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Abstract

The quality of the solutions obtained by numerical methods in shallow-water

equations is strongly dependent on the discretization used. This is the greatest

difficulty in shallow-water simulations. In this work we show that only a coupled

discretization of the whole system of equations and a careful definition of the flux

limiter function in second order TVD schemes are necessary in order to preserve

uniform solute profiles in situations of 1D unsteady subcritical flow. An ideal dam-

break with analytical solution and two practical applications on river flow and furrow

irrigation are presented.

Keywords: One dimensional flow, advection, dispersion, coupled discretization,

upwind schemes, conservative formulation, shallow water, river flow, furrow irriga-

tion.

1 Introduction

A one-dimensional shallow-water model including solute transport, both forming a

coupled or a decoupled system of equations, can be assumed to govern longitudinal mixing

processes. To obtain an accurate solution of the advective part of the transport process,

an option is to use Eulerian schemes of the appropriate order for the separate system of

equations [9, 14]. Furthermore, Eulerian schemes can also be applied to the coupled set of

equations [13, 3]. It is necessary as a first requirement to evaluate to what extent numerical

schemes are able to preserve uniform initial solute profiles in irregular geometries or

unsteady flow conditions. As a second goal, a suitable conservative scheme must be

able to ensure bounded concentration values. It is not a trivial task since the solute
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concentration is not one of the conserved variables in our equations system. Two upwind

finite volume techniques are presented and a few options considered for their numerical

resolution.

The ideal dambreak unsteady flow with uniform solute concentration is used to eval-

uate the ability of the methods to preserve good properties in the solute distributions.

Two practical applications of solute transport and unsteady flow on pollutant spill in a

river and on furrow irrigation are finally presented.

2 The equations

The one-dimensional system formed by the cross sectional averaged liquid mass conser-

vation, momentum balance in main stream direction and solute transport can be expressed

in conservation form as:
∂U

∂t
+

∂Fc

∂x
+

∂D

∂x
= Sc, (1)

where U is the vector of conserved variables, Fc the flux vector, Sc the source term vector,

and D stands for diffusion:

U =











A

Q

As











, Fc =











Q

gI1 + βQ2

A

Qs











, Sc =











0

g[I2 + A(S0 − Sf)]

0











, D =











0

0

−KA ∂s
∂x











.

(2)

with A the wetted cross section, Q the discharge, s the cross sectional average solute con-

centration, g the gravity constant, S0 the longitudinal bottom slope, Sf the longitudinal

friction slope, K the diffusion coefficient, I1 and I2 represent pressure forces:

I1 =
∫ h

0
(h − z)b dz, I2 =

∫ h

0
(h − z)

∂b

∂x
dz, (3)

with h the water depth, b the cross section width, and β a coefficient resulting from the

cross sectional averaging of the velocity:

β =
A

Q2

∫

A
v2

x dA, (4)

with vx the longitudinal component of the velocity at any point of the cross section.

Different models of β can be seen in [4]. The friction slope is widely modelled by means

of the Gauckler-Manning law [6, 12]:

Sf =
n2Q|Q|P

4
3

A
10
3

, (5)

with P the cross sectional wetted perimeter. The diffusion coefficient contains all the

information related to molecular or viscous diffusion, turbulent diffusion and dispersion
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derived from the averaging process. In this paper, the model proposed by Rutherford [16]

will be used:

K = 10
√

gPA|Sf |. (6)

The system of equations can be expressed in non-conservative form taking into account:

dFc(x,U)

dx
=

∂Fc

∂x
+ J

∂U

∂x
, (7)

with J the flux Jacobian:

J =
∂Fc

∂U
=











0 1 0

c2 − βu2 2βu 0

−us s u











, (8)

where u = Q/A is the cross sectional average velocity, c =
√

gA/B is the velocity of the

infinitesimal waves and B is the cross section top width. Inserting in (1):

∂U

∂t
+ J

∂U

∂x
+

∂D

∂x
= Snc, (9)

with Snc the non-conservative source term:

Snc = Sc −
∂Fc

∂x
=











0

c2 ∂A
∂x

− Au2 ∂β
∂x

− gA
(

∂zs

∂x
+ Sf

)

0











, (10)

where zs is the water surface level.

The Jacobian matrix can be made diagonal:

J = PΛP−1, P =











1 1 0

λ1 λ2 0

s s 1











, Λ =











λ1 0 0

0 λ2 0

0 0 λ3











, (11)

with Λ the eigenvalues diagonal matrix, P the diagonalizer matrix and λi the Jacobian

eigenvalues corresponding to the characteristic propagation celerities:

λ1 = βu +
√

c2 + (β2 − β)u2, λ2 = βu −
√

c2 + (β2 − β)u2, λ3 = u. (12)

The eigenvalues are related to the flow regime:

• βu2 > c2 ⇒ Supercritical flow.

• βu2 < c2 ⇒ Subcritical flow.

By defining the differential characteristic variables dW as:

dW = P−1 dU, (13)

and left-multiplying the non-conservative equation (9) by P−1 the characteristic differen-

tial equations are obtained:

∂W

∂t
+ Λ

∂W

∂x
+ P−1∂D

∂x
= P−1Snc. (14)
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3 Separate discretization of the solute transport equation

The simplest and most common form to solve the system of equations (2) is to dis-

cretize the mass and momentum flow equations separately, in each time step, from the

solute transport equation. Letting aside the method applied to the flow equations, let us

consider the conservative form of the transport equation:

∂U

∂t
+

∂F

∂x
= 0, (15)

being U = As the conserved variable and F = uAs − KA ∂s
∂x

the flux. This flux can be

decomposed into a flux T due to transport and another flux D due to diffusion. In this

case:

F = T + D, T = uAs, D = −KA
∂s

∂x
, (16)

and we shall next concentrate on the description and discussion of different numerical

methods suitable for the discretization of this equation alone.

3.1 First order upwind scheme with implicit diffusion

Upwind schemes are based on a spatial discretization according to the sign of the char-

acteristic celerities of propagation in the system. Hence, spatial derivatives are evaluated

at every point using a computational cell larger than the correct region of influence of that

point. Combining the first order explicit upwind scheme applied to the advection and the

centred implicit scheme to solve the diffusion, both in conservative form, the following

scheme is obtained:

∆Un
i = −

∆t

δx

[

(

δT+
)n

i−(1/2)
+
(

δT−
)n

i+(1/2)
+ Dn+θ

i+(1/2) − Dn+θ
i−(1/2)

]

, (17)

with δT+ and δT− associated to propagation velocities positive and negative respectively:

u± =
1

2
(u ± |u|), δT± =

u±

u
δT, (18)

where the notation fn+θ = θfn+1 + (1− θ)fn has been used. This scheme is TVD for [3]:

0 ≤ θ ≤ 1, ∆t ≤
δx2

|u|δx + (1 − θ)2K
. (19)

3.2 Second order in space and time TVD scheme with implicit diffusion

By combining the Sweby second order in space and time TVD explicit scheme [18]

applied to the advection and the centred implicit scheme to solve the diffusion, both

in conservative form, the following second order in space TVD semi-implicit scheme is

obtained:

∆Un
i = −

∆t

δx

{

(

δT+
)n

i−(1/2)
+
(

δT−
)n

i+(1/2)
+ Dn+θ

i+(1/2) − Dn+θ
i−(1/2) +

1

2

[

(

Ψ+δE+
)n

i−(1/2)
−
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−
(

Ψ+δE+
)n

i−(3/2)
+
(

Ψ−δE−
)n

i+(1/2)
−
(

Ψ−δE−
)n

i+(3/2)

]}

, (20)

with:

δE± = (1 ∓ σ)δT±, σ = u
∆t

δx
, σ± =

1

2
(σ ± |σ|). (21)

It is worth signalling that, although this scheme is named second order in space and time,

this is not strictly true since it is not second order in time for the diffusion term.

The dependence of the flux limiter functions is defined as:

Ψ+
i+(1/2) = Ψ





(δE+)
n
i+(3/2)

(δE+)n
i+(1/2)



 , Ψ−

i+(1/2) = Ψ





(δE−)
n
i−(1/2)

(δE−)n
i+(1/2)



 , (22)

so that:

• Ψ(r) = 1: Warming-Beam second order upwind scheme [19].

• Ψ(r) = r: Lax-Wendroff second order centred scheme [10].

Infinite second order schemes can be built for intermediate values between Ψ(r) = 1 and

Ψ(r) = r. Applying the TVD conditions, the flux limiter will be a positive function so

that [8]

Ψ(r) = 0, ∀r < 0; Ψ(r) ≤ 2r, ∀r > 0; Ψ(r) ≤ 2, ∀r (23)

leading to the following stability conditions [8]:

0 ≤ θ ≤ 1, ∆t ≤
δx2

|u|δx + (1 − θ)2K
. (24)

Many particular flux limiter functions are defined in previous works [15, 1, 11]. We use

the extreme value:

• superbee [15]: Ψ(r) = max {0, min(1, 2r), min(2, r)}

4 Coupled discretization of the system

In the rest of this paper, our interest will be focused in the analysis of the discretization

of the coupled system of equations using the first order upwind and the second order TVD

schemes. Despite the apparently unnecessary extra complexity of this approach, it will

prove the only way to improve the quality of the numerical solution in many cases, as

previously reported [13, 3].

4.1 First order upwind scheme with implicit diffusion

The following decomposition matrices are defined:

Φ± =











φ±

1 0 0

0 φ±

2 0

0 0 φ±

3











, (25)
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and, at the same time, the upwind matrices associated to the propagation directions:

φ±

i =
1

2
(1 ± sign(λi)), Ω± = PΦ±P−1, G± = Ω±G, Gn

i+(1/2) =

(

Sc −
∂Fc

∂x

)

i+(1/2)

.

(26)

In order to deal with transcritical problems of the type subcritical to supercritical flow,

the introduction of an artificial viscosity like the one proposed by Harten-Hyman [7] is

necessary. Then, the first order upwind scheme with implicit diffusion is defined as:

∆Un
i = ∆t





(

G+ − ν
δU

δx

)n

i−(1/2)

+

(

G− + ν
δU

δx

)n

i+(1/2)

−
1

δx

(

Dn+θ
i+(1/2) −Dn+θ

i−(1/2)

)



 ,

(27)

with ν an artificial viscosity coefficient defined as [2]:

νn
i+(1/2) = max

k







1
4
[δ(λk) − 2|λk|]

n
i+(1/2) , if (λk)

n
i < 0 and (λk)

n
i+1 > 0

0, otherwise
(28)

Note that, for supercritical flow, Ω+ = 1, Ω− = 0 and this discretization is identical

to (17). The same is not true for subcritical flow. We shall postulate that the TVD

condition for this combined scheme is governed by the most restrictive among the different

eigenvalues, that is:

0 ≤ θ ≤ 1, ∆t ≤
δx

β|u|+
√

(β2 − β)u2 + c2
, ∆t ≤

δx2

|u|δx + (1 − θ)2K
. (29)

4.2 Second order in space and time TVD scheme with implicit diffusion

The simplest form to extend the described scalar second order in space and time TVD

scheme (20) to the coupled system of equations is:

∆Un
i = ∆t







(

G+ − ν
δU

δx

)n

i−(1/2)

+

(

G− + ν
δU

δx

)n

i+(1/2)

−
1

δx

(

Dn+θ
i+(1/2) − Dn+θ

i−(1/2)

)

+

+
1

2

[

(

Ψ+E+
)n

i−(1/2)
−
(

Ψ+E+
)n

i−(3/2)
+
(

Ψ−E−
)n

i+(1/2)
−
(

Ψ−E−
)n

i+(3/2)

]}

, (30)

with the second order vectors:

E± =
(

1 ∓ J
∆t

δx

)

G±. (31)

The flux limiting matrices are defined as:

Ψ±

i+(1/2) =

















Ψ
(

(E±)1
i+(1/2)±1

(E±)1
i+(1/2)

)

0 0

0 Ψ
(

(E±)2
i+(1/2)±1

(E±)2
i+(1/2)

)

0

0 0 Ψ
(

(E±)3
i+(1/2)±1

(E±)3
i+(1/2)

)

















, (32)
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with (E±)i the i component of vector E±. This new form of defining the flux limiting

matrices, based on the components of the second order vector, will be called vectorial

limiting discretization.

Another alternative is to define the second order vectors as:

L± =
(

1 ∓Λ±
∆t

δx

)

P−1G± (33)

EqxtTVDSecChar Then, the second order in space and time TVD scheme is written as:

∆Un
i = ∆t







(

G+ − ν
δU

δx

)n

i−(1/2)

+

(

G− + ν
δU

δx

)n

i+(1/2)

−
1

δx

(

Dn+θ
i+(1/2) − Dn+θ

i−(1/2)

)

+

+
1

2

[

(

PΨ+L+
)n

i−(1/2)
−
(

PΨ+L+
)n

i−(3/2)
+
(

PΨ−L−
)n

i+(1/2)
−
(

PΨ−L−
)n

i+(3/2)

]}

, (34)

and the flux limiting matrices are:

Ψ±

i+(1/2) =

















Ψ
(

(L±)1
i+(1/2)±1

(L±)1
i+(1/2)

)

0 0

0 Ψ
(

(L±)2
i+(1/2)±1

(L±)2
i+(1/2)

)

0

0 0 Ψ
(

(L±)3
i+(1/2)±1

(L±)3
i+(1/2)

)

















. (35)

This second form of defining the flux limiting matrices, more in the line of the character-

istic form of the scheme, will be named characteristic limiting discretization. Using that

in the scalar case the TVD conditions for this scheme are identical to those for the first

order scheme, we shall postulate that this scheme is TVD whenever (29) holds.

5 Practical applications

5.1 Ideal dambreak with uniform solute concentration

When the initial concentration as well as the boundary conditions are uniform,
(

∂s
∂x

= 0
)

,

the third of the conservation equations (1) becomes:

∂(As)

∂t
+

∂(Qs)

∂x
=

∂

∂x

(

KA
∂s

∂x

)

= 0 (36)

EqSolConstCons By developing the derivatives and using the mass conservation equation:

A
∂s

∂t
+ s

(

∂A

∂t
+

∂Q

∂x

)

= 0 ⇒
∂s

∂t
= 0, (37)

indicating that, under these conditions, the concentration must stay constant in time

whatever the flow conditions. A numerical scheme unable to reproduce this important

property will be unacceptable.

The ideal dambreak problem is one of the classical examples used as test cases for

unsteady shallow water flow simulations. The reason is that for flat and frictionless
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bottom, rectangular cross section and no diffusion, the problem defined by zero initial

velocity and initial discontinuities in the water depth and solute concentration has an

exact solution easy to compute [17]. A rectangular channel 200m long and 1m wide has

been considered with an initial depth ratio 1m : 0.1m together with a uniform initial

solute concentration of 1kg/m3. A grid spacing of δx = 2m and CFL = 0.9 was used for

all the simulations. The plots in Fig. 1 show the numerical solution for the water depth

of the three schemes and the exact solution at t = 20s. Fig. 2 displays the concentration
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Figure 1.— Ideal dambreak depth with the schemes of (a) 1st order upwind and (b)

2nd order TVD.

results at t = 20s using the separated discretization. None of the numerical schemes is

able to keep the concentration uniform as time progresses. Fig. 3 shows the results
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Figure 2.— Ideal dambreak concentration with the separated discretization and the

schemes of (a) 1st order upwind and (b) 2nd order TVD.

obtained with the coupled discretization for the same test case. The first order upwind

scheme preserves the uniform concentration as well as the second order TVD scheme

with different flux limiters if the characteristic limiting formulation is used. When the

vectorial limiting discretization is used for the limiters, the numerical solution is not free

from oscillations.
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Figure 3.— Ideal dambreak concentration with the coupled discretization and the

schemes of (a) 1st order upwind, (b) and (c) 2nd order TVD with (b) characteristic

and (c) vectorial limiting discretization.

5.2 Pollutant spill in a river

In order to show the practical application of the model in a river flow context, a

hazardous and instantaneous pollutant spill of 20T of petrol, located at a point at 700m

of the upstream end, in a 11.4km reach of the Ebro River will be simulated. The solubility

of the petrol at the typical temperature of the river water was estimated as 0.03kg/m3.

For higher concentrations, the petrol was assumed to precipitate to the bottom remaining

there. The steady annual base river discharge of 200m3/s was assumed. In a first run,

the steady state water surface profile corresponding to that discharge in the river reach

was calculated. Fig. 4a represents the bed and surface levels at steady state. Fig. 4b

shows two concentration longitudinal profiles at 1h and 2h of the spill. The Spanish

law establishes that 9.5mg/m3 is the limit of tolerance for the pernicious influence of

petrol concentration in riverine ecological systems. Fig. 4c represents the time evolution

of borders of the contaminant cloud with a concentration exceeding the dangerous limit.
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Figure 4.— Petrol spill in Ebro river: (a) longitudinal bed and water surface profiles,

(b) longitudinal concentration profiles at 1h and 2h after the spill, (c) time evolution

of the plume of concentration exceeding the dangerous threshold.

5.3 Fertigation in furrows

A field experiment was conducted during the summer of 2003 at the research farm

of the Agricultural and Technological Research Center of the Government of Aragón in

Zaragoza, Spain [5]. Four isolated furrows were built using the same field machinery

(Fig. 5). The cross-sectional average furrow dimensions were: base width 0.14m, top

width 0.80m and furrow depth 0.27m. All furrows showed zero slope.

Water was diverted to each furrow using a pump. A volumetric water meter was

installed downstream from the pump in order to verify that a constant discharge was

applied to each furrow. An irrigation evaluation, under free draining downstream condi-

tions, was performed at each furrow. Evaluations were characterized by different irrigation

discharges: 1, 2, 3 and 4L/s.

The monitored furrow length was 100m. The furrow spacing was 1m. Stations were

marked along each furrow every 10m. All stations were used to monitor the advance

phase (advance stations). Five of them, every 20m, were additionally used to monitor

fertilizer hydrodynamics (fertilizer stations). Fertilizer was applied to the irrigation wa-

ter in all evaluations. The initial fertilizer concentration (approximately 10.6g/L) was

kept constant for all furrow irrigation events. In Fig. 6 the time evolution of measured
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Figure 5.— Experimental set-up used for furrow fertigation evaluation.

and simulated fertilizer concentration is presented at four gauge locations for the four

experiments.

6 Conclusions

A conservative formulation of the system of equations governing the water flow and

the solute transport has been adopted as the basis of our study. The formulation of two

finite volume conservative upwind schemes well suited for the numerical simulation of one-

dimensional shallow-water flow and solute transport has been provided. Two possibilities

have been identified, separate or coupled discretization, leading to different degree of

influence of the flow processes to the solute transport at the discrete level.

It has been proved that well balanced conservative upwind schemes based on a separate

discretization of the scalar solute transport from the shallow water equations are not able

to preserve uniform solute profiles in situations of unsteady subcritical flow even when

using first order methods. However, the coupled formulation and discretization of the

system is proved to lead to the correct solution in first order approximations.

When seeking more accuracy second order TVD schemes can be applied. It has been

shown that a careful definition of the flux limiter function is required in order to preserve

uniform solute profiles in the solute distribution function in cases of unsteady subcritical

flow.
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