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Abstract

We propose an asymptotically distribution-free  transform of the sample
autocorrelations  of  residuals in  general parametric time series  models,
possibly  non-linear in variables. The residuals autocorrelation function is
the basic model checking tool in time series analysis, but it is useless
when its distribution is incorrectly approximated because the effects of
parameter estimation or of wunnoticed higher order serial dependence have not
been taken into account. The limiting distribution of residuals sample
autocorrelations  may  be  difficult to  derive, particularly  when the
underlying innovations are not independent. However, the transformation we
propose is easy to implement and the resulting transformed sample
autocorrelations are  asymptotically  distributed as independent  standard
normals, providing an wuseful and intuitive device for model checking by taking
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over the role of the standard sample autocorrelations. We also discuss in detail
alternatives to the classical Box-Pierce and Bartlett’s T}, — process tests, show-
ing that our transform entails no efficiency loss under Gaussianity. The finite
sample performance of the procedures is examined in the context of a Monte
Carlo experiment for the two goodness-of-fit tests discussed in the article. The
proposed methodology is applied to modeling the autocovariance structure of
the well known chemical process temperature reading data already used for the
illustration of other statistical procedures

Keywords: Residuals autocorrelation function; Asymptotically pivotal sta-
tistics; Nonlinear in variables models; Long memory; Higher order serial depen-

dence; Recursive residuals; Model checking; Local alternatives.
1. INTRODUCTION

The sample autocorrelation function of residuals is an essential tool for time se-
ries model checking. In fact, the main proposals for testing lack of autocorrelation
use statistics depending on the sample autocorrelation function; e.g. the parametric
pseudo Lagrange Multiplier (PLM) tests, the nonparametric Bartlett’s 7, — process
and U, — process based tests or Portmanteau-type tests, like the popular Box and
Pierce (1970) proposal. The sample autocorrelations of iid data are asymptotically
distributed as independent standard normals, but the 7id assumption is often of little
practical relevance for specification testing. Residuals sample autocorrelations, used
in model checking, are obviously no #id. Box and Pierce (1970) and Durbin (1970)
showed that sample autocorrelations of ARMA residuals are neither independent or
identically distributed, even when the underlying innovations are 7¢d. Other authors
have considered residuals of more general models with iid innovations; e.g. Li (1992)
and Hwang, Basawa and Reeves (1994). Even when the putative parametric specifi-
cation correctly represents the autocorrelation structure of the data, it will unlikely
be able to capture other higher order serial dependence features, e.g. conditional
volatility. This is why the innovations of a time series model are not expected to be

independent, though they are not autocorrelated when the specification is correct. The



sample autocorrelations of no independent raw data are usually neither independent or
identically distributed. See e.g. Hannan and Heyde (1972) and Romano and Thombs
(1996). Recently, Francq, Roy and Zakoian (2005) have derived the asymptotic dis-
tribution of sample autocorrelations of weak ARMA residuals, where innovations are
not independent. The residuals sample autocorrelations suitably scaled can be used
for testing lack of autocorrelation of the innovations. However, the scale depends on
the model and estimator considered, as well as on the higher order dependence of
innovations.

In this article, we propose an asymptotically distribution-free transform of the sam-
ple autocorrelations of residuals of general time series models, possibly nonlinear in
variables and parameters, which can be directly applied to model checking taking over
the role of the standard sample autocorrelations. In particular, we consider natural
alternatives to Box and Pierce (1970) and Bartlett’s T, — process type tests based on
these transforms.

The discussion is in terms of a strictly stationary time series process {X;},., , which

takes values in R*, and of a parametric model with residuals
cor = 0o (L) Up (Xy), t € Z, (1)

indexed by the vector of parameters § € © C R?, where © is a parameter space re-
stricting the functions ¢y and Uy, such that the process {eg},.; is strictly stationary
for each § € ©. The functions ¢, : C — C and Uy : R* — R are known and L
denotes the lag-operator. Typically {Up (X;)},., are residuals of a parametric model,
possibly nonlinear in variables, relating two subsets of variables in X}, i.e. a subvector
of explained variables Y; and a subvector of explanatory variables Z;. The leading
example is the linear model with Uy (X;) = Y; — (1, Z})' 6. However, non-linear in vari-
ables models appear naturally when variables are transformed to get more functional
flexibility, e.g. Box and Cox (1964).

The transfer function ¢, specifies the linear serial dependence behaviour of the

residuals. The identifiability restriction ¢, (0) = 1 is usually imposed. The most



popular model is the ARMA (py, p2) with

_ 92
Yo (Z) - En <Z>7

e C,

such that ®; and =, are the autoregressive and moving average polynomials with
coefficients ¢ and 7 of orders p; and p,, respectively. The function Uy is usually not
indexed by the parameters (4,7n), which are restricted in such a way that =, and
®; have no common roots, all lying outside the unit circle. Long memory models
are also of broad applicability, such as the ARFIMA(p;,d, ps) specification, where
d € (—1/2,1/2) is the long memory parameter. Our assumptions do not cover such a
case because ¢, is no longer summable, cf. Assumption 3 in the Appendix. However,
when X is a linear process, the results of Delgado, Hidalgo and Velasco (2005) can be
straightforwardly applied to justify the methods proposed in this paper. In Section 4,
we evaluate the finite sample performance of test statistics both for short and long
memory models.

The focus of our attention is the autocorrelation function of {eg},.; ,

. (j) _ e (J)

Yo (0)

where vy (j) = Cov (egt, €01—j) , j € Z, is the corresponding autocovariance function.

7j€Z’

The model (1) is correctly specified when the null hypothesis
Hy : py, (j) =0 for all j € Z\ {0} and some 6, € ©

is satisfied. Given observations {Xt}thl , Py 1s estimated by the sample autocorrelation

function

- Are )

pro(j) = ==, j € Z,

" 79 (0)
where

| I
Yro (7) = T > (cor — Eor) (c0—j — Eor) , J € Z,
t=j+1

. . . _ _ T . .
is the sample autocovariance function and ggp = 71 > 11 Ear is the residuals sample

mearn.

When {eg},c, are iid for some 6y € Oy, it is well known that {\/T,ng (j)}

m
j=1
are asymptotically independent distributed as standard normals. This is still the
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case under martingale difference restrictions on higher powers of {eg,},o,. However,
there are many other serial dependence circumstances where Hy holds while the sample
autocorrelations are not asymptotically iid. The asymptotic distribution of the sample
autocorrelations of raw data have been derived by Hannan and Heyde (1972) assuming
only that {€gy},c, is a MDS, while Romano and Thombs (1996) assume general strong
mixing conditions.

Define the vector containing the first m sample residuals autocorrelations, /’)(T";) =
(Pg (1), ..., prg(m))". Under Hp, but with {eg,},., exhibiting general higher order
serial dependence conditions,

(3 1™
I 4 (0.a). A - | S
76 (0) ij=1
see e.g. Romano and Thombs (1996), where

o

Ay~ = E E [5t,9€t+i,9€t+£,95t+6+j,9] yo Ly =10.,m. (2)

f=—00

The asymptotic distribution of the vector \/Tb(fzg can be approximated with the
assistance of bootstrap techniques, as Romano and Thombs (1996) suggest, or using
the asymptotic approximation, after suitable scaling by a consistent estimator of Ag:).
Such estimator requires to use smoothers, unless certain restrictions on the higher
serial dependence of {eg;},., are imposed. For instance, when {eg},o; is a MDS,
ago’j ) =E [5152905t+i905t+j90} , which can be estimated by its sample analog, without need
to specify any bandwidth or lag number depending on the sample size. Assuming also
that {eg,t},c, follows a Gaussian GARCH process, then aéio’j ) = 0, i # j, which makes
the estimation easier, see Lobato, Nankervis and Savin (2002).

Consider a positive definite matrix of statistics AU such that fl%()) = Ag:) +0, (1)

under Hj. Also, consider the vector of scaled autocorrelations,

~(m ~(m ~(m ! T(m)—1/2 ~(m
Pgre) = (Pgre) (1) a-~wP(Te) (m)) = A(Ta) / Pgﬂe)-

Thus, under H, and any of the previous regularity conditions, we obtain that 7°/2 ﬁ%g 4,

N, (0,1,) .



In practice, a preliminary estimator of 6 is needed. We assume that an estimator

~

Or is available, such that when {eg,},., are not autocorrelated,
Or = 00+ O, (T7V?), (3)

and

AR = A 40, (1) (4)

In Lemma 1 in the Appendix B we prove that this is the case for the class of estimates
proposed by Lobato, Nankervis and Savin (2002) under our regularity assumptions.
Next proposition provides an asymptotic expansion for /T ﬁ;”g)T, which implies that
under H, and fairly general regularity conditions \/Tf)(Tn;)T converges to a vector of
independent standard normals plus a stochastic drift, which depends on the unknown

parameters 6y, i.e. the specified model, and the particular estimation method. Define

m m)—1/2 .(m
€4 = A,

with €0 = (6, (1)',...,& m)") and ¢{™ = (¢, (1) ..., ¢y (m))', where (4 is de-

fined by

0 . . . .
wl)m (7) = (g (j) each j € Z

under Hj.
Proposition 1 Under Hy, (3), (4) and Assumptions 1-3 in the Appendiz,

P = ol + € (Br = 00) + 0, (T7112). (5)

T

The asymptotic distribution of ﬁﬁ(T";)T under H, can be derived from the asymp-
totic joint distribution of {\/T b%g, VT (@T — 60> }, as Li (1982) and Hwang, Ba-
sawa and Reeves (1994) have done for nonlinear models with #id innovations and by
Francq, Roy and Zakoian (2005) for weak ARMA residuals. Alternative models and
estimators demand different derivations, which may be cumbersome in heavy nonlinear
models, possibly exhibiting long-memory or Uy nonlinear in variables and parameters.

Rather than performing these derivations, we suggest to consider an asymptotically

distribution-free transform of the residuals sample autocorrelation by means of least
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squares fits, which are asymptotically distributed as independent standard normals.
The transformed sample autocorrelations are in fact the recursive residuals of the lin-
ear least squares projection of the sample autocorrelations against the model score
that defines the estimation drift. Based on these transformed autocorrelations we
propose Portmanteau and 7, — process type tests with pivotal asymptotic distribu-
tions. In particular, we show that the test based on the sum of squares of the first s
transformed autocorrelations is asymptotically equivalent to the LM test for AR(s)
and MA(s) alternatives in a Gaussian framework.

The rest of the article is organized as follows. In Section 2, we introduce the autocor-
relation transformation and discuss its asymptotic properties under general regularity
conditions. The transformation is applied, in Section 3, to lack of autocorrelation
testing of the underlying innovations. To this end, we introduce a class of test statis-
tics based on weighted sums of the squared transformed sample autocorrelations. The
asymptotic distribution of the tests in the direction of local alternatives, converging
to the null at the /7T rate is derived. The finite sample performance of these tests
is illustrated in Section 4 in the context of a Monte Carlo experiment. Section 5
presents an application to time series modeling of the well known Box and Jenkins
(1976) chemical process temperature readings data (series C). Regularity conditions

and mathematical proofs are contained in an Appendix, at the end of the article.

2. A DISTRIBUTION-FREE TRANSFORM OF THE SAMPLE
AUTOCORRELATION FUNCTION WITH ESTIMATED
PARAMETERS.

The transformation of the residuals autocorrelations proposed in this section re-
sembles the recursive least squares residuals introduced by Brown, Durbin and Evans
(1976) for CUSUM tests of parameter stability in the linear regression model with
fixed regressors. Notice that the asymptotic expansion (5) can be interpreted as an
(approximated) "linear regression" model with fixed regressors {&, (j)}’_,, where

j=v
{ ,b(Tgf)T (j)}j1 are the dependent variables and { Z)(T";()) ( j)} _ the errors. The idea is



to project {,F)(TTZ; (7) } _on {590 } . recursively so that the resulting residuals do

not depend on Op — 0y and, hence, are not affected by the parameter estimation effect.
Since the &, are not observable, we first discuss sample approximations to them. Tt

can be showed under general conditions that

|, ) = om0 2 0.5 0.

under Hy, since 4y, (j) — 0 for all j # 0. So, standardization by 4, (0) in ppg, has

no asymptotic effect on (y, in the expansion (5). Then, we can compute

2 (m) 2 1/2
&) = AT (6)

where &5’ = (E70 (1) &pg (m)') and &5 = (Cro (1) Cpa (m)' ) with

T
A 1

Cro(J) = 55— ot (€0t—; — Eor) + €ot—; (€0t — Eor)
‘ T4 (0) t§1 ! T7T9 tZ]J; ’

and &g, = (0/ 90") e¢¢. In some circumstances, as for linear models and scalar X;, where
eor = pp (L) Xy, it is straightforward to obtain closed, easy to compute, expressions
for ¢, without further restrictions under Hy. Under these circumstances it is simpler
to use (5 rather than &TéT to compute é(TTZ)T in (6).

Consider now the recursive least squares coefficients in the linear projection of

(Pro DY on {Er O

1

-1 .,
(Z €T9 £T9 )) Z éTQ(g)/Ibgfz) (£)7 jzlv"'am_Q7
l

l=j+1

and the corresponding scaled residuals,

. P () — €x0 () B

Pro - - - — ,j=1...,m—aq.
Ve ) (S (0700 (0) 0 )

!/
We prove that, under H,, ﬁ%; = <ﬁ§fg)T (1),... ,p(Tng; (m — q)) and p(T’gg are as-
ymptotically equivalent, and \/T/_)(TTZS is asymptotically distributed as a vector of in-

dependent standard normals, as we state in the following theorem.
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Theorem 1 Under Hy, m > q, Assumptions 1-4 in the Appendix and with Or satis-
fying (3) and (4),

P = i) + 0, (T71/2) (7)
and
_(m) d
\/TP(TQZ = Nin—q (0, In—q) - (8)

The theorem is proved reasoning as in the seminal paper by Brown, Durbin and
Evans (1976). First, applying (5), B%T = B%O + (9T - 6’0> + 0, (T2, which
justifies (7). Second, the asymptotic independence of the VT ﬁ%g components also
follows applying standard arguments when dealing with recursive residuals. Notice

also that ﬁ%g can be interpreted as the martingale part of the discrete parameter

empirical process ﬁ;’g;, in the lines of the martingale transformation proposed by
Khmaladze (1981) for the standard empirical process. This result forms a basis for
implementing asymptotic specification tests of different nature, as is discussed in next

section.

3. TESTING LACK OF AUTOCORRELATION WITH ESTIMATED
PARAMETERS

We consider the class of tests for Hy expressed as weighted sums of the squared
transformed autocorrelations. That is, the test statistics have the form v, (w),

with

3

Yrg (W) =T - w(5) oy ()

7=1

where w : N — R is a squared summable weight function. It follows from Theorem 1

that, under H,

m—q

Vg, (W) 5D w()) 22,

j=1
where, henceforth, {Z;},_ are iid standard normals.

The power of the different tests indexed by alternative w sequences can be discussed

in terms of local alternatives of the form

HlT:pgo(j):l\/jT)+¢TT<])forallj:O,l,...,



where we assume that @T —p 0o under Hyr and 7 and ¢ are such that p,, is a positive
semi-definite sequence for all T'. These local alternatives appear in a natural way by

representing the autocorrelation structure of {eg},., according to the linear process

gor = Pro (L) voy, (9)

where {vg;},., are uncorrelated with higher order dependence characterized by a, .3)

defined in (2) and

Py (2 Z

with 377, arg () < oo for all # and hrnT_,Oo are, (7) = 7 (7). The function $7y can
be either parametric or nonparametric. For instance, it can be given by an ARMA
model with parameters vanishing to zero at a rate 1/ VT as the sample size T increases.

In order to describe the asymptotic distribution of ﬁ(T"g)T under Hyr define first the
projected and standardized vector of autocorrelation drifts h{™ = (Bém) (1),..., B (m - q))l
where

hy™ () = hy™ (j) - (Zga <e>') Zf@ O (0, (10)

l=j+1 l=j+1

j=1,2,....,m—q and

zmj [A<m> 1/2] a0

=1

Theorem 2 Under Hir, m > q, Assumptions 1-4 in the Appendiz and with Or satis-
fying (3) and (4),

Py = Priy +0p (T717)
and

VTR Nowy (B )
4.1 Box-Pierce type tests

Consider the uniform weights w (j) = 1(j<s}, 1 < s <m — ¢, for each j € N, which

corresponds to the test statistic,



leading to a transformed version of the popular Box and Pierce (1975) test statistic

~

BTéT’ with
Bro (s) = TZbTe (7).
j=1

Box and Pierce (1975) showed that, when {egy},., are iid, and s is increasing with
T, s=o(T?), BTéT (s) ~ X{s_g- This test is unable to detect local alternatives
like Hyp, but it can detect local alternatives of this form converging to the null at
the rate /s / VT , see Hong (1996). When s remains fixed, BT@T (s) has a limiting
null distribution depending on the unknown parameter vector 6, and other unknown
features of the underlying data generating process.

On the other hand, the test statistic B(T%L; (s) is asymptotically X%s) distributed and
equivalent with increasing m to the Gaussian LM test statistic in the local parametric
directions Hi7 where @74 in (9) is an autoregressive or moving average polynomial of
order s and the innovations are iid, so that Ag:) = I,,. We state this result in the next
Proposition. Let X%n) (Z?:l )\f) denote a noncentered chi-squared random variable

with n degrees of freedom and noncentrality parameter > 1, \?; i.e. X%n) (3, A7) £

S (Zi+ )™

Proposition 2 Under the assumptions in Theorem 2, with Agon) = I,, for all m, the
test based on ng; (s) is asymptotically equivalent to the Gaussian LM test of lack of

autocorrelation up to order s, so that under Hyp with v (j) =0 for j > s,
d S
~(m (oo -\ 2
B0 4t (S 07
j=1
as m — oo, where fézo) () is defined as in (10) with hg:) () =7 (j) for all m.

Therefore, in the context of i¢d innovations, Box-Pierce tests based on BTéT (s) for
testing compound hypotheses have the same interpretation than the standard tests
based on BT@O (s) for testing the simple hypothesis of lack of autocorrelations of the
true innovations. Then, under Gaussianity, the tests BTéT (s) are optimal for testing
lack of serial correlation of residuals up to a finite order, without need to resort to

fully efficient maximum likelihood estimates (MLE) of 6y, but just using estimators
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satisfying (3). This also points out that the procedure applied for eliminating the
estimation effect in the sample autocorrelations ﬁ(T”;)T does not neglect any important
information asymptotically.

On the other hand, while the classical Box-Pierce test is also a LM test for simple

hypotheses of order s, notice that after parameter estimation and under H;r it satisfies

By (s) —s 1
M—WN(O,I) when =+ > — 0.

\/% s T

Therefore, this test is unable to detect nonparametric local alternatives in the class

Hir, cf. Hong (1996).
4.2 T,—process type tests

The sequence of weights w (j) = 1/52 leads to test statistics
m—q _(m) ; \2
=(m) Pro (J)
Try) =T )
=
which resembles the spectral representation of the classical T}, — process test statistic
based on the Cramér-von Mises criterion, i.e.
- Pro ()
> T6
Trg =T =5,
=
see e.g. Anderson (1993).
Assuming that {egy:},., are iid, so Aggn) = I, is known, and allowing m to diverge
to infinity with 7, but at a slower rate, both ng) and the unfeasible TTgo are asymp-
T
totically distributed as Y 22| Z7 / j* under Hy. The next result describes their limiting

distribution under Hi7.

Proposition 3 Under the assumptions of Theorem 2, with A((,;n) = 1I,, for all m, and

H1T7

as m — oo, where fg;") (7) is defined as in (10) with héT) () =7 (j) for all m and

. ) Zi4r(i 2
Tro, gz( J ~ (J)) _
= 7
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However, it is not possible to perform general power comparisons among T;%n) and
T

T To, because the drifts, apart from the alternative hypothesis, depend on both the

weighting function and the assumed model under Hy.
5. MONTE CARLO SIMULATIONS

In this section, we compare the percentage of rejections under Hy and H; of alter-
native tests based on residual sample autocorrelations. The comparison is made in

the context of ARFIMA designs with innovations
2 1/2
€t = Ut (1 + 0515901‘,71) )

where a; € {0,0.4,0.8}. We consider sample sizes T = 100 and 400 and 50,000
replications in each experiment. Parameters are estimated using Whittle’s likelihood
method, see e.g. Velasco and Robinson (2000). We consider three null models: AR(1)
with Cp, () = =095, MA(1) with (g, (j) =7}, and ARFIMA (0,d, 0) with (,, (j) =
— jfl_

The first purpose of the simulations consists in comparing the classical Box-Pierce
(B-P) test, éTé’T (s), and our alternative test based on By (s), which use critical
values from a chi squared distribution with s —¢q and s degrees of freedom, respectively.
Also, we compute the asymptotically pivotal T, — process test using the Cramer
von Mises criteria (CvM) proposed by Delgado, Hidalgo and Velasco (2005) which

(m , which is

is only valid when pgry, are asymptotically 7id, and its alternative, T
asymptotically pivotal after appropriate standardization, even when the 1nnovations
exhibit higher order serial dependence. We have computed T( usmg large values m,
m = 20 for T'= 100 and m = 40 when 7" = 400. Notice that due to the weights 1/52,
the test statistic is numerically not very sensitive to the choice of fairly large m’s.
Tables 1 to 3 offer the percentage of rejections under Hy. Tables 1 and 2 report
results when the innovations are iid («; = 0) and serially dependent according to an

ARCH process with a; = 0.8, respectively. In both cases, the estimator of Aégn)

uses information on its true structure. Thus, in Table 1, A%) = I,,, and in Table 2

7 1
A(Te —dmg{ (Ta)""’ gy }/ Yo, (0)? WlthaT =7 11 Ei0E7—j9- The effect
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of general estimation of Ag;”) is examined in Table 3, where we also compare our new
tests with Francq, Roy and Zakoian (2005) proposal, for which we use the same
unrestricted Aézn) estimates proposed by Lobato, Nankervis and Savin (2002).

We observe in Table 1, under ¢2d innovations, that the classical B-P test shows
size distortions when s is either too small or too large, but the size accuracy is fine
when s = T'/2. As expected, the Type I error of the classical B-P test is out of
control in Table 2, with ARCH innovations and Ag:) diagonal, but not equal to the
identity matrix. However, the new B-P test exhibits a remarkable size accuracy in
the two tables for all s considered. Obviously, it performs better in Table 1 where full
information on Aé?) is used and, hence, it is not estimated.

Interestingly, the CvM test of Delgado, Hidalgo and Velasco (2005) is outperformed
in Table 1 by the new alternative based on 7’ T(ZLT) As expected, the CvM test of DHV
has the Type I error uncontrolled in Table 2 with ARCH innovations.

Notice that Assumption 4 is not satisfied for the AR(1) and MA(1) models when
the parameters are set to zero. However, the performance of the new test statistics in
these cases is very good. In fact, the percentage of rejections of the new tests under
the null is very similar for all parameter values.

In Table 3 we examine the effect of using unrestricted estimators of Ag:) under
12d and ARCH innovations on the size accuracy of the new tests. As expected, the
simulated size is worse than in Tables 1 and 2 due to the unnecessary randomness
introduced. We also report in this table results for the Qs test proposed by Francq,
Roy and Zakoian (2005) for ARMA models, which is also a portmanteau test where
least squares residual sample autocorrelations are scaled by a consistent variance and
covariance matrix estimate derived from the joint distribution of the least squares
parameter estimator and the sample autocorrelations of the innovations. Notice that in
these simulations we use the same design as Francq, Roy and Zakoian (2005) (a; = 0.4)
and the same choices of s. The asymptotic variance and covariance matrix of residual
autocorrelations is singular when the parameter is set to zero in the MA(1) and AR(1)

specifications, see Francq, Roy and Zakoian (2005), Remark 2.
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TABLES 1, 2 & 3 ABOUT HERE

In Figures 1 and 2 we show graphically the effect of the choice of s in the B-P tests
for both types of innovations in an AR(1) model with 6o = 0.8, oy = {0.0,0.8} and
T = 100. For iid innovations (a; = 0) the simulations confirm that the size accuracy
of the test based on projected autocorrelations with A(TTZ)T = I, (B-P-new) is very
good for small and moderate values of s, while the proportion of rejections of the
classical B-P test increases monotonically with s. In the conditional heteroskedastic
situation (a; = 0.8), both standardizations exploiting the MDS restriction (B-P-new
MD and B-P-new diag, the last one imposing also diagonality of Aé’:)) perform in a
similar fashion, whereas no standardized statistics cannot account for the higher order

dependence in the data.

|[FIGURES 1 & 2 ABOUT HERE|

Table 4 reports the percentage of rejections under the alternative hypothesis for the

following specifications of the null and alternative models:
a) Hy: AR(1) vs Hy : ARMA(1,1).
b) Ho: MA(1) vs Hy : ARMA(1,1).
c) Hy: ARFIMA(0,d,0) vs Hy : ARFIMA(1,d,0).
d) Hy: AR(1) vs H; : ARFIMA(1,d,0).

Innovations are iid (Table 4) and ARCH (Table 5), and in the first case we impose
A(T?T = I,, and compare our tests to the classical B-P test, while in the second case
we leave fl;";; completely unrestricted and compare to the Q; test. It is confirmed
that the classical B-P test detects better the alternatives the smaller s is. There is a
clear trade off between size accuracy and power for the B-P and Q; tests. Our new
tests exhibit good power performance for all the s considered. This good performance

is due to the ability of the new tests of considering small s values with the Type I

error under control. The T
Toy

test reports better power than Delgado, Hidalgo and

Velasco (2005) test and seems well indicated for detecting long memory alternatives.
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| TABLES 4 & 5 ABOUT HERE]

6. A REAL DATA EXAMPLE

In this section we analyze the specification of the well known chemical process
temperature readings (series C) from Box and Jenkins (1976), see also Beran (1995),
using the transformed residuals autocorrelations proposed. Beran (1995) and Velasco
and Robinson (2000) estimate a fractional integration parameter d, rather than fitting
an ARIMA model with a unit root as Box and Jenkins suggested. We also work with
the increments of the series, but allow for fractional integration in some specifications,
all fitted using Whittle estimation. For checking the fit of every model we use the
;7;; (s),for s =1,2,3,5
and for the original Box and Pierce (1970) test, By,  (s), for s = 5,10, 20, 30, which

Box-Pierce based on transformed residuals autocorrelations, B

includes all the usual choices of the range of lags in similar applications given that
T = 226. We also report the Cramér-von Mises (CvM) test T, }?) based on transformed
residuals autocorrelations and the asymptotically distribution-free CvM test proposed
by Delgado, Hidalgo and Velasco (2005) based on a martingale transformation of the
T, — process. Both have similar asymptotic (pivotal) distributions, but the latter is
based on Brownian motion rather than a Brownian bridge. The value of m is fixed
to |T'/10| + g, the results not being very sensitive to this choice. We only report the
analysis with Ag:) = I,,, for easier comparison with non transformed autocorrelations.
We finally provide BIC values for the models considered and the estimate of d with
its standard error for ARFIM A models.

We report results for all models with up to two short memory (AR or MA) para-
meters, see Table 6. All models with only one short run parameter (apart from the

memory parameter d) are strongly rejected by the the CvM type tests and by the

Portmanteau ng; (s) test for all lags s = 1,...,5. However, the Box-Pierce test can
only reject the too simplistic pure fractional specification for the smallest s = 5, but
not for the customary s = 10,20. In order to test Box and Jenkins’ specification

of an exact difference, we fit ARIMA models with one and two parameters. Despite
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having favorable BIC values compared with long memory alternative specifications,
all ARIMA models are clearly rejected by tests based on transformed residuals auto-
correlations, but the usual Box-Pierce test only provides strong evidence against the

ARIMA(0,1,1) and (2,1,0) models.

| TABLE 6 ABOUT HERE |

We now consider the analysis of individual residuals autocorrelations for lags up
to 20. Recall that transformed autocorrelations can be compared with usual +2/v/T
confidence bands, as when working with raw data, but recall that these confidence
bands are inconsistent when parameters are estimated. In Figures 3 and 4, we have
plotted the autocorrelograms of residuals, both original and transformed ones, for
ARFIMA(1,d,0) and ARFIMA(0,d, 1) models, respectively. Again, these specifica-
tions were rejected clearly by tests based on transformed autocorrelations, ,B,E:;;, but
diagnosis based on the untransformed autocorrelations, pr; ., using an incorrect as-
ymptotic approximation, are unable to reject these specifications. In these plots we
can easily identify the source of these rejections, since the transformed autocorrela-
tions provide evidence on serial correlation of the underlying innovations from the
very first lag onwards, and can be compared to a uniform benchmark based on their

asymptotic iid standard normal distribution.

|[FIGURES 3 AND 4 ABOUT HERE]

APPENDIX A: PROOFS AND AUXILIARY RESULTS

In this Appendix we present the assumptions sufficient for the proofs of our results
and some auxiliary results that can be of independent interest. First we introduce
some notation. Given the model ep; = @, (L) Up (X¢) S0 €1 = g, We set

o= e = (0 (1) U0 (X0) + 5 () Up ()
where Uy (x) = (0/80) Uy () and ¢, () = (9/80) ¢, (2) , and
ot = %Em = <909 (L) Uy (X4) + Uy (X)) g (L) + @9 (L) Uy (X)" + g (L) Uy (Xt)> ;
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where Uy (z) = (02/0000") Uy (z) and @, (2) = (9%/0006") gpe( ). Similar definitions
apply for piig) = (9/00") py) and piy) (j) = (62/0600") pify) (5) -

Assumption 1 (X}, ¢,) is strictly stationary, €; is zero mean, E [54+26] < oo for

5/(249)

some & > 0 and (X}, ;)" is strong mizing with coefficients a; satisfying > o i1 O <

oo, where

a; =sup |[Pr(AB) — Pr(A) Pr (B)|
AB

and A and B wvary over events in the o fields generated by {(X;,et)', t < 0} and
{(X;75t),7 13 Z ]} :

Assumption 2 Uy () is twice differentiable in 0 for each x and |Uy ()| + HU9 (x) H +
HUQ (:U)H < U, (z), where B|U, (X,)[*** < oo for some § > 0.

Assumption 3 ¢, (z) is twice differentiable in 0,p,(0) = 1 and the coefficients in

the expansions

2)=Y wg;2, ¢ Zwajz and ¢ (2 Z Po,;7°
j=0

j=1

satisfy |wp ;| + Hgb(,’jH + ”@0,1'” < ¢;, uniformly for 0 € ©, with Z;io ¢; < oo.

Assumption 4 For some m > q,

Z €0 (7) &0, () >

j=m—q+1
Remark. This type of assumption must always be satisfied when using recursive
residuals in different contexts and it is more restrictive than the absence of multi-
collineality assumption when applying ordinary least squares. See e.g. Brown, Durbin
and Evans (1976), Khamaladze (1981) or Delgado, Hidalgo and Velasco (2005) in
different contexts. The assumption is not satisfied in some situations where the as-
ymptotic variance and covariance matrix of residuals sample autocorrelations is sin-
gular. It may happen, for instance, where fitting an AR(1) to a strong white noise, as
Franqg, Roy and Zakoian (2005) point out in their Remark 2. We have considered this

situation in our simulations, when in AR(1) and MA(1) models the true parameters
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are set to zero, not satisfying Assumption 4. However, BTéT (s) exhibits an excellent
level accuracy in small samples in all occasions for the two sample sizes considered.
The assumption could be relaxed by using generalized inverses when computing the
recursive residuals, as proposed by Tsigroshvili (1998) in the related problem of con-
structing chi-squared tests using innovation martingales in the classical goodness-of-fit
problem. Duchesne and Franqg (2008) suggested also to construct Portmanteau-tests
using generalized inverses of the asymptotic variance and covariance matrix of the
residuals sample autocorrelations. This extension to our case is beyond the scope of

this article.

Proof of Proposition 1. The statement follows from
P = Pl + ¢ (0 = 00) + 0, (T2 (11)
where ¢{™ = plimy_.. (0/06') pi7, and (4) because ﬁ%g = O, (T7'/?) under Hy or

Hyr. We assume without loss of generality that F [¢] = 1 to prove (11). Now write

ﬁ(T 9) P(T 9()) = pTQO <9T - 00) + Dy, where each element of the vector Dy is

Dr(j) = <9T - 90> () (éT - 90)

01 — QOH < H@T —QOH . Then for j =1,...,m,

and 07 ; are such that |

if? () = %@Te (7) Ao () %&TH (0)
00'"1° Y76 (0) A7 (0) 14 (0)

The mean correction in 454, (j) has no asymptotic effect, since Yp4, (j) = Yrg, (4) +

O, (T7Y), where v, (j) =T Zf:jﬂ Eoor—j, J € L, because gy = O, (T7/?) un

der Assumption 1. Next, using that Y, (j) = 7, (7) +0, (1) (in particular v, (0) =1

and 7y, (j) = 0 for j # 0 under Hy) and that -2

57710, (0) = Oy (1) under Assumptions 1-

3, as we now show, we conclude that the normalization of f);"g) has no asymptotic effect
T

under Hy, so that

0 . ) 0 )
59 Proo (J) = 597 % () +op(1).
Write now
B 1 <&
W’YTGO () = T Z €0tE0ot—j + Z 00t€00t—j = A1 (J) + A2 (j) -

t=j+1 —g+1
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Setting Co, () = ¢5) (7) + ¢ () where €Y (§) = limp_.oo E [Az; (§)], we wish to
show that Ar; (j) = Cg‘g (j)+o0,(1),i=1,2,j=1,2,.... We first show that

ElAry () = BlAr G = 75 D2 D2 Blettt =) elrr =),

t=1+j r=1+j

is 0 (1), where e (t,t — j)" = op1éa5t—j — E [Eoptfoot—;] and we omit dependence on g

in the notation. Then, for some n > 0 fixed with T, E || Az (j) — E[Apq ()] is

1

T2

+5Y > Bli-ietr—i)]

t=1+4j 14j<r<t—n—j

Ele(t,t—j)e(t,t—j)] +% Z Z Ele(t,t—j) e(r,r—j)]12)

t=1+j t—n—j<r<t

T
=M=
.

The first two terms of (12) are O (T~!) = o(1) since involve at most T + n elements
with bounded absolute expectation because by Assumptions 1-3 and Minkowski and

Holder inequalities,

Bl < Eligo (L) Us (X[ + B |0 (2) U (%)

(Zw) \) E|U. (X,) ! < o0. (13)

IN

Now write &g = 5§t n) +é (n+1 o0) Eg;S) — Zj’zT (gpe’jUg (thj) + Sbﬂ,jU@ (thj)> and
es(t,t—j) = 590t5§0’t_j. Then ej (¢,t — j) is mixing with mixing coefficients 5, <
Qgtj+n- The third term in (12) is then equal to

T T

lz Z o (tt—j) e(r,r—j)] (14)

Z Z n+1 —j)'ej(r,r—j)}.

t=14+j r<t—m—j

Using Assumptions 2 and 3, the first term in (14) is bounded in absolute value by

C 2 _
(Bl (= DI E e (rr = ) S3 Al 01 = o)

t=14j r<t—m—j

by Roussas and Ioannidies (1987) and Cauchy-Schwarz inequality.
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Using again Assumptions e, (¢t —j) e(r,r —j)] } can be made ar-
bitrarily small choosing n large enough since

o0

E Z {‘P%JU% (Xi—j) + @g,.;Usq (Xt—j)} gggte (1,7 — J) ( Z |}, |)
j=n+1 j=n+1
and
E Z {3060,]‘090 (Xt—j> + 9.090,jU6‘0 (Xt—j)} Coot|| = O ( Z ‘¢]|> )
j=n-+1

j=n+1
because of the same reasoning as for (13). Then we conclude that the second term in
(14) and the third term in (12) are o, (1) .

On the other hand ¢§ (j) is limr o E [Ars (j)] = E [Zggt2001—;] » which is differ-
ent from zero if ¢, (L) contains lags and/or if Uy (X;) contains lagged non strictly

exogenous explanatory variables. Then,

E Az (j) - E[Ara () 2=%ZZ B e(r—jir)].

and for some n > m fixed with T, this is

1 & . , 2 - o .
= ZE[e(t—],t)e(t—j,t)Hﬁ > Y Elet—jt)e(r—jnr)]
t=1+§ t=1+7 t—n<r<t
2 T
t=1+j r<t—n

The first two terms are O (T~!) since involve at most T +n elements with bounded ab-
solute expectation by Assumptions 1-3. Writing e (¢ — j,t) = eg (t — j, t)+e2, (t — J, 1),
the third term of (15) is equal to

T T T
2 ‘ 2 . .
_22 Z t_ja ) (T_jv _22 ZE n+1 7)I€(T_jar>]a
=1+j r<t— t=1+j r<t—n
(16)
so that e®™) (¢t — j,t) is mixing, with mixing coefficients 3, < Qk—max{jn—j}- The first
term in (16) is o (1) because it is bounded in absolute value by

T

C n . . 43 d 5/(246 _
= (Bl =G0 Blle@—jn)*) ™7 3 3 ol =01

t=1+4j 1+j<r<t—n—j
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by Roussas and loannidies (1987) and Assumption 1.
Using Assumption 3, !E e, (t—j.t) e(r—j,r)] } in (16) can be made arbitrarily

small choosing n > m large enough since by Minkowski inequality and Assumptions 1

and 3
o0 . / o0
E Z {Sbeo,jU@o (Xt*j) + 9090,er0 (Xt*j)} €Qot—5€ (7“ - ]77') =0 ( Z ‘¢y‘> )
j=n+1 Jj=n+1
and
E| Y {sbeo,ero (Xi—j) + ©g, ;Us0 (Xt—j)}€0ot—j =0 ( > |¢j|> 7
j=n+1 j=n+1

so that (16) is o (1) and we conclude that Ars (j) = C ' () + 0, (1).

Finally for j = 1,...,m we have that

T
p(T@»)« (j) = T Z {50*7:—]‘5'9*,5 + €g*t—j€0*t + Eo*1€0%1—5 T €e*t€,9*t_j} ;
=1+j
and we can show that p\m) (j) = O, (1), j = 1,...,m, since E[2.,] + E |[ég|* +

E er*t

< 00 using Assumptions 2, 3 and similar techniques. [J

Proof of Theorem 1. If the projection of b;";) (j) is calculated with the true &, (j),
T

so that we set

Pa, [0 (7) = p (4) = &, () 551 L),
with 557 0] = (001 €0 ('€, (0) S &0y (0'p(0), 5 = 1,..m — g, by

standard algebra using Assumption 4 and Proposition 1, up to o, (T -1/ 2) terms,

Poy [P | G) = 2l () + €0 () (9 = 0) — €9, G <§js% "9, (¢ >_

l=j+1

<3 6 0 {0 0+ 6, ) (0r - )}

l=j4+1

= by [P%g] ()

Then, when using ng (), p(Te) = P(Teg + 0, (T~/2) follows, because of (4) and
é-TéT (j) —p &, (J), which can be proved with the methods of Proposition 1 noting
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that replacing 6y by 7 in the definition of Ari(j) and Az (j) has no asymptotic
effect because of Assumptions 2, 3 and (3).

Finally, the CLT for /‘)%g follows from the CLT for [)(T";g under Assumptions 1, (4),

Hy, and from the fact that the projections ﬁ%g) are standardized by construction if

ﬁ(TTZg is already standardized, i.e Z)(T’Z()) has asymptotic variance AV ar (Tl/ 2 f)%&) = I,

as can be showed by immediate calculations. Thus AV ar (Tl/ 2;‘)%3 (4 )) is equal to

AVar (T2 (35, () ~ Era, ) s, )) = AVar (T (25 0) — &, 0) 55 [850] )
= 14+¢&,(J (Zfeo 590 ) fao(j)/a

l=j+1

while for 1 < j < k <m, ACov (Tl/zf)%g (1) ,Tl/Qp(T’Zg (k)) is given by

ACov (T2 (P50 () = &rg, () B%T) T2 () () = &g, () B, ))
= acov (T2 (333) () — &, () B5) [Bm] ) .7 (P () — &, (k )ﬁ(k)[ )
= ACov (TV25i55) () T2 3455, ()) — ACow (TV20f5) (5) T, (k) B, [Pii))
B, [5) Tlﬂpm (k)
o, [n] 20, (0) By [B5)] )

where these terms are, 0, 0 (because j < k), =&y, (j) (Zz 180, (€ ) o, (é)) - &o, (K)
and &g, (7) (S0 €ay (0 €0, () S Ean (0 €0, (0 (i €0, (0 Eay ()™ €y (B

-1
=&y, (J) (Zzn:j+1 &o, (0) &, (ﬁ)) &, (k)', respectively, and the asymptotic covari-

ance of the projections is 0. [

—ACov <T1/2§9 )3
+ACov (T1/2£9 )3

Proof of Theorem 2. It follows as Theorem 1 using for the CLT of f)(Tng()) Assump-
tion 1 under H;r, which only affects the drift of the limiting normal distribution,
by = (B (1), b (1)) Then the drift B of the asymptotic distribution
of ﬁ(T”;()) is equal to that of ﬁ(T”;()), given by H,7, after standardization by Aﬁ,’;”‘)*” % and

linear projection of hé’:). U
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Proof of Proposition 2. We do the proof in two steps. First we find a suitable
representation of the LM tests in terms of ppy (7). Then we show that this represen-
tation can be calculated as BTE)T (s) where s depends on the alternative against the
LM test is directed to.

Set the sequence of 1 X s row vectors ds (j) = (l{jzl}, ce 1{j:5}) forj=1,2,...,s
and ds (j) = 0, for j > s, where 0 denotes a conformable matrix of zeros. An LM test
statistic against MA(s) or AR(s) alternatives (not nested in the model specified by
Hy) has the form

LMy (s) = TSp (éT)/ A (éT) St <9T>
— TSy (éT)/ At (éT) Sr (%) ,
where 571 (0) = er;l ds (7) pre (7) = (f)Te (1), Prg (3))/ and Hj' (0) = {A_l (9) }11’
with St (0) and Ar (0) = Z 100 (7) 09 (5) for 6 (j) = (ds (§), Cp(j)) being first or-
der approximations to the corresponding score and Hessian of the objective function
Qr(0) = Zle g2, for estimation of the complete model, cf. Theorem 1 in Hosking
(1980). {A},, and S, denote the corresponding blocks of A and S accordingly to the
definition of 0y, while O is any restricted estimate of 6, that asymptotically behaves

as the MLE, i.e. admits this stochastic expansion under H;r,
T'? <éT — 00) = —T1/2AT,22 (09) " Stz (0o) + 0, (1), (17)

where Az (0) = Y7 ¢y (7)'Co (j) and Sz (0) = 3771 ¢4 () pry (j) and Assump-
tion 4 guarantees now that limr_,. A (6) > 0.
Next, we first define the class of statistics
Uy (W) =T Y w (i) pre (3) (Zw () w ) Zw "o (J
j=1 j=1
for any sequence of row vectors w (j), and the residuals of the linear projection of

ds (j) on X7, m > q, where X¥ = (¢, (), ..., ¢ k))', k> j,

d7y) (j) = d ( (Z Co (K >> > ¢y (k) d

k=1
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Then it is easy to generalize (5) in Proposition 1 and Theorem 1 exploiting the or-

thogonality of cigfg) (7) and (y (j) and show that under Hy7 and Assumptions 1-3,

gT-D <d( )) _ ‘I’ng,e_ol) (J(T—1)> +0, (1) = LMy (s) + 0, (1)

T,01 8,07 5,00
for any \/T-consistent estimator Or of 90, while the second equality follows because of
(17) and noting that H} ()™ = 21— d\, (j)'czg;*” () = I, — X5 (XyX3) X3 =
L= (G (1) ¢ <>)(2k1<9<><9<>) (Co 1) o1 Go ().

Second. We now show that the Box-Pierce statistic B(T”g; (s) provides an alternative

way of computing \II(T%) (cZS?) for any # and m > s + ¢ under Assumption 4, i.e.

TZ,O = gpe)<dsz)>, s=1,...,m—q. (18)

For that we note that 7, /‘)gf;) (j)? = S — gtm
al. (1975), where

s using equation (5) in Brown et

m (m 0, O 0 o <m \—1 . (m
Sr(n—)s = P(T,e)l - (Xs—file-i-l) (0 Xs-&il) P(T,e)
0 I, X7,
is the sum of least squares residuals in the linear projection of {py4 (j )};n:s Loon X

and f)(T, P(TW;) = (ﬁT,e (1), Prg (m))/ since A(S;n) = In.
Thus, it suffices to show that \Il%r;) (dg”g)) =T (S&m) — 5im ) . To this end, write

m—s

exploiting the definition of ds (j)

ol (8) = T,

s

where GU™ = PV My pem) - with v — (ds (1)',...,ds(m)") = (I, 0),
H™ = (I, — X3 (XXm) ' X¢) 1 and P = I, — X7 (X7X7) "' X™_ Then we can
use the facts that H{™ = [,4+X3 (X7, X7 ) 7' X3 and that XX = X9X54+X7 X
to show that (18) follows after standard algebraic manipulations.

In particular we show that GU™ is equal to the difference in the weight matrices of

S and §Om

msa"

— X (XX X 4 (0 X)) (X X )T (0 X)) (19)
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For that, and using that PV =y — xm (XmXm) "' X# | note that GU™ is

equal to the first matrix in (19) plus

(XY 0) (X72X5) (XY 0) = X7 (XKy) (XY 0)

X () XX (Y, XE) T (XY 0)

= (37 0)' (XX XY — (XY 0) (XU, X0) ™ XK (epxey) X
X (X)X (X)X

m miINem\ — CAVE mi m \~1<rsrws m m \—1 s
+X1 (Xl /Xl ) ' XIIXI (XS—OIIXS—H) XIIXI (XS—OIIXS—H) (Xll 0)

and write this as Z;:l G, say. Next, using X{'X] = X{VX7" — X7V X7 |, we have that
Z?Zl B, is equal to
ms 1\’ m xm \ L s
- (0 Xsll) (Xs+/1X5+1) (Xll O) ’ (20)

while 377, B; is —X" (X{Xf") " X{” plus
S ™m m -1 m m m m -1 m
— (XY 0) (XTYXT) T XP + X (X, X)X (21)

Then it is easy to check after straightforward calculation that (20) plus (21) is equal
to (0 X;ﬂl)’ (X;ﬂlXﬁl)fl (0 X™,), concluding the proof of (18) in the light of (19).
Then the proof of the Proposition is completed letting m to increase with 7" [
Proof of Proposition 3. We set hé?) (j) = r(j) for all m, and then f(g?) (j) =
ﬁé’:) (7) . Next, we note that for m fixed with T, T;g;) KR Z;”Zl (Zj + fgon) (j))/j2 a
T — oo by Theorem 2. Finally, using Theorem 3.2 in Billingsley (1999), we only need

to show that
H}Ll_rgo liITanip Pr (‘T;::T) — T;%OT)‘ > 6) =0

for any € > 0, but this follows by the proof of Proposition 1 and Markov’s inequality. []
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APPENDIX B: COVARIANCE MATRIX ESTIMATES

We consider Lobato, Nankervis and Savin (2002)’s version of Newey and West (1987)

estimate,
A5 = 0+ Tk (7) {47 00 o <j>'},
(m) (m)!

where wg,” = (we.1t, - -, Wome) and we r = Egr€01—k, g(g ™ (=T 14 wet wet i
¢ is the bandwidth parameter and k is the kernel or lag window, for which we assume

the following.

Assumption 5 The kernel k belongs K where K is the class of functions K =
{k:R — [—1,1]} that is symmetric around zero, continuous at zero at all but a finite

number of points, and satisfies
k(O)—l,/ |k (x) |[dz < oo, / €)|dé < oo
where 1 (& f k(x) e®*dx.
Then we obtain the following result, which is valid under both Hy and Hir.
Lemma 1 Under Assumptions 1-8 and 5, (3) and 1/¢ + ¢/TY/? — 0,

AT = A 40, (1)

Proof of Lemma 1. By Lemma 1 of Lobato, Nankervis and Savin (2002), see also
Theorem 2.1 in Davidson and De Jong (2000), it follows that A(T";()) = Aé?) + 0, (1)
by Assumptions 1 and 5. Now we provide the proof of A(Tn;)T = A(T"ég + 0, (1). The
basic argument as in Newey and West (2002, Lemma A.3) is to bound uniformly the
expected value of the derivatives of A%). For our case is enough to consider the first

derivative of each element (r,s) of A(T?, so we can show for any 0* so that 8* —, 6y,

B | 555 ) ( )| 2| gasn|  =ow.

0=0* 0=0*
because E H (0/00) gars H < oo uniformly in # and j under Assumptions 1-3,
cf. equation (13). Then it follows that H (0/00) A% (r,s H = O, () and that
ATéT = A((,;n =0, ((T7'?) + 0, (1) = 0, (1) using (3), and the results follows. [J
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T, — process test discussed in Section 4.2. Bri. (s) and B
autocorrelations, respectively.
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Table 2. Empirical size of CvM and Portmanteau tests at 5% of significance. ARCH Innovations: Diagonal A7.
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Table 3. Empirical size of Portmanteau tests at 5% of significance. Ar no restricted.
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Table 4. Empirical power of CvM and Portmanteau tests at 5% of significance. IID

Innovations: AT = 1I,. T = 100.
CvM T By, (s) By, (s)
5: ] | 1 2 3 515 10 15 20
HO : AR(l) H1 ARMA(l,l), 510 =0.
"o
-0.8]1 95.5 98.3 1924 94.8 93.6 84.3|87.1 71.4 62.7 58.2
-0.5] 384 65.3 52.5 43.9 36.1 28.3/29.3 23.6 21.9 21.4
02149 76 |79 66 59 53|50 57 62 6.9
0.5 | 37.4 65.2 |51.0 45.6 37.7 29.5|30.8 25.1 22.8 22.2
0.8 | 83.4 95.0 191.3 95.2 93.6 84.6|88.0 71.7 63.1 58.3
Hy: MA(1). H;:ARMA(1,1) n,, = 0.
910
-0.81 99.7 99.7 |98.7 99.4 98.7 97.3/99.5 98.9 98.4 97.9
-0.5] 49.3 49.5 |47.1 48.9 42.3 35.6|36.7 30.1 27.3 26.5
0.2 | 4.6 95 |51 45 42 40|38 46 53 6.0
0.5 | 43.9 60.9 |48.1 44.9 38.7 31.8|33.7 27.9 25.4 24.9
0.8 199.0 99.8 199.2 99.6 99.4 98.9/99.1 98.2 97.2 96.5
010 |
do= 0.0
02| 37 178 |19.7 11.5 83 73193 93 9.5 10.0
05| 7.5 425 |45.0 31.1 21.9 17.8(21.3 19.4 18.1 18.0
0.8 ] 29 23.6|25.5 18.2 12.1 9.9 |11.3 12.9 12.7 13.1
do=10.2
0.2 | 3.7 17.7|19.7 11.5 84 73|93 93 94 10.0
05| 74 42.6 |45.0 31.3 21.9 17.8|21.4 19.5 18.1 18.1
0.8 | 2.7 27.8|28.8 23.0 17.1 12.9(/13.8 159 154 15.5
do |
010= 0.0
0.2 | 8.6 99 |10.1 9.1 87 79|72 74 177 T8
04 | 17.8 26.1 259 22.7 20.2 174|149 154 14.2 13.5
(510: 05
0.2 | 2.1 54 | 57 51 48 45|41 49 55 6.2
04| 18 115|121 92 79 69|67 70 7.2 7.7

Note: Test statistics are as in Table 1.
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Table 5. Empirical power of CvM and Portmanteau tests at 5% of significance.

ARCH Innovations (c; = 0.5). Ay no restricted. T = 100.

7(m) B .

‘ TTgT | By, (s) ‘ Qs
s:] |1 2 3 5]2 3 5 12

HO : AR(l) H1 : ARMA(l,l), (510 =0.
Mo | |
-0.8] 88.1 |84.5 83.4 76.1 64.0/94.3 91.0 84.0 62.5
-0.5] 40.8 |37.8 41.4 36.3 32.1|51.6 43.3 30.6 24.4
02| 88 |65 10.2 115 11.3|/104 81 7.7 7.9
0.5 | 58.9 {41.0 42.9 38.6 31.6|53.6 44.4 33.1 22.6
0.8 193.9 (822 83.0 76.4 64.5|94.9 92.0 85.5 63.7
do [ |

d10= 0.0
0.1 ] 58 |45 83 11.2 10.116.9 6.8 6.5 538
0.2 69 |52 10.0 123 12.7| 80 100 89 7.8
03|98 |74 119 154 17.0|11.3 13.2 12.9 12.0
0.4 ]10.6 |88 11.5 14.3 18.4|13.5 16.3 16.6 154
010= 0.5

0163 |53 66 82 85|54 54 51 49
02|64 |55 65 7.7 83|55 58 48 5.0
03] 68 |66 65 81 91|56 60 51 54
04|85 |77 97 92 42|86 72 61 6.7

Note: Test statistics are as in Table 3. The general estimation approach for Ap is imposed.
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Table 6. Chemical data, T" = 226. Goodness-of-fit analysis for Chemical Process

BIC d
(s.e.)

CvM T(in)

Temperature Readings based on fractionally integrated models.

n(m)
BTéT (s)

BTéT (s)

2 3 )

20

30

Hy : ARFIMA(p, d, q)

3.7949 .871 4.53"* 2.14™**

(.052)

3.7176 1.076 1.37* .73**
: 31
97
A1
.03

(.065

3.7101 1.227
(.075)

3.7120 1.249
(.159)

3.7054 1.313
(.126)

3.7133 1.326
(.144)

20.87" 20.89™* 21.69™** 23.44***
6.88** 6.92** 8.32™ 9.71*
1.54 2.14 3.57
8.34™ 8.83" 9.32%
1.83 2.00 2.08
3.48 3.69 3.88

12.28
4.71
9.71
2.96
4.51

23.58™** 27.22*** 29.03** 30.61

13.41
5.81
10.76
4.33
5.70

Hy: ARIMA(p, 1, q)

3.7015
3.7236
3.7162
3.7104
3.7243

0.31
1.21*
1.97
1.65"* 0.61**
1.54*

3.53  8.44™ 12.43*
8.09™ 11.15* 14.70**
6.79"** 12.32*** 14.93"** 17.60"**
7.54™  9.10™ 10.70*
9.277* 11.62"** 14.77**

15.01"** 18.51**

16.13
18.34
20.34
13.45
17.06

17.45
20.03
21.80
14.86
18.48

Note: *,** *** denote significant values at 10%, 5% and 1% respectively. Standard

errors of d estimates are in parenthesis. m = 22+ number of estimated parameters.
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Empirical Size of 5% tests. Ho:AR(1), delta=0.8, T=100
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Figure 1. Empirical size of 5% tests. Hy : AR(1), §o = 0.8, T' = 100, iid innovations.

Empirical Size of 5% tests. Ho:AR(1), delta=0.8, T=100, ARCH(1)
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Figure 2. Empirical size of 5% tests. Hy : AR(1), do = 0.8, "= 100, ARCH (1)

innovations.
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Figure 3 Residual ACF of ARFIMA(1,d, 0) residuals for Chemical Series C data,
T = 226. Confidence bands are plotted at 42/+/T.
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Figure 4. Residual ACF of ARFIMA(0, d, 1) residuals for Chemical Series C data,
T = 226. Confidence bands are plotted at +2/v/T.
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