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DIVISIBILITY THEORY OF SEMI-HEREDITARY RINGS

P. N. ÁNH AND M. SIDDOWAY

(Communicated by Birge Huisgen-Zimmermann)

Abstract. The semigroup of finitely generated ideals partially ordered by in-
verse inclusion, i.e., the divisibility theory of semi-hereditary rings, is precisely
described by semi-hereditary Bezout semigroups. A Bezout semigroup is a
commutative monoid S with 0 such that the divisibility relation a|b ⇐⇒ b ∈ aS
is a partial order inducing a distributive lattice on S with multiplication dis-
tributive on both meets and joins, and for any a, b, d = a ∧ b ∈ S, a = da1
there is b1 ∈ S with a1 ∧ b1 = 1, b = db1. S is semi-hereditary if for each
a ∈ S there is e2 = e ∈ S with eS = a⊥ = {x ∈ S | ax = 0}. The dictionary
is therefore complete: abelian lattice-ordered groups and semi-hereditary Be-
zout semigroups describe divisibility of Prüfer (i.e., semi-hereditary) domains
and semi-hereditary rings, respectively. The construction of a semi-hereditary
Bezout ring with a pre-described semi-hereditary Bezout semigroup is inspired
by Stone’s representation of Boolean algebras as rings of continuous functions
and by Gelfand’s and Naimark’s analogous representation of commutative C∗-
algebras.

Introduction

In considering the structure of rings, classical number theory suggests a careful
study of the semigroup of divisibility, defined as the semigroup of principal (or more
generally finitely generated) ideals partially ordered by reverse inclusion. We refer
to this special semigroup of ideals in a ring R as the divisibility theory of R, or more
informally as its divisibility. This approach led to a general valuation theory devel-
oped by Krull, establishing a dictionary between valued fields and totally ordered
abelian groups. Later, valuation theory is extended to Bezout domains by showing
that the groups of divisibility (consisting of fractional ideals) of such domains are
precisely lattice-ordered abelian groups. However, the task of describing a divisibil-
ity theory for Bezout rings (rings whose finitely generated ideals are principal) with
zero-divisors appears to be far more difficult and is still open, although it was quite
simple to settle the problem for valuation rings (rings, possibly with zero-divisors,
in which any two ideals are comparable).
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In this short paper we provide a stronger but partial answer to this question by
showing that for semi-hereditary rings the divisibility theory can be described by
way of semi-hereditary Bezout semigroups. As a by-product, this result describes
both the divisibility theory of semi-hereditary rings and also of certain sub-direct
products of GCD domains, including localizations of polynomial rings in any set of
variables over fields. It also provides an overview of the nature of semi-hereditary
(Bezout) rings which form a proper subclass between rings with global dimension at
most 1 and rings with weak dimension at most 1. Notably, the compactness of the
minimal spectrum describes semi-hereditary rings inside rings with weak dimension
at most 1. In other words, a ring of weak dimension at most 1 is semi-hereditary if
and only if its minimal spectrum is compact. Note that the divisibility theory in a
GCD domain is a semigroup of principal ideals together with the binary operations
GCD and LCM. Therefore semi-hereditary B-semigroups describe divisibility in
much larger classes of rings, in particular for semi-hereditary rings.

In the first part we characterize semi-hereditary B-semigroups by their geometric
structure, that is, the space of minimal m-prime filters endowed with the Zariski
topology. The corresponding versions of these results (with one exception) are
well-known for semiprime rings [14], [10]. However, the focus of our work is on
semigroups, and most of the proofs found in [14] are not direct, are mainly homo-
logical in nature, and involve localization techniques. We provide direct elementary
proofs in the setting of semigroups which also hold for semiprime rings.

In the second part, the geometry of a semi-hereditary B-semigroup S and its
subsemigroup S1 of non-zero-divisors is used to obtain a semi-hereditary Bezout
ring R with a given divisibility theory S. The ring R is a well-determined sub-
ring of the ring of continuous functions from the minimal spectrum of S into the
quotient field of the semigroup algebra of S1 endowed with the discrete topology.
In the tradition of work by Arens and Kaplansky (see Chapter IX.6 [12]) on the
representation of certain biregular rings, our construction provides results in the
spirit of the representation of commutative C∗-algebras by Gelfand and Naimark
(see Theorem 4.29 [4]) as rings of continuous functions. Our work naturally sug-
gests future efforts to characterize the semi-hereditary Bezout rings obtained by our
construction and belongs to the rich theory describing the divisibility of rings. For
the divisibility of various classes of rings we refer to the recent book [8] and papers
[7], [9]. The question as to whether Bezout semigroups characterize the divisibility
theory of Bezout rings is still open.

A word about terminology. All structures are commutative, and rings have
the identity element 1. A ring is called Bezout if every finitely generated ideal is
principal. The extension of a semigroup S by a zero element will be denoted by S•.

1. Basic notions and preliminary results

For the benefit of the reader and for the sake of completeness we recall some basic
definitions and notation and include some crucial results from [2]. The development
of and comments on this supporting material can be found in full detail in [2].

Definition 1.1 (see Section 4 [3] and Definition 1.1 [2]). A Bezout semigroup S (in
short a B-semigroup) is a commutative monoid S with 0 such that the divisibility
relation a|b ⇐⇒ aS ⊇ bS is a partial order, called a natural partial order, inducing
a distributive lattice on S, with a multiplication distributive on both meets and
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joins, and S is hyper-normal, meaning that for any a, b, d = a ∧ b ∈ S, a = da1
there is b1 ∈ S satisfying a1 ∧ b1 = 1, b = db1.

A Bezout semigroup S is semi-hereditary if for each a ∈ S there is e2 = e ∈ S
with eS = a⊥ = {x ∈ S | ax = 0}.

A B-semigroup is called cancellative if nonzero elements form a cancellative
monoid.

Since divisibility is a partial order, 1 is the unique invertible element in a B-
semigroup. The most natural example of B-semigroups is the extension P • of
the positive cone P of an abelian lattice-ordered group by an extra zero element.
Therefore divisibilities of Bezout domains are cancellative B-semigroups. More
generally, Proposition 1.4 [2] establishes

Proposition 1.1. If R is a Bezout ring, then the divisibility theory SR of R is a
B-semigroup.

For the sake of completeness and due to the importance of this result, we include
a direct, detailed proof which does not appear in [2].

Proof. For any a, b, z ∈ R and arbitrary c ∈ aR ∩ bR, let dR = aR + bR, d =
ax + by, a = da1, b = db2, c = ac1 with some a1, b2, c1, d, x, y ∈ R. Then ab2 =
da1b2 = a1b ∈ aR ∩ bR and bR = bR + cR + bc1R = db2R + ac1R + bc1R =
db2R+ c1(aR+ bR) = db2R+ dc1R = d(b2R+ c1R), and hence a1bR = da1(b2R+
c1R) ⊇ da1c1R = cR. Therefore aR∩ bR is the principal ideal a1bR. Consequently
SR is a sublattice of the ideal lattice of R which is a distributive lattice under
reverse inclusion. Thus SR is a distributive lattice under the natural partial order.
It is trivial that ideal multiplication is distributive on meets, i.e. sums of ideals.
In view of (zR)(aR) + (zR)(bR) = zaR + zbR = z(aR + bR) = zdR we have
(zR)(aR) ∩ (zR)(bR) = zaR ∩ zbR = za1bR = (zR)(a1bR) = (zR)(aR ∩ bR),
which shows that multiplication is also distributive on joins. Moreover, if b1 is any
generator of the principal ideal (1−a1x)R+b2R, then d(1−a1x) = d−ax = by ∈ bR
implies bR = (dR)(b1R), b1R + a1R = R, from which hyper-normality follows. �

Remark 1.2. It is important to emphasize in the above proof that the ideals gener-
ated by b and db1 coincide although b and db1 are not, in general, equal. That is,
Bezout rings are not necessarily Hermitean rings. Moreover, ideal multiplication is
obviously distributive on sums (on meets of ideals) but generally not on joins (on
intersections of ideals). In fact, by Lemma 2 [13] a domain is a Prüfer domain if
and only if ideal multiplication is distributive on intersections of ideals. Note that
Jensen’s result also holds in the more general setting of semiprime rings. Namely,
a ring without nonzero nilpotent elements has a distributive ideal lattice if and
only if ideal multiplication is distributive on intersections of ideals. Recall that an
arithmetical ring is a ring with a distributive ideal lattice. The semiprime condition
is essential. For example, the factor ring k[x, y]/(x, y)2 of a polynomial ring in two
variables over a field is obviously not an arithmetical ring, but ideal multiplication
is clearly distributive over intersections of ideals. For further comments we refer to
Remarks 1.4 [2].

Examples 1.2. One can obtain further classical examples of B-semigroups (see
Examples 1.3 and Proposition 1.4 [2]) by considering
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(1) semigroups of principal ideals in unique factorization domains where meets
(given as principal ideals generated by greatest common divisors) are not
necessarily sums of ideals, e.g., in k[x, y] one has (x)∧(y) = (1) �= (x, y);

(2) semigroups of ideals in Dedekind domains;
(3) semigroups of finitely generated ideals in Prüfer domains, or more generally,

in arithmetical rings.

Corollary 1.3. The divisibility theory SR of a semi-hereditary ring R is a semi-
hereditary B-semigroup.

Proof. By Theorem VI.2.9 [5] a semi-hereditary ring R has weak dimension at
most 1, implying (in view of the main result in [13]) that R is an arithmetical ring.
Therefore SR is order-isomorphic to the divisibility theory of an appropriate Bezout
ring according to Corollary 8.1 [1]. Hence SR is a B-semigroup by Proposition 1.1.
Since the annihilator of a finitely generated ideal is a finite intersection of the
annihilators of principal ideals, it is generated by an idempotent, provided that the
ring is semi-hereditary. It follows that SR is a semi-hereditary B-semigroup. �

An obvious consequence of hyper-normality is

Corollary 1.4. In a Bezout semigroup, idempotents form a Boolean algebra.

Proof. For any idempotent e = e2 hyper-normality implies an element f with
e∧ f = 1, ef = 0, whence f2 = f, e ∨ f = 0; i.e., f is the complement of e,
completing the proof. �

When working with B-semigroups, one has to deal with filters and the so-called
m-prime filters instead of the usual ideals and prime ideals in semigroup theory.
In view of the lattice structure, m-prime filters reveal additional information via
a hidden addition induced by the meet operation. For example, the multiplicative
semigroup of the natural numbers has uncountably many ideals, but the ring of
integers has only countably many ideals. Recall that a filter in a B-semigroup S
is a subset F closed under ∧ such that if a ∈ F , b ∈ S, and a ≤ b, then b ∈ F .
Therefore every filter is also an ideal of the semigroup S (in the usual sense) with
respect to multiplication. A filter I is said to be m-prime if ab ∈ I implies a ∈ I
or b ∈ I. Thus m-prime filters are particular cases of prime ideals in weak ideal
systems (Aubert’s x-systems), and Theorem 1.5 is related to the development in
Section 4.4 of Halter-Koch’s book [8]. An element s ∈ S is a zero-divisor if st = 0
for some 0 �= t ∈ S. An element a ∈ S is a non-zero-divisor if it is not a zero-divisor,
i.e., if a⊥ = 0.

The following result is basic in our approach.

Theorem 1.5 (see Theorem 2.13 [2]). For every m-prime filter I a relation ΦI

∀x, y ∈ S : x ∼= y ⇐⇒ ∃s /∈ I : x ≤ ys & y ≤ xs

defines a congruence whose factor Sϕ = S/ΦI is a naturally totally ordered B-
semigroup, and the congruence class of 0 is K = {x ∈ S | ∃ s /∈ I : sx = 0}.

Proof. It is routine to verify that the relation ΦI is a congruence and S \ I and
K are sets of elements congruent to 1 and 0, respectively. Images in Sϕ of s ∈ S
are denoted by sϕ. Given any two elements x, y ∈ I, hyper-normality allows us
to write d = x∧ y, x = dx1, y = dy1, x1 ∧ y1 = 1 for some x1, y1 ∈ S. Therefore
at least one of x1, y1 does not belong to I. Consequently images of x, y in Sϕ are
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comparable; i.e., Sϕ is totally ordered. Moreover, xϕ ≤ yϕ implies xϕ = (x∧ y)ϕ,
whence yϕ = xϕzϕ for z ∈ S with y = (x∧ y)z. If the equality yϕ = xϕzϕ holds for
some x, y, z ∈ S, then there exists s /∈ I with x ≤ xz ≤ ys, hence xϕ ≤ yϕ. This
shows that the induced order in Sϕ is natural. Furthermore, if a ∈ I, b ∈ S have the
property that a, ab have the same nonzero image in Sϕ, then by definition there is
some s /∈ I with ab ≤ as. If b ∈ I, then by putting s ≤ b∨ s = c = sc1 ∈ I for some
c1 ∈ S one has that c, c1 ∈ I and 0 �= as = ab∨as = a(b∨s) = ac = asc1. Therefore
hyper-normality implies that there is an element x ∈ S with asx = 0, c1 ∧x = 1.
This shows that x ∈ I and thus c1 /∈ I and so b cannot be an element of I, a
contradiction. It follows that b /∈ I. This implies that Sϕ is hyper-normal, and it
is now easy to check that Sϕ is a B-semigroup. �

Remark 1.6. For an m-prime filter I the factor of S by the congruence

∀x, y ∈ S : x ∼= y ⇐⇒ ∃s /∈ I : x ≤ ys & y ≤ xs

is called the localization of S at I (sending S \ I to 1).

The nil radical of a B-semigroup S is the (set-theoretical) intersection of all
m-prime filters. It is routine to see that the nil radical of S is just the set of all
nilpotent elements. S is called semiprime or reduced if its nil radical is 0. An
m-prime filter I of S is called minimal if it is minimal in the set of all m-prime
filters of S with respect to the set-theoretical inclusion. Throughout this paper X
will denote the set of all minimal m-prime filters of S. It is obvious that the nil
radical is also the intersection of all minimal m-prime filters.

Definition 1.3. The minimal spectrum of S is the set X of all minimal m-prime
filters endowed with the Zariski topology by taking {Ds = {I ∈ X | s /∈ I} , s ∈ S}
as a basis of open sets.

It is routine to check that {Ds = {I ∈ X | s /∈ I} , s ∈ S} satisfies the axioms for
a basis of open sets in a topological space. For the sake of completeness we provide
the proofs of the following obvious but important assertions.

Proposition 1.7. Let S be a reduced B-semigroup.

(1) [14, Proposition 1.1 (3)]
⋃

I∈X I is the set of all zero-divisors of R.
(2) [14, Proposition 1.2 (1)] An m-prime filter I is minimal iff for all s ∈

I, s⊥ � I.

Proof. Let I be a minimal m-prime filter and let 0 �= s ∈ I. By Theorem 1.5
the localization SI is a naturally totally ordered B-semigroup; hence it must be a
Boolean algebra of two elements 1 and 0 because S is reduced and I is a minimal
m-prime filter. This implies that there is an element t /∈ I with ts = 0. t /∈ I
implies t �= 0. Thus

⋃
I∈X I consists entirely of zero-divisors. On the other hand, if

0 �= s is a zero-divisor, then there exists 0 �= t with ts = 0. Since S is reduced, there
is a minimal m-prime filter I with t /∈ I. Therefore s ∈ I holds because ts = 0 ∈ I.
This finishes the verification of (1).

If I is a minimal m-prime filter and 0 �= s ∈ I, then we have already seen that
there is some t /∈ I with ts = 0, i.e, s⊥ �= 0 and s⊥ � I. Conversely, let I be an

m-prime filter such that s⊥ � I holds for all s ∈ I. Assume indirectly that there
is another m-prime filter J properly contained in I. Then for s ∈ I \ J we have
s⊥ ⊆ J ⊆ I, a contradiction. Thus, statement (2) holds. �
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Remark 1.8. Although
⋃

I∈X I is the set of all zero-divisors of R, there exist in
general m-prime filters consisting of zero-divisors which are not minimal.

2. Semi-hereditary B-semigroups

For every element a ∈ S let Sa = {s ∈ S | s⊥ = a⊥}. The following simple but
basic result is proved in [2]. For the sake of clarity and because of its importance
for our development, we include the proof.

Proposition 2.1 (cf. Theorem 3.5 [2]). If S is a semiprime B-semigroup, then for
every element a ∈ S the subsemigroup Sa is a cancellative semigroup closed under
∧ and ∨. The extension S•

a of Sa by a new extra zero element 0 is a B-semigroup
if and only if its induced order is natural, i.e., if Sa � b ≤ c ∈ Sa implies c = bu
for some u ∈ Sa.

Proof. Assume x, y ∈ Sa. Then (x ∧ y)⊥ = x⊥ ∩ y⊥ = a⊥. If t(x ∨ y) = 0, then
txy = 0. Hence tx ∈ y⊥ = x⊥; thus (tx)2 = 0 =⇒ tx = 0, i.e., t ∈ x⊥. Thus Sa is
a subsemigroup closed under both ∧ and ∨. If now xz = yz with x, y, z ∈ Sa, then
(x ∧ y)z = (x ∨ y)z holds. Hence one can assume without loss of generality that
x < y = dx and it follows that zx = dzx. Thus x �= y would imply d �= 1. If there
is some c ∈ x⊥ = a⊥ with c ∧ d = 1, then we have x = x · 1 = x(c ∧ d) = xd = y,
a contradiction. Thus there is an m-prime filter I such that in the 0-cancellative
naturally totally ordered factor S/ΦI we have dϕ �= 1, (xz)ϕ �= 0 and the equality
(xz)ϕ = dϕ(xz)ϕ, a contradiction.

Assume now that S•
a is a B-semigroup and b, c ∈ Sa, b ≤ c. Then Sa has an

identity; i.e., there is an idempotent e ∈ Sa and we have c = bd for some d ∈ S.
This implies c = bd = bed = bu with u = de ∈ Sa, as is easy to check. Conversely,
a ≤ a implies that a = ae for some e ∈ Sa, and hence e = e2 is the identity of Sa.
Consequently Sa, endowed with 0, is a B-semigroup. �
Corollary 2.2. Let S be a B-semigroup.

(1) If for every a ∈ S, Sa contains an idempotent, then S is semiprime.
(2) S is semi-hereditary iff Sa contains an idempotent for each a ∈ S. In par-

ticular, semi-hereditary B-semigroups are disjoint unions of positive cones
of lattice-ordered groups, whence reduced.

Proof. If Sa contains an idempotent e, then a⊥ = e⊥ = fS where f is the orthogo-
nal complement of e. This shows the equivalence claimed in assertion (2) and hence
claim (1). �
Remarks 2.3. (1) If R is a semi-hereditary Bezout ring, then it is well-known

(see [13]) as a consequence of a long homological argument that R is
semiprime. Our proof provides a short, direct elementary justification.
Note that semi-hereditary associative rings are not necessarily semiprime.
For instance, upper triangular matrix rings over fields are hereditary and
have nonzero nilpotent radicals.

(2) It is well-known that non-trivial lattice-ordered abelian groups are torsion-
free. However, in our treatment of semi-hereditary B-semigroups, the trivial
group consisting only of the identity element is lattice-ordered in the ob-
vious way. The reason for this convention is the case of Boolean algebras
which are obviously B-semigroups S where Sa is the trivial group for any
element a ∈ S.
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Now we turn to the geometric structure of semi-hereditary B-semigroups. With
the exception of claim (2), the ring-theoretical statements corresponding to asser-
tions in the following theorem are well-known even for the larger class of reduced
rings (see Section 1 in [14]).

Theorem 2.4. For a B-semigroup S the following statements are equivalent:

(1) S is semi-hereditary.
(2) S is reduced and for each element a ∈ S there exists b ∈ S such that

a⊥ = bS.
(3) S is reduced and for each a ∈ S there exists b ∈ a⊥ such that a∧ b is a

non-zero-divisor.
(4) The minimal spectrum X of S is compact with respect to the Zariski topol-

ogy.

Remarks 2.5. (1) The condition in claim (2) that a⊥ is a cyclic filter for each
a ∈ S means precisely that every principal filter is finitely presented. Bezout
rings with this condition are exactly coherent Bezout rings.

(2) Any e2 = e ∈ S together with its complement f induces a direct decompo-
sition

Se × Sf −→ S1 : (Se � s, t ∈ Sf ) �−→ s∧ t ∈ S1 � u �−→ (eu, fu) ∈ Se × Sf .

Consequently, the structure of a semi-hereditary B-semigroup S is com-
pletely described by its subsemigroup S1, which is a positive cone of a
lattice-ordered abelian group G, and a Boolean algebra of idempotents in
S such that each idempotent of S induces a direct decomposition of G with
obvious compatibility conditions. Thus one might think that this Boolean
algebra can be realized as a Boolean algebra of commuting idempotents in
the endomorphism ring of the abelian group G. However, this is not neces-
sarily the case in view of Remark 2.3 (2). Here is another simple example to
the contrary. Let R be the subring in the direct product

∏
i∈N

Q of count-
ably infinitely many copies of the field Q of rationals generated by their
direct sum; i.e., R is a subring of sequences, all but finitely many of whose
entries are equal to an integer. Such a ring R is a semi-hereditary Bezout
ring. Let S be a semigroup of divisibility of R. Then one can verify that
a Boolean algebra of idempotents of S is isomorphic to a Boolean algebra
generated by finite subsets of N with respect to unions and intersections
and S1 is just the multiplicative semigroup N. However, every idempotent
e of S induces the same identity map of N, and Se consists either of one
element or is isomorphic to S1.

Proof. The implication 1 =⇒ 2 is trivial by Corollary 2.2 (2) and the definition of
semiheredity.

The implication 2 =⇒ 3 is obvious.
3 =⇒ 4. To show the compactness of X , it is enough to see that every open

covering of X consisting of open sets of the form Dai
contains a finite subcollection

that also covers X because {Ds | s ∈ S} forms a basis of open sets for the Zariski
topology. Let F be the filter generated by all of the ai. One can assume that all
the ai are zero-divisors because Da = X holds for a non-zero-divisor a ∈ S. If F
does not contain non-zero-divisors, then F can be extended to an m-prime filter I
disjoint from S1. Then I must be a minimal m-prime filter by Proposition 1.7 (2).
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In fact, for any element s ∈ I there is t ∈ s⊥ with the non-zero-divisor s∧ t,
hence t /∈ I. Consequently s⊥ � I holds. Therefore we have shown that I ∈ X .
However, I /∈

⋃
Dai

holds because all the ai belong to I; i.e., {Dai
} is not an open

covering of X , a contradiction. Henceforth F must contain a non-zero-divisor d;
consequently, there are finitely many ai’s, say a1, · · · , an, such that d is contained
in the filter generated by a1, · · · , an. This shows

⋃n
i=1 Dai

= X , which completes
the verification that X is compact.

4 =⇒ 1. For an arbitrary element a ∈ S and I ∈ X the equality aa⊥ = 0 ∈ I
implies either a ∈ I or a /∈ I. The latter case implies I ∈ Da. The first case shows
that there is one b ∈ a⊥ with b /∈ I in view of Proposition 1.7(2), thus I ∈ Db.
Therefore {Da, Ds | s ∈ a⊥} is an open covering of X . By the compactness of
X there are finitely many s ∈ a⊥, and so, by taking their meet b ∈ a⊥, we have
Da∪Db = X . Consequently d = a∧b is a non-zero-divisor. By the hyper-normality
condition there are a1, b1 ∈ S such that a1 ∧ b1 = 1, a = da1, b = db1. On the other
hand, 0 = ab = d2a1b1 implies a1b1 = 0 because d is a non-zero-divisor. Therefore
a21 = a1, b

2
1 = b1 and b1S = a⊥ hold. This completes the proof of the theorem. �

From the proof of the implication 3 =⇒ 4 one obtains the following assertion.

Corollary 2.6. If F is a filter consisting of zero-divisors in a semi-hereditary B-
semigroup, then F is contained in a minimal m-prime filter. In particular, minimal
m-prime filters in semi-hereditary B-semigroups are maximal m-prime filters con-
sisting of zero-divisors. Therefore, a reduced B-semigroup is semi-hereditary if and
only if the set of minimal m-prime filters coincides with the set of maximal m-prime
filters of zero-divisors.

Remark 2.7. If a minimal m-prime filter F in a B-semigroup S is at the same time
a maximal m-prime filter, then for each a /∈ F there is obviously b ∈ F such that
a∧ b is a non-zero-divisor but b is, in general, not annihilated by a.

It is well-known (see [13]) that a ring has weak dimension at most 1 if and
only if its localization at each prime ideal is a valuation domain. The following
result provides the topological property of the minimal spectrum that characterizes
semi-hereditary rings among commutative rings with weak dimension at most 1.

Corollary 2.8. A commutative ring R has weak dimension at most 1 and its
minimal spectrum is compact if and only if R is semi-hereditary.

Proof. By Corollary 1.3 and Theorem 2.4 it is enough to prove sufficiency. Let S
be the divisibility of R. Then it is obvious that the minimal spectra of S and R are
canonically homeomorphic. Therefore, again by Theorem 2.4, S is a semi-hereditary
B-semigroup. This implies that the annihilator I⊥ of any finitely generated ideal
of R is also a finitely generated idempotent ideal. Consequently, I⊥ is generated
by an idempotent. In particular, every cyclic ideal of R is projective. Moreover,
any finitely generated ideal I is flat because its localization IP at any prime ideal
P is either a free module of rank 1 over a valuation domain RP or 0 in view of
the equality I⊥ = eR for some e2 = e ∈ R. Therefore R is semi-hereditary by
Proposition 2.7 [14]. �

Proposition 2.9. For every open and closed subset U in the minimal spectrum
X of a semi-hereditary B-semigroup there is precisely one idempotent e2 = e with
U = De.
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Proof. Since U is open, U =
⋃
Dsi for appropriate elements si. Therefore {X \

U, Dsi} is an open covering of X because U is closed. Hence the compactness of
X shows that there are finitely many si’s, say s1, · · · , sn, such that U =

⋃n
i=1 Dsi

which implies U = Ds if s = ∧n
i=1 si. By assumption there is an idempotent

e with s⊥ = e⊥. The inclusion Ds ⊆ De obviously holds because e ≤ s. If
I ∈ De ⊆ X , i.e., e /∈ I and s ∈ I, then for the orthogonal complement f2 = f
of e the element s∧ f ∈ I is a non-zero-divisor, a contradiction by Proposition 1.7
(2). Thus s /∈ I, which shows De ⊆ Ds. Hence De = Ds. If De = Dg holds
for some other idempotent g2 = g, then De = Dg = De∧ g = De∨g and hence
e = e∧ g = e ∨ g = g, which completes the proof. �

Theorem 2.10. The minimal spectrum X of a semi-hereditary B-semigroup S is
a Stone space, i.e., a totally disconnected compact Hausdorff space. If B is the
Boolean algebra of idempotents in S, then the map I ∈ X �→ I ∩B is a homeomor-
phism between X and the prime spectrum M of B.

Proof. Let X � I �= J ∈ X . Then there is an element a ∈ I \ J . By assumption
there is an idempotent e ∈ S such that a⊥ = e⊥. If f2 = f is the orthogonal
complement of e, then I ∈ Df and J ∈ De imply that X is Hausdorff and totally
disconnected. It is clear that I ∩B is a prime ideal of the Boolean algebra B; i.e.,
it is easy to check that the map I ∈ X �→ J = I ∩ B ∈ M is well-defined with
inverse the map which carries J ∈ M to

⋃
e∈J Se ∈ X . The last assertion then

follows immediately from the definitions of the topologies of X and M. �

3. The representation theorem

The main aim of this section is to prove the following theorem.

Theorem 3.1. A semigroup S is the divisibility theory of a semi-hereditary Bezout
ring if and only if it is a semi-hereditary B-semigroup.

Proof. The necessity that the divisibility theory of a semi-hereditary Bezout ring
is a semi-hereditary B-semigroup is obvious by Proposition 1.1. For the converse,
we will construct a semi-hereditary Bezout ring with an arbitrary pre-described
semi-hereditary B-semigroup S. For this aim, let L be an arbitrary field. It is
well-known (see Theorem 4.5.1 [6]) that the localisation A of the semigroup algebra
LS1 at the set

{
i=n∑

i=1

kisi | 0 �= ki ∈ L, si ∈ S1,
n
∧
i=1

si = 1, n ∈ N}

of primitive elements is a Bezout domain whose divisibility semigroup is just S1

extended with the new extra zero element 0. Moreover, S1 is identified as a sub-
semigroup of A under multiplication. Furthermore, let K be the quotient field of
A. For every e2 = e ∈ S let f2 = f ∈ S be its orthogonal complement. Then (fS)1
is order isomorphic to {e∧ t | t ∈ Sf = (e⊥)1 ∧ e}, which is a multiplicatively closed
subset of S1 ⊆ A. Let Ae be the localisation of A at this subset. Thus we have the
equality A1 = A, and moreover Ae is a subring of Ag for every idempotent g ∈ S
satisfying ge = g. We further claim
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Lemma 3.2. The divisibility semigroup of Ae is isomorphic to S•
e under the map

f ∧ s �→ s ∈ Se.

Proof. For any t ∈ (e⊥)1 = (Sf)1 = Sf and s ∈ Se in A, the invertibility of
t∧ e ∈ Ae and the equalities

(t∧ e)(f ∧ s) = (tf ∧ ts)∧(ef ∧ es) = (t∧ 0)∧(0∧ s) = t∧ s

imply that (t∧ s)Ae = (f ∧ s)Ae, from which the assertion follows. �

We are now in position to construct a semi-hereditary Bezout ring R whose
semigroup of divisibility is S. Let CK(X ) denote the ring of all continuous functions
from the minimal spectrum X of S into the field K endowed with the discrete
topology. If U is an open and closed subset of X , then a characteristic function χU

which is 1 on U and 0 on X \U is trivially an element of CK(X ). Since X is compact,
Hausdorff and totally disconnected, a function from X to K is continuous if it is a
step function associated to a partition of X as a finite disjoint union of open subsets,

i.e., a linear combination
i=n−1∑

i=0

aiχUi
of characteristic functions χUi

with respect

to some finite partition X =
⋃n−1

i=0 Ui, n ∈ N, of X into pairwise disjoint open (and
hence also closed) subsets Ui where the {ai ∈ K} are n distinct elements of K.
The partition is finite because the topology on K is discrete. On the other hand,
every open and closed subset U of X is of the form De for a unique idempotent
e2 = e ∈ S. Therefore, for the sake of simplicity, the characteristic function χDe

will be denoted as χe. Hence a function ϕ : X −→ K is continuous if and only if
there are finitely many pairwise orthogonal idempotents ei with ∧n−1

i=0 ei = 1 such

that ϕ is equal to the linear combination
i=n−1∑

i=0

aiχei . For the sake of convenience

we always set a0 = 0; i.e.,
⋃n−1

i=1 Dei = (ϕ)−1(K \ {0}) is the support of ϕ and De0

denotes the subset (ϕ)−1(0) ⊆ X . Note that the subset De0 can be the empty set.

We define R to be a subset of CK(X ) consisting of linear combinations
i=n−1∑

i=0

aiχei

satisfying ∧n−1
i=0 ei = 1 where ei are pairwise orthogonal idempotents and ai ∈ Aei

for every index i.

Lemma 3.3. R is a subring of CK(X ).

Proof. It is clear that R contains the identity element χX , its scalar multiples by
elements of A, and the zero element χ∅ of CKX . Therefore we have to show only
that R is closed under addition and multiplication; i.e., ϕ, θ ∈ R imply ϕ+θ, ϕθ ∈ R.

Write ϕ =
i=n−1∑

i=0

aiχei and θ =
i=m−1∑

j=0

bjχfj as linear combinations of characteristic

functions such that a0 = 0 = b0, ai ∈ Aei , bj ∈ Afj , and ei as well as fj are pairwise

orthogonal idempotents of S with ∧n−1
i=0 ei = 1 = ∧m−1

j=0 fj , respectively. Note that

some of the subsets De0 , Df0 can be empty. It is obvious that {Dei ∩ Dfj =
Dei∨fj = Deifj} is a partition of X induced by pairwise orthogonal idempotents
ei ∨ fj = eifj . It follows that R is closed under multiplication and addition by
noting that Aei , Afj are subrings of Aeifj , which completes the proof. �
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We are now in position to show that R is a semi-hereditary Bezout ring whose

semigroup of divisibility is S. Consider an arbitrary element ϕ =
i=n−1∑

i=0

aiχei ∈ R

where a0 = 0 , ai ∈ Aei , and ei are pairwise orthogonal idempotents of S with
∧n−1
i=0 ei = 1. Note that (ϕ)−1(0) = De0 can be empty. Let e = ∧n−1

i=1 ei. Since Aei

is a Bezout domain whose semigroup of divisibility is S•
ei , there is si ∈ Sei such

that aiAei = (fi ∧ si)Aei where fi is the orthogonal complement of ei in S. Let
s = ∧n−1

i=1 si. The equalities

(s∧ e0)χe =

i=n−1∑

i=1

(s∧ e0)χei , (s∧ e0)χeiAei = (fi ∧ si)Aei = aiAei

imply ϕR = (s∧ e0)χeR. Therefore to finish the proof of the theorem, it is enough
to see that R is a Bezout ring, i.e, to show that every ideal generated by two

elements ϕ, θ is principal. As in the proof of Lemma 3.3 write ϕ =
i=n−1∑

i=0

aiχei

and θ =
i=m−1∑

j=0

bjχfj as linear combinations of characteristic functions such that

a0 = 0 = b0, ai ∈ Aei , bj ∈ Afj , where ei and fj are sets of pairwise orthogonal

idempotents of S with ∧n−1
i=0 ei = 1 = ∧m−1

j=0 fj , respectively. Note that some of the

subsets De0 , Df0 can be empty. It is obvious that {Dei ∩Dfj = Dei∨fj = Deifj}
is a partition of X induced by pairwise orthogonal idempotents ei ∨ fj = eifj . In
each ring, the ideal Aeifj generated by ai and bj is principal. This implies that
ϕR+ θR is a principal ideal, and the proof of Theorem 3.1 is complete. �

By Proposition 1.3 the divisibility theory of semi-hereditary rings is described
in the following corollary.

Corollary 3.4. The divisibility theory of a semi-hereditary ring is a semi-hereditary
Bezout semigroup, and any semi-hereditary Bezout semigroup can be realized as the
divisibility theory of a semi-hereditary Bezout ring.
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