Skip to main content

Advertisement

Log in

Contractile responses to rat urotensin II in resting and depolarized basilar arteries

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effects of human urotensin II (hUII) on the vascular tone of different animal species has been studied extensively. However, little has been reported on the vasoactive effects of rat urotensin (rUII) in murine models. The aim of the present study was to investigate the effects of rUII on vasoreactivity in rat basilar arteries. Basilar arteries from adult male Wistar rats (300–350 g) were isolated, cut in rings, and mounted on a small vessel myograph to measure isometric tension. rUII concentrations were studied in both resting and depolarized state. To remove endothelial nitric oxide effects from the rUII response, we treated selected arterial rings with Nω-nitro-L-arginine methyl ester (L-NAME). 10 μM rUII produced a potent vasoconstrictor response in rat basilar arteries with intact endothelium, while isometric forces remained unaffected in arterial rings treated with lower rUII concentrations. Although L-NAME did not have a significant effect on 10 μM rUII-evoked contraction, it slightly increased arterial ring contraction elicited by 1 μM rUII. In depolarized arteries, dose-dependent rUII increased depolarization-induced contractions. This effect was suppressed by L-NAME. Our results show that the rat basilar artery has a vasoconstrictor response to rUII. The most potent vasoconstrictor effect was produced by lower doses of rUII (0.1 and 1 μM) in depolarized arteries with intact endothelium. This effect could facilitate arterial vasospasm in vascular pathophysiological processes such as subarachnoid hemorrhage and hypertension, when sustained depolarization and L-type Ca2+ channel activation are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EDHF:

Endothelium-derived hyperpolarizing factor

eNOS:

Endothelial nitric oxide synthase

hUII:

Human urotensin II

L-NAME:

Nω-nitro-L-arginine methyl ester

LTCC:

L-type Ca2+ channel

rUII:

Rat urotensin II

UII:

Urotensin II

UT:

Urotensin II receptor

VSM:

Vascular smooth muscle

References

  1. Abernethy DR, Schwartz JB (1999) Calcium-antagonist drugs. N Engl J Med 341:1447–1457

    Article  CAS  PubMed  Google Scholar 

  2. Adner M, Cantera L, Ehlert F, Nilsson L, Edvinsson L (1996) Plasticity of contractile endothelin-B receptors in human arteries after organ culture. Br J Pharmacol 119:1159–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Alexander SPH, Mathie A, Peters JA (2009) Guide to Receptors and Channels (GRAC) 4th edn. Br J Pharmacol 158:S1–S254

    Article  CAS  Google Scholar 

  4. Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM et al (1999) Human urotensin II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  CAS  PubMed  Google Scholar 

  5. Benham CD, Tsien RW (1987) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Article  CAS  PubMed  Google Scholar 

  6. Bottrill FE, Douglas SA, Hiley CR, White R (2000) Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br J Pharmacol 130:1865–1870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cheung BM, Leung R, Man YB, Wong LY (2004) Plasma concentration of urotensin II is raised in hypertension. J Hypertens 22:1341–1344

    Article  CAS  PubMed  Google Scholar 

  8. Coulouarn Y, Lihrmann I, Jegou S, Anouar Y, Tostivint H, Beauvillain JC, Conlon JM et al (1998) Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci U S A 95:15803–15808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Do Rego JC, Leprince J, Scalbert E, Vaudry H, Costentin J (2008) Behavioral actions of urotensin-II. Peptides 29:838–844

    Article  CAS  PubMed  Google Scholar 

  10. Douglas SA, Sulpizio AC, Piercy V, Sarau HM, Ames RS, Aiyar NV, Ohlstein EH, Willette RN (2000) Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. Br J Pharmacol 131:1262–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fernández-Tenorio M, Porras-González C, Castellano A, del Valle-Rodríguez A, López-Barneo J, Ureña J (2011) Metabotropic regulation of RhoA/Rho associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circ Res 108:348–357

    Article  Google Scholar 

  12. Harder DR, Dernbach P, Waters A (1987) Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. J Clin Invest 80:875–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ishihata A, Sakai M, Katano Y (2006) Vascular contractile effect of urotensin II in young and aged rats: influence of aging and contribution of endothelial nitric oxide. Peptides 27:80–86

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi S, Kanaide H, Nakamura M (1986) Complete overlap of caffeine- and K+ depolarization sensitive intracellular calcium storage site in cultured rat arterial smooth muscle cells. J Biol Chem 261:15709–15713

    CAS  PubMed  Google Scholar 

  15. Koide M, Nystoriak MA, Brayden JE, Wellman GC (2011) Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes. Acta Neurochir Suppl 110:145–150

    PubMed Central  PubMed  Google Scholar 

  16. Liu JC, Chen CH, Chen JJ, Cheng TH (2009) Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol Pharmacol 76:1186–1195

    Article  CAS  PubMed  Google Scholar 

  17. Mayhan WG (1992) Endothelium-dependent responses of cerebral arterioles to adenosine 5′-diphosphate. J Vasc Res 29:353–358

    Article  CAS  PubMed  Google Scholar 

  18. Pearson D, Shively JE, Clark BR, Geschwind II, Barkley M, Nishioka RS, Bern HA (1980) Urotensin II: a somatostatin like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci U S A 77:5021–5024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    CAS  PubMed  Google Scholar 

  20. Quaile MP, Kubo H, Kimbrough CL, Douglas SA, Margulies KB (2009) Direct inotropic effects of exogenous and endogenous urotensin-II: divergent actions in failing and nonfailing human myocardium. Circ Heart Fail 2:39–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rossowski WJ, Cheng BL, Taylor JE, Datta R, Coy DH (2002) Human urotensin II-induced aorta ring contractions are mediated by protein kinase C, tyrosine kinases and Rho-kinase: inhibition by somatostatin receptor antagonists. Eur J Pharmacol 438:159–170

    Article  CAS  PubMed  Google Scholar 

  23. Sima B, Weir BK, Macdonald RL, Zhang H (1997) Extracellular nucleotide-induced [Ca2+]i elevation in rat basilar smooth muscle cells. Stroke 28:2053–2058

    Article  CAS  PubMed  Google Scholar 

  24. Simard JM, Li X, Tewari K (1998) Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension. Circ Res 82:1330–1337

    Article  CAS  PubMed  Google Scholar 

  25. Waldron GJ, Garland CJ (1994) Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery. Br J Pharmacol 112:831–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Watanabe T, Takahashi K, Kanome T, Hongo S, Miyazaki A, Koba S et al (2006) Human urotensin-II potentiates the mitogenic effect of mildly oxidized low-density lipoprotein on vascular smooth muscle cells: comparison with other vasoactive agents and hydrogen peroxide. Hypertens Res 29:821–831

    Article  CAS  PubMed  Google Scholar 

  27. Zhang AY, Chen YF, Zhang DX, Yi FX, Qi J, Andrade-Gordon P et al (2003) Urotensin II is a nitric oxide-dependent vasodilator and natriuretic peptide in the rat kidney. Am J Physiol Renal Physiol 285:F792–F798

    CAS  PubMed  Google Scholar 

  28. Ziltener P, Mueller G, Haening B, Scherz MW, Nayler O (2002) Urotensin II mediates ERK1/2 phosphorylation and proliferation in GPR14-transfected cell lines. J Recept Signal T Transduct Res 22:155–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is fully supported by grant 10/02044 from Instituto de Salud Carlos III (Spanish National Health System). We thank Dr. Antonio Ordoñez for his assistance in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Porras-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porras-González, C., Ureña, J., Egea-Guerrero, J.J. et al. Contractile responses to rat urotensin II in resting and depolarized basilar arteries. J Physiol Biochem 70, 193–199 (2014). https://doi.org/10.1007/s13105-013-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0293-0

Keywords

Navigation