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Abstract

In this paper we view bargaining and cooperation as an interac-
tion superimposed on a strategic form game. A multistage bargaining
procedure for N players, the “proposer commitment” procedure, is
presented. It is inspired by Nash’s two-player variable-threat model;
a key feature is the commitment to “threats.” We establish links to
classical cooperative game theory solutions, such as the Shapley value
in the transferable utility case. However, we show that even in stan-
dard pure exchange economies the traditional coalitional function may
not be adequate when utilities are not transferable.

1 Introduction

In this paper we take the following point of view on cooperation and bargain-

ing: there is an underlying physical reality represented by a game in strategic

form, and bargaining is a noncooperative interaction that acts through an

institutional setup superimposed on the strategic form. In a sense the aim
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of the institutions is to induce bargaining processes that lead to a selection

of final play that is efficient.

Our outlook is inspired both by cooperative game theory and by gen-

eral equilibrium theory. As in cooperative game theory we aim to handle

situations with an arbitrary number of players and recognize that allowing

for the possibility of partial breakdown of the negotiation is of the essence

(in cooperative games, partial breakdown is captured by the specification of

what coalitions other than the grand coalition can obtain). From general

equilibrium theory we import the paradigm of a sharp distinction between

the underlying data (preferences, endowments, and technologies in general

equilibrium, the strategic form here) and the institutions that operate in

them (typically markets in general equilibrium, bargaining procedures here).

We are not the first to argue that a general theory of bargaining should

be built over a strategic form. It was already the position taken by Nash

(1953) in his proposal for the endogeneization of the threat points of his

axiomatic theory of bargaining (Nash, 1950), a proposal that was extended

to N -player situations by Harsanyi (1959, 1963). As for cooperative game

theory, the need of a strategic-form foundation has been persistently felt.

One suggestion was provided for the transferable-utility (“TU”) case by the

founders (von Neumann and Morgenstern, 1944, proposed to define what

a coalition could reach as the maximin level for the sum of the payoffs of

the members of the coalition), and later generalized (Aumann, 1959) to the

non-transferable-utility (“NTU”) case in the guise of the “alpha” and “beta”

coalitional forms. Dissatisfaction with these definitions drew attention to

particular classes of games where the determination of the coalitional form

appeared uncontroversial (the “c-games” of Shapley–Shubik, a leading ex-

ample of which is exchange economies; see Shubik, 1983, Section 6.2.2), and

thus the theory of bargaining could be nicely factored through the coali-

tional form. We will have some opportunity to debate this point (see Section

7 below).

We shall make a specific proposal for a bargaining procedure, what we

call the “proposer commitment” (PC) procedure. We do not pretend that it

is the most general procedure since plainly it is not, but we do believe that it
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is comparatively simple and that in applications it captures some important

features.

The PC procedure is inspired by Nash (1953) in a crucial feature: we

assume that players can commit to threats. We view this commitment pos-

sibility as going hand in hand with the set of strong institutions that must

be in place if, as we assume, the outcome of bargaining is enforceable. But

we depart from Nash (1953) in an important aspect: at each step of the ne-

gotiations only one player (the “proposer”) makes threats. We do so because

we want a bargaining procedure that, in the spirit of modern bargaining the-

ory (see, e.g., Binmore, Osborne and Rubinstein, 1992), has as players the

players of the original, underlying strategic form. In the two-player setting

of Nash (1953), his simultaneous threats model can be made to pass this

test (replace, for example, the axiomatically based part of his solution by

bargaining in the style of Stahl–Rubinstein; see, e.g., Osborne and Rubin-

stein, 1990, and Houba and Bolt, 2002), but the N -player generalization of

Harsanyi (1959, 1963) does not, at least to our knowledge (Harsanyi defines

a sort of noncooperative bargaining, but it is between fictitious players, one

for each coalition). Thus in a sense (reminiscent of Shapley, 1969) we could

present our solution as a simplification of the Nash–Harsanyi approach.

There is another source of inspiration for the PC approach: the bar-

gaining procedure formulated by ourselves (Hart and Mas-Colell, 1996a) for

the context where the underlying reality is a game in coalitional form. The

sequential nature of the announcements and proposals we take from there,

along with the idea that a rejected proposer becomes passive for the rest of

the game (with some probability). But the consideration of a strategic form

as the underlying reality allows us now to enrich the determination of what

happens with the play of the rejected proposer.

The paper is organized as follows. In Section 2 the basic model and the PC

bargaining procedure are presented. In Section 3 we establish the standard

existence and optimality properties. In Section 4 we focus on two special

cases: two-person games and games with transferable utility. In Section 5 we

discuss, in a particular context where the threats turn out to be “fixed” in

equilibrium, a general connection of the PC solution with the Shapley value
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in the TU case. In Sections 6 and 7 we reexamine the concept of c-games

(in particular the standard class of exchange economies) as candidates for

the sort of simplification that would allow the factorization of bargaining

analysis through a coalitional form (deducible from the fundamentals of the

game). We discover an important difference between TU games—for which

the simplification is possible (see Section 6)—and general NTU games—for

which it is not. We show the latter in Section 7 by means of an example

related to the transfer paradoxes of general equilibrium theory.

2 The Model

The basic data is an N -person game in strategic form G = (N, (Ai)i∈N , (ui)i∈N),

where N is a finite set of players, and each player i ∈ N has a finite set of ac-

tions Ai and a payoff function ui : A → R, with A :=
∏

i∈N Ai. A mixed action

of player i is xi ∈ ∆(Ai), where ∆(Ai) = {(xi(ai) ∈ RAi

+ :
∑

ai∈Ai xi(ai) = 1}

is the probability simplex on Ai.

For each set of players S ⊂ N (a coalition), let AS :=
∏

i∈S Ai denote

the set of pure action combinations of the members of S. A correlated action

of S is zS ∈ ∆(AS), a probability distribution on pure action combinations

of S. The payoff functions are as usual multilinearly extended to mixed and

correlated actions.

2.1 The Proposer-Commitment (PC) Procedure

We now introduce the basic bargaining procedure.

Let 0 ≤ ρ < 1 be a fixed parameter; think of ρ as the probability of

“repeat.” The bargaining proceeds in rounds. In each round there is a set

S ⊂ N of “active” players, the actions of each “inactive” player j /∈ S being

fixed at some bj ∈ Aj; put bN\S = (bj)j∈N\S. We will refer to ω = (S, bN\S)

as a state. Initially, everyone is active, i.e., S = N (and so the starting state

is (N, ·)). Each round, with state ω = (S, bN\S), proceeds as follows.

1. A “proposer” k ∈ S is selected out of S at random, with all members

of S being equally likely to be selected.
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2. The proposer k chooses a pair (zS, xk), where zS ∈ ∆(AS) is a corre-

lated action of S and xk ∈ ∆(Ak) is a mixed action of player k; think

of zS as a “proposed agreement” for S, and of xk as a “threat.”

3. Each player in S is asked, in some order (deterministic or random),

whether he accepts or rejects the proposed agreement zS.

4. If they all agree to zS, then the procedure ends as follows: a joint action

aS ∈ AS is selected according to the distribution zS, and the N -tuple

of actions (aS, bN\S) ∈ A is played in the original strategic game G.

5. If at least one player in S rejects zS, then with probability ρ the state

does not change (it remains ω=(S, bN\S); we call this “repeat”), and

with probability 1 − ρ the rejected proposer k becomes inactive.

6. If the rejected proposer becomes inactive, then the randomization xk is

performed; let bk ∈ Ak be its realization. The action of player k is fixed

from now on at bk ∈ Ak, and the new state is ω′ = (S\{k}, (bN\S, bk)):

the set of active players is S\{k} and the actions of the inactive players

are (bN\S, bk).

7. A new round is started (i.e., one goes back to step 1), with the state

being the same ω in case of repeat, and ω′ as in step 6 otherwise.

2.2 Outcomes and Equilibria

We are interested in the (subgame-)perfect equilibria of the PC procedure that

are, in addition, as simple as possible, i.e., stationary. This means that the

decisions of the players depend only on the payoff-relevant variables, not on

the history nor on the calendar time. Formally, for each state ω = (S, bN\S)

and proposer k ∈ S, the announcement (zS, xk) of player k depends only

on S, bN\S, and k, and the decision of each player i ∈ S\k to accept or

reject depends only on S, bN\S, k, zS, xk, and i. Stationary subgame-perfect

equilibria will be called SP equilibria for short.
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For simplicity, we will assume that each player uses the tie-breaking rule

of accepting a proposal when accepting it and rejecting it give him the same

expected payoff.

The play of the PC procedure ends with probability one (since ρ < 1); its

end result is an N -tuple of actions a ∈ A in the original game G (see step 4

in the PC procedure), which we call the final N -tuple of actions. This final

a is random: it depends on the randomizations of nature (e.g., selecting the

proposers and repeating or not after rejection) and of the players themselves.

Fix an N -tuple of stationary strategies σ = (σi)i∈N .

For each state ω = (S, bN\S), let αω ∈ ∆(A) denote the probability dis-

tribution of the final N -tuple of actions in the subgame starting from state

ω. Since the actions of the players outside S are fixed at bN\S, the random-

ness affects only the actions of the players in S, and so αω = ζS
ω × {bN\S}

for some ζS
ω ∈ ∆(AS). We refer to ζS

ω as the outcome of state ω. Similarly,

ζS
ω,k ∈ ∆(AS) denotes the probability distribution of the final actions of S

after k ∈ S has been selected as proposer; we call it the outcome of state

ω = (S, bN\S) and proposer k. Since the proposer is equally likely to be any

member of S, we have1

ζS
ω =

1

|S|

∑

k∈S

ζS
ω,k (1)

for every state ω = (S, bN\S). The collection of outcomes ζS
ω and ζS

ω,k for all

possible states and proposers (i.e., ω = (S, bN\S) for S ⊂ N, bN\S ∈ AN\S,

and k ∈ S) will be called an outcome configuration (obtained from σ) and

will be denoted ζ.

For every k ∈ S and every bk ∈ Ak, let (ω||bk) := (S\k, (bN\S, bk)) denote

the state obtained from ω when k becomes inactive and his action is fixed at

bk; for every xk ∈ ∆(Ak) let

ηS
ω,k(x

k) :=
∑

bk∈Ak

xk(bk)
(

ζ
S\k

(ω||bk)
× {bk}

)

∈ ∆(AS) (2)

be the expected outcome for S following the implementation of the threat

1For a finite set Z, we denote by |Z| the number of elements of Z.
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xk. We will say that an announcement (zS, xk) ∈ ∆(AS)×∆(Ak) of player k

is “acceptable” if, when the continuation is according to ζ, each responder’s

payoff from accepting zS is no less than his payoff from rejecting it, i.e.,

ui(zS, bN\S) ≥ ρui(ζS
ω, bN\S) + (1 − ρ) ui(ηS

ω,k(x
k), bN\S) (3)

for every i ∈ S\k (recall that after rejection with probability ρ the state re-

mains ω and with probability 1−ρ player k becomes inactive and his threat is

implemented). Let Y ≡ Yω,k(ζ) denote the set of acceptable announcements

of k :

Y := {(zS, xk) ∈ ∆(AS) × ∆(Ak) : (3) holds for every i ∈ S\k},

and let Y ∗ ≡ Y ∗
ω,k(ζ) be the set of those acceptable announcements that

maximize the payoff of the proposer2 k:

Y ∗ := arg max
(zS ,xk)∈Y

uk(zS, bN\S).

Finally, denote by Z ≡ Zω,k(ζ) and Z∗ ≡ Z∗
ω,k(ζ) the projections of the sets

Y and Y ∗, respectively, on the zS-coordinate:

Z := {zS ∈ ∆(AS) : (zS, xk) ∈ Y for some xk ∈ ∆(Ak)};

Z∗ := {zS ∈ ∆(AS) : (zS, xk) ∈ Y ∗ for some xk ∈ ∆(Ak)}.

We claim that the SP equilibrium conditions on the outcome configuration

ζ can be stated as

ζS
ω,k ∈ Z∗

ω,k(ζ) (4)

for every state ω = (S, bN\S) and k ∈ S. Note that (4) is a fixed-point-type

condition.

Proposition 1 An outcome configuration ζ is obtained from an SP equilib-

rium of the PC procedure if and only if ζ satisfies condition (4) for all states

ω = (S, bN\S) and k ∈ S.

2We write arg max for the set of maximizers.
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Proof. Let ζ satisfy the conditions (4). Define an N -tuple of strategies σ

as follows: in state ω = (S, bN\S), when k ∈ S is the proposer he announces

an element (z̃S, x̃k) ∈ Y ∗
ω,k with z̃S = ζS

ω,k, and when i ∈ S is a responder

he accepts a proposal zS if and only if (3) holds. It is straightforward to

verify (using a “one-deviation property” as in, e.g., Osborne and Rubinstein,

1994, Lemma 98.2) that σ constitutes an SP equilibrium, and its outcome

configuration is precisely the given ζ.

Conversely, let σ be an SP equilibrium with outcome configuration ζ.

Take a state ω = (S, bN\S) and a proposer k ∈ S, and consider a single devia-

tion from σ, at this point only, by player k. We claim that the set of outcomes

that k can induce is precisely Z ≡ Zω,k(ζ). Indeed, an announcement (zS, xk)

yields acceptance by all players in S\k if and only if conditions (3) hold, i.e.,

if and only if (zS, xk) ∈ Y (by the equilibrium requirement when there is

strict inequality, and by the tie-breaking rule when there is equality). When

(zS, xk) is rejected the continuation outcome is z̄S := ρζS
ω + (1 − ρ) ηS

ω,k(x
k),

and here too we have (z̄S, xk) ∈ Y (conditions (3) hold as equalities). There-

fore we have shown that Z, the projection of Y on the zS-coordinate, is in-

deed the set of all possible outcomes that k can induce at this point (whether

there is acceptance or rejection). But k maximizes his payoff (since σ is an

equilibrium), from which condition (4) follows. ¤

We note two simple but useful facts. For every state ω = (S, bN\S) let3

C(ω) := {uS(zS, bN\S) ∈ RS : zS ∈ ∆(AS)}

be the set of feasible payoff vectors for the coalition S at ω (i.e., given the

fixed actions bN\S ∈ AN\S of the players outside S).

Lemma 2 Let σ be an SP equilibrium with outcome configuration ζ. For

every state ω = (S, bN\S) and k ∈ S:

(i) Yω,k(ζ) is a nonempty polytope; and

3We write uS(z) for the payoff vector (ui(z))i∈S ∈ RS .

8



(ii) there does not exist c ∈ C(ω) such that c ≥ uS(ζS
ω,k) with strict inequality

ck > uk(ζS
ω,k) in the k-th coordinate.4

Proof. (i) The set Y is nonempty since for every xk ∈ ∆(Ak) we have

(z̄S, xk) ∈ Y, where z̄S := ρζS
ω + (1 − ρ) ηS

ω,k(x
k) (conditions (3) hold as

equalities). It is a convex polytope since it is defined by the finitely many

inequalities (3) that are linear in zS and xk (the outcomes ζS and ζS\k are

fixed).

(ii) Assume there is zS ∈ ∆(AS) such that c = uS(zS, bN\S) ∈ C(ω)

satisfies c ≥ uS(ζS
ω,k) and ck > uk(ζS

ω,k). Replacing ζS
ω,k by zS preserves the

inequalities (3): indeed, the left-hand side increases by δ := ci−ui(ζS
ω,k) ≥ 0,

whereas the right-hand side increases by less than δ, specifically (ρ/|S|)δ;

see (1). Therefore (zS, xk) ∈ Y is also an acceptable announcement (with

the threat xk unchanged), but the payoff of k is strictly higher there, which

contradicts (4). ¤

3 General Results

In this section we prove two general results of a standard type. First, we show

that SP equilibria exist; and second, that as the probability of repeat gets

close to 1—that is, as the “cost of delay” goes to zero—the SP equilibrium

outcomes approach Pareto efficiency.

3.1 Existence

Proposition 3 There exists an SP equilibrium.

Proof. We proceed by induction on S. For |S| = 1, say S = {i}, the strategy

of player i in state ({i}, bN\i) consists of choosing zi ∈ arg maxxi∈∆(Ai) ui(xi, bN\i).

Let the state be ω = (S, bN\S), and assume that equilibrium strategies and

outcomes have been determined for all states ω′ = (S
′
, bN\S′

) with S ′ ( S.

4This implies that uS(ζS
ω,k) is weakly Pareto efficient in C(ω).
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For each c ∈ C(ω) (the set of feasible payoff vectors for S) and k ∈ K, let

Φk(c) := {(zS, xk) ∈ ∆(AS) × ∆(Ak) :

ui(zS, bN\S) − (1 − ρ)ui(ηS
ω,k(x

k)) ≥ ρci for all i ∈ S\k},

where ηS
ω,k(x

k) is defined in (2) (based on the ζ
S\k

(ω||bk)
, which have already been

determined by induction). The set Φk(c) is nonempty (take zS ∈ ∆(AS) with

uS(zS, bN\S) = c; then (z̃S, xk) ∈ Φk(c) where z̃S = ρzS +(1−ρ)ηS
ω,k(x

k)) and

is a convex polytope (note that ηS
ω,k(x

k) is linear in xk); the correspondence

Φk is continuous on C(ω) (by Lemma 4 below). Therefore

Φ∗
k(c) := arg max

(zS ,xk)∈Φk(c)
uk(zS, bN\S)

is a nonempty, convex-valued, and upper-semicontinuous correspondence (the

latter by the Maximum Theorem since uk is linear and thus continuous, and

Φk is a continuous correspondence; see, e.g. Hildenbrand 1974, Corollary to

Theorem B.III.4). Hence the same holds for the correspondences Ψk and Ψ,

defined by

Ψk(c) := {uS(zS, bN\S) : (zS, xk) ∈ Φ∗
k(c)} and

Ψ(c) :=
1

|S|

∑

k∈S

Ψk(c).

We can therefore apply Kakutani’s Fixed-point Theorem (see, e.g., Hilden-

brand 1974, C.III (14)) to the correspondence Ψ (with domain C(ω)), to

obtain c̄ ∈ C(ω) with c̄ ∈ Ψ(c̄). This yields, in turn, c̄k ∈ Ψk(c̄) with

c̄ = (1/|S|)
∑

k∈S c̄k, and (z̄S, x̄k) ∈ Φ∗
k(c̄). It is immediate to verify that

the announcements (z̄S, x̄k) for all k ∈ S constitute equilibrium announce-

ments in state ω. This completes the induction step, and thus proves our

claim. ¤

Remark. When ρ = 0 there is no need to use a fixed-point theorem to

prove existence: the SP equilibria can be computed recursively, starting with

singleton S.
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In the proof we have used the following:

Lemma 4 Let D be an m × n matrix and put F (w) := {x ∈ Rn : Dx ≥ w}

for every w ∈ Rm. Then F is a continuous correspondence on W := {w ∈

Rm : F (w) 6= ∅}.

Proof. Upper-semicontinuity is immediate. For lower-semicontinuity, let

x0 ∈ Rn satisfy Dx0 ≥ w0, and let wr → w0 with wr ∈ W for all r; we have

to show that for every r there is xr with Dxr ≥ wr. It suffices to consider the

case where only one coordinate of w0 changes, say, wr = w0 + (δr, 0, ..., 0).

If δr → 0−, then take xr = x0. If δr → 0+, then let x1 satisfy Dx1 ≥ w1

(recall that w1 ∈ W ), and then xr := (1 − δr/δ1)x0 + (δr/δ1)x1 satisfies

Dxr ≥ w0 + (δr, 0, ..., 0) = wr. ¤

3.2 Pareto Efficiency

In equilibrium, every individual proposal ζS
ω,k is (weakly) Pareto efficient (see

Lemma 2 (ii)). Therefore the outcomes ζS
ω may fail to be efficient only if the

Pareto-efficient boundary is not a hyperplane and the individual proposals

of different proposers are different (see (1)). However, if ρ is close to 1—

i.e., the “cost of delay” is small—then the early-proposer’s advantage will

be small, and so the individual proposals will be similar and their average

almost Pareto efficient.

To see this, let ζ(ρ) be an SP equilibrium outcome for the PC bargaining

procedure with parameter ρ—we will refer to it as the PC “ρ-procedure.”

Consider a limit point ζ̄ of ζ(ρ) as ρ → 1 (i.e., there is a sequence ρm → 1

such that ζ(ρm) → ζ̄ as m → ∞). Then:

Theorem 5 Let ζ̄ = (ζ̄
S

ω)ω be a limit point as ρ → 1 of SP equilibrium

outcomes ζ(ρ) = (ζS
ω(ρ))ω of the PC ρ-procedures. Then for every state ω =

(S, bN\S) the limit outcome ζ̄
S

ω in state ω is Pareto efficient for S given bN\S.

Proof. Assume for simplicity that ζ(ρ) → ζ̄ as ρ → 1 (otherwise restrict

the arguments to the sequence ρm with ζ(ρm) → ζ̄). Put gω,k ≡ gω,k(ρ) :=

uS(ζS
ω,k(ρ), bN\S), gω ≡ gω(ρ) := uS(ζS

ω(ρ), bN\S), and ḡω := uS(ζ̄
S

ω, bN\S) for
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all k ∈ S; thus gω → ḡω as ρ → 1. Let M be a bound on all possible payoffs

of all players; for each ρ we have

gi
ω,k ≥ ρgi

ω + (1 − ρ)ui(ηS
ω,k(x

k), bN\S) ≥ gi
ω − (1 − ρ)2M (5)

(for i 6= k it follows from (4), the definition of Y, and (3); for i = k, from

(4) together with (z̃S, xk) ∈ Y for z̃S := ρζS
ω + (1 − ρ) ηS

ω,k(x
k)). Now gi

ω =

(1/|S|)
∑

k∈S gi
ω,k by (1), and so adding the inequalities (5) for all k except

some k0 ∈ S (keep i fixed) yields

|S|gi
ω − gi

ω,k0
≥ (|S| − 1)(gi

ω − (1 − ρ)2M),

or

gi
ω,k0

≤ gi
ω + (1 − ρ)(|S| − 1)2M ≤ gi

ω + (1 − ρ)2M |N |

for all k0 ∈ S. Thus

−(1 − ρ)2M ≤ gi
ω,k − gi

ω ≤ (1 − ρ)2M |N |

(replace k0 by k to get the second inequality, and recall (5) for the first);

hence, as ρ → 1, we get gi
ω,k − gi

ω → 0, which, since gi
ω → ḡi

ω, implies that

gi
ω,k → ḡi

ω for all i, k ∈ S.

If ḡω is not Pareto efficient in C(ω), then there exist k ∈ S and c ∈ C(ω)

such that c ≥ ḡω, with strict inequality in the k-th coordinate. Then c(ρ) :=

gω,k(ρ) + (1/2)(c − ḡω) satisfies c(ρ) ≥ gω,k(ρ), with strict inequality in the

k-th coordinate; also, for ρ close enough to 1, we have c(ρ) ∈ C (use the fact

that C is determined by finitely many linear inequalities and gω,k(ρ) → ḡω).

But this contradicts Lemma 2 (ii). ¤

4 Two Reference Cases: Two Players and

Transferable Utility

In this section we spell out the nature of our solution for two simple and

classical cases.
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4.1 Two-Person Games

The SP equilibria of the PC procedure relate very directly to the Nash bar-

gaining solution for the case of two players (cf. Hart and Mas-Colell 1996a;

see also Houba and Bolt, 2002, for more on two-person bargaining games).

Given a two-person game G with N = {1, 2}, for each player i ∈ N let qi

be the payoff level that the other player j 6= i can hold i to, by using pure

strategies; i.e.,

qi := min
aj∈Aj

max
ai∈Ai

ui(ai, aj).

Let

D := {uN(z) : z ∈ ∆(A)} = co {(u1(a), u2(a)) : a ∈ A}

be the set of feasible payoff vectors. (D, q) is called a two-person pure bar-

gaining problem, where D is the set of “feasible agreements” and q the “dis-

agreement point,” if q ∈ D and there exists d ∈ D such that d1 > q1 and

d2 > q2 (see Nash 1950).

Proposition 6 Let G be a two-person strategic game such that (D, q) is a

pure bargaining problem. If ζ̄
N

is a limit point as ρ → 1 of SP equilibrium

outcomes, then uN(ζ̄
N

) is the Nash bargaining solution of (D, q).

Proof. ζ̄
N

is Pareto efficient by Theorem 5. If the Pareto boundary ∂+D of

D contains only uN(ζ̄
N

) then we are done, since the Nash solution is Pareto

efficient. If not, assume first that uN(ζ̄
N

) is an interior point of ∂+D. Let

ω = (N, ·) be the starting state; since uN(ζN
ω,1(ρ) is weakly Pareto efficient

and it converges to uN(ζ̄
N

), it follows that uN(ζN
ω,1(ρ)) ∈ ∂+D for all ρ

close enough to 1. For every b1 ∈ A1, the payoff that player 2 gets in the

state ({2}, b1) is v2(b1) := maxa2∈A2 u2(a2, b1), and so condition (4) says that

u1(ζN
ω,1(ρ)) maximizes u1(zN) subject to u2(zN) ≥ ρu2(ζN(ρ))+(1−ρ)v2(b1).

Therefore any b1 ∈ A1 that has positive probability in the threat x1 ∈ ∆(A1)

that is used by player 1 must make v2(b1) as small as possible (here we use

the Pareto efficiency of uN(ζN
ω,1(ρ)) ∈ ∂+D); but minb1∈A1 v2(b1) = q2, and

so u1(ζN
ω,1(ρ)) maximizes u1(zN) subject to u2(zN) = ρu2(ζN(ρ)) + (1− ρ)q2.

A similar argument applies when we interchange the two players; from this
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it follows by standard arguments that the limit uN(ζ̄
N

) of uN(ζN(ρ)) as

ρ → 1 is precisely the Nash bargaining solution of (D, q); see for example

Hart and Mas-Colell (1996a, Theorem 3). Finally, if uN(ζ̄
N

) is an extreme

point of ∂+D—it minimizes, say, player 1’s payoff and maximizes player 2’s

payoff on ∂+D—then the above argument applies only to ζN
ω,1(ρ); for ζN

ω,2(ρ)

we get some q̂1(ρ) ≥ q1 such that u2(ζN
ω,2(ρ)) maximizes u2(zN) subject to

u1(zN) = ρu1(ζN(ρ))+(1−ρ)q̂1(ρ). Therefore uN(ζ̄
N

) is the Nash bargaining

solution of (D, (q̂1, q2)) where q̂1 ≥ q1 is a limit point of q̂1(ρ) as ρ → 1; given

that uN(ζ̄
N

) is that extreme point of ∂+D where player 1’s payoff is minimal,

it easily follows that uN(ζ̄
N

) is also the solution of (D, q). ¤

Remark. One could well have q /∈ D; for example, in the “matching-

pennies” game, D is the line segment connecting (1,−1) and (−1, 1), and

q = (1, 1). In this case we have a “reverse pure bargaining problem” and

uN(ζ̄
N

) is its solution (see the discussion in Section 4 of Hart and Mas-Colell

1996a; uN(ζ̄
N

) in this example is (0, 0)).

4.2 Transferable Utility

Given the game G, the individual rational level in pure actions of player i is

ri := max
ai∈Ai

min
aN\i∈AN\i

ui(ai, aN\i) = max
ai∈Ai

min
zN\i∈∆(AN\i)

ui(ai, zN\i);

this is the maximum that i can guarantee by using pure strategies. The payoff

of player i in any equilibrium of the PC procedure will always be at least ri

(the following strategy σi guarantees ri: when i is the proposer his threat is

some ai ∈ Ai where the max is attained (i.e., minaN\i∈AN\i ui(ai, aN\i) = ri

holds), and when he is the responder he never accepts any payoff less than5

ri). Thus, only payoff vectors c = (ci)i∈N that are individually rational—i.e.,

ci ≥ ri for each i—matter.

We say that the game G is a strategic game with transferable utility (a

5The intuitive reason why ri is based on pure actions of i (rather than mixed ones) is
that if i’s proposal is rejected then the randomization in his threat xi ∈ ∆(Ai) is realized,
and from then on i is fixed at a pure action that is known to everyone.
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“strategic TU game” for short) if for every state ω = (S, bN\S), i.e., for

every S ⊂ N and bN\S ∈ AN\S, there exists a number v(ω) ≡ v(S, bN\S)

such that every Pareto efficient and individually rational payoff vector c in

C(ω) := {uS(zS, bN\S) : zS ∈ ∆(AS)} satisfies

∑

i∈S

ci = v(ω) ≡ v(S, bN\S). (6)

If G is a strategic TU game, then the SP equilibria of the PC procedure

become relatively simple to determine. In particular, no fixed point is needed

and the computation is not recursive, as the threats can be determined in-

dependently for each coalition S.

For every state ω = (S, bN\S), proposer k ∈ S, and mixed action xk ∈

∆(Ak), extend the definition of v(·) to mixed actions:

v(S\k, (bN\S, xk)) :=
∑

bk∈Ak

xk(bk) v(S\k, (bN\S, bk)),

and define

τω,k := min
xk∈Ak

v(S\k, (bN\S, xk)) = min
bk∈Ak

v(S\k, (bN\S, bk)); and (7)

Xk
ω := arg min

xk∈Ak
v(S\k, (bN\S, xk)) (8)

(note that Xk
ω consists of all pure actions bk ∈ Ak that are minimizers of

v(S\k, (bN\S, bk)), along with all their probabilistic mixtures). Finally, put

Dkv(ω) := v(ω) − τω,k = v(S, bN\S) − min
bk∈Ak

v(S\k, (bN\S, bk)); (9)

this is the “marginal contribution” of player k ∈ S in state ω = (S, bN\S).

A threat configuration x = (xk
ω)ω,k is a collection of mixed actions xk

ω ∈

∆(Ak) for every state ω = (S, bN\S) and every k ∈ S; every N -tuple of

stationary pure strategies σ generates such an x: take the second coordi-

nate of the announcements (in state ω a proposer k announces (ζS
ω,k, x

k
ω) ∈

∆(AS) × ∆(Ak)).

Next, let Π be the set of all |N |! orders of the players. For each order π =
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(i1, i2, ..., iN ) ∈ Π and threat configuration x define a probability distribution

Qπ ≡ Qx

π on A as follows:

Qπ(b) :=
N
∏

m=1

xim
ωm

(bim) (10)

for every b ∈ A, where, for each m = 1, 2, ..., N, we put Sm := {im, im+1, ..., iN},

bN\Sm := (bi1 , bi2 , ..., bim−1), and ωm := (Sm, bN\Sm). Taking the order π ∈ Π

to be random, with all |N |! orders equally likely, yields a joint probability

distribution Q ≡ Qx on Π × A:

Q(π, b) :=
1

N !
Qπ(b) (11)

for every π ∈ Π and b ∈ A. For each (π, b) ∈ Π × A and player i ∈ N,

let P i
π denote the set of predecessors of i in the order π, and let ωi

π,b =

(N\P i
π, bP i

π) be the state where each predecessor j ∈ P i
π has his action fixed

at the corresponding bj.

Finally, let

φi := E
[

Div(ωi
π,b)

]

(12)

be the “expected marginal contribution” of player i to his predecessors, where

E denotes expectation with respect to the distribution Qx on Π×A, and ωi
π,b

is the state determined as above.

Proposition 7 Let G be a strategic TU game with associated function v.

If σ is an SP equilibrium of the PC ρ-procedure, then the resulting threat

configuration x = (xk
ω)ω,k satisfies xk

ω ∈ Xω,k for every ω and k (see (7) and

(8)). Conversely, for each x = (xk
ω)ω,k satisfying xk

ω ∈ Xω,k for every ω and

k, there exists an SP equilibrium σ with this threat configuration. Moreover,

the payoff of each player i ∈ N in that equilibrium σ equals φi of formula

(12), where the probability distribution Q ≡ Qx is determined by the collection

x = (xk
ω)ω,k according to (10) and (11).

Remarks. (1) The threats xk
ω and the payoffs do not depend on ρ. Moreover,

the determination of any set Xk
ω can be done independently of any other such
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set. This holds here, in the TU case, but not in general, where optimal threats

are determined recursively (i.e., one needs to determine first the optimal

threats and proposals at all states that correspond to the subgames of ω).

(2) In every state, the payoffs and proposals are determined in the same

way, by considering only the appropriate subgame.

Proof of Proposition 7. Let σ be an SP equilibrium. For each ω =

(S, bN\S) and k ∈ S, let gω := uS(ζS
ω, bN\S) and gω,k := uS(ζS

ω,k, b
N\S); since

gω,k is individually rational and Pareto efficient in C(ω) (recall Lemma 2

(ii)), (6) implies that
∑

i∈S

gi
ω,k = v(ω). (13)

Therefore, by (1), the same holds for gω:

∑

i∈S

gi
ω = v(ω). (14)

Moreover, (6) implies that maximizing the k-th coordinate gk
ω,k is equivalent

to minimizing all the other coordinates gi
ω,k, and so conditions (3) are satisfied

as equalities, i.e., for every i ∈ S\k,

gi
ω,k = ρgi

ω + (1 − ρ)ui(ηS
ω,k(x

k
ω)). (15)

Summing this over i ∈ S\k yields

v(ω) − gk
ω,k = ρ(v(ω) − gk

ω) + (1 − ρ)t (16)

where

t :=
∑

bk∈Ak

xk
ω(bk)

∑

i∈S\k

ui(ζ
S\k

(ω||bk)
, (bN\S, bk))

=
∑

ak∈Ak

xk
ω(bk) v(S\k, (bN\S, bk)) (17)
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(we have used (14) for S\k). Rewrite (16) as

(1 − ρ)(v(ω) − t) = gk
ω,k − ρgk

ω (18)

=

(

1 −
ρ

|S|

)

gk
ω,k −

ρ

|S|

∑

j∈S\k

gk
ω,j.

Therefore, in order to maximize gk
ω,k (i.e., to satisfy (4)), one must minimize

t (the other terms are fixed here). But t depends only on the threat xk
ω (and

the given function v), and so t = τω,k and xk
ω ∈ Xk

ω; therefore (see (9) and

(18)):

gk
ω,k = ρgk

ω + (1 − ρ)Dkv(ω). (19)

Let

hk
ω,i := uk(ηS

ω,i(x
i
ω)) =

∑

bi∈Ai

xi
ω(bi) gk

(ω||bi) (20)

be the payoff of k when i 6= k becomes inactive and his threat xi
ω is imple-

mented; then (by (15), interchanging i and k):

gk
ω,i = ρgk

ω + (1 − ρ)hk
ω,i.

Adding this over all i 6= k together with equation (19) yields |S|gk
ω = ρ|S|gk

ω+

(1 − ρ)
(

Dkv(ω) +
∑

i∈S\k hk
ω,i

)

, or

gk
ω =

1

|S|



Dkv(ω) +
∑

i∈S\k

hk
ω,i



 . (21)

Substituting (20) yields recursively formula (12). ¤

At this point it is useful to analyze a simple example.

Example. Let N = {1, 2, 3}, and for each i ∈ N put Ai = {0, 1} × N, with

generic element ai = (ci, di) where ci ∈ {0, 1} and di ∈ N. The payoffs are as

follows: ui(a) = ui
1(c)+ui

2(d), where: u3
1(c) = 1 when c1 = c2 and c3 = 1, and

u3
1(c) = 0 otherwise; ui

1 ≡ 0 for i = 1, 2; and ui
2(d) := |{j : dj = i}|−1. Thus,

according to the ui
1-part of the payoff functions ui, player 3 gets a payoff of
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1 when he chooses c3 = 1 and the ci-s of players 1 and 2 match; all other

payoffs are 0. The effect of the ui
2-part is to allow transfers and therefore to

make the game TU: dj = i means that player j transfers one unit to player

i (i.e., the payoff of i increases by 1, and that of j decreases by 1; note that

dj = j means that j makes no transfer).

Consider the PC procedure. The optimal threats are determined by (7);

this implies that there will never be any transfers (since this only increases

the worth of the remaining players after the proposer becomes inactive), and

so we will only specify the ci coordinate. Player 3 can always guarantee that

the remaining players get 0 (by using the threat c3 = 0). The only case where

his marginal contribution is not D3v(ω) = 1−0 = 1 is when the threats of the

players that became inactive before him made v equal to 0; this happens only

when 3 is last, and then the optimal threat of the second player to become

inactive, say player 2, is the opposite of that of player 1 (i.e., c2 = 1 − c1).

Therefore the SP equilibrium payoffs are (1/6, 1/6, 2/3).

It is interesting to compare this to the more familiar approaches. The

von Neumann–Morgenstern coalitional function is v(N) = 1, v(1, 3) = 1/2

(player 1 plays c1 = 0 and c1 = 1 with half-half probabilities—denote this

(1/2, 1/2)—and player 3 plays c3 = 1), v(2, 3) = 1/2, and v(S) = 0 otherwise.

The Shapley value of this v is (1/4, 1/4, 1/2).

When going to the Harsanyi coalitional function we get6 v(N) = 1, v(1) =

1/4, v(2, 3) = 3/4, v(2) = 1/4, v(1, 3) = 3/4, v(3) = 1/2, v(1, 2) = 1/2. This

is an inessential game, and its value is again (1/4, 1/4, 1/2).

Interestingly, the SP equilibrium payoffs (1/6, 1/6, 2/3) seem to reflect

better the underlying situation. The payoffs (1/4, 1/4, 1/2) are what one

would expect if {1, 2} acted as one player, and then split the payoff. But it

seems natural that the need to coordinate between 1 and 2 has some cost to

them, and the payoff vector (1/6, 1/6, 2/3) captures this better.

6Take for example {1} vs. {2, 3}. The optimal strategies are (1/2, 1/2) for 1, vs.
(1/2, 1/2) for 2 and c3 = 1 for 3, which give payoffs of 0 to {1} and 1/2 to {2, 3}. Therefore
v(1) = 0 + (1 − 0 − 1/2)/2 = 1/4 and v(23) = 1/2 + (1 − 0 − 1/2)/2 = 3/4.
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5 Equilibria with Fixed Threats

Threats are of the essence of the theory we are presenting in this paper. It is

because of the strategic linkage across coalitions captured by them that, for

example, we cannot in any general and meaningful sense factor our analysis

through the coalitional forms of standard cooperative game theory: there is

no “worth” of a coalition that is independent of the actions—the threats—of

the players outside the coalition.

This difficulty at the foundations of cooperative game theory has, of

course, been recognized for a long time. It has led, on the one hand, to the

development of extensions of the notion of coalitional form (perhaps the most

well known are the “games in partition form” of Thrall and Lucas, 1963; see

Myerson, 1977, Maskin, 2003, de Clippel and Serrano, 2005, Macho-Stadler,

Perez-Castrillo and Wettstein, 2007, for more recent work) and on the other

to the consideration of particular situations where the classical form could

be justified (for example the c-games of Shapley–Shubik, see Shubik, 1983,

p.130).

Nonetheless, the discussion of the previous section, and especially expres-

sion (12) for the computation of the SP equilibria, suggests a close connection

to the cooperative-game solutions related to the Shapley (1953) value. In this

section we shall throw some light on this connection.

It is certainly the case that along an equilibrium path only the particular

actions that may arise as threats matter. But even then the threat of a

proposer may depend on the current set of active players and on the threats

of the preceding proposers. Still, if the threats happen to be independent

of the previous history, we could indeed associate a coalitional form to the

particular equilibrium, and we could then analyze how the equilibrium payoffs

relate to the cooperative game theory solutions of the coalitional form. This

we shall now do.

Definition. Let G be a strategic game and σ an SP equilibrium of the PC

procedure. For every player k ∈ N let fk ∈ Ak be a pure action of k. We

say that σ has fixed threats (fk)k∈N if, with probability 1 (that is, along the

equilibrium path), whenever k is the proposer then the announced threat is

20



fk.

Observe that the definition does not put any restriction on threats off the

equilibrium path.

Next, given a strategic game G and an SP equilibrium σ with fixed threats

(fk)k∈N , we say that the NTU coalitional game (N, VG,σ) is derived from G

and σ if

VG,σ(S) = {c ∈ RS : c ≤ uS(zS, fN\S) for some zS ∈ ∆(AS)}

for every coalition S ⊂ N. We have:

Proposition 8 Let (N, VG,σ) be a game that is derived from the strategic

game G and the fixed-threat equilibrium σ. Suppose that (N, VG,σ) is a TU

game in the individually rational region.7 Then the payoffs induced by σ equal

the Shapley values of (N, VG,σ) and its subgames. Moreover, if ρ is close to

1, then the payoffs of the proposals made by the different players will also be

close to the Shapley values of (N, VG,σ).

Thus, when (N, VG,σ) is a TU coalitional game—let v ≡ vG,σ denote its

TU coalitional function—the outcome configuration ζ of σ satisfies ui(ζS
(S,fN\S)) =

Shi(S, vG,σ) for every i ∈ S ⊂ N ; moreover, as ρ → 1 we also have ui(ζS
(S,fN\S),k) =

Shi(S, vG,σ) for every i, k ∈ S ⊂ N.

Proof. Similar to the proof of Proposition 7; see in particular the explicit

computational formula there. Note that the fixed threats imply that what

a coalition can obtain is well defined, in the sense of not depending on the

order in which the inactive players have dropped out. ¤

Proposition 8 does show that in a very natural sense the solution concept

we develop in this paper, SP equilibrium of the PC procedure, is an extension

to a larger context of the Shapley value solution for TU coalitional form

games.

7I.e., for every S ⊂ N there is a real number v(S) such that c ∈ VG,σ(S) and ci ≥ ri

for all i ∈ S if and only if
∑

i∈S ci ≤ v(S).
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What happens in the general NTU case? One may conjecture, that, as in

Hart and Mas-Colell (1996a), as ρ approaches 1 the SP equilibrium payoffs

approach a Maschler–Owen (1992) consistent NTU value of (N, VG,σ). It is

not difficult to see that this is indeed the case if, for every S, the limit of the

SP equilibrium payoffs of S lies in a smooth piece of the efficient boundary

of8 VG,σ(S). Since this set is a convex polytope, the condition amounts to the

requirement that each limit lies in the interior of some (|S| − 1)-dimensional

face of the polytope. In particular, this will be automatically satisfied if

(N, VG,σ) is a hyperplane game (Maschler and Owen, 1989; of course only the

individually rational region matters, as in Proposition 8 for the TU case).

But a general analysis of the non-smooth case is needed.

6 Games with Damaging Actions

Are there classes of games in strategic form that, from the standpoint of

the PC procedure, lend themselves to being summarized by means of the

coalitional form of cooperative game theory? Presumably, these would be

concrete specifications of the c-games of Shapley–Shubik.

In this section we exhibit one such class of games by presenting a prop-

erty of strategic forms that, for TU games, implies the existence of an SP

equilibrium enjoying the fixed-threat property. The NTU case is discussed

in the next section.

It is reasonable to expect that the strategic linkage through threats is

bound to be simpler in situations where there is some form of “strategic

dominance” or “universality” in the threats used by players. This suggests

the following:

Definition. Given a game G, a player k ∈ N has a damaging action dk ∈ Ak

if ui(dk, aN\k) ≤ ui(a) for every action profile a ∈ A and every player i 6= k.

A game G is a d-game if every player k ∈ N has a damaging action.

8See Hart and Mas-Colell 1996a, Proof of Proposition 8 (with the correction
at http://www.ma.huji.ac.il/hart/abs/nbarg.html) for the reason for the smoothness
requirement.
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That is, a d-game is such that whatever the play is, if player k switches

his action to dk then the payoffs of all the other players decrease or stay the

same; it is a strong property. The next proposition shows that, indeed, the

“d” concept helps relate our approach to cooperative game theory.

Proposition 9 Let G be a strategic TU game. Suppose that G is a d-game.

Then there exists a fixed-threat SP equilibrium of the PC procedure where

each player i uses a damaging action as threat.

Proof. Let dk be a damaging action of player k. Recall (Proposition 7) that

at an SP equilibrium of a strategic TU game a proposer k chooses a threat

xk ∈ ∆(Ak) at state ω = (S, bN\S) so as to minimize v(S\k, (bN\S, xk)), the

sum of the payoffs of the remaining players if the proposer becomes inactive.

Obviously, the pure threat dk will do the job for k, at any state. ¤

7 Market Games Are Not c-Games

Propositions 8 and 9 highlight in a clear way the relationship between the

bargaining theory we develop in this paper and classical cooperative game

theory: if threats are “self-evident” then they can be taken as fixed threats,

a coalitional form emerges in the obvious manner, and the analysis can pro-

ceed by taking the coalitional form as the basic datum and appealing to the

extensive and rich theory of cooperative games. But Proposition 9 was stated

for the TU case. In this section we shall see by means of an example that

the result is no longer true for the general NTU situation and that this is so

for entirely non-pathological reasons, that is, for reasons that seem inherent

in the nature of strategic bargaining among the many. It is therefore very

questionable whether, even under the strong hypothesis of the players having

damaging actions, bargaining theory in the strategic form can justifiably be

factored through cooperative game theory (except in the TU case).

The example will be built over a pure exchange economy satisfying the

standard conditions (no externalities, concavity, and monotonicity of pref-

erences, etc.). We choose this framework because exchange economies have
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been thought to be the paradigmatic cases of c-games (“c” stands for “con-

sent”), i.e., the sort of games where the self-evident coalitional form was fully

adequate (in the interesting discussion of Shubik, 1983, p. 131, it is said “in

economic theory, games satisfying the consent condition arise in many places,

most notably in models of pure competition without externalities”). We shall

see in the example below that the obvious damaging threat of never sharing

your endowment is not always the optimal threat! The phenomenon is related

to the well-known transfer and endowments paradoxes of general equilibrium

theory (see, for example, Postlewaite, 1979; also, Mas-Colell, 1976), but we

should emphasize that here these emerge internally to the theory, i.e., within

well-specified rules of a game.

Example. An exchange economy with 4 commodities and 3 traders. Let

the commodities be b, c, f, g, and the traders, 1, 2, 3. The initial endowments

are

e1 = (0, 0, 1, 1),

e2 = (0, 1, 0, 0),

e3 = (1, 0, 0, 0),

and the utility functions are

u1(b, c, f, g) = b,

u2(b, c, f, g) = b + c − 1,

u3(b, c, f, g) =
1

2
c + max

b′+b′′=b

b′,b′′≥0

{

1

2
min{b′, f} + min{b′′, g}

}

.

The goods b and c are mediums of exchange (“money”); player 2 has a

“technology” which takes b as input and transforms it into “utils” subject to

capacity constraints determined by f and g, where the productivity through

g is twice as high as the one though f.

We make the exchange economy into a strategic game in a natural way,

as first formally suggested by Scarf (1971): each player i distributes his

endowment ei among the 3 players: ei =
∑3

j=1 di,j, where di,j ∈ R3
+ is the
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bundle transferred from i to j; the outcome (final holding) of player j is thus

hj =
∑3

i=1 di,j, and his payoff is wj = uj(hj).

Note that in this game every player has a damaging action: to keep all

his endowment for himself (i.e., di,i = ei). Suppose first that these are indeed

the threats; the resulting coalitional function is (in the individually rational

region, i.e., where all payoffs are nonnegative) a TU game for all coalitions

except {2, 3}. We get v(i) = 0 for all i, v(1, 2) = 0, and v(1, 3) = v(1, 2, 3) =

1. As for {2, 3}, the Pareto efficient boundary is on the line w2 + 2w3 = 1.

Computing the payoff vectors yields9 (0, 0, ·) for {1, 2}, (1/2, · , 1/2) for {1, 3},

and (· , 1/2, 1/4) for {2, 3}; extending them to efficient payoff vectors for the

grand coalition N = {1, 2, 3} and then averaging gives the final outcome of10

(1/4, 1/6, 7/12).

However, this does not yield an equilibrium, because player 1 has a better

threat when he is the proposer in the grand coalition, namely, to transfer his

unit of the f good to player 3. Notice that this threat does not change

the nonnegative attainable set for coalition {2, 3}, but player 3 now gets by

himself 1/2 rather than 0. The negotiating terms in coalition {2, 3} have been

altered, and the outcome of this coalition becomes (· , 0, 1/2); this implies that

player 1 can make a demand of 1/2 (instead of the 1/4 that he could ask for

when the threat was to keep his own resources). The outcome of the grand

coalition is now (1/3, 0, 2/3)—and so player 1’s payoff has increased from

1/4 to 1/3 by the above deviation. In a sense, by this action player 1 has

successfully manipulated in his favor the bargaining between 2 and 3 (note

that this could not happen in the TU case, because only the total payoff of

{2, 3} matters to 1).

So, what are the SP equilibria in this example? Since the efficient bound-

aries of the attainable sets for {1, 2, 3} and all coalitions except {2, 3} are

TU, keeping one’s endowment is optimal, except for player 1 in the grand

coalition. His threat in this case must minimize the sum of the payoffs of 2

and 3 in the subgame after 1 becomes inactive (since 1 gets the difference

between v(1, 2, 3) = 1 and that sum). Now this sum is at least 1/2, since

9A dot (·) is put for the coordinate of the missing player.
10See Hart (2004, Section 5) for a similar computation.
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the outcome (·, 0, 1/2) is always feasible for {2, 3} (even without any trans-

fers). By transferring 1 unit of good f to player 3, player 1 makes sure that

(·, 0, 1/2) is necessarily the outcome of {2, 3}—so this is the optimal threat

of player 1 in coalition {1, 2, 3}. Thus the unique SP equilibrium payoffs for

the grand coalition are (1/3, 0, 2/3) as seen above. Note in particular that

the unique optimal threat of 1 in {1, 3} is to keep his own endowment, and

so the SP equilibria11 do not have the fixed-threat property.12

In conclusion, strategic market games, a classical instance of the so-called

c-games, are not really c-games: one cannot simply define the coalitional

function as what a coalition can do with the total endowment of its members

(except in the TU case). Our point, however, is more general. In the example

above player 1, by using a suitable threat (which is not a damaging threat),

can alter—to his advantage—the relative bargaining powers of players 2 and

3 in the subsequent negotiation. In the general NTU case, where the spe-

cific subsequent agreement of a coalition of players matters to the proposer

(whereas in the TU case only the sum of payoffs matters to him), this is

bound to be pervasive.

From a different perspective, we can view the analysis just made as under-

lying the existence of a substantial theoretical gap between the TU and the

NTU situations. One cannot take for granted that the interesting phenom-

ena that may hold for the former will carry over to the latter (for a different

question—the equivalence principle—we made a similar point in Hart and

Mas-Colell, 1996b).

8 Extensions

We mention here a number of possible extensions, generalizations, and ques-

tions suggested by this study:

11While the SP equilibrium outcomes are unique, the strategies are not (for example,
player 1’s threat in coalition in coalition {1, 2} is arbitrary).

12The curious reader might wonder what are the Walrasian equilibrium payoffs in this
example. They are (0, 0, 1), which arise from zero prices for goods f and g, and a positive
price for b that is no more than twice the price for c.
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(a) The PC procedure may be modified in various ways. Two options

that appear interesting are:

(i) A threat xk ∈ ∆(Ak) is not realized immediately after a rejected

proposer k becomes inactive, but rather at the end of the procedure. Thus

a state consists of the set of active players S together with the fixed mixed

actions of the inactive players (xi)i∈N\S ∈
∏

i∈N\S ∆(Ai).

(ii) Dispose with the threats altogether and make the inactive players

lose their power to choose their actions; thus a proposal is now a zN ∈ ∆(AN),

but only the active players are asked to accept it.

(b) Propose and study bargaining procedures that correspond to the

Harsanyi N -person generalization of Nash’s two-person variable-threat game.

(c) Characterize situations where fixed threats and damaging actions ob-

tain.

(d) Characterize exchange economies where keeping one’s endowment is

an optimal threat, and study the connections to other solution concepts.
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