to the optimization problem in the

definition of W;(€;,e;41) (or, respectively, WP (€;,€;41)). Therefore,
wgt(gt,?t) = w?(/e\t, ?t)
must be satisfied for all ¢ > 1.

Step 2) In a Second step, we show that, since @ in a decentralized equilibrium, one must have, for ¢ > 1,

o~ o~

w£t(et,e H = vgt(€t7?t) = max {wgt(a,e_t) e t>e '},
To prove Step 2) is satisfied, suppose it is not, that is, suppose wll)?t (&,e7h) < vgt (€, e ) is satisfied for
some t. Then proceed as in the proof of Proposition 2 to show that there exists an alternative path {e;},-,
for which -

wpD’t(/é'h ’é’—t) Z wﬁt(€t7 /e;t))

and
Wot(@r, €sn, w1 (Cra1, € V) > W@, 81, w0l (B, @ OFY))

are satisfied for ¢ > 1 -as strict inequalities for some period 7 > 1. But this contradicts the assumption
imposing that {€;},., maximizes the utility of the dynasty head among all paths satisfying

Wy.i(ess err1,wl(er, e 1)) = max {Wt(et, eti1, 07 (et e ) ey > €t+1)} ;

36



a contradiction that establishes Step 2).

Step 3) Third, we show that one must have, for t > 1,

wP (&, e ") =vP (e, ") =max {w] (e, e ") et >},

~ ~_t

To prove Step 3) is satisfied, recall from 2 that w?,(€;,e"") = vl (e;,€7") is satisfied for each t > 1. To

show that wP (€;,e7%) = vP (€, e~ !) must be satisfied also for each ¢ > 1, suppose not. That is, there exists
{€:};>, and t > 1 for which ¢! > e~* and wP (&;,e ") > wP (e, ") is satisfied. On the other hand, recall
from the definitions that for each ¢t > 0 and any (ks11,7n:41) one must have

Ft+1(kt+17ﬁt+1) — Rypikiy1 — wt+1ﬁt+1 =02> Ft+1(kf+1,nt+1) - Rt+1kto+1 — Wg41M4-1-

Then,
Fopi(kfp i) — nugpreppr < Reprkf ) + w1

~ (e’
and, therefore, the sequence {(:?1;, kﬁ)} that solve the sequence of optimization problems in the definition
T=t

of wf’(é;,€7") is feasible in the sequence of optimization problems in the definition of w[,(&,e~"). This
yields,
w

Diene ) =wP(@,e ) > wp (@) > w (6,67,
for ¢ > 1, a contradiction that establishes 3).
Step 4) In this step, we show that
U,(%) = max {Wt@, err1, v (ersr, & D)) ey > em)}
must be satisfied for ¢t > 0. To prove Step 4), recall from the definitions and from Step 2) that

Ui(Z) = max {Wp,t(é\tv err1, v (ers, @ UTY)) repy > €t+1)}

must be satisfied for ¢ > 0. By proceeding as in 3 we obtain, for every ¢t > 0 and every e;11 > €41,

U(@) = Wyu(Br, 1, w1 (@1, ) = W@, B, wi (B, FY)
Z Wp,t(/e\h et+17 ’UD(etJrla/e;(tJrl)))
> Wi(e, €t+1,UD(€t+1,?(t+1))),

which establishes Step 4).

Step 5) In Steps 1)-4), we have shown that a symmetric allocation @ corresponding to a decentralized
equilibrium satisfies the necessary conditions for Millian efficiency in Propositions 1 and 2 as well as the
qualifying condition (13) in Proposition 3. By Proposition 3. @ must be statically M—efficient. Moreover,
Proposition 4 establishes that @ is dynamically M—efficient if either (14) or (15) are satisfied, which
completes the proof of Theorem 1.[]
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