Electricity and CO2 Emission Impacts of a Residential Electricity Demand Response Program in Spain

Authors

  • Renato Rodrigues Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, España. E-mail: renato.rodrigues@iit.upcomillas.es
  • Pedro Linares Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, España. E-mail: pedro.linares@upcomillas.es
  • Antonio G. Gómez-Plana Departamento de Economía. Universidad Pública de Navarra, España. E-mail: agomezgp@unavarra.es

DOI:

https://doi.org/10.25115/eea.v29i2%20(2).4155

Keywords:

Computable General Equilibrium (CGE), Emissions, Electricity Demand Response.

Abstract

Changes in electricity demand can bring substantial shifts in the production structure, costs, and level of emissions of electricity systems. However, the electricity sector is not the only one affected as these changes can create significant repercussions in other sectors and, consequently, in the whole economy. In this paper, the indirect effects of a reduction in household demand for electricity have been evaluated for the Spanish economy. A multisectoral static computable general equilibrium model is employed to achieve this objective. The results clearly point out the importance of assessing other sectors’ behavior when assessing the consequences of promoting demand response policies, especially when dealing with pollutant emissions.

Downloads

Download data is not yet available.

References

ANDERSEN, F. M., JENSEN, S. G., LARSEN, H. V., MEIBON, P., RAVN, H., SKYTTE, K. AND TOGEBY, M. (2006). “Analyses of demand response in Denmark”. Risø National Laboratory, Risø-R-1565(EN).

ARROW, K. J., AND DEBREU, G. (1954). “Existence of an Equilibrium for a Competitive Economy”. Econometrica, 22, pp. 265-290.

BERG, S. V., CAPEHART, B. L., FELDMAN, J., LATOUR, S. AND SULLIVAN, R. L. (1983). “An interdisciplinary approach to cost/benefit analysis of innovative electric rates”. Resources and Energy, 5 , pp. 313-330.

BOISVERT, R., AND NEENAN, B. F. (2003). “Social welfare implications of demand response programs in competitive electricity markets”. Lawrence Berkeley National Laboratory, LBNL-52530.

BORENSTEIN, S. (2005). “The long-run efficiency of real-time electricity pricing”. The Energy Journal, 26, pp. 93-116.

BORENSTEIN, S., JASKE, M. AND ROSENFELD, A. (2002). “Dynamic pricing, advanced metering and demand response in electricity markets”. CSEM WP 105, University of California Energy Institute.

BRATTLE GROUP (2007). “Quantifying demand response benefits in PJM”. Prepared for PJM Interconnection, LLC and the Mid-Atlantic Distributed Resources Initiative (MADRI).

CAVES, D. W., CHRISTENSEN, L.R., SCHOECH, P. E. AND HENDRICKS, W. (1984). “A comparison of different methodologies in a case study of residential time-of-use electricity pricing. Cost benefit analysis”. Journal of Econometrics, 26, pp. 17-34.

CONCHADO, A., AND LINARES, P. (2009a). “Evaluación del impacto de precios horarios variables (RTP) en el sistema de generación eléctrica”. AEEE - Asociación Española para la Economía Energética. WP-2009-018 .

CONCHADO, A., AND LINARES, P. (2009b). “Gestión activa de la demanda eléctrica: simulación de la respuesta de los consumidores domésticos a señales horarias de precio”. AEEE - Asociación Española para la Economía Energética. WP-2009-020.

DAWKINS, C., SRINIVASAN, T.N., WHALLEY, J. (2001): Calibration. In J.J. Heckman and E. Leamer (eds.). Handbook of Econometrics, vol. 5, North- Holland, Amsterdam, pp. 777-795.

DIMARANAN, B.V. (ed.) (2007). Global Trade, Assistance and Production: The GTAP 6 Data Base. Center for Global Trade Analysis. West Lafayette: Purdue University.

HILL, L. (1991). “Residential time-of-use pricing as a load management strategy: Effectiveness and applicability”. Utilities Policy, 1, pp. 308-318.

HOLLAND, S. P., AND MANSUR, E.T. (2008). “Is Real-Time Pricing Green?: The Environmental Impacts of Electricity Demand Variance”. The Review of Economics and Statistics, MIT Press, 90, pp. 550-561, 04.

JOHANSEN, L. (1960). A Multi-sectoral Study of Economic Growth. Amsterdam: North Holland.

KEHOE, TIMOTHY J, (1996).Social accounting matrices and applied general equilibrium models. Federal Reserve Bank of Minneapolis WP nº 563.

KEHOE, T.J., SRINIVASAN, T.N. AND WHALLEY, J. (eds.) (2005), Frontiers in Applied General Equilibrium Modeling. Cambridge: Cambridge University Press.

LINARES, P., SANTOS, F., VENTOSA, M., AND LAPIEDRA, L. (2008). “Incorporating oligopoly, CO2 emissions trading and green certificates into a power generation expansion model”. Automatica, 44, pp. 1608-1620.

OFGEM (2009). “OFGEM restructured to meet low carbon challenge”. England: OFGEM press release.

PARKS, R. W. AND WEITZEL, D. (1984). “Measuring the consumer welfare effects of time-differentiated electricity prices”. Journal of Econometrics, 26 , pp. 35-64.

RODRIGUES, R., GONZÁLEZ-EGUINO, M. AND GÓMEZ-PLANA, A.G. (2011). “Energy-Economic-Environmental models: a survey”. In Markandya, A., Galarraga, I. and González-Eguino, M. (eds.): The Handbook in Sustainable Energy. In Press. Cheltenham: Edgard Elgar Publishing.

ROBINSON, S. (1989). “Multisectoral models”. in Chenery, H. and Srinivasan, T.N. (eds.): Handbook of Development Economics, Volume II, pp.886-947. Amsterdam: North Holland.

SHOVEN, J. B., AND WHALLEY, J. (1992). Applying General Equilibrium. Cambridge: Cambridge University Press,.

SUE WING, I. (2004). CGE Models for Economy-Wide Policy Analysis. MIT Joint Program on the Science and Policy of Global Change technical Note No. 6.

SUE WING, I. (2009). “Computable general equilibrium models for the analysis of energy and climate policies”. In Evans, J. and Hunt, L.C (eds.): Internacional Handbook on the Economics of Energy (pp. 332-366). Cheltenham: Edgard Elgar Publishing.

Downloads

Published

2020-11-22