Skip to main content

Advertisement

Log in

Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague–Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albertoni Borghese MF, Majowicz MP, Ortiz MC, Passalacqua Mdel R, Sterin Speziale NB, Vidal NA (2009) Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment. Nephron Physiol 112(3):p45–p52

    Article  PubMed  CAS  Google Scholar 

  2. Allende ML, Proia RL (2002) Lubricating cell signaling pathways with gangliosides. Curr Opin Struct Biol 12(5):587–592

    Article  PubMed  CAS  Google Scholar 

  3. Association AD (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–S69

    Article  Google Scholar 

  4. Bassi R, Viani P, Giussani P, Riboni L, Tettamanti G (2001) GM3 ganglioside inhibits endothelin-1-mediated signal transduction in C6 glioma cells. FEBS Lett 507:101–104

    Article  PubMed  CAS  Google Scholar 

  5. Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Müthing J (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 52(4):618–634

    Article  PubMed  CAS  Google Scholar 

  6. Boden G, Carnell LH (2003) Nutritional effects of fat on carbohydrate metabolism. Best Pract Res Clin Endocrinol Metab 17(3):399–410

    Article  PubMed  CAS  Google Scholar 

  7. Cárdenas A, Schadeck C, Bernard A, Lauwerys R (1991) Depletion of sialic acid without changes in sialidase activity in glomeruli of uninephrectomized diabetic rats. Biochem Med Metab Biol 46:416–421

    Article  PubMed  Google Scholar 

  8. Chen HY, Challa AK, Varki A (2006) 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem 281:7825–7833

    Article  PubMed  CAS  Google Scholar 

  9. Chen NK, Chong TW, Loh HL, Lim KH, Gan VH, Wang M, Kon OL (2013) Negative regulatory responses to metabolically triggered inflammation impair renal epithelial immunity in diabetes mellitus. J Mol Med (Berl) (in press)

  10. Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23(1):71–79

    Article  PubMed  CAS  Google Scholar 

  11. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428

    Article  PubMed  CAS  Google Scholar 

  12. Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  PubMed  CAS  Google Scholar 

  13. Fu WJ, Xiong SL, Fang YG, Wen S, Chen ML, Deng RT, Zheng L, Wang SB, Pen LF, Wang Q (2012) Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocrine 41(1):82–88

    Article  PubMed  CAS  Google Scholar 

  14. Garofalo T, Lenti L, Longo A, Misasi R, Mattei V, Pontieri GM, Pavan A, Sorice M (2002) Association of GM3 with Zap-70 induced by T cell activation in plasma membrane microdomains: GM3 as a marker of microdomains in human lymphocytes. J Biol Chem 277:11233–11238

    Article  PubMed  CAS  Google Scholar 

  15. Hakomori SI (2000) Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconjugate J 17:143–151

    Article  CAS  Google Scholar 

  16. Hatano K, Miyamoto Y, Nonomura N, Kaneda Y (2011) Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int J Cancer 129(8):1838–1847

    Article  PubMed  CAS  Google Scholar 

  17. Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA (2007) Lipid mediators of insulin resistance. Nutr Rev 65:S39–S46

    Article  PubMed  Google Scholar 

  18. Inokuchi J (2011) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B Phys Biol Sci 87:179–198

    Article  PubMed  CAS  Google Scholar 

  19. Insel PA, Patel HH (2009) Membrane rafts and caveolae in cardiovascular signaling. Curr Opin Nephrol Hypertens 18(1):50–56

    Article  PubMed  Google Scholar 

  20. Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y, Inokuchi Y (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15:21–29

    Article  PubMed  CAS  Google Scholar 

  21. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683

    Article  PubMed  CAS  Google Scholar 

  22. Kuo LH, Tsai PJ, Jiang MJ, Chuang YL, Yu L, Lai KT, Tsai YS (2011) Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia 54(1):168–179

    Article  PubMed  CAS  Google Scholar 

  23. Kwak DH, Rho YI, Kwon OD, Ahan SH, Song JH, Choo YK, Kim SJ, Choi BK, Jung KY (2003) Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Science 72:1997–2006

    Article  CAS  Google Scholar 

  24. Lee YJ, Kim MO, Ryu JM, Han HJ (2012) Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells. Biochim Biophys Acta 1823(4):971–982

    Article  PubMed  CAS  Google Scholar 

  25. Markotić A, Čulić VC, Kurir TT, Meisen I, Büntemeyer H, Boraska V, Zemunik T, Petri N, Mesarić M, Peter-Katalinić J, Müthing J (2005) Oxygenation alters ganglioside expression in rat liver following partial hepatectomy. Biochem Biophys Res Commun 330(1):131–141

    Article  PubMed  Google Scholar 

  26. Mohos SC, Skoza L (1969) Glomerular sialoprotein. Science 164:1519–1521

    Article  PubMed  CAS  Google Scholar 

  27. Rerup CC (1970) Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 22:485–518

    PubMed  CAS  Google Scholar 

  28. Rudd PM, Mattu TS, Masure S, Bratt T, Van den Steen PE, Wormald MR, Küster B, Harvey DJ, Borregaard N, Van Damme J, Dwek RA, Opdenakker G (1999) Glycosylation of natural human neutrophil gelatinase B and neutrophil gelatinase B-associated lipocalin. Biochemistry 38(42):13937–13950

    Article  PubMed  CAS  Google Scholar 

  29. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 108(11):1621–1629

    PubMed  CAS  Google Scholar 

  30. Sekimoto J, Kabayama K, Gohara K, Inokuchi J (2012) Dissociation of the insulin receptor from caveolae during TNFα-induced insulin resistance and its recovery by D-PDMP. FEBS Lett 586(2):191–195

    Article  PubMed  CAS  Google Scholar 

  31. Shayman JA, Radin NS (1991) Structure and function of renal glycosphingolipids. Am J Physiol 260:F291–F302

    PubMed  CAS  Google Scholar 

  32. Shigeoka AA, Holscher TD, King AJ, Hall FW, Kiosses WB, Tobias PS, Mackman N, McKay DB (2007) TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 178(10):6252–6258

    PubMed  CAS  Google Scholar 

  33. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J, Mundel P, Holthöfer H (2001) Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159(3):1069–1077

    Article  PubMed  CAS  Google Scholar 

  34. Souady J, Hülsewig M, Distler U, Haier J, Denz A, Pilarsky C, Senninger N, Dreisewerd K, Peter-Katalinić J, Müthing J (2011) Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 21(5):584–594

    Article  PubMed  CAS  Google Scholar 

  35. Spiegel S, Matyas GR, Cheng L, Sacktor B (1988) Asymmetric distribution of gangliosides in rat renal brush-border and basolateral membranes. Biochim Biophys Acta 938(2):270–278

    Article  PubMed  CAS  Google Scholar 

  36. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  PubMed  CAS  Google Scholar 

  37. Su L, Xiu LL, Wei GH, Zhong X, Liu YY, Cao XP, Li YB, Xiao HP (2011) Altered nuclear factor-kappaB inducing kinase expression in insulin-resistant mice. Chin Med J (Engl) 124(22):3646–3651

    CAS  Google Scholar 

  38. Tagami S, Inokuchi J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  PubMed  CAS  Google Scholar 

  39. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302(1):R75–R83

    Article  PubMed  CAS  Google Scholar 

  40. Toledo MS, Suzuki E, Handa K, Hakomori S (2004) Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 279:34655–34664

    Article  PubMed  CAS  Google Scholar 

  41. Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74:351–375

    Article  PubMed  CAS  Google Scholar 

  42. van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268(8):5341–5344

    PubMed  Google Scholar 

  43. Wang XQ, Sun P, Paller AS (2003) Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites. J Biol Chem 278:48770–48778

    Article  PubMed  CAS  Google Scholar 

  44. Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S (2008) Renal Na+–K+–Cl cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 295(3):F789–802

    Article  PubMed  CAS  Google Scholar 

  45. Yoneshige A, Sasaki A, Miyazaki M, Kojima N, Suzuki A, Matsuda J (2010) Developmental changes in glycolipids and synchronized expression of nutrient transporters in the mouse small intestine. J Nutr Biochem 21(3):214–226

    Article  PubMed  CAS  Google Scholar 

  46. Zador IZ, Deshmukh GD, Kunkel R, Johnson K, Radin NS, Shayman JA (1993) A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest 91(3):797–803

    Article  PubMed  CAS  Google Scholar 

  47. Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Béliveau R, Wilson P, Rogers T, Levi M (2001) Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 60(2):694–704

    Article  PubMed  CAS  Google Scholar 

  48. Zhao H, Przybylska M, Wu IH, Zhang J, Siegel C, Komarnitsky S, Yew NS, Cheng SH (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56(5):1210–1218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Data shown resulted from scientific project “Pathobiochemistry of glycosphingolipid antigens” carried out by support of Ministry of Science, Education and Sports, Republic of Croatia and Croatian Science Foundation grant NZZ 02.05./28. We express our warmest thanks to Prof. Dr. J. Müthing (Institute for Hygiene, University of Münster, Germany) for his kind gift of anti-GM3 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Tičinović Kurir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, A., Režić Mužinić, N., Čikeš Čulić, V. et al. Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes. J Physiol Biochem 69, 727–735 (2013). https://doi.org/10.1007/s13105-013-0249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0249-4

Keywords

Navigation