Revista de Estudios Extremeños, 2009, Tomo LXV, Número I, pp. 479-516

Carbonizados obtenidos a partir de huesos de cereza en atmósfera de nitrógeno a distintos tiempos isotérmicos

MANUEL GÓMEZ CORZO IES. B. Diego Sánchez (Talavera la Real) Profesorasociado UEx (EII)

RESUMEN

Las cerezas utilizadas en la producción del kirsch (licor de cerezas) en la Agrupación de Cooperativas del Valle del Jerte, tienen como residuo agroindustrial su hueso, el cual reúne características adecuadas dentro del conjunto de las materias primas lignocelulósicas (maderas y huesos de frutas) para la fabricación de carbones activados. Dicha fabricación a partir de la materia prima tiene normalmente una etapa intermedia llamada carbonización y como resultado el producto llamado carbonizado.

En este trabajo aparecen los métodos de preparación, técnicas de caracterización, presentación y discusión de resultados, bibliografía y los resultados experimentales, de carbonizados preparados a 600°C variando el tiempo isotérmico de carbonización en atmósfera de nitrógeno.

PALABRAS CLAVES: Hueso de cereza, carbonización, carbón activado.

Abstract

Cherry pits are an agroindustrial waste product resulting from the production of kirsch -cherry liquor- by the association of Valle del Jerte cooperatives. In line with other raw materials of the lignocellulosic family wood and fruit pits, these pits have the necessary qualities to produce activated carbons. The production process starting with the raw material usually has an intermediate stage called carbonization and, as a result, the product is called charcoal.

This work presents the preparation methods, characterizing technics, presentation and discussion results, reference and experimental results of charcoal prepared at 600 °C varying the isothermal time of carbonization in a nitrogen atmosphere.

KEY WORDS: Cherry pits, carbonization, activated carbons.

1. INTRODUCCIÓN

El proceso de calentamiento de materiales orgánicos en ausencia de aire se denomina pirólisis o carbonización. Por lo general se utiliza el término pirólisis cuando dicho proceso se enfoca a la obtención de los gases y aceites que se producen y carbonización cuando (como en el caso del carbón vegetal) el proceso se dirige hacia la obtención del producto sólido resultante (carbonizado).

En Extremadura, concretamente en la población de Valdastillas (Cáceres), se obtiene el licor de cerezas o kirsch a nivel industrial por la Agrupación de Cooperativas del Valle del Jerte. El hueso de cereza residual (*H*) de dicha producción reúne las características deseables para las materias primas lignocelulósicas (donde los componentes principales son celulosa y lignina, como ocurre con la madera y los huesos de frutas) utilizadas en la fabricación de carbones activados.

La carbonización de la materia prima es usualmente una etapa previa en la fabricación del carbón activado, el cual resulta de un tratamiento adicional con gases o con productos químicos, con la finalidad de aumentar la porosidad del producto resultante. El material de partida, condiciones del proceso de carbonización (atmósfera, velocidad de calentamiento, temperatura final y tiempo de calentamiento a la temperatura final) y catálisis afectan profundamente a la secuencia y cinética de las reacciones y últimamente al rendimiento de los productos [1].

En este trabajo se han preparado carbonizados variando sólo el tiempo isotérmico de carbonización en atmósfera de nitrógeno. Los resultados obtenidos en la carbonización utilizando las otras dos atmósferas (generada en el proceso y aire) con variable el tiempo isotérmico son semejantes a los obtenidos en atmósfera de nitrógeno. He creído innecesario reflejar dichos datos (aunque aparecen en algunos resultados a nivel comparativo para corroborar la semejanza) pues la atmósfera de nitrógeno da resultados intermedios a los otros, sirviendo de referencia sus valores como media de las 3 atmósferas.

La atmósfera de aire se está utilizando para compararla con las otras dos. Los productos resultantes en esta atmósfera tienen mejores características porosas pues se produce una carbonización (como en las otras) y una activación (por añadir un gas reactivo o activante como es el aire), por tanto obtenemos un carbón activado de forma directa en una sola etapa.

Los productos generados presentan una secuenciación que va desde los métodos de preparación de carbonizados a partir de la materia prima hueso de

cereza utilizando atmósfera inerte de nitrógeno a temperatura isotérmica de 600°C y a distintos tiempos de permanencia a dicha temperatura; pasando por la descripción de las técnicas empleadas en su caracterización; la presentación y discusión de los resultados; referencia de la bibliografía citada; hasta los resultados experimentales, los cuales se encuentran al final en un anexo en forma de tablas.

2. METODOLOGÍA EXPERIMENTAL

2.1. Preparación de los carbonizados

El sistema utilizado en la preparación de carbonizados está esquematizado en la Fig. 1. Básicamente, se compone de:

- un horno cilíndrico vertical conectado a un programador
- un programador: controlador del calentamiento a nivel tiempo, temperatura, velocidad y etapas
- un reactor cilíndrico, exterior de acero e interior cerámico
- un divisor o regulador de la tensión eléctrica, el cual regula la tensión de entrada al horno eléctrico
- un termopar, el cual mide la temperatura en el interior del horno.

Fig. 1. Sistema experimental utilizado en la preparación de carbonizados

Para estudiar la influencia del tiempo de tratamiento isotérmico, se ha preparado una serie de muestras de carbonizados en las condiciones siguientes:

- Masa de *H*: 100 g.
- Atmósfera de carbonización: atmósfera formada durante el calentamiento, con corriente de nitrógeno (200 cm³ min⁻¹).
- Temperatura inicial de calentamiento: temperatura ambiente.
- Velocidad de calentamiento: 10 °C min⁻¹.
- Temperatura final de calentamiento: 600 °C.
- Tiempo de calentamiento isotérmico (t) a 600 °C: 0, 1, 2, 3 y 4 h.
- Atmósfera de enfriamiento hasta temperatura ambiente: nitrógeno (200 cm³ min⁻¹).

Las muestras se representan N600t, donde **N** indica atmósfera de nitrógeno durante todo el proceso (calentamiento, etapa isotérmica y enfriamiento hasta temperatura ambiente); el número (**600**) indica la temperatura máxima de calentamiento coincidiendo con la temperatura isotérmica; y t es la variable tiempo de calentamiento isotérmico.

Las preparación de la serie de carbonizados descrita antes se resume en la Tabla 1.

Tabla 1. Preparación de carbonizados

Muestra	Precursor	Velocidad de calentamiento (°C min ⁻¹)	Flujo de gas (cm ³ min ⁻¹)	Temperatura isotérmica (°C)	Tiempo isotérmico (h)	
N600t	Н	10	200 (N ₂)	600	0-4	

En todos los casos, la velocidad de calentamiento fue de 10 °C min⁻¹. Esta velocidad, considerada como baja, suele ser frecuente en investigaciones de procesos de carbonización.

2.2. Caracterización de los carbonizados

Los carbonizados resultantes de los procesos de preparación seguidos se han caracterizado química y estructuralmente.

2.2.1. Caracterización química

Se ha determinado la composición química inmediata y la estructura química orgánica.

El análisis inmediato [2] (humedad, materia volátil desprendida en el proceso de carbonización, carbono fijo que permanece tras dicho proceso y las cenizas no combustibles tras quemar el carbonizado) de la materia prima y carbonizados se realizó primero con un método termogravimétrico (Mettler TA3000) puesto a punto en el Departamento de Química Inorgánica de la Universidad de Extremadura (análisis de composición de humedad y materia volátil); después con un horno de mufla a 650°C hasta masa constante (cenizas) y por último, el resto por diferencia (carbono fijo).

El análisis elemental (principales elementos químicos en su composición) se llevó a cabo con un analizador elemental Perkin-Elmer (carbono, hidrógeno y nitrógeno) y por diferencia el oxígeno (conociendo ya el contenido en cenizas).

La estructura química orgánica [3] se estudió mediante espectroscopia infrarroja por transformada de Fourier (FTIR).

2.2.2. Caracterización de la estructura de poros

Las muestras se han caracterizado aplicando las técnicas de medición de densidad (empaquetamiento, aparente y real), porosimetría de mercurio y microscopía electrónica de barrido. Además, se han caracterizado mediante fisisorción (CO_2 , 273.15 K; N₂, 77 K) en un aparato automático Micromeritics (modelo ASAP 2010).

La caracterización de la estructura de poros de los carbonizados se ha llevado a cabo determinando distintas densidades y porosimetría de mercurio [4]. Se han determinado la densidad de empaquetamiento (masa en base seca por unidad de volumen que cabe perfectamente empaquetada en una probeta graduada, ρ), la densidad aparente (masa por unidad de volumen de las partículas incluyendo el volumen de la mayoría del sistema poroso, ρ_{Hg}) y la densidad real (masa por unidad de volumen del esqueleto carbonoso del sólido inaccesible al helio, ρ_{He}). Una vez conocidos ρ_{Hg} y ρ_{He} se calculó el volumen total accesible al helio o volumen total de poros (V_{He}).

Mediante la técnica de porosimetría de mercurio se han obtenido los volúmenes de macroporos (con más de 50 nanómetros de anchura), de mesoporos (entre 2 y 50 nm. de anchura) y el total de ambos o volumen acumulado.

Con la técnica de microscopía electrónica de barrido se ha obtenido información de la morfología superficial de los carbonizados.

El método seguido en la determinación de las isotermas de adsorción es como sigue a continuación. Se desgasificaron aproximadamente 0.500 g, a 250 °C durante 24 h, bajo un vacío dinámico de 10-4 mm Hg (1 mm Hg = $1.3333 \cdot 10^2$ Pa). Después del enfriamiento, las muestras adsorbieron dióxido de carbono a 273.15 K o nitrógeno a 77 K, a presiones diferentes.

La aplicación de las ecuaciones DR (Dubinin-Radushkevich), DA (Dubinin-Astakhov) y S (Stoeckli) a los datos de adsorción ha proporcionado los volúmenes de microporos (con tamaño menor a 2 nm. de anchura) de las muestras accesibles al dióxido de carbono, $W_{DR}(CO_2)$, $W_{DA}(CO_2)$ y $W_S(CO_2)$, y los valores del volumen de microporos accesibles al nitrógeno, $W_{DR}(N_2)$.

La ecuación DR: $\ln W = \ln Wo - (1/\beta Eo)^2 A^2$ cuenta con:

-Wo: volumen límite de adsorción o volumen total de microporos (cm³g⁻¹).

-*W*: volumen de microporos (cm³g⁻¹) llenado a la temperatura T (K) y presión relativa $p/p^{\circ}(p^{\circ} \text{ es la presión de saturación del vapor}).$

- β : coeficiente de afinidad del adsorbato; representa el cociente entre las energías características de adsorción para el gas y el vapor de referencia (el benceno se emplea como vapor estándar, con $\hat{a}=1$).

-Eo: energía característica de la adsorción para un vapor estándar.

-A: es la energía de adsorción molar, cuyo valor es igual a la variación de la energía libre de Gibbs cambiada de signo, $A = -\Delta G = RTln (p^{0/}p)$, siendo R la constante de los gases (8,3144 Jmol⁻¹K⁻¹), y T la temperatura absoluta (K).

Los valores del factor de conversión de volúmenes de gas en volúmenes de líquido a las temperaturas de adsorción han sido $1.831 \cdot 10^{-3}$ (densidad 1.08 g cm⁻³[5]) para el dióxido de carbono y $1.547 \cdot 10^{-3}$ (densidad 0.808 g cm⁻³[2]) para el nitrógeno.

En la representación de **ln***W* frente a A^2 obtenemos *W***o** (en la ordenada en el origen, despejando de **ln***W***o**) y **Eo** (en la pendiente, despejando de $(1/\beta Eo)^2$).

Los valores del coeficiente de afinidad tomados han sido 0.48 para el dióxido de carbono [3] y 0.34 para el nitrógeno [6].

La aplicación de la ecuación DR ha proporcionado también los valores del parámetro \mathbf{E}_{o} , con los cuales se han calculado los valores medios del tamaño de los microporos con forma de rendija (\mathbf{L}_{o} , en nm) aplicando la correlación semiempírica de Stoeckli y Ballerini: $\mathbf{L}_{o} = 10.8/(\mathbf{E}_{o} - 11.4)$.

La ecuación DA: $\ln W = \ln W_0 - (\mathbf{A}/\mathbf{\beta}\mathbf{E}_0)^n$ cuenta con las variables de la ecuación DR; además tiene un parámetro *n* cuyos valores oscilan entre 1 y 3 según su microporosidad si es variada en tamaños o es uniforme.

La ecuación S o ecuación de Stoeckli: $\ln W_g = \ln W_{og} - (A/\beta E_o)^3$, está referida a grupos de microporos (W_g) con microporosidad parecida (n=3); el resultado es un valor para cada grupo y posteriormente un valor medio como resultado de la media de los valores de grupo. Esta ecuación es válida para dióxido de carbono y no para nitrógeno pues informan de microporosidad estrecha.

Las distribuciones de microporosidad se han calculado mediante una función propuesta por Stoeckli aplicada a los resultados de adsorción de dióxido de carbono a 273.15 K. En dicha ecuación aparecen los parámetros característicos \mathbf{K} (K = E_x·L), n y a.

A partir de los datos de adsorción de nitrógeno, se ha determinado el área superficial específica S_{BET} ($S_{\text{BET}} = V_{\text{m}} La_{\text{m}}/22414$). Esta área representa el área que resultaría si la cantidad de adsorbato necesaria para llenar los microporos se extendiera en una capa de moléculas en empaquetamineto compacto.

Las variables de la ecuación son:

 $-V_m$: capacidad de la monocapa (cm³g⁻¹); el factor 22414 convierte volumen en condiciones normales de presión (1 atmósfera) y temperatura (273,15 K) a moles

-L: número de Avogadro (6,023x10²³ moleculas mol⁻¹)

-a.: área proyectada de la molécula de adsorbato (m² molécula⁻¹)

Para la aplicación de la ecuación BET se han seguido las recomendaciones de la IUPAC: intervalo de linealidad (p/p° < 0.30) y área media de la molécula N₂ ocupada en la monocapa 0.162 nm² [7].

A partir de los datos de adsorción de dióxido de carbono, se han determinado el área superficial específica de microporos de las muestras, $S_{\rm mi}(S_{\rm mi}==2x10^3W_o/L_o)$. Es el área superficial de las paredes de los microporos (m²g⁻¹).

También se ha determinado el área superficial total de las muestras, $S(CO_2)$ ($S(CO_2) = Wop_TLa_m/M$) con los valores de $W_{DR}(CO_2)$ y $W_{DA}(CO_2)$, y considerando como área media de la molécula CO_2 el valor 0.187 nm² [8]. En la ecuación tenemos las variables **Wo** (volumen de microporos en fase líquida), p_T (densidad del adsorbato a la temperatura T), L (número de Avogadro), a_m (área proyectada de la molécula de adsorbato) y M (masa molecular del adsorbato).

3. RESULTADOS Y DISCUSIÓN

3.1. Rendimiento

En los carbonizados preparados a 600 °C, el rendimiento disminuye ligeramente al aumentar t (Tabla 2), lo cual significa que un aumento en el tiempo de tratamiento isotérmico de H conduce a poca pérdida de materia volátil. Los rendimientos son algo mayores para los carbonizados preparados sin arrastre de nitrógeno. En el rendimiento y en otros resultados se ha introducido a efecto comparativo la serie 600tN (se produce en la atmósfera generada en el calentamiento, excepto en la etapa final de enfriamiento donde es igual a N600t); en este caso la materia volátil tiene más dificultad para salir (no se acompaña de nitrógeno) y por tanto el producto resultante tiene mayor masa (materia volátil no expulsada en la carbonización) y menos poros.

Tabla 2. Rendimiento de	los carbonizados de	e las series N600 <i>t</i> y 6	500tN
-------------------------	---------------------	--------------------------------	-------

Muestra	Rendimiento (%)	Muestra	Rendimiento (%)
N6000	26.21	600 <i>0</i> N	27.70
N600 <i>1</i>	25.63	600 <i>1</i> N	27.45
N6002	25.36	6002N	26.30
N6003	25.06	600 <i>3</i> N	26.00
N6004	24.89	6004N	25.82

3.2. Composición química y estructura química

Los resultados del análisis inmediato de la materia prima y los carbonizados de la serie N600*t* se dan en la Tabla 3. Cuando *t* aumenta, el contenido de materia volátil (referencia muestra seca) disminuye, mientras que los contenidos en cenizas y carbono fijo aumentan.

Muestra	Referen	Referencia muestra original (%)				muestra	seca (%)
	Humedad	Materia volátil	Cenizas	Carbono Fijo	Materia volátil	Cenizas	Carbono fijo
Н	5.41	71.72	0.24	22.63	75.82	0.25	23.93
N6000	7.55	7.30	1.34	83.81	7.90	1.56	90.54
N6001	5.51	6.65	1.45	86.39	7.04	1.53	91.43
N6002	6.87	6.42	1.49	85.22	6.89	1.60	91.51
N6003	8.21	6.31	1.54	83.94	6.87	1.69	91.44
N6004	8.96	5.49	1.64	83.91	6.03	1.80	92.17

Tabla 3. Precursor y carbonizados de la serie N600t: análisis inmediato

Los espectros FTIR se presentan en las Figs 2.a y 2.b. Al comparar los espectros de las series N600*t* y 600*t*N, resulta que la estructura químico-orgánica de los carbonizados no cambia significativamente por la supresión de la corriente de nitrógeno cuando la temperatura final de calentamiento es 600 °C.

En cada una de las series, el aumento del tiempo isotérmico conduce a estructuras con mayor condensación de anillos aromáticos pues es menor el contenido de hidrógeno aromático (la intensidad de las bandas a 900-700 cm⁻¹ disminuye). Se eliminan grupos carbonilo (la banda a 1700 cm⁻¹ llega a desaparecer); el hecho de que la banda a 1580 o 1560 cm⁻¹ se convierta en un hombro es consistente con la pérdida de grupos carbonilo. Solamente las estructuras tipo éter (banda » 1110 cm⁻¹) son térmicamente estables.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Espectros FTIR de H y de carbonizados

Fig. 2.a. Serie N600t

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Fig. 2.b. Serie 600*t*N

I.S.S.N.: 0210-2854

3.3. Estructura de poros

En comparación con *H*, todos los valores de la Tabla 4 muestran que se ha desarrollado la porosidad de los carbonizados de la serie N600*t*.

Muestra	ρ(g cm ⁻³)	$\rho_{\rm Hg}(g\ cm^{-3})$	$\rho_{\rm He}(g\ cm^{-3})$	V _{He} (cm ³ g ⁻¹)
Н	0.76	1.09	1.38	0.193
N6000	0.56	0.92	1.48	0.411
N6001	0.58	0.98	1.65	0.414
N6002	0.59	1.00	1.71	0.415
N6003	0.64	1.00	1.74	0.425
N6004	0.63	1.01	1.81	0.438

Tabla 4. Densidades y volumen total de poros de H y de los carbonizados de la serie N600t

Se puede observar (Fig. 3) que los valores del rendimiento disminuyen ligeramente, y que los valores de V_{He} aumentan ligeramente. Estas variaciones están de acuerdo con la disminución ligera del contenido en materia volátil de estos carbonizados (Tabla 3).

Los estudios realizados sobre la serie N600*t* a partir de este momento los he resumido para las muestras a menor tiempo de tratamiento isotérmico (0 horas), tiempo intermedio (2 horas) y mayor tiempo (4 horas). Con las 3 muestras se obtiene suficiente información comparativa para el estudio. Sólo en la estructura no microporosa (mesoporos y macroporos) se dan resultados para toda la serie siendo necesario como comprobaremos más adelante.

Los microporos son aquellos poros cuyo tamaño es inferior a 2 nm de anchura. Al comparar las isotermas (representaciones de volumen adsorbido de gas variando la presión relativa a temperatura constante) de la Fig. 4, representadas con los datos de las Tablas A.1, A.2 y A.3, resulta que la capacidad de adsorción de dióxido de carbono a 273.15 K es mayor al aumentar *t*. Consecuentemente, la estructura de microporos estrechos (los que detecta la adsorción de dióxido de carbono a 273.15 K) está más desarrollada al aumentar esta variable de carbonización.

En cambio, las isotermas de la Fig. 5, representadas con los datos de las Tablas B.1, B.2 y B.3 son casi coincidentes, es decir, la capacidad de adsorción de nitrógeno a 77 K de los carbonizados es prácticamente la misma. Como las isotermas tienen forma tipo Ib (características de sólidos microporosos con superficies externas relativamente pequeñas, caso de los carbonizados y carbones activados) [9], los carbonizados de la serie N600t son sólidos con una microporosidad ancha (la que detecta la adsorción de nitrógeno a 77 K) prácticamente independiente del tiempo isotérmico de calentamiento.

Fig. 3. Variación del rendimiento y del volumen total de poros accesibles al helio a temperatura ambientecon el tiempo isotérmico de calentamiento de la serie N600t.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Los ajustes de las ecuaciones DA, DR y S están representados en las Figs. 6, 7, 8 y 9, los cuales son de tipo A [4] (representación lineal en todo el intervalo de presiones relativas p/p°) al aplicar la ecuación DR.

Fig. 4. Isotermas de adsorción de dióxido de carbono a 273.15 K de los carbonizados de la serie N600t.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Fig. 5. Isotermas de adsorción de nitrógeno a 77 K de los carbonizados de la serie N600t.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

MANUEL GÓMEZ CORZO

Fig. 6. Carbonizado N6000: aplicación de la ecuación DR (arriba), DA (medio) y S (abajo) a la isoterma de adsorción de dióxido de carbono a 273.15 K.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Fig. 7. Carbonizado N6002: aplicación de la ecuación DR (arriba), DA (medio) y S (abajo) a la isoterma de adsorción de dióxido de carbono a 273.15 K.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

MANUEL GÓMEZ CORZO

Fig. 8. Carbonizado N6004: aplicación de la ecuación DR (arriba), DA (medio) y S (abajo) a la isoterma de adsorción de dióxido de carbono a 273.15 K.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Fig. 9. Carbonizados N6000 (arriba), N6002 (medio) y N6004 (abajo): aplicación de la ecuación DR a las isotermas de adsorción de nitrógeno a 77 K.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Los valores de los parámetros de las ecuaciones DR, DA y S se dan en las Tablas 5 y 6. Se pueden establecer las secuencias $W_{\text{DR}}(\text{CO}_2) > W_{\text{DA}}(\text{CO}_2) > W_{\text{DR}}(\text{CO}_2) = 0$ men de microporos estrechos de los carbonizados de la serie N600*t* depende de la ecuación aplicada y su estructura microporosa está formada principalmente por microporos estrechos.

Tabla 5. Parámetros de las ecuaciones I	DR y DA aplicadas a las isotermas
de adsorción de los carboniz	zados de la serie N600 <i>t</i>

Ecuación DR					Ec	uación DA	
W_{DR} E_0 W_{DR} (CO ₂) (CO ₂) (N ₂) (cm ³ g ⁻¹) (kJ mol ⁻¹) (cm ³ g ⁻¹)		(\mathbf{N}_{2}) $(\mathbf{cm}^{3} \mathbf{g}^{-1})$	E ₀ (N ₂) (kJ mol ⁻¹)	$ \begin{array}{c c} W_{\rm DA} & E_0 \\ ({\rm CO}_2) & ({\rm CO}_2) \\ ({\rm cm}^3 \ {\rm g}^{-1}) & ({\rm kJ} \ {\rm mol}^{-1}) \end{array} $		$\binom{n}{(CO_2)}$	
N6000	0.179	22.51	0.164	19.59	0.166	23.26	2.06
N6002	0.253	22.67	0.166	21.03	0.212	24.51	2.16
N6004	0.262	23.47	0.165	19.69	0.248	24.08	2.05

Tabla 6. Parámetros de la ecuación de Stoeckli aplicada	
a las isotermas de adsorción de dióxido de carbono	
a 27.15 K de los carbonizados de la serie N600t	

Muestra	K ₀ (nm kJ mol ⁻¹)	$W_{\rm S}({\rm CO}_2)({\rm cm}^{-3} {\rm g}^{-1})$	n	<i>a</i> (nm ⁻¹)
N6000	21.18	0.116	6.91	14.05
N6002	20.19	0.158	7.47	18.73
N6004	20.51	0.180	6.17	14.71

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

En las Fig. 10.a y 10.b, se puede observar que los volúmenes de microporos determinados a partir de las isotermas de adsorción de dióxido de carbono aumenta al hacerlo *t*. En cambio, el volumen de microporos anchos, de acuerdo con las isotermas de adsorción de nitrógeno a 77 K es prácticamente constante. Consecuentemente, la eliminación adicional de materia volátil durante el calentamiento isotérmico (Tabla 3) produce apertura de microporos estrechos.

Fig. 10.a. Variación del volumen de microporos $W_{DR}(CO_2)$ y $W_{DR}(N_2)$ de los carbonizados de la serie N600t con el tiempo isotérmico de calentamiento.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

MANUEL GÓMEZ CORZO

Fig. 10.b. Variación del volumen de microporos $W_{DA}(CO_2)$ y $W_s(CO_2)$ y de $n(CO_2)$ de los carbonizados de la serie N600t con el tiempo isotérmico de calentamiento.

Durante el calentamiento isotérmico no ocurre ensanchamiento significativo de la microporosidad estrecha de los carbonizados porque los valores de $n(CO_2)$ difieren poco entre sí (Fig. 10.b). Tal hecho se pone claramente de manifiesto mediante las distribuciones de microporos estrechos (Fig. 11). Todas ellas presentan casi la misma anchura de *L* (valor medio de la anchura de los microporos con forma de rendija) y un máximo centrado aproximadamente a 0.8 nm.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Fig. 11. Distribuciones de tamaños de microporos determinadas aplicando el método de Stoeckli a las isotermas de adsorción de dióxido de carbono a 273.15 K de los carbonizados de la serie N600t.

La aplicación de la ecuación DR han proporcionado también los valores del parámetro E_0 . Se comprueba que $E_0(CO_2)$ y $E_0(N_2)$; $E_0(CO_2) > E_0(N_2)$ para cada muestra (Tabla 5). Con ellos, se han calculado los valores de $L_0(CO_2)$ y $L_0(N_2)$ (Tabla 7), los cuales muestran también que *t* no tiene una influencia significativa sobre el tamaño medio de los microporos con forma de rendija de los carbonizados de la serie N600*t*.

Los valores de las áreas superficiales específicas (Tabla 7) muestran también que el efecto de *t* sobre la microporosidad concierne principalmente a la microporosidad estrecha. En cuanto a los valores de $S_{\rm mi}$ y $S_{\rm BET}$, $Smi(CO_2) > S_{\rm mi}(N_2)$ y $S_{\rm mi}(N_2) < S_{\rm BET}(N_2)$ se cumplen para cada muestra. Los cálculos realizados al aplicar la ecuación BET(N₂) (método para calcular el área superficial específica de un adsorbente a partir de los datos de una isoterma de fisisorción). se dan en Tablas B.1, B.2 y B.3; y los ajustes BET(N₂) están representados en la Fig. 12.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Muestra	S _{BET} (m ² g ⁻¹)	$ \begin{array}{c} L_0 \\ (CO_2) \\ (nm) \end{array} $	S_{mi} (CO ₂) (m ² g ⁻¹)	L ₀ (N ₂) (nm)	$S_{mi} \\ (N_2) \\ (m^2 g^{-1})$	(\mathbf{CO}_{2}) $(\mathbf{m}^{2} \mathbf{g}^{-1})$	$(CO_2) \\ (m^2 g^{-1})$
N6000	351	0.97	369	1.32	245	493	457
N6002	321	0.96	527	1.12	296	696	583
N6004	360	0.89	589	1.30	253	721	682

Tabla 7. Tamaño medio de los microporos y áreas superficiales específicas de los carbonizados de la serie N600*t*

Fig. 12. Ajustes $\operatorname{BET}(\operatorname{N_2},\ 77\ \operatorname{K})$ de los carbonizados de la serie $\operatorname{N600t}$

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Mediante la técnica de porosimetría de mercurio se ha obtenido los volúmenes de macroporos, de mesoporos y el total de ambos o volumen acumulado.

En lo que concierne a la estructura no microporosa de los carbonizados de la serie N600*t*, las isotermas de adsorción de nitrógeno a 77 K (Fig. 5) indican que cada uno de ellos tiene una cantidad muy pequeña de mesoporos, lo cual se confirma con los valores de $V_{\rm me}$ determinados por porosimetría de mercurio (Tabla 8). Como para cada carbonizado los valores de $V_{\rm ma}$ y $V_{\rm Hg}$ son casi iguales (Tabla 8), resulta que la estructura no microporosa está formada principalmente por macroporos. En comparación con *H*, los carbonizados tienen un buen desarrollo de la macroporosidad. No obstante, el aumento del tiempo isotermico de calentamiento produce un cierto encogimiento de la estructura macroporosa, porque los valores de $V_{\rm ma}$ disminuyen significativamente.

Muestra	V _{ma} (cm ³ g ⁻¹)	$V_{\rm me}({\rm cm}^3~{\rm g}^{-1})$	<i>V</i> _{Hg} (cm ³ g ⁻¹)
Н	0.122	0.000	0.122
N6000	0.257	0.000	0.257
N600 <i>1</i>	0.247	0.005	0.252
N6002	0.248	0.006	0.254
N600 <i>3</i>	0.245	0.004	0.249
N6004	0.214	0.000	0.214

Tabla 8. Volúmenes de macroporos y mesoporos del precursor y carbonizados de la serie N600t

Las representaciones de las Fig. 13.a y 13.b se han obtenido con los datos de porosimetría de mercurio que se dan en las Tablas C.1-C.6. De ellas, es de destacar que en los carbonizados permanece el carácter unimodal de la distribución de tamaños de poros del material de partida, con un pico centrado aproximadamente a 200 nm.

MANUEL GÓMEZ CORZO

Fig. 13.a. Carbonizados de la serie N600t: distribución de tamaños de mesoporos y macroporos (volumen frente a radio de poro) determinadas por porosimetría de mercurio.

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Fig. 13.b. Carbonizados de la serie N600t: distribución de tamaños de mesoporos y macroporos (derivada del volumen frente a radio de poro) determinadas por porosimetría de mercurio

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

4. CONCLUSIONES

A la vista de los resultados presentados y discutidos en este artículo, se pueden establecer las conclusiones siguientes:

• En la preparación de carbonizados a diferentes tiempos de calentamiento isotérmico, el aumento de esta variable de carbonización disminuye el rendimiento ligeramente, el cual es algo mayor en la serie de carbonizados preparados sin arrastre de nitrógeno.

• Con el aumento de mencionada variable, se elimina moderadamente materia volátil y aumentan moderadamente los contenidos en cenizas y carbono fijo. En cada serie de carbonizados, tal aumento conduce a estructuras químico-orgánicas con menor contenido de hidrógeno aromático y eliminación de grupos carbonilo; el oxígeno residual se encuentra formando estructuras tipo éter.

• En comparación con la materia prima, el volumen de poros de los carbonizados accesibles al helio a temperatura ambiente aumenta ligeramente con el tiempo de calentamiento isotérmico.

• La estructura microporosa de los carbonizados está formada principalmente por microporos estrechos. La prolongación del calentamiento produce apertura de estos microporos, sin ensanchamiento de los mismos. En cambio, no tiene influencia sobre la microporosidad ancha.

• En comparación con la materia prima, todos los carbonizados tienen un buen desarrollo de la estructura de macroporos, mientras que la estructura de mesoporos apenas varía. En general, las estructuras no microporosas de los carbonizados son similares. Al mayor tiempo de calentamiento isotérmico se produce un encogimiento ligero de su estructura macroporosa.

506

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

REFERENCIAS BIBLIOGRÁFICAS

- 1. SHAFIZADESH, F.; OVEREND, R. P.; MILNE, T. A. y MUDGE, L.K. (Eds.): Fundamentals of Thermochemical Biomass Conversion, Elsevier Applied Science Publishers, Londres, 1985, p. 183.
- 2. MARSH, H.; RAND, B. y COLLOID, J.: Interface Sci. 33 (1970) 101.
- 3. PARRA, J. B.; PIS, J.J; SOUSA, J.C.; Pajares, J.A.; Bansal, R.C.: *Carbon 34* (1996) 783.
- 4. BRUNNER, P. H. y ROBERTS, P. V.: Carbon 18 (1982) 217.
- 5. TODA, Y.; HATAMI, M.; TOYODA, S.; YOSHIDA, Y. y HONDA, H.: *Fuel 50* (1971) 187.
- 6. STOECKLI, H. F. in Patrick, J. W. (Ed.): "Porosity in Carbons. Characterization and Applications", *Edward Arnold*, 1995, capítulo 3.
- 7. SING, K. S. W.; EVERETT, D. H.; HAULT, R. A. W.; MOSCOW, L.; PIEROTTI, R. A. y ROUQUEROL, J.
- 8. RODRÍGUEZ-REINOSO, F.; LINARES-SOLANO, A. en THROWER, P.A. (Ed.): *Microporous Structure of Activated Carbons as Revealed by*.
- PASTOR-VILLEGAS, J.; GÓMEZ-SERRANO, V..; GÓMEZ CORZO, M.; DURÁN-VALLE, C. J.; MARTÍN ARANDA, M. L. y ROJAS CERVANTES: IV Reunión del Grupo Español del Carbón, 51-52, Málaga 1997.
- 10. PASTOR-VILLEGAS, J.; DURÁN-VALLE, C. J.; VALENZUELA-CALAHORRO, C. y GÓMEZ-SERRANO, V.: *Carbon 36* (1998) 1251.

ANEXOS

	-					
p (mm Hg)	<i>p/p</i> •	V (cm ³ CNPTg ⁻¹)	A (kJ mor ⁻¹)	A ² (kJ ⁻² mor ⁻²)	A ³ (kJ ⁻³ mor ⁻³)	In W
0.0525	0.000002	0.0514	29.8005	888.0688	26464.8797	-9.2710
0.1034	0.000004	0.1036	28.2264	796.7278	22488.7321	-8.5701
0.1579	0.000006	0.1593	27.3056	745.5941	20358.8703	-8.1399
0.2104	0.000008	0.2111	26.6523	710.3425	18932.2273	-7.8583
0.3882	0.000015	0.4027	25.2247	636.2855	16050.111'7	-7.2125
0.8274	0.000032	0.8446	23.5040	552.4389	12984.5358	-6.4718
1.5754	0.000060	1.5119	22.0765	487.3705	10759.4190	-5.8895
2.9334	0.000112	2.5595	20.6590	426.7957	8817.1860	-5.3631
4.5904	0.000176	3.6729	19.6326	385.4386	7567.1569	-5.0019
6.8141	0.000261	4.9531	18.7377	351.1031	6578.8798	-4.7029
16.1435	0.000618	9.1154	16.7802	281.5765	4724.9220	-4.0929
23.1561	0.000886	11.5176	15.9622	254.7910	4067.0182	-3.8590
32.7234	0.001252	14.2273	15.1769	230.3388	3495.8329	-3.6477
44.4627	0.001701	16.9709	14.4809	209.6972	3036.608E	-3.4714
58.1672	0.002225	19.6060	13.8711	192.4068	2668.8888	-3.3271
72.0785	0.002757	21.9012	13.3842	179.1371	2397.6092	-3.2164
88.2136	0.003374	24.1408	12.9256	167.0705	2159.4828	-3.1190
103.5212	0.003960	25.9886	12.5619	157.8011	1982.2807	-3.0452
157.5634	0.006027	30.9472	11.6081	134.7473	1564.1570	-2.8706
192.2124	0.007353	33.4744	11.1565	124.4668	1388.6103	-2.7921
216.2082	0.008271	35.0211	10.8893	118.5768	1291.2179	-2.7469
297.0336	0.011362	39.4050	10.1682	103.3927	1051.3201	-2.6290
399.3310	0.015275	43.6704	9.4961	90.1767	856.3313	-2.5262
593.6760	0.022710	49.3341	8.5955	73.8827	635.0591	-2.4043
687.0733	0.026282	51.4869	8.2638	68.2898	564.3308	-2.3616
740.0800	0.028310	52.6509	8.0950	65.5284	530.4498	-2.3392
791.9719	0.030295	53.6919				

Tabla A.1. Adsorción de dióxido de carbono a 273.15 K: valores de presión y volumen adsorbido; valores calculados para las ecuaciones DR, DA y S, y obtener la distribución del volumen de microporos. Muestra N6000

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

p (mm Hg)	p/p●	V(cm ³ CNPTg ⁻¹)	A (kJ mor ⁻¹)	A ² (kJ ⁻² mor ⁻²)	A ³ (kJ ⁻³ mor ⁻³)	In W
0.0665	0.000003	0.1044	28.8797	834.0362	24086.7018	-8.5624
0.0990	0.000004	0.1568	28.2264	796.7278	22488.7321	-8.1557
0.1385	0.000005	0.2218	27.7196	768.3771	21299.1168	-7.8089
0.1846	0.000007	0.2956	26.9555	726.5988	19585.8327	-7.5216
0.3862	0.000015	0.6358	25.2247	636.2855	16050.1117	-6.7558
0.7619	0.000029	1.2115	23.7276	562.9978	13358.5713	-6.1110
1.5214	0.000058	2.2415	22.1535	490.7757	10872.3791	-5.4957
3.1174	0.000119	4.0672	20.5214	421.1261	8642.0788	-4.8999
4.5393	0.000174	5.4694	19.6585	386.4583	7597.2079	-4.6037
6.6079	0.000253	7.3199	18.8084	353.7575	6653.6273	-4.3123
15.4461	0.000591	13.0613	16.8817	284.9915	4811.1387	-3.7332
23.2085	0.000888	16.8906	15.9571	254.6276	4063.1054	-3.4761
32.8792	0.001258	20.7658	15.1661	230.0094	3488.3357	-3.2696
44.0910	0.001687	24.4613	14.4997	210.2411	3048.4308	-3.1058
53.1411	0.002033	27.0452	14.0760	198.1343	2788.9420	-3.0054
64.5288	0.002468	29.8613	13.6357	185.9320	2535.3104	-2.9063
77.9023	0.002980	32.6578	13.2076	174.4400	2303.9301	-2.8168
102.5393	0.003922	36.8552	12.5838	158.3517	1992.6650	-2.6959
156.9435	0.006003	43.6577	11.6171	134.9578	1567.8228	-2.5265
186.8347	0.007147	46.6836	11.2210	125.9109	1412.8459	-2.4595
201.6770	0.007715	48.1071	11.0473	122.0435	1348.2553	-2.4295
295.8500	0.011317	55.3769	10.1772	103.5761	1054.1179	-2.2887
400.4177	0.015317	61.2780	9.4899	90.0584	854.6455	-2.1875
589.4877	0.022549	68.6743	8.6117	74.1607	638.6471	-2.0735
685.0053	0.026203	71.5645	8.2706	68.4028	565.7325	-2.0323
735.7792	0.028145	73.0275	8.1082	65.7435	533.0637	-2.0121
786.4701	0.030085	74.3473				

Tabla A.2. Adsorción de dióxido de carbono a 273.15 K: valores de presión y volumen adsorbido; valores calculados para las ecuaciones DR, DA y S, y obtener la distribución del volumen de microporos. Muestra N6002

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

р	p/p•	V (cm ³	Α	A ²	\mathbf{A}^3	In W
(mm Hg)		CNPTg ⁻¹)	(kJ mor ⁻¹)	(kJ ⁻² mor ⁻²)	(kJ ⁻³ mor ⁻³)	
0.0645	0.000002	0.1530	29.8005	888.0688	26464.8797	-8.1802
0.0837	0.000003	0.2040	28.8797	834.0362	24086.7018	-7.8925
0.1072	0.000004	0.2548	28.2264	796.7278	22488.7321	-7.6702
0.1542	0.000006	0.3645	27.3056	745.5941	20358.8703	-7.3121
0.1830	0.000007	0.4277	26.9555	726.5988	19585.8327	-7.1522
0.3817	0.000015	0.8922	25.2247	636.2855	16050.1117	-6.4170
0.7999	0.000031	1.7378	23.5761	555.8334	13104.3957	-5.7503
1.5371	0.000059	3.0199	22.1146	489.0572	10815.3221	-5.1977
3.0978	0.000119	5.2459	20.5214	421.1261	8642.0788	-4.6454
4.4468	0.000170	6.8591	19.7114	388.5377	7658.6057	-4.3773
5.9473	0.000228	8.4290	19.0447	362.7015	6907.5485	-4.1712
7.2100	0.000276	9.7128	18.6108	346.3634	6446.1151	-4.0294
12.5142	0.000479	13.9206	17.3589	301.3299	5230.7431	-3.6695
17.3661	0.000664	17.0171	16.6172	276.1314	4588.5300	-3.4687
18.9268	0.000724	17.9914	16.4207	269.6407	4427.7004	-3.4130
29.4725	0.001127	23.1113	15.4158	237.6464	3663.5057	-3.1626
37.7307	0.001443	26.3815	14.8545	220.6556	3277.7239	-3.0302
53.9911	0.002065	31.5746	14.0406	197.1371	2767.9132	-2.8505
65.9876	0.002524	34.5716	13.5847	184.5450	2506.9948	-2.7599
79.0194	0.003023	37.3920	13.1750	173.5817	2286.9459	-2.6814
104.1550	0.003984	41.9958	12.5482	157.4566	19 75.7918	-2.5653
152.8706	0.005848	48.6910	11.6765	136.3416	1591.9986	-2.4174
173.7110	0.006645	51.1632	11.3864	129.6499	1476.2445	-2.3679
203.5024	0.007785	54.3483	11.0268	121.5907	1340.7592	-2.3075
294.9314	0.011282	62.1165	10.1843	103.7193	105 6.3052	-2.1739
395.1023	0.015114	68.4149	9.5202	90.6343	862.8577	-2.0773
593.4600	0.022701	76.8340	8.5964	73.8982	635.2587	-1.9612
699.8083	0.026770	80.2528	8.2220	67.6010	555.8145	-1.9177
736.2267	0.028163	81.4196	8.1068	65.7199	532.7774	-1.9033
791.6791	0.030284	82.9652	7.9419	63.0736	500.9233	-1.8845

Tabla A.3. Adsorción de dióxido de carbono a 273.15 K: valores de presión y volumen adsorbido; valores calculados para las ecuaciones DR, DA y S, y obtener la distribución del volumen de microporos. Muestra N6004

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

p (mm Hg)	p/p•	V(cm ³ CNPTg ⁻¹)	A ² (kJ ⁻² mor ⁻²)	In W	p/[Vp ⁰ -P)] (cm ³)
3.7493	0.005176	81.4383	11.4585	-2.0716	0.000064
6.9402	0.009580	87.2880	8.9349	-2.0022	0.000111
24.2285	0.033459	94.9922	4.7736	-1.9176	0.000364
44.5421	0.061590	98.4503	3.2129	-1.8819	0.000667
68.5844	0.094875	100.1815	2.2940	-1.8645	0.001046
83.6180	0.115697	100.9732	1.9238	-1.8566	0.001296
127.3327	0.176186	102.3295	1.2467	-1.8432	0.002090
169.2425	0.234175	103.2438	0.8715	-1.8343	0.002962
254.2258	0.351764	104.3680	0.4514	-1.8.235	
329.4608	0.455864	105.0431	0.2552	-1.8171	
403.8321	0.558769	105.5258	0.1401	-1.8125	
505.9899	0.700122	105.9496	0.0526	-1.8085	
598.8080	0.828551	106.2495	0.0146	-1.8056	
649.4836	0.898669	106.4654	0.0047	-1.8036	
686.5684	0.949982	106.6979	0.0011	-1.8014	
710.7192	0.983399	107.0892	0.0001	-1.7978	

Tabla B.1. Adsorción de nitrógeno a 77 K: valores de presión y volumen adsorbido; valores calculados para aplicar las ecuaciones DR y BET. Muestra N6000

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

p (mm Hg)	p/p•	V (cm ³ CNPTg ⁻¹)	A ² (kJ ⁻² mor ⁻²)	In W	p/[Vp ⁰ -P)] (cm ³)
3.8786	0.005405	85.5065	11.2708	-2.0228	0.000064
6.8781	0.009584	90.5790	8.9332	-1.9652	0.000107
24.4250	0.034027	97.2627	4.7264	-1.8940	0.000362
42.8562	0.059693	100.3176	3.2854	-1.8631	0.000633
64.2507	0.089485	101.8675	2.4094	-1.8478	0.000965
87.3001	0.121575	102.8724	1.8364	-1.8379	0.001345
133.3058	0.185626	104.1585	1.1728	-1.8255	0.002188
179.5855	0.250056	104.9528	0.7945	1.8179	0.003177
264.0051	0.367585	105.8418	0.4142	-1.8095	
341.9293	0.476080	106.4304	0.2278	-1.8039	
400.9981	0.558324	106.7308	0.1405	-1.8011	
502.5147	0.699669	107.0232	0.0528	-1.7984	
593.6366	0.826541	107.2164	0.0150	1.7966	
644.4879	0.897343	107.3764	0.0049	-1.7951	
682.3278	0.950029	107.5547	0.0011	-1.7934	
705.9563	0.982928	107.8268	0.0001	-1.7909	

Tabla B.2. Adsorción de nitrógeno a 77 K: valores de presión y volumen adsorbido; valores calculados para aplicar las ecuaciones DR y BET. Muestra N6002

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

p (mm Hg)	p/p•	V(cm ³ CNPTg ⁻¹)	A ² (kJ ⁻² mor ⁻²)	In W	p/[Vp ⁰ -P)] (cm ³)
3.7510	0.005242	80.5269	11.4034	-2.0828	0.000065
6.8590	0.009584	88.7916	8.9332	-1.9851	0.000109
24.7162	0.034505	97.5033	4.6875	-1.8916	0.000367
43.8301	0.061157	100.5763	3.2292	-1.8605	0.000648
66.7088	0.093044	101.9309	2.3321	-1.8471	0.001006
80.9718	0.112904	102.7468	1.9676	-1.8392	0.001239
118.8582	0.165681	103.9208	1.3365	-1.8278	0.001911
162.1902	0.226037	104.7578	0.9145	-1.8198	0.002788
248.5077	0.346280	105.5211	0.4651	-1.8125	
343.0841	0.478055	105.9704	0.2253	-1.8083	
416.4729	0.580316	106.1007	0.1225	-1.8070	
517.7256	0.721402	106.0579	0.0441	-1.8075	
610.5128	0.850692	106.0917	0.0108	-1.8071	
660.2626	0.920014	106.1927	0.0029	-1.8062	
681.6727	0.949847	106.3931	0.0011	-1.8043	
707.2198	0.985444	106.6809	0.0001	-1.8016	

Tabla B.3. Adsorción de nitrógeno a 77 K: valores de presión y volumen adsorbido; valores calculados para aplicar las ecuaciones DR y BET. Muestra N6004

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

Radio de poro (nm)	Volumen acumulado (cm³ g ⁻¹)	Derivada del volumen acumulado (cm³ g ⁻¹ nm ⁻¹)
1871.25	0.000	0.000000
299.61	0.042	0.000027
225.50	0.082	0.000540
106.13	0.122	0.000335
2.16	0.122	0.000000

Tabla C.1. Porosimetría de mercurio: valores de radio de poro y volumen acumulado. Muestra *H*

Tabla C.2. Porosimetría de mercurio: valores de radio de poro
y volumen acumulado. Muestra N6000

Radio de poro (nm)	Volumen acumulado (cm ³ g ⁻¹)	Derivada del volumen acumulado (cm³ g ⁻¹ nm ⁻¹)
1006.24	0.008	0.000000
355.54	0.049	0.000063
308.27	0.091	0.000905
274.19	0.134	0.001238
241.66	0.175	0.001267
198.62	0.216	0.000967
106.87	0.257	0.000440
2.13	0.257	0.000000

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Radio de poro (nm)	Volumen acumulado (cm³ g ⁻¹)	Derivada del volumen acumulado (cm³ g¹ nm¹)
1212.06	0.001	0.000000
335.41	0.042	0.000046
288.27	0.086	0.000946
250.97	0.130	0.001164
216.35	0.172	0.001213
165.37	0.212	0.000792
5.31	0.252	0.000250
2.15	0.252	0.000000

Tabla C.3. Porosimetría de mercurio: valores de radio de poro y volumen acumulado. Muestra N6001

Tabla C.4. Porosimetría de mercurio: valores de radio de poro y volumen acumulado. Muestra N6002

Radio de poro (nm)	Volumen acumulado (cm ³ g ⁻¹)	Derivada del volumen acumulado (cm³ g ⁻¹ nm ⁻¹)
1185.12	0.000	0.000000
295.46	0.046	0.000052
265.33	0.088	0.001394
234.94	0.131	0.001415
198.99	0.173	0.001168
145.31	0.214	0.000764
2.44	0.254	0.000280
2.40	0.254	0.000000

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854

Radio de poro (nm)	Volumen acumulado (cm ³ g ⁻¹)	Derivada del volumen acumulado (cm³ g ⁻¹ nm ⁻¹)
3555.37	0.000	0.000000
478.30	0.040	0.000013
387.86	0.086	0.000509
325.19	0.128	0.000670
269.35	0.169	0.000734
186.80	0.209	0.000485
4.32	0.249	0.000219
2.89	0.249	0.000000

Tabla C.5. Porosimetría de mercurio: valores de radio de poro y volumen acumulado. Muestra N6003

Tabla C	C.6. Porosiı	netría de me	rcurio: va	alores de l	radio de poro
	y volu	men acumula	ado. Mues	stra N600	4

Radio de poro (nm)	Volumen acumulado (cm ³ g ⁻¹)	Derivada del volumen acumulado (cm³ g ⁻¹ nm ⁻¹)
1545.81	0.000	0.000000
313.71	0.043	0.000035
267.32	0.088	0.000970
234.42	0.132	0.001337
193.93	0.174	0.001037
120.38	0.214	0.000544
2.69	0.214	0.000000

Revista de Estudios Extremeños, 2009, Tomo LXV, N.º I.

I.S.S.N.: 0210-2854