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We would like to thank the editor of RACSAM, Professor ManuelLópez Pellicer, for the opportunity
he is offering to us of discussing this paper, and to congratulate Berger, Bernardo and Sun for an interesting
and thought provoking paper.

The paper is motivated by the observation that the uniform prior for R, sayπ(R|N) = 1/(N + 1),
R = 0, . . ., N , gives poor results. It is shown that the posterior probability that all theN elements of
the population are conforming, conditional on the event that all the observedn elements in the sample
are conforming, is very small forN large, whatever moderate the sample sizen should be. Then, a more
reasonable priorπ(R|M) is provided on the ground of being compatible with the Jeffreys prior for the
parameterθ of the Binomial limiting distribution with parameters(n, θ), whereθ = limR→∞,N→∞ R/N .
We enjoyed reading this clear argumentation.

However, in the abstract it is recognized that “Bayesian solutions to this problem may be very sensitive
to the choice of the prior, and there is no consensus as to the appropriate prior to use.” It seems to us that
the natural consequence of this assertion —that we share— isto consider a class of priors and reporting
their posterior answers, instead of considering the posterior answer for the single reference prior forR. In
this discussion we try to add the robustness analysis that wefeel is missing in the paper.

For simplicity we will consider the limiting Binomial distribution Bi(r|n, θ), and the two problems
addressed in the paper. Firstly, the testing problem

H0 : θ = 1 versusH1 : θ ∈ [0, 1],

conditional on the datasetr = n, the event that all the elements of the sample are+. Secondly, the
computation of the posterior predictive probability that anew observation is+ , conditional onr = n.

The naive objective model selection formulation of this testing problem is that of choosing between the
reduced sampling model

M0 : Bi(n|n, θ = 1)

and the full sampling model with the Jeffreys prior forθ, that is

M1 :

{
Bi(n|n, θ), πJ(θ) =

1

π
θ−1/2(1 − θ)−1/2

}
.

However, the Jeffreys prior does not concentrate its probability mass around the null with the conse-
quence that thoseθ close to zero are privileged by the Jefrreys priors when being compared with the null
θ = 1. This is not reasonable, and many authors claim for a different prior to be used for testing that
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should be concentrated around the null. See, for instance, Jeffreys (1961, Chapter 5) ([8]), Gûnel and
Dickey (1974) ([9]), who note that this is the “Savage continuity condition”,Berger and Sellke (1987) ([3]),
Casella and Berger (1987) ([4]), Morris (1987) ([12]), Berger (1994) ([2]), Casella and Moreno (2009) ([5]).

The point is how to define an objective class of priors that concentrate mass around the null. Fortunately,
an answer to this question is provided by the class of intrinsic priors (Berger and Pericchi 1996 ([1]), Moreno
et al. 1998 ([10])). This objective class of priors has been proved to behaveextremely well for model
selection in different contexts (Casella and Moreno 2006 ([5]), Consonni and La Roca 2008 ([7]), Moreno
and Girón 2008 ([11])). The intrinsic priors forθ depend on a hyperparameterm that controls the degree of
concentration of the priors around the null, and it ranges from1 to n, so as to not exceed the concentration
of the likelihood ofθ (Casella and Moreno 2009 ([5])). For the above model selection problem standard
calculations render the intrinsic prior class as the set of beta distributionsBe(m + 1/2, 1/2), that is

πI(θ|m) =
Γ(m + 1)

Γ(m + 1/2)Γ(1/2)
θm−1/2(1 − θ)−1/2, m = 1, 2, . . . , n.

Therefore, in the above model selection problem the Jeffreys prior should be replaced with the intrinsic
prior, andM0 should be compared with

M1 : {Bi(n|n, θ), πI(θ|m), m = 1, 2, . . . , n}.

We note that asm increases the intrinsic prior concentrates more around thenull. Certainly, when the null
is compared with models located in a small neighborhood of the null, one expects from the model selection
problem an answer with more uncertainty than when the null iscompared with models located far from it.

The posterior probability of the null for the intrinsic priors is given by

Pr(All + |n, m) =

(
1 +

Γ(m + 1)Γ(n + m + 1/2)

Γ(m + 1/2)Γ(n + m + 1)

)−1

, m = 1, ..., n.

Likewise, the posterior probability that a new observationis + , conditional onr = n, is given by the total
probability theorem as

Pr(+|n, m) =
1∑

i=0

Pr(+|Mi, n, m)P (Mi|n, m),

wherePr(+|M0, n, m) = 1, and

Pr(+|M1, n, m) =
n + m + 1/2

n + m + 1
.

Example 1 Assuming that the galápagos population in the island is large enough, we obtain that

min
m=1,...,55

Pr(All + |n = 55, m) = Pr(All + |n = 55, m = 55) = 0.586,

and
max

m=1,...,55
Pr(All + |n = 55, m) = Pr(All + |n = 55, m = 1) = 0.869,

while
Pr(+|n = 55, m) ≃ 0.998

for m = 1, 2, . . ., 55.

This example illustrates something about robustness that is well known: the posterior probability of an
event is typically much less sensitive to the prior than the tests are. The posterior probability that a new
observation is+ , conditional onr = n, that we have obtained is similar to that given in the paper, but the
report for the testing problem given in the paper and that given by us are rather different.
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This very fine paper is valuable because it produces challenging and interesting results in a problem that
is at the heart of statistics. The real populations that occur in the world are all finite and the infinities that
we habitually invoke are constructs, albeit useful but essentially artificial. Another reason for being excited
about the work is that it opens the way to further Bayesian studies of the practice of sampling procedures,
where several features, and not just one as here, are being investigated.

The authors make much use of the term ‘objective’; what does this mean? My dictionary gives at least
two, rather different, meanings: “exterior to the mind” and“aim”. The authors would appear to use both
meanings in the same sentence when they say, at the end of Section 1, “A formal objective Bayesian solution
. . . is the main objective of this paper”. My opinion is that all statistics is subjective, the subject being the
scientist analysing the data, so that the contrary positionneeds clarification. There is also a confusion for
me with the term ‘reference prior’, a term that I have queriedin earlier discussions.

An unstated assumption thatR andn are independent, givenN , has crept into (2) wherePr(R |N)
should bePr(R |n, N). The assumption may not be trivial, as when the sampling procedure is to continue
until the first non-conforming element is found. Another assumption made is thatN is fixed, despite the
fact that, in the example of the tortoises, it is unknown. I would welcome some clarification of the role of
the sampling procedure.

Perhaps the most interesting section in the paper is 3, wherethe use of Jeffreys’s prior (12), or (13),
superficially very close to the uniform (roughly1/2 a confirmation and1/2 non-confirmation) gives such
different results from it. For example (20) can be writtenπr(En) = 2n+1

2n+2 . Thus Jeffreys gives the same
result as Laplace but fortwice the sample size. Again in the hierarchical modelπr(All + |n, N) is about√

n/N , equation (13), whereas with the uniform it is aboutn/N , equation (9), the larger value presumably
being due to the prior onθ attaching higher probability than the uniform to values near 1. We therefore
have the unexpected situation where an apparently small change in the prior results in an apparently large
change in at least some aspects of the posterior.

There are many issues here that merit further study and we should be grateful to the authors for the
stimulus to employ their original ideas to do this.

Dennis V. Lindley
Royal Statistical Society’s Guy Medal in Gold in 2002.
University College London, UK
ThomBayes@aol.com
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Brunero Liseo

I really enjoyed reading the paper. It shed new and clear light to some issues which stand at the core of
the statistical reasoning.

In standard statistical models, where the parameter space is a subset ofRk for some integerk, reference
priors, and to some extent,Jeffreys’ priors, offer a way to find a compromise between Bayesian and classical
goals of statistics. Usually such a solution lies at the boundary of the Bayesian world, i.e. the objective priors
to be used in order to getgood frequentist behaviour are in general improper. A remarkable exception is
however the objective prior for the probability of successθ in a sequence of Bernoulli trials.

Finite populations problems can hardly be approximated by an “infinite population” scenario and, apart
from the computational burden, difficulties arise in figuring out what the “boundary of the Bayesian world”
would be in these situations. In other words, it is not clear whether a compromise between Bayesian and
frequentist procedures is at all possible in finite populations. This paper is then welcome in providing some
evidence that, at least, an objective Bayesian analysis of such class of problems is indeed meaningful.

In the rest of the discussion I will focus on theLaw of natural induction, that is how to evaluate the
probability that all theN elements in a population are conforming, given that all then elements in the
sample are. LetR be the unknown number of conforming elements in the population.

The Authors criticize the use of a uniform prior forR and argue that a version of the reference prior,
based on the idea of embedding (Berger, Bernardo and Sun, 2009 ([1])), provides more appropriate results.
I agree with this conclusion, although the differences are not dramatic. Both uniform and reference priors
for R are “symmetric aroundN/2”; besides that, the hypothesisR = N does not play a special role: for
instance, the two hypothesesR = N andR = 0 are given the same weight under both priors; also the cases
R = N andR = N − 1 have approximately the same prior (and posterior. . . ) probability both under the
uniform and the reference prior. These conclusions are perfectly reasonable for an estimation problem when
no prior information onR is available. However, the Authors argue that the small value ofPr(All + |n, N)
“clearly conflicts with the common perception from scientists that, asn increases,Pr(All + |n, N) should
converge to one, whatever the value ofN might be”. This is the crucial point and brings into the discussion
the role of models in Statistics. The uniform and the reference prior approaches are not able to catch the
idea thatR = N andR close toN may be two dramatically different descriptions of the phenomenon:
if we are interested in the number of individuals in a population which do not show a genetic mutation,
R = N would imply the absence of the mutation with completely different scientific implications from
those related to any other value ofR.

If the hypothesisR = N has a “physical meaning” then I would have no doubt that the correct anal-
ysis to perform is the one described in Section 4. This analysis would make Jeffreys and other objective
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Bayesians happy, since it clearly distinguishes between the statistical “meaning” of the hypothesisR = N
and the meaning of other hypotheses, such asR = 0 or R = N − 1.

In such a situation, formula (28) (or 26) seems a perfectly reasonable “objective Bayesian” answer to
the Law of Natural Induction: it is monotonically increasing in n for fixedN and monotonically decreasing
in N for fixedn.

So the final question is: can we consider all the scientific questions equivalent to those leading to for-
mula (28)? Should not we take into account thecommon perception from scientistsas a guide to choice
the best statistical formalization of the problem? To make the point, what happens if a reasonable working
model in a specific application, is of the type “R close toN ”? This is not an infrequent situation; consider,
for example, surveys on human or animal populations in orderto detect the presence of rare events. In such
cases, strong prior information aboutR might be available and one would rather prefer to perform a refer-
ence analysis conditional on some partial prior information, along the lines of Sun and Berger (1998 ([2]),
Reference priors with partial information,Biometrika[2]).
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1 Introduction

Berger, Bernardo and Sun’s thought-provoking paper offersa Bayesian resolution to the difficult philo-
sophical problem raised by inductive inference. In a nutshell, the philosophical problem plaguing inductive
inference is that no finite number of past occurrences of an event can prove its continuing occurrence in
the future. It is thus natural to seek probabilistic reassurance for our instinctive feeling that an event re-
peatedly observed in the past must be more likely to recur than an event that happened only infrequently.
Consequently, as the authors note, the “rule of succession”and the “natural law of induction” have en-
gaged the attention of philosophers, scientists, mathematicians and statisticians for centuries. And rightly
so because—despite philosophical qualms about induction—science cannot progress without inductive in-
ferences. The vintage of the induction problem testifies to its difficulty and the pervasiveness of inductive
inferences in science reinforces our ongoing efforts to strengthen its underlying logic and fortify its foun-
dations through statistical reasoning. These circumstances necessitate diverse approaches to establish a
rigorously justifiable framework for inductive inference.

Berger et al. have made a sophisticated contribution to the literature on rigorously justifying inductive
inference, and they have innovatively illuminated an illustrious path blazed by none other than Laplace
himself. At the risk of appearing mean-spirited, my main complaint with their solution is the technical
virtuosity demanded by their methodology. The mathematical complexities of finding a reference prior are
daunting enough to dissuade all but the most lion-hearted inventuring on the search. Given the importance
of the problem that Berger et al. address, it may be worthwhile to dredge up an existing solution that seems
to be unknown in the statistics literature. In that spirit, Iwill discuss an alternative approach that produces
one of the key results that Berger et al. derive through theirreference prior. My approach has the merit of
being considerably simpler and more flexible at the expense of possibly not satisfying all the four desiderata
listed in Bernardo (2005) ([2]) for objective posteriors, but it does quickly produce a central result in Berger
et al. and offers insights into the value of additional replications—an issue that lies at the heart of inductive
inference and scientific inquiry. First a few thoughts on therelevance of replications to the topic at hand.
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2 Inductive inference and replications

Bernardo (1979) ([3]) defines a reference posterior in terms of limiting operations carried out on the amount
of information about the unknown parameter, obtained from successive independentreplications of an
experiment. Bernardo’s definition of reference priors through replications resonates well with a key guiding
principle of good scientific research. Replications are theheart and soul of rigorous scientific work—
findings that are replicated independently by investigators increase our confidence in the results (Cohen
1990 ([4])). Thus, replications play a fundamental role both in the mathematical definition of a reference
posterior and in the scientific process. Clearly, replications are intimately related to inductive inference. It
would thus seem conceptually attractive, if, as a by-product of modifying the Laplace Rule of Succession
to strengthen its logical basis, we are also able to figure outthe optimal informational role of replications.

3 Improving the Laplace rule of succession

Using a reference prior: The solution proposed by Berger et al. to the limitations of the Laplace Rule
of succession is displayed in equations (20) and (27) of their paper. Using their notation, the authors’ result
is that:

πu(En) =
n + 1/2

n + 1
(1)

which yields faster convergence to unity than the Laplace Rule. The Laplace Rule yields the probability
πu(En) = n+1

n+2 . To obtain equation (1), Berger et al. use a hypergeometric model (equation (4) in their
paper) together with the reference prior shown in equation (13) of their paper. Equation (13) is obtained by
using the Jeffreys prior (equation (12) in Berger et al.) in conjunction with an asymptotic argument which is
justified on the basis of exchangeability, as the authors have shown elsewhere. Their logic is sophisticated
and beautiful but the price paid for such beauty is that the resultant derivations are arduous. Indeed, Berger
and Bernardo (1992) ([1]) themselves admit that the general reference prior method“is typically very hard
to implement.” Under these circumstances, perhaps the search for a simpler approach is defensible and
meritorious of some attention.

Using a beta prior: In Raman (1994) ([7]), I show that the following rule of succession generalizesthe
Laplace Rule. Suppose thatp is the probability that a scientific theory is true, and assume that the prior for
p is Be(p |α, β); if we subsequently obtain ‘n’ confirmations of the theory, then, using the notationbn(En)
to suggest its beta-binomial roots, the probability of observing an additional confirmation is given by,

bn(En) =
α + n

α + β + n
(2)

Equation (2) follows easily from a result in DeGroot (1975 ([5]), p. 265) guaranteeing equivalence of
the sequential updating ofBe(p |α, β) with the updating ofBe(p |α, β), conditional on having observed
“n” successes. The Jeffreys priorf(p) = 1

π

1√
p(1−p)

, 0 < p < 1, is a special case resulting from the choice

α = β = 1

2
in the priorBe(p |α, β). For that choice of prior, equation (2) reduces to the equation (20) of

the Berger et al. paper:

Forα = β = 1/2, bn(En) =
n + 1/2

n + 1
(3)

Polya (1954) ([6]) recommends a number of properties that an “induction-justifying” rule ought to
have—and the beta-binomial rule (equation (2) above) exhibits those desiderata.

Using a general prior, not necessarily beta: It would be natural to object that the above deriva-
tion is driven by a specific prior—the Beta distribution. However, in Raman (2000) ([8]), I show that a
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generalized rule of succession can be obtained for a generalclass of priors which includes the Beta distri-
bution as a special case. The generalized rule of successionincludes as special cases, the original Laplace
Rule, the Beta-Binomial rule and the rule derived in Berger et al. through a reference prior. The exact
result is the following: ifg(p) is a prior density function with a convergent Maclaurin series representation
g(p) ∼

∑
i≥0 aip

i, then, using the notationgn to denote the rule of succession under this general prior
density,

gn =
∑

i≥0

ai

i + 1 + n

i + 2 + n
(4)

As special cases,a0 = 1, ai = 0, i ≥ 1, yields the Laplace rule of succession, the choice ofai as the
coefficients in a power-series expansion ofBe(p |α, β) results in the beta-binomial rule, which includes, as
a special case, the rule of succession for the Jeffreys’ prior derived in Berger et al. through a reference prior.
Clearly,gn may be viewed as a linear combination of beta-binomial rulesof succession or, with equal right,
as a linear combination of Laplacian rules of succession.

From an applied perspective, the Beta density’s flexibilityand tractability make it an attractive choice for
a prior; from a theoretical perspective, the above results show that it suffices for the purpose of generating
a more plausible rule of succession than the Laplacian rule,and, in fact, yields results that are identical to
Berger et al. Finally, although I do not delve into the topic here, the Beta prior permits derivation of an
adaptive controller that shows the value of performing an additional replication as a function of our prior
beliefs about the theory, the accumulated evidence in favorof the theory, the precision deemed necessary
and the cost of the replication (Raman 1994) ([7]).

Using the Jeffreys’ reference prior in Berger et al.: I should remark on the following property of
the Jeffreys’ reference prior which appears somewhat odd tome. WhenN = 1, it assigns a probability of
0.50, for R, which makes sense. Furthermore, asN → ∞, the probabilityπr(R |N) for R = N , tends
to 0 —a result which is attractive. However asN increases, at intermediate values ofN , the behavior of
πr(R |N) is somewhat odd forR = N . Let me explain.

Consider equation (13) in Berger et al.

πr(R |N) =
1

π

Γ(R + 1

2
) Γ(N − R + 1

2
)

Γ(R + 1)Γ(N − R + 1)
, R ∈ {0, 1, . . . , N}, (13)

soR = N implies

πr(R |N) =
1

π

Γ(N + 1

2
) Γ( 1

2
)

Γ(N + 1)
.

Consider the behavior of the above function asN grows large. The first derivative ofπr(N |N) is a
complicated expression involving the polygamma function,but if we plotπr(N |N) as a function of ‘N ’,
then we obtain insights. Plotting the function in Mathematica as a function ofN (see Figure1), we find
thatπr(N |N) at first drops very steeply but that the rate of decline slows down dramatically forN > 20.
For example, for100 ≤ N ≤ 200, the probability drops from0.056 atN = 100 to 0.039 atN = 200.

Thusπr(N |N) is insensitive to new information for large but finite valuesof N , which is the case that
would be of greatest pragmatic interest in scientific theory-testing. It would be useful if the authors could
comment on the significance of this property for natural induction.

4 Conclusion

My thoughts on the elegant analysis of Berger et al. are driven by an entirely applied perspective. Conse-
quently, I seek the most parsimonious and mathematically tractable route to model-building. The alternative
approach I have described lacks the technical sophistication and mathematical rigor of the authors’ refer-
ence prior approach—its primary justification is its ease ofuse and pliability at addressing a broader set
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Figure 1. πr(N |N) as a function of N .

of issues (such as the development of an optimal controller to balance the tradeoffs involved in replicat-
ing experiments). I realize that these broader issues are not necessarily relevant to the authors—but even
so, I would argue that the authors may benefit from thinking about how reference priors can address these
questions better than my naı̈ve approach based on a mathematically convenient family of conjugate priors,
because their reflection on the applied concerns I have raised could lead to new results that would broaden
the scope and scientific impact of reference priors on researchers across multiple disciplines.

In conclusion, I applaud the authors for their innovative application of a powerful new technique to an
important and vexing problem of ancient vintage, and hope that some of their future work on reference
priors makes the methodology less mysterious, thereby disseminating their ideas to a wider audience and
paving the way for new applications based on reference priors.
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This is a quite welcomed addition to the multifaceted literature on this topic of natural induction that
keeps attracting philosophers and epistemologists as muchas statisticians. The authors are to be congratu-
lated on their ability to reformulate the problem in a new light that makes the law of natural induction more
compatible with the law of succession. Their approach furthermore emphasize the model choice nature of
the problem.

First, I have always been intrigued by the amount of attention paid to a problem which, while being
formally close to Bayes’ own original problem of the binomial posterior, did seem quite restricted in scope.
Indeed, the fact that the population sizeN is supposed to be known is a strong deterrent to see the problem
as realistic, as shown by the (neat!) Galapagos example. My first question is then to wonder how the
derivation of the reference prior by Berger, Bernardo, and Sun extends to the case whenN is random, in
a rudimentary capture-recapture setting. An intuitive choice forπr(N) is 1/N (sinceN appears as a scale
parameter), but is (

R

r

) (
N−R

n−r

)
(
N

n

) Γ(R + 1/2)Γ(N − R + 1/2)

R!(N − R)!

1

N

summable in bothR andN? (Obviously, improperness of the posterior does not occur for a fixedN .)
As exposed in the paper, one reason for this special focus on natural induction may be that it leads to such

a different outcome when compared with the binomial situation. Another reason is certainly that Laplace
succession’s rule seems to summarise in the simplest possible problem the most intriguing nature of infer-
ence. And to attract its detractors, from the classical Hume’s (1748) ([1]) to the trendy Taleb’s (2007) ([2])
“black swan” argument (which is not the issue here, since the“black swan” criticism deals with the possi-
bility of model changes).

Second, the solution adopted in the paper follows Jeffreys’approach and I find this perspective quite
meaningful for the problem at hand. Indeed, whileN can be seen as(N − 1) + 1, i.e. as one of theN + 1
possible values forR, the consequence of havingR equal to eitherN or0 lead to atomic distributions for the
number of successes. Thus, to distinguish those two values from the other makes sense even outside a testing
perspective. In Jeffreys’ (1939) original formulation, both extreme values,0 andN , are kept separate, with
a prior probabilityk between1/3 and1/2. I thus wonder why the authors moved away from this original
perspective. The computation for this scenario does not seem much harder sinceπr(0|N) = f(N) as well
and the equivalent of (22) would then be
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πφ(All + |n, N) =

(
1 +

k

1 − 2k

f(n) − 2f(N)

1 − 2f(N)

)−1

,

which is then(1 + 0.5f(n))−1 for N large. In this case, (24) is replaced with
√

n/(
√

n + 2/
√

π), not a
considerable difference.

In conclusion, I enjoyed very much reading this convincing analysis of a hard “simple problem”! It is
unlikely to close the lid on the debate surrounding the problem, especially by those more interested in the
philosophic side of it, but rephrasing natural induction asa model choice issue and advertising the relevance
of Jeffreys’ approach to this very problem have bearings beyond the “simple” hypergeometric model.
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Comments on:
Natural Induction: An Objective Bayesian Approach

Raúl Rueda

According to the authors: “The conventional use of a uniformprior for discrete parameters can ignore
the structure of the problem under consideration”. This motivates the introduction of a hierarchical structure

p(R |N) =

∫ 1

0

Bi(R |N, θ) Be(θ | 1/2, 1/2) dθ,

whereBi(R |N, θ) is the binomial ditribution with parameters(N, θ) andBe(θ | 1/2, 1/2) is the reference
prior for θ in this case.

However, it must be pointed out that the assumption of exchangeability to justify the hierarchical struc-
ture is also valid for the uniform prior, by replacing theBe(θ | 1/2, 1/2) distribution with a uniform in(0, 1)
yielding as a priorp[R] = 1/(N + 1).

Anyway, the referenceRule of Succession is essentially the same as Laplace’s, but there is a difference
in π[All + |n, N ] whenn is small compared withN . This difference disappears whenn → N .

Even though the authors find equations (9) and (11) to be “dramatically different”, suggesting a contra-
dictory behaviour, this is perfectly possible for example,in the case of rare events, such a finding a person
who suffers from a desease with a prevalence of one in a million. If the conforming event is the absence
of the desease, then there is a high probability that we observe another conforming element given that all
elements in the sample are conforming. At the same time, the probability that all are conforming is close to
zero, so in this case (9) and (11) are both valid, and the behaviour of (22) becomes more difficult to accept.

Raúl Rueda
Departamento de Probabilidad y Estadı́stica,
Universidad Autonoma Nacional de Mexico,
Mexico
pinky@sigma.iimas.unam.mx
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Comments on:
Natural Induction: An Objective Bayesian Approach

S. L. Zabell

Berger, Bernardo, and Sun (BBS) briefly allude to exchangeability in their paper. Since I personally
find this the most natural way to view these types of questions, I begin by discussing their results from this
point of view.

SupposeX1, . . ., XN is a finite exchangeable sequence of0s and1s with respect to a probabilityP .
The simplest such probability assignment is the one corresponding to an urnUR,N with N balls, R 1s
andN − R 0s, where we drawn the balls out at random without replacement. Denote this hypergeometric
probability assignment byHR,N . If SN = X1 + · · ·+XN andpR = P (SN = R), then by exchangeability
P =

∑
R

pRHR,N . Call this the finite de Finetti representation.
In general a finite exchangeable sequenceX1, . . ., XN cannot be extended (and remain exchangeable),

but if it can be indefinitely extended then it admits an integral representation: for some probability measure
Q on the unit interval one has

P (SN = R) =

∫ 1

0

(
N

R

)
pR(1 − p)N−R dQ(p);

this is the celebrated de Finetti representation theorem.
ThusP can be thought of arising in two apparently different, but actually stochastically equivalent

ways: 1) choose ap-coin according toQ, and toss itN times, or 2) choose an urnUR,N according topR,
and then draw the balls out at random from it without replacement.

In Laplace’s famous 1774 paper he took the first route, adopting the flatdQ(p) = dp. This special prior
has, as BBS note, the interesting properties thatP (SN = R) = 1/(N + 1), for 0 ≤ R ≤ N ; and for any
n < N , P (Xn+1 = 1|Sn = r) = (r + 1)/(n + 2); the “rule of succession”.

The classical Laplacean analysis raises a number of questions: the nature ofp (presumably some form
of “physical probability”); the implicit presence of an (atleast in principle) infinitely extendable sequence;
and exactly what is meant by Laplace’s idea of sampling with replacement from an infinite population.
So it was perhaps inevitable that someone would eventually ask about the corresponding state of affairs if
you sample without replacement from a finite population and make the natural assumption that all possible
fractions of0s and1s are equally likely.

This is what C. D. Broad did in 1918. But as the Bible tells us, “there is nothing new under the sun”. The
analysis of sampling without replacement from a finite population, using a uniform prior on the fraction of
“conformable elements”, had already been carried out more than a century earlier, by Prevost and L’Huilier
in 1797! In their direct attack on the problem it is necessaryto prove a not entirely trivial combinatorial
identity in order to establish the rule of succession; see Todhunter (1865 ([2]), pp. 454–457), Zabell (1988).
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The result was a surprise: as Prevost and L’Huilier note, therule of succession(r+1)/(n+2) (for a sample
of sizen from a population of sizeN ) does not depend onN , and is the same of Laplace’s! As Todhunter
remarks, “The coincidence of the results obtained on the twodifferent hypotheses is remarkable” (1865,
p. 457).

But in fact it is not remarkable; from the perspective of the finite de Finetti representation one does not
need to evaluate a tricky combinatorial sum, nor is the coincidence of the rules of succesion in any way
surprising. A finite exchangeable sequenceX1, . . ., Xn is completely characterized by the probabilities
pR = P (SN = R); and so whether the process is generated by first pickingp at random from the unit
interval and then tossing ap-coinN times, or by randomly selecting an urnUR,N and then drawing its balls
out one at a time without replacement,you get stochastically identical processes (because in both cases
P (SN = R) = 1/(1 + N)); it’s not just that the rules of succession coincide buteverything is the same!

It is interesting to trace intellectual dependencies. Broad (1924 ([1]), Section 3) attributes his “interest
in the problems of probability and induction” to W. E. Johnson (a Cambridge logician who derived Carnap’s
“continuum of inductive methods” more than 20 years before Carnap did); and Broad’s 1918 analysis was
in turn an important influence on Sir Harold Jeffreys, who tells us that “It was the profound analysis in this
paper that led to the work of Wrinch and myself” (Jeffreys, 1961, p. 128).

One of the reasons Broad’s paper made such a splash at the timewas his noting that although (under the
uniform prior) the probability that the next crow will be black, given alln crows to date have been black, is
nearly one ifn is large,(n + 1)/(n + 2), the probability thatall crows (in the finite population ofN ) are
black, given then so far are black, is small forn ≪ N , namely(n + 1)/(N + 2).

This property was seen as a problem for any attempt at a mathematical explication of induction, and led
Wrinch and Jeffreys to write their papers. As BBS note, in Section 3.2 of his book Jeffreys makes the natural
suggestion to allocate some initial probabilityindependent of N to natural laws. BBS say “The simplest
choice is to letPr(R = N) = 1/2”; but as far as I can tell, Jeffreys usually puts the casesR = N and
R = 0 on an equal footing. So I would have liked to have seen some further discussion of this suggestion,
which clearly treats the cases asymmetrically (since of course if P (R = N) = P (R = 0) = 1/2, this
would account for all the probability).

There is, however, an interesting historical precedent forviewing matters from such an asymmet-
ric perspective. The Reverend Dr. Richard Price, in his discussion at the end of Bayes’s famous essay
(Bayes, 1764), considers the application of Bayes’s results to the problem of induction. Bayes’s version
of the rule of succession is different from Laplace’s (Bayes’s rule is1 − 2−(n+1), a different answer to a
different question), but the point here is when Price thinksone should start counting. Bayes’s results, he
tells us, apply to

[A]n event about the probability of which, antecedently to trials, we know nothing, that it has
happenedonce, and that it is enquired what conclusion we may draw from hence with respect
to the probability of it’s happening on a second trial.

Note the requirement that the event will have already occurredonce. Why? Imagining “a solid or die or
whose number of sides and constitution we know nothing”, Price explains:

The first throw only shews thatit has the side then thrown ... . It will appear, therefore, thatafter
the first throw and not before, we should be in the circumstances required by the conditions of
the present problem, and that the whole effect of this throw would be to bring us into these
circumstances. That is: the turning the side first thrown in any subsequent single trial would
be an event about the probability or improbability of which we could form no judgment, and
of which we should know no more than that it lay somewhere between nothing and certainty.
With the second trial then our calculations must begin ... .

This leads Price to consider the famous (or infamous example?) of the rising of the sun:

Let us imagine to ourselves the case of a person just brought forth into this world and left
to collect from his observations the order and course of events what powers and causes take
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place in it. The Sun would, probably, be the first object that would engage his attention; but
after losing it the first night he would be entirely ignorant whether he should ever see it again.
He would therefore be in the condition of a person making a first experiment about an event
entirely unknown to him. But let him see a second appearance or onereturn of the Sun, and an
expectation would be raised in him of a second return ... .

I take it that one would adopt a reference prior only absent substantial background information. The in-
terest of Price’s remarks is they address in a serious way just how, that being the case, epistemic asymmetry
might still be natural. So, as indicated earlier, I would have been interested to see further discussion in BBS
of when the assignmentP (R = N) = 1/2 is appropriate. If, for example, I am a doctor trying out a new
procedure or drug, then would I not want some “Jeffreys-like” prior probability assigned to both extremes?
Is the reference prior assignment of1/2 most appropriate in “Price-like” situations?

One final question for BBS. Suppose there aret ≥ 3 possibilities (saya, b, c) rather than just the two
of conforming and non-conforming. Just as seeing alla thus far should increase the probability that all
elements of the population area, so too seeing, say, onlya andb but noc should increase the probability
that there are noc in the population. In general there are2t−1 sub-simplexes to which one would like to
assign some positive probability. What would be the reference prior approach in this case?

In any case I would like to complement the authors on a most interesting and stimulating paper.
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