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1 Introduction

Many empirical studies with financial time series data indicate that the distribution

of asset returns is usually rather leptokurtic, even after controlling for volatility cluster-

ing effects. Nevertheless, the Gaussian pseudo-maximum likelihood (PML) estimators

advocated by Bollerslev and Wooldridge (1992) remain consistent for the conditional

mean and variance parameters in those circumstances, as long as both moments are

correctly specified. However, the normality assumption does not guarantee consistent

estimators of other features of the conditional distribution, such as its quantiles. This

is particularly true in the context of multiple financial assets, in which the probabil-

ity of the joint occurrence of several extreme events is regularly underestimated by the

multivariate normal distribution, especially in larger dimensions.

For most practical purposes, departures from normality can be attributed to two

different sources: excess kurtosis and skewness. In this sense, Fiorentini, Sentana and

Calzolari (2003) (FSC) discuss the use of the multivariate Student t distribution to model

excess kurtosis. Despite its attractiveness, though, the multivariate Student t, which is

a member of the elliptical family, rules out any potential asymmetries in the conditional

distribution of asset returns. Such a shortcoming is more problematic than it may

seem, because ML estimators based on incorrectly specified non-Gaussian distributions

may lead to inconsistent parameter estimates (see Newey and Steigerwald, 1997; and

Fiorentini and Sentana, 2007).

The main objective of our paper is to provide specification tests that assess the

adequacy of the multivariate Gaussian and Student t distributional assumptions. As

our alternative hypothesis, we consider a family of distributions that allow for both

excess kurtosis and asymmetries in the innovations, but which at the same time nest the

multivariate normal and Student t. Specifically, we will use the rather flexible Generalised

Hyperbolic (GH) distribution introduced by Barndorff-Nielsen (1977), which nests other

well known cases as well, such as the Hyperbolic, the Normal Gamma, the Normal

Inverse Gaussian, the Multivariate Laplace and their asymmetric generalisations, and

whose empirical relevance has already been widely documented in the literature (see e.g.

Madan and Milne, 1991; Chen, Härdle, and Jeong, 2004; Aas, Dimakos, and Haff, 2005;

or Cajigas and Urga, 2007).
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Our approach is related to Bera and Premaratne (2002), who also nest the Student

t by using Pearson’s type IV distribution in univariate static models. However, they do

not explain how to extend their approach to multivariate contexts, nor do they consider

dynamic models explicitly. Our choice also differs from Bauwens and Laurent (2005),

who introduce skewness by “stretching” the multivariate Student t distribution differ-

ently in different orthants. However, the implementation of their technique becomes

increasingly difficult in large dimensions, as the number of orthants is 2N , where N de-

notes the number of assets. Similarly, semi-parametric procedures, including Hermite

polynomial expansions, become infeasible for moderately large N , unless one maintains

the assumption of elliptical symmetry, and the same is true of copulae methods. In

contrast, given that the GH distribution can be understood as a location-scale mixture

of a multivariate Gaussian vector with a positive mixing variable that follows a Gen-

eralised Inverse Gaussian (GIG) distribution (see Jørgensen, 1982, and Johnson, Kotz,

and Balakrishnan, 1994 for details), the number of additional parameters that we have

to introduce simply grows linearly with the cross-sectional dimension. In addition, the

mixture of normals interpretation also makes the GH distribution analytically rather

tractable, as illustrated by Blæsild (1981) and Menćıa and Sentana (2008).

The rest of the paper is organised as follows. Section 2 describes the econometric

model and the GH distribution. We derive the normality tests in section 3, and the Stu-

dent t tests in section 4. Section 5 presents the results of our Monte Carlo experiments.

Finally, we include an empirical application in section 6, followed by our conclusions.

Proofs and auxiliary results can be found in the appendices.

2 The dynamic econometric model and the alterna-

tive hypothesis

Discrete time models for financial time series are usually characterised by an explicit

dynamic regression model with time-varying variances and covariances. Typically, the

N dependent variables in yt are assumed to be generated as

yt = µt(θ) + Σ
1
2
t (θ)ε∗t ,

µt(θ) = µ (zt, It−1; θ) ,
Σt(θ) = Σ (zt, It−1; θ) ,

 (1)
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where µ() and vech [Σ()] are N and N(N+1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, zt are k contemporaneous condi-

tioning variables, It−1 denotes the information set available at t − 1, which contains

past values of yt and zt, Σ
1/2
t (θ) is some N × N “square root” matrix such that

Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗t is a vector martingale difference sequence satisfying

E(ε∗t |zt, It−1; θ0) = 0 and V (ε∗t |zt, It−1; θ0) = IN . As a consequence, E(yt|zt, It−1; θ0) =

µt(θ0) and V (yt|zt, It−1; θ0) = Σt(θ0).

In practice, the multivariate Gaussian and Student t have been the two most popular

choices to model the distribution of the standardised innovations ε∗t . For the purposes

of conducting specification tests of those two distributions, we postulate that under the

alternative ε∗t is conditionally distributed as a GH random vector, which nests both

Normal and Student t as particular cases. In addition, it also includes other well known

and empirically relevant special cases, such as symmetric and asymmetric versions of the

Hyperbolic (Chen, Härdle, and Jeong, 2004), Normal Gamma (Madan and Milne, 1991),

Normal Inverse Gaussian (Aas, Dimakos, and Haff, 2005) and Laplace distributions

(Cajigas and Urga, 2007).

We can gain some intuition about the parameters of the GH distribution by consid-

ering its interpretation as a location-scale mixture of normals. If ε∗t is a GH vector, then

it can be expressed as

ε∗t = α + Υβξ−1
t + ξ

− 1
2

t Υ
1
2 rt, (2)

where α,β ∈ RN , Υ is a positive definite matrix of order N and rt ∼ iidN(0, IN). The

positive mixing variable ξt is an independent iid GIG with parameters −ν, γ and δ, or

ξt ∼ GIG (−ν, γ, δ) for short, where ν ∈ R, δ, γ ∈ R+. Since ε∗t given ξt is Gaussian

with conditional mean α+Υβξ−1
t and covariance matrix Υξ−1

t , it is clear that α and Υ

play the roles of location vector and dispersion matrix, respectively. There is a further

scale parameter, δ; two other scalars, ν and γ, to allow for flexible tail modelling; and

the vector β, which introduces skewness in this distribution.

Like any mixture of normals, though, the GH distribution does not allow for thinner

tails than the normal. Nevertheless, financial returns are typically leptokurtic in practice,

as section 6 confirms.

In order to ensure that the elements of ε∗t are uncorrelated with zero mean and unit

variance by construction, we consider the standardised version in Menćıa and Sentana
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(2008). Specifically, we set δ = 1, α = −c (β, ν, γ) β and

Υ =
γ

Rν (γ)

[
IN +

c (β, ν, γ)− 1

β′β
ββ′

]
, (3)

where

c (β, ν, γ) =
−1 +

√
1 + 4[Dν+1 (γ)− 1]β′β

2[Dν+1 (γ)− 1]β′β
, (4)

Rν (γ) = Kν+1 (γ) /Kν (γ), Dν+1 (γ) = Kν+2 (γ)Kν (γ) /K2
ν+1 (γ) and Kν (·) is the modi-

fied Bessel function of the third kind (see Abramowitz and Stegun, 1965, p. 374). Thus,

the distribution of ε∗t depends on two shape scalar parameters, ν and γ, and a vector

of N skewness parameters, denoted by β. Under this parametrisation, the Normal dis-

tribution can be achieved in three different ways: (i) when ν → −∞ or (ii) ν → +∞,

regardless of the values of γ and β; and (iii) when γ →∞ irrespective of the values of ν

and β. Analogously, the Student t is obtained when −∞ < ν < −2, γ = 0 and β = 0.

Importantly, given that ε∗t is not generally observable, the choice of “square root”

matrix is not irrelevant except in univariate GH models, or in multivariate GH models

in which either Σt(θ) is time-invariant or ε∗t is spherical (i.e. β = 0). As discussed by

Menćıa and Sentana (2008), though, if we parametrise β as a function of past information

and a new vector of parameters b in the following way:

βt(θ,b) = Σ
1
2
′

t (θ)b, (5)

then it is straightforward to see that the resulting distribution of yt conditional on It−1

will not depend on the choice of Σ
1
2
t (θ).1 Finally, it is analytically convenient to replace

ν and γ by η and ψ, where η = −.5ν−1 and ψ = (1 + γ)−1, although we continue to use

ν and γ in some equations for notational simplicity.2

3 Multivariate normality versus GH innovations

3.1 The score under Gaussianity

Let s′t(φ) = [s′θt(φ), sηt(φ), sψt(φ), s′bt(φ)] denote the score vector of the GH log-

likelihood function,3 where φ′ = (θ′, η, ψ,b′). As we mentioned before, we can achieve

1Nevertheless, it would be fairly easy to adapt all our subsequent expressions to the alternative
assumption that βt(θ,b) = b ∀t (see Menćıa, 2003).

2An undesirable aspect of this reparametrisation is that the log-likelihood is continuous but non-
differentiable with respect to η at η = 0, even though it is continuous and differentiable with respect to
ν for all values of ν. The problem is that at η = 0, we are pasting together the extremes ν → ±∞ into
a single point. Nevertheless, it is still worth working with η instead of ν when testing for normality.

3See Menćıa and Sentana (2008) for explicit expressions.
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normality in three different ways: (i) when η → 0+ or (ii) η → 0− regardless of the

values of b and ψ; and (iii) when ψ → 0+, irrespective of η and b. Therefore, it is not

surprising that the Gaussian scores with respect to η or ψ are 0 when these parameters

are not identified, and also, that lim
η·ψ→0

sbt(φ) = 0. Similarly, the limit of the score with

respect to the mean and variance parameters, limη·ψ→0 sθt(φ), coincides with the usual

Gaussian expressions (see e.g. Bollerslev and Wooldridge (1992)). Further, we can show

that for fixed ψ > 0,

lim
η→0+

sηt(φ) = − lim
η→0−

sηt(φ) =

[
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4

]
+b′ {εt(θ) [ςt(θ)− (N + 2)]} , (6)

where εt(θ) = yt − µt(θ), ε∗t (θ) = Σ
− 1

2
t εt(θ) and ςt(θ) = ε∗′t (θ)ε∗t (θ), which confirms

the non-differentiability of the log-likelihood function with respect to η at η = 0 (see

footnote 2). Finally, we can show that for η 6= 0, lim
ψ→0+

sψt(φ) is exactly one half of (6).

3.2 The conditional information matrix under Gaussianity

Again, we must study separately the three possible ways to achieve normality. First,

consider the conditional information matrix It(φ) when η → 0+,[
Iθθt (θ, 0+, ψ,b) Iθηt (θ, 0+, ψ,b)
I ′θηt (θ, 0+, ψ,b) Iηηt (θ, 0+, ψ,b)

]
= lim

η→0+
V

[
sθt (θ, η, ψ,b)
sηt (θ, η, ψ,b)

∣∣∣∣ zt, It−1; φ

]
,

where we have excluded the terms corresponding to b and ψ because both sbt(φ) and

sψt(φ) are identically zero in the limit. As expected, the conditional variance of the

component of the score corresponding to the conditional mean and variance parameters

θ coincides with the expression obtained by Bollerslev and Wooldridge (1992). Moreover,

we can show that

Proposition 1 The conditional information matrix of the GH distribution when η →
0+ is characterised by Iθηt (θ, 0

+, ψ,b) = 0 and Iηηt (θ, 0+, ψ,b) = (N + 2) [.5N +
b′Σt(θ)b].

Not surprisingly, these expressions reduce to the ones in FSC for b = 0.

Similarly, when η → 0− we will have exactly the same conditional information matrix

because limη→0− sηt (θ, η, ψ,b) = − limη→0+ sηt (θ, η, ψ,b), as we saw before.

Finally, when ψ → 0+, we must exclude sbt(φ) and sηt(φ) from the computation

of the information matrix for the same reasons as above. However, due to the propor-

tionality of the scores with respect to η and ψ under normality, it is trivial to see that

Iθψt (θ, η, 0,b) = 0, and that Iψψt (θ, η, 0+,b) = 1
4
Iηηt (θ, 0+, ψ,b) = 1

4
Iηηt (θ, 0−, ψ,b).
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3.3 Tests for fixed values of the underidentified parameters

The derivation of the Lagrange multiplier (LM) and Likelihood Ratio (LR) tests for

multivariate normality versus GH innovations is complicated by two unusual features.

First, since the GH distribution can approach the normal distribution along three dif-

ferent paths in the parameter space, i.e. η → 0+, η → 0− or ψ → 0+, the null hypothesis

can be posed in three different ways. In addition, some of the other parameters become

increasingly underidentified along each of those three paths. In particular, η and b are

not identified in the limit when ψ → 0+, while ψ and b are underidentified when η → 0±.

One standard solution in the literature to deal with testing situations with under-

identified parameters under the null involves fixing the underidentified parameters to

some arbitrary values, and then computing the appropriate test statistic for those given

values.

Let θ̃T denote the ML estimator of θ obtained by maximising the Gaussian log-

likelihood function. For the case in which normality is achieved as η → 0+, we can

use the results in sections 3.1 and 3.2 to show that for given values of ψ and b, the

LM test will be the usual quadratic form in the sample averages of the scores corre-

sponding to θ and η, s̄θT

(
θ̃T , 0

+, ψ,b
)

and s̄ηT
(
θ̃T , 0

+, ψ,b
)
, with weighting matrix the

inverse of the unconditional information matrix, which can be obtained as the uncondi-

tional expected value of the conditional information matrix in Proposition 1. But since

s̄θT

(
θ̃T , 0

+, ψ,b
)

= 0 by definition of θ̃T , and Iθηt (θ0, 0
+, ψ,b) = 0, we can show that

LM1

(
θ̃T , ψ,b

)
=

[√
T s̄ηT

(
θ̃T , 0

+, ψ,b
)]2

E[Iηηt (θ0, 0+, ψ,b)]
.

We can operate analogously for the other two limits, thereby obtaining the test

statistic LM2

(
θ̃T , ψ,b

)
for the null η → 0−, and LM3

(
θ̃T , η,b

)
for ψ → 0+. Somewhat

remarkably, all these test statistics share the same formula, which only depends on b.

Proposition 2 The LM Normality tests for fixed values of the underidentified parame-
ters can be expressed as:

LM1

(
θ̃T , ψ,b

)
= LM2

(
θ̃T , ψ,b

)
= LM3

(
θ̃T , η,b

)
= LM

(
θ̃T ,b

)
= (N + 2)−1

(
N

2
+ 2b′Σ̂b

)−1
{√

T

T

∑
t

[
1

4
ς2t (θ̃T )− N + 2

2
ςt(θ̃T ) +

N (N + 2)

4

]

+b′
√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}2

, (7)
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where Σ̂ is some consistent estimator of Σ(θ0) = E [Σt(θ0)], such as 1
T

∑
t

εt(θ̃T )ε′t(θ̃T ).

Under standard regularity conditions, LM
(
θ̃T ,b

)
will be asymptotically chi-square

with one degree of freedom for a given b under the null hypothesis of normality, which

effectively imposes the single restriction η · ψ = 0 on the parameter space. Importantly,

note that (7) is numerically invariant to the chosen factorisation of Σt(θ), as expected

from (5).

Perhaps not surprisingly, we can prove the following result for the corresponding LR

test:

Proposition 3 The LR Normality tests for fixed values of the unidentified parameters
b is asymptotically equivalent to the Kuhn-Tucker (KT) test

KT
(
θ̃T ,b

)
= 1(s̄ηT

(
θ̃T , 0,b

)
≥ 0) · LM

(
θ̃T ,b

)
, (8)

where 1(·) is the indicator function.

But since in large samples 1(s̄ηT
(
θ̃T , 0,b

)
≥ 0) will be 0 approximately half the time

under the null, the common asymptotic distribution of the LR and KT tests will be

a 50:50 mixture of 0 and a chi-square with one degree of freedom. Once again, note

that the single degree of freedom reflects the fact that normality effectively imposes the

restriction η · ψ = 0. This is confirmed by the fact that the log-likelihood contours are

parallel to the axes in η, ψ space for values of η or ψ close to 0.

3.4 The supremum tests

The approach described in the previous subsection is plausible in situations where

there are values of the underidentified parameters that make sense from an economic or

statistical point of view. Unfortunately, it is not at all clear a priori what values of b and

ψ or η are likely to prevail under the alternative of GH innovations. For that reason, in

this subsection we follow a second approach, which consists in computing either the LR

or the LM test statistic for the whole range of values of the underidentified parameters,

which are then combined to construct an overall test statistic (see Andrews, 1994). In

our case, we compute these tests for all possible values of b and ψ or η for each of the

three testing directions, and then take the supremum over those parameter values.

Let us start with the LM test. It turns out that we can maximise LM
(
θ̃T ,b

)
with

respect to b in closed form, and also obtain the asymptotic distribution of the resulting

test statistic:

7



Proposition 4 The supremum of the LM Normality test (7) with respect to b can be
expressed as

sup
b∈RN

LM(θ̃T ) = LMk(θ̃T ) + LMs(θ̃T ),

LMk(θ̃T ) =
2

N (N + 2)

{√
T

T

∑
t

[
1

4
ς2t (θ̃T )− N + 2

2
ςt(θ̃T ) +

N (N + 2)

4

]}2

, (9)

LMs(θ̃T ) =
1

2 (N + 2)

{√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}′

Σ̂−1

×

{√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}
, (10)

which converges in distribution to a chi-square random variable with N + 1 degrees of
freedom under the null hypothesis of normality.

The first component of the sup LM test, i.e. LMk(θ̃T ), is numerically identical to the

LM statistic derived by FSC to test multivariate normal versus Student t innovations.

These authors reinterpret (9) as a specification test of the restriction on the first two

moments of ςt(θ0) implicit in

E

[
N(N + 2)

4
− N + 2

2
ςt(θ0) +

1

4
ς2t (θ0)

]
= E[mkt(θ0)] = 0, (11)

and show that it numerically coincides with the kurtosis component of Mardia’s (1970)

test for multivariate normality in the models he considered (see below). Hereinafter, we

shall refer to LMk(θ̃T ) as the kurtosis component of our multivariate normality test.

In contrast, the second component of the sup LM test, LMs(θ̃T ), arises because we

also allow for skewness under the alternative hypothesis. This symmetry component is

asymptotically equivalent under the null and sequences of local alternatives to T times

the uncentred R2 from either a multivariate regression of εt(θ̃T ) on ςt(θ̃T ) − (N + 2)

(Hessian version), or a univariate regression of 1 on
[
ςt(θ̃T ) − (N + 2)

]
εt(θ̃T ) (Outer

product version). Nevertheless, we would expect a priori that LMs(θ̃T ) would be the

version of the LM test with the smallest size distortions (see Davidson and MacKinnon,

1983).

As we discussed in Section 2, the class of GH distributions can only accommodate fat-

ter tails than the normal. In terms of the kurtosis component of our sup LM multivariate

normality test, this implies that as we depart from normality, we will have

E [mkt(θ0)|θ0, η0 > 0, ψ0 > 0] > 0. (12)

8



While a (sup) LR test will take this feature into account by construction in maximising

the GH log-likelihood function, we need to modify the sup LM test if we want to reflect

the one sided nature of its kurtosis component, as FSC do in the case of the Student t.

For that reason, we consider a KT multiplier version of the sup LM test that exploits

(12) in order to increase its power and make it asymptotically equivalent to the (sup)

LR test (see also Hansen, 1991 and Andrews, 2001). More formally:

Proposition 5 The (sup) LR test of Gaussian vs. GH innovations is asymptotically
equivalent under the null of normality to the following (sup) Kuhn-Tucker test:

KT (θ̃T ) = LMk(θ̃T )1
(
m̄kT (θ̃T ) > 0

)
+ LMs(θ̃T ), (13)

where 1(·) is the indicator function, and m̄kT (θ) the sample mean of mkt(θ0).

Asymptotically, the probability that m̄kT (θ̃T ) becomes negative is .5 under the null.

Consequently, KT (θ̃T ) and the (sup) LR test will be distributed as a 50:50 mixture of

chi-squares with N and N + 1 degrees of freedom because the information matrix is

block diagonal under normality. However, the LR test is computationally much more

burdensome. Given that the underidentifiability of η, ψ and b under the null implies

that the GH log-likelihood function is numerically rather flat in the neighbourhood of the

normality region, in principle we would need to estimate the model under the alternative

hypothesis starting from a dense grid of values for those N + 2 parameters. In practice,

however, it will not be possible to consider a grid of values for b even in small cross-

sectional dimensions. In this sense, the main advantage of the sup LM and sup KT

tests is that they only require the estimation of the model under the null hypothesis. In

any case, we can use the expression Pr (X > c) = 1 − .5Fχ2
N

(c) − .5Fχ2
N+1

(c) to obtain

p-values for the sup KT and sup LR tests (see e.g. Demos and Sentana, 1998).

It is also useful to compare our symmetry test with the existing ones. In particular,

the skewness component of Mardia’s (1970) test can be interpreted as checking that

all the (co)skewness coefficients of the standardised residuals are zero, which can be

expressed by the N(N + 1)(N + 2)/6 non-duplicated moment conditions of the form:

E[ε∗it(θ0)ε
∗
jt(θ0)ε

∗
kt(θ0)] = 0, i, j, k = 1, · · · , N (14)

But since ςt(θ0) = ε∗′t (θ0)ε
∗
t (θ0), it is clear that (10) is also testing for co-skewness.

Specifically, LMs(θ̃T ) is testing the N alternative moment conditions

E{εt(θ0)[ςt(θ0)− (N + 2)]} = E[mst(θ0)] = 0, (15)

9



which are the relevant ones against GH innovations.

A less well known multivariate normality test was proposed by Bera and John (1983),

who considered multivariate Pearson alternatives instead. However, since the asymmetric

component of their test also assesses if (14) holds, we do not discuss it separately.

All these tests were derived for nonlinear regression models with conditionally ho-

moskedastic disturbances estimated by Gaussian ML, in which the covariance matrix of

the innovations, Σ, is unrestricted and does not affect the conditional mean, and the con-

ditional mean parameters, % say, and the elements of vech(Σ) are variation free. In more

general models, though, they may suffer from asymptotic size distortions, as pointed out

in a univariate context by Bontemps and Meddahi (2005) and Fiorentini, Sentana, and

Calzolari (2004). An important advantage of our proposed normality test is that its

asymptotic size is always correct because both mkt(θ0) and mst(θ0) are orthogonal by

construction to the Gaussian score with respect to θ evaluated at θ0.

By analogy with Bontemps and Meddahi (2005), one possible way to adjust Mardia’s

(1970) formulae is to replace ε∗3it (θ) by H3[ε
∗
it(θ)] and ε∗2it (θ)ε∗jt(θ) by H2[ε

∗
it(θ)]H1[ε

∗
jt(θ)]

(i 6= j) in the moment conditions (14), where Hk(·) is the Hermite polynomial of order k.

Alternatively, we can correct the asymptotic size by treating (14) as moment conditions,

with the Gaussian scores defining the PML estimators θ̃T (see Newey, 1985 and Tauchen,

1985 for the general theory, and appendix C for specific details).

Finally, note that both LMk(θ̃T ) and LMs(θ̃T ) are again numerically invariant to

the way in which the conditional covariance matrix is factorised, unlike the statistics

proposed by Lütkephohl (1993), Doornik and Hansen (1994) or Kilian and Demiroglu

(2000), who apply univariate Jarque and Bera (1980) tests to ε∗it(θ̃T ).

3.5 Power of the normality test

Although we shall investigate the finite sample properties of the different multivariate

normality tests in section 5, it is interesting to study their asymptotic power properties.

However, since the block-diagonality of the information matrix between θ and the other

parameters is generally lost under the alternative of GH innovations, for the purposes

of this exercise we only consider models in which µt(θ) and Σt(θ) are constant but

otherwise unrestricted, so that we can analytically compute the information matrix. In

more complex parametrisations, though, the results are likely to be qualitatively similar.

The results at the usual 5% significance level are displayed in Figures 1a to 1d for
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ψ = 1 and T = 5, 000 (see appendix C for details). In Figures 1a and 1b we have

represented η on the x-axis. We can see in Figure 1a that for b = 0 and N = 3,

the test with the highest power is the one-sided kurtosis test, followed by its two-sided

counterpart, the KT test, the sup LM test, and finally the skewness test.4 On the other

hand, if we consider asymmetric alternatives in which b is proportional to a vector of ones

ι, such as in Figure 1b, which is not restrictive because the power of our normality test

only depends on b through its Euclidean norm, the skewness component of the normality

test becomes important, and eventually makes the KT test, the sup LM test and even

the skewness test itself more powerful than both kurtosis tests. Not surprisingly, we can

also see from these figures that if we apply our tests to a single component of the random

vector, their power is significantly reduced.

In contrast, we have represented bi on the x-axis in Figures 1c and 1d. There we can

clearly see the effects on power of the fact that b is not identified in the limiting case of

η = 0. When η is very low, b is almost underidentified, which implies that large increases

in bi have a minimum impact on power, as shown in Figure 1c for η = .005 and N = 3.

However, when we give η a larger value such as η = .01 (see Figure 1d), we can see how

the power of those normality tests that take into account skewness rapidly increases with

the asymmetry of the true distribution. Hence, we can safely conclude that, once we get

away from the immediate vicinity of the null, the inclusion of the skewness component

of our test can greatly improve its power. On the other hand, the power of the kurtosis

test, which does not account for skewness, is less sensitive to increases in bi. Similar

results are obtained for N = 1, which we do not present to avoid cluttering the pictures.

Finally, we have also compared the power of our tests with those of the moment

versions of Mardia’s (1970) and Lütkephohl (1993) tests, where this time we have as-

sumed that b = (b1, 0, 0)′ under the alternative for computational simplicity. The results

show the superiority of our proposed tests against both symmetric and asymmetric GH

alternatives (see Figures 1e and 1f, respectively), which confirms the fact that they are

testing the most relevant moment conditions.

4Given that the asymptotic power of the sup LR and sup KT test will be identical under local
alternatives such as the ones that we are implicitly considering in these figures, we have drawn them
together.
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4 Student t tests

As we saw before, the Student t distribution is nested in the GH family when η > 0

ψ = 1 and b = 0. In this particular case, η can be interpreted as the reciprocal of

the degrees of freedom of the Student t distribution. We can use this fact to test the

validity of the distributional assumptions made by FSC and other authors. Again, we

will consider both LR and LM tests.

4.1 The score under Student t innovations

In this case, we have to take the limit as ψ → 1− and b → 0 of the general score

function. Not surprisingly, the score with respect to π, where π = (θ′, η)′, coincides with

the formulae in FSC. But our more general GH assumption introduces two additional

terms: the score with respect to b,

sbt (π, 1, 0) =
η [ςt(θ)− (N + 2)]

1− 2η + ηςt(θ)
εt(θ), (16)

which we will use for testing the Student t distribution versus asymmetric alternatives;

and the score with respect to ψ, which in this case is identically zero despite the fact

that ψ is locally identified. We shall revisit this issue in section 4.3.

4.2 The conditional information matrix under Student t inno-
vations

Since sψt (π, 1,0) = 0 ∀t, the only interesting components of the conditional infor-

mation matrix under Student t innovations correspond to sθt(φ), sηt(φ) and sbt(φ).

In this respect, we can use Proposition 1 in FSC to obtain Iππt(θ, η > 0, 1,0) =

V [sπt(π, 1,0)|zt, It−1; π, 1,0]. As for the remaining elements, we can show that:

Proposition 6 The information matrix of the GH distribution, evaluated at η > 0 and
ψ = 1 is characterised by Iηbt (θ, η > 0, 1,0) = 0,

Iθbt (θ, η > 0, 1,0) =
−2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)

∂µ′
t(θ)

∂θ
,

Ibbt (θ, η > 0, 1,0) =
2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)
Σt(θ).

4.3 Student t vs symmetric GH innovations

A test of H0 : ψ = 1 under the maintained hypothesis that b = 0 would be testing

that the tail behaviour of the multivariate t distribution adequately reflects the kurtosis
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of the data. As we mentioned in section 4.1, though, it turns out that sψt(π, 1,0) = 0

∀t, which means that we cannot compute the usual LM test for H0 : ψ = 1. To deal

with this unusual type of testing situation, Lee and Chesher (1986) propose to replace

the LM test by what they call an “extremum test” (see also Bera, Ra, and Sarkar, 1998).

Given that the first-order conditions are identically 0, their suggestion is to study the

restrictions that the null imposes on higher order conditions. In our case, we will use a

moment test based on the second order derivative

sψψt (π, 1,0) =
η2

(1− 2η) (1− 4η)

ςt(θ)−N (1− 2η)

1− 2η + ηςt(θ)
+

η2 [N − ςt(θ)]

(1− 2η) (1 + (N − 2) η)
, (17)

the rationale being that E [sψψt (π0, 1,0) |zt, It−1,π0, ψ0 = 1,b0 = 0] = 0 under the null

of standardised Student t innovations with η−1
0 degrees of freedom, while

E [sψψt (π0, 1,0) |π0, ψ0 < 1,b0 = 0] > 0 (18)

under the alternative of standardised symmetric GH innovations.

Let π̄T = (θ̄
′
T , η̄T )′ denote the parameters estimated by maximising the symmetric

Student t log-likelihood function. The statistic that we propose to test for H0 : ψ = 1

versus H1 : ψ 6= 1 under the maintained hypothesis that b = 0 is given by

τkT (π̄T ) =

√
T s̄ψψT (π̄T , 1,0)√
V̂ [sψψt (π̄T , 1,0)]

, (19)

where V̂ [sψψt (π̄T , 1,0)] is a consistent estimator of the asymptotic variance of

sψψt (π̄T , 1,0) that takes into account the sampling variability in π̄T . Under the null

hypothesis of Student t innovations with more than 4 degrees of freedom,5 it is easy to

see that the asymptotic distribution of τkT (π̄T ) will be N (0, 1). The required expression

for V [sψψt (π̄T , 1,0)] is given in the following result:

Proposition 7 If ε∗t is conditionally distributed as a standardised Student t with η−1
0 > 4

degrees of freedom, then

√
T s̄ψψT (π̄T , 1,0)

d→ N
{
0, V [sψψt(π0, 1,0)]−M′(π0)I−1

ππ(π0, 1,0)M(π0)
}
,

where Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix in FSC,

V [sψψt(π0, 1,0)] =
8N (N + 2) η6

0

(1− 2η0)
2 (1− 4η0)

2 (1 + (N + 2) η0) (1 + (N − 2) η0)
,

5If .25 < η0 < .5 the variance of [N − ςt(θ)] becomes unbounded. Given that the expected value of
this term remains 0 under the alternative hypothesis, the obvious solution is to base the test on the first
component of (17) only. Exact implementation details can be found in Appendix A.
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and

M(π0) = E

[
Mθt(π0)
Mηt(π0)

]
= E

[
E [sθt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]
E [sηt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]

]
,

where

Mθt(π0) =
4 (N + 2) η4

0 (1− 2η0)
−1 (1− 4η0)

−1

[1 + (N + 2) η0][1 + (N − 2) η0]

∂vec′[Σt(θ0)]

∂θ
vec[Σ−1

t (θ0)],

Mηt(π0) =
−2N (N + 2) η3

0 (1− 2η0)
−2 (1− 4η0)

−1

(1 +Nη0) [1 + (N + 2) η0]
.

Lee and Chesher (1986) show the equivalence between (19) and the corresponding LR

test in unrestricted contexts. However, similarly to what occurs to the normality tests,

we can only compare the LR test with a one-sided Extremum test that exploits (18).

Hence, the statistic τ 2
kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] will be asymptotically equivalent to

a LR test of symmetric Student t vs. symmetric GH innovations, and their asymptotic

distribution will be a chi-square with one degree of freedom with probability 1/2 and 0

otherwise.

Finally, it is also important to mention that although sψt (π0, 1,b) = 0 ∀t, we can

show that ψ is third-order identifiable at ψ = 1, and therefore locally identifiable, even

though it is not first- or second-order identifiable (see Sargan, 1983). More specifically,

we can use the Barlett identities to show that

E

[
∂2sψt(π0, 1,0)

∂ψ2
|π0, 1,0

]
= −E

[
∂sψt(π0, 1,0)

∂ψ
· sψt(π0, 1,0)|π0, 1,0

]
= 0,

but

E

[
∂3sψt(π0, 1,0)

∂ψ3
|π0, 1,0

]
= −3V

[
∂sψt(π0, 1,0)

∂ψ
|π0, 1,0

]
6= 0.

4.4 Student t vs asymmetric GH innovations

By construction, the previous test maintains the assumption that b = 0. However, it

is straightforward to extend it to incorporate this symmetry restriction as an explicit part

of the null hypothesis. The only thing that we need to do is to include E[sbt (π, 1,0)] = 0

as an additional condition in our moment test, where sbt (π, 1,0) is defined in (16). The

asymptotic joint distribution of the two moment conditions that takes into account the

sampling variability in π̄T is given in the following result

Proposition 8 If ε∗t is conditionally distributed as a standardised Student t with η−1
0 > 4

degrees of freedom, then [ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
d→ N [0,V(π0)] ,
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where

V(π0) =

[
Vbb (π0) Vbψ (π0)
V ′bψ (π0) Vψψ (π0)

]
=

{
Ibb(π0, 1,0) 0

0′ V [sψψt(π0, 1,0)]

}
−

[
I ′πb(π0, 1,0)I−1

ππ(π0, 1,0)Iπb(π0, 1,0) I ′πb(π0, 1,0)I−1
ππ(π0, 1,0)M(π0)

M′(π0)I−1
ππ(π0, 1,0)Iπb(π0, 1,0) M′(π0)I−1

ππ(π0, 1,0)M(π0)

]
, (20)

Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix derived in FSC,
Iπb(π0, 1,0) = E[Iπbt(π0, 1,0)] and Ibb(π0, 1,0) = E[Ibbt(π0, 1,0)] are defined in
Proposition 6, and M(π0) and V [sψψt(π0, 1,0)] are given in Proposition 7.

Therefore, if we consider a two-sided test, we will use

τgT (π̄T ) =

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]′
V−1 (π̄T )

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
, (21)

which is distributed as a chi-square with N + 1 degrees of freedom under the null of

Student t innovations. However, we must again exploit the one-sided nature of the ψ-

component of the test to obtain a statistic that is asymptotically equivalent to a LR

test of Symmetric Student t vs. Asymmetric GH innovations. Since V (π0) is not block

diagonal in general, we must orthogonalise the moment conditions (see e.g. Silvapulle

and Silvapulle, 1995). Specifically, instead of using directly the score with respect to b,

we consider

s⊥bt (π̄T , 1,0) = sbt (π̄T , 1,0)− Vbψ (π̄T )V−1
ψψ (π̄T ) sψψt (π̄T , 1,0) ,

whose sample average is asymptotically orthogonal to
√
T s̄ψψT (π̄T , 1,0) by construction.

Note, however, that there is no need to do this orthogonalisation when E [∂µt(θ0)/∂θ0] =

0, since in this case Vbψ (π0) = 0 because Iπb(π0, 1, 0) = 0 (see Proposition 6).

It is then straightforward to see that the asymptotic distribution of

τoT (π̄T ) = T s̄⊥′bt (π̄T , 1,0)

[
Vbb (π̄T )−

Vbψ (π̄T )V ′bψ (π̄T )

Vψψ (π̄T )

]−1

s̄⊥bt (π̄T , 1,0)

+τ 2
kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] (22)

will be another 50:50 mixture of chi-squares with N and N + 1 degrees of freedom

under the null, because asymptotically, the probability that s̄ψψT (π̄T , 1,0) is negative

will be .5 if ψ0 = 1. Such a one-sided test benefits from the fact that a non-positive

s̄ψψT (π̄T , 1,0) gives no evidence against the null, in which case we only need to consider

the orthogonalised skewness component. In contrast, when s̄ψψT (π̄T , 1,0) is positive,

(22) numerically coincides with (21). The asymptotic null distribution of the LR test of
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Symmetric Student t vs. Asymmetric GH innovations will be the same. Importantly,

note once more that (22) is numerically invariant to the chosen factorisation of Σt(θ),

as expected from (5).

On the other hand, if we only want to test for symmetry, we may use

τaT (π̄T ) =
√
T s̄′bT (π̄T , 1,0)V−1

bb (π̄T )
√
T s̄bT (π̄T , 1,0) , (23)

which can be interpreted as a regular LM test of the Student t distribution versus the GH

distribution under the maintained assumption that ψ = 1. In this particular case, the

GH distribution is known as the Asymmetric t (see Menćıa, 2003). As a result, τaT (π̄T )

will be asymptotically distributed as a chi-square distribution with N degrees of freedom

under the null of Student t innovations, and it will be asymptotically equivalent to a LR

test of Symmetric Student t vs. Asymmetric t innovations.

Given that we can show that the moment condition (15) remains valid for any el-

liptical distribution, the symmetry component of our proposed normality test provides

an alternative consistent test for H0 : b = 0, which is however incorrectly sized when

the innovations follow a Student t. To avoid size distortions, one possibility would be

to scale LMs(θ̃T ) by multiplying it by a consistent estimator of the adjusting factor

[(1−4η0)(1−6η0)]/[1+(N−2)η0 +2(N+4)η2
0]. Alternatively, we can run the univariate

regression of 1 on mst(θ̄T ), or the multivariate regression of εt(θ̄T ) on ςt(θ̄T )− (N + 2),

although in the latter case we should use standard errors that are robust to heteroskedas-

ticity. Not surprisingly, we can show that these three procedures to test (15) are asymp-

totically equivalent under the null. However, they are only valid if there are finite

moments up to the sixth order (i.e. η < 1/6), and will be generally less powerful against

local alternatives of the form b0T = b0/
√
T than τaT (π̄T ) in (23), which is the proper

LM test for symmetry.

Nevertheless, an interesting property of a moment test for symmetry based on (15)

is that
√
Tm̄sT (θ̄T ) and

√
T s̄ψψT (π̄T , 1,0) are asymptotically independent under the

null of symmetric Student t innovations, which means that there is no need to resort to

orthogonalisation in order to obtain a one-sided version that combines both of them.
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5 A Monte Carlo comparison of finite sample size

properties

In this section, we assess the finite sample size properties of the testing procedures dis-

cussed above by means of several extensive Monte Carlo exercises, with an experimental

design borrowed from Sentana (2004), which aimed to capture some of the main fea-

tures of the conditionally heteroskedastic factor model in King, Sentana, and Wadhwani

(1994).

Finite sample sizes of the normality tests The trivariate model that we simulate

and estimate under Gaussianity is given by the following equations:

yit = µi + cift + vit i = 1, 2, 3,

where ft = λ
1/2
t f ∗t , vit = γ

1/2
it v∗it (i = 1, 2, 3),

λt = α0 + α1(f
2
t−1|t−1 + ωt−1|t−1) + α2λt−1,

γit = φ0 + φ1

[
(yit−1 − µi − cift−1|t−1)

2 + c2iωt−1|t−1

]
+ φ2γit−1, i = 1, 2, 3,

(f ∗t , v
∗
1t, v

∗
2t, v

∗
3t)|It−1 ∼ N(0, I4), and ft−1|t−1 and ωt−1|t−1 are the conditional Kalman

filter estimate of ft and its conditional MSE, respectively. Hence, the conditional mean

vector and covariance matrix functions associated with this model are of the form

µt(θ) = µ,
Σt(θ) = cc′λt + Γt,

(24)

where µ′ = (µ1, µ2, µ3), c′ = (c1, c2, c3), and Γt = diag(γ1t, γ2t, γ3t). As for parameter

values, we have chosen µi = .2, ci = 1, α1 = φ1 = .1, α2 = φ2 = .85, α0 = 1 − α1 − α2

and φ0 = 1 − φ1 − φ2. Although we have considered other sample sizes, for the sake of

brevity we only report the results for T = 1, 000 observations based on 10,000 Monte

Carlo replications. Further details are available on request.

Given that the asymptotic distributions that we have derived in previous sections

may be unreliable in finite samples, we compute both asymptotic and bootstrap p-

values. In this regard, it is important to note that Andrews (2000) shows that the size

of bootstrap tests remains asymptotically valid when some of the parameters are on

the boundary of the parameter space, even though the usual bootstrap standard errors

are not reliable in those circumstances. We consider a parametric bootstrap procedure

with 1,000 samples for all tests except the LR test, for which we could only use 100
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samples for computational reasons.6 Given that the GH log-likelihood function is very

flat around the normality region, we consider a grid of 20 × 5 different initial values

for the pair (η, ψ) to maximise the likelihood under the alternative. But since it was

computationally infeasible to implement a similar grid search for the vector of asymmetry

parameters, we only considered a single initial b given by the value that leads to the sup

LM test (see the proof of Proposition 4).7

Proposition 1 implies that both the sup LM and the LR tests are asymptotically

independent of the Gaussian PML estimators of the conditional mean and variance pa-

rameters regardless of the model specification. In contrast, the original Mardia (1970)

and Lütkephohl (1993) expressions were derived under the assumption that the covari-

ance matrix of the innovations is constant but otherwise unrestricted, and does not

affect the conditional mean. To deal with this problem, we have interpreted those tests

as moment tests, and adjusted them appropriately so that their size distortions disap-

pear. Specifically, we orthogonalise the Mardia (1970) and Lütkephohl (1993) expressions

with respect to the Gaussian scores of θ. This orthogonality allows us to save substantial

computer time because we do not need to reestimate θ in each bootstrap sample.

Figures 2-4 summarise our findings for the different multivariate normality tests by

means of Davidson and MacKinnon’s (1998) p-value discrepancy plots, which show the

difference between actual and nominal test sizes for every possible nominal size. The left

panels show the discrepancy plots of the asymptotic p-values, while the right panels show

the corresponding results obtained with the parametric bootstrap. Figure 2a shows that

the LR test seems to be too conservative in general, especially for large nominal sizes. In

this sense, we can observe in Figure 2b that the parametric bootstrap is able to reduce

those distortions to some extent.8 As for the remaining tests, the actual finite sample

sizes seem to be fairly close to their nominal levels, with the possible exception of the

one-sided version of the kurtosis test (see Figure 4a), which seems to be also somewhat

conservative for larger nominal sizes. But again, Figure 4b shows that the bootstrap can

6Even so, the computation of the bootstrap p-value of the LR test took about 15 minutes in a MS
Windows PC node with a 2.8GHz processor. To speed up the computations, we employed a cluster
of ten such nodes, which limited the computational time to approximately two weeks per Monte Carlo
design. In our empirical application, in contrast, we used 1,000 bootstrap samples.

7Despite our careful choice of initial values, the LR turned out to be negative approximately ten
percent of the time. In those cases, we simply set it to 0.

8The apparent higher distortions of the bootstrapped p-values of the LR test for very small nominal
sizes is simply due to the limited accuracy that we can obtain from just 100 bootstrap samples.
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substantially reduce the distortions.

Finite sample sizes of the Student t tests In this case we maintain the conditional

mean and variance specification in (24), but generate the standardised innovations ε∗t

from a trivariate Student t distribution with 10 degrees of freedom. As before, we com-

pare the asymptotic p-values of the tests with their bootstrapped counterparts. Again,

we consider 1,000 bootstrap samples for the LM-type test, but we can only afford 100

samples for the LR test. Since we can easily orthogonalise the moment conditions of

the LM test with respect to π̄T , we did not need to reestimate the model to carry out a

parametric bootstrap. Unfortunately, in the case of the LR test we have to reestimate

θ under the null and the alternative hypothesis in each bootstrap sample, which makes

these computations even slower than those of the normality test.

Figure 5 shows the p-value discrepancy plots of the one- and two-sided versions of

the Student t tests discussed in section 4, together with those of their asymmetric and

kurtosis components, and the LR test. The most striking feature of the results for the

asymptotic p-values, shown in Figure 5a, is the fact that the actual sizes of the “kurtosis”

tests based on τkT (π̄T ), which is defined in (19), are well below their nominal sizes. This

is due to the fact that the sampling distribution of τkT (π̄T ) is not well approximated

by a standard normal, as illustrated in Figure 6. In contrast, the actual sizes of the

asymmetry component are very much on target. The joint tests inherit part of the size

distortions of the kurtosis tests, while the LR test is also somewhat conservative. Finally,

Figure 5b confirms that the parametric bootstrap is able to yield p-values that are much

closer to the nominal ones.9

6 Empirical application

We now apply the tests derived in the previous sections to the returns on the ten US

sectoral stock indices from Datastream.10 Specifically, our data consists on daily excess

returns for the period January 4th, 1988 - October 12th, 2007 (4971 observations),

where we have used the Eurodollar overnight interest rate as safe rate (Datastream

9Once again, the bootstrapped p-values of the LR test are not very accurate for very small nominal
sizes due to the small number of bootstrap samples that we can use.

10Namely, Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials,
Oil and Gas, Technology, Telecommunications and Utilities.
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code ECUSDST). The model used is a generalisation of the one in the previous section

(see (24)), in which the mean dynamics are captured by a diagonal VAR(1) model

with drift, and the covariance dynamics by a conditionally heteroskedastic single factor

model in which the conditional variances of both common and specific factors follow

GQARCH(1,1) processes to allow for leverage effects (see Sentana, 1995).

We have estimated this model under three different conditional distribution assump-

tions on the standardised innovations ε∗t : Gaussian, Student t and GH. We first estimated

the model by Gaussian PML and then computed the sup LM and Kuhn-Tucker normal-

ity tests described in section 3.4, whose asymptotic and parametric bootstrap p-values

are reported in Table 1b. These tests show that skewness and excess kurtosis are both

very significant, although the kurtosis component is one order of magnitude larger than

the skewness test.

Next, we estimated a multivariate Student t model using the analytical formulae

for the score that FSC provide. The results in Table 1a show that the estimate for

the tail thickness parameter η, which corresponds to slightly more than 10 degrees of

freedom, is significantly larger than 0. Then, on the basis of the Student t ML estimates,

we have computed the statistics τkT (π̄T ) and τaT (π̄T ) introduced in section 4. The

results in Table 1c show that we can reject the Student t assumption because of the

value we obtain for the skewness component τaT (π̄T ). However, the one-sided version

of the ψ component of the test is unable to reject the Student t specification against the

alternative hypothesis of symmetric GH innovations because 1(s̄ψψT (π̄T , 1,0) > 0) = 0.

Finally, we re-estimated the model under the assumption that the conditional dis-

tribution of the innovations is GH by using the analytical expressions for the score in

Menćıa and Sentana (2008). In this case, the GH log-likelihood introduces as additional

parameters ψ and the ten-dimensional vector b. Since the ML estimate of ψ reported in

Table 1a is 1, and η̂T is positive, the estimated GH conditional distribution effectively

corresponds to an asymmetric t.

The LM and KT results are confirmed by the LR tests. Specifically, the LR test

of Gaussian versus symmetric Student t innovations yields a value of 2246.63, which is

highly significant, despite being more than four times smaller than the corresponding KT

test. Note, though, that the asymptotic equivalence of the KT and LR tests only holds

under the null of Gaussianity and sequences of local alternatives, which is clearly not
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the case in the data. Similarly, the LR test of Student t vs. asymmetric GH innovations

also rejects the null, although the gains in fit obtained by allowing for asymmetry are

not as important as those previously obtained by generalising the normal distribution in

the leptokurtic dimension. This fact is also likely to explain why the LR and KT test are

now commensurate. Interestingly, the asymptotic and bootstrapped p-values are fairly

similar in all cases.

Conceivably, though, the rejection of the null hypotheses of normal and Student

t innovations that we find could be exacerbated by misspecification of the first and

especially second conditional moments. If our specification of the model dynamics is

correct, however, the marked distributional differences that we have found should not

affect the consistency of the Gaussian PML estimators of θ. With this in mind, we

compare, the multivariate Gaussian estimate of the conditional variance with the one

obtained with a univariate model for the equally weighted portfolio. Specifically, the

univariate model is a Gaussian AR(1)-GQARCH(1,1) model. Reassuringly, Figure 7

shows that the (log)standard deviations of the two series display a very similar pattern,

although the univariate estimates are somewhat noisier.

7 Conclusions

In this paper, we derive LM-type specification tests of multivariate normality and

multivariate Student t against alternatives with GH innovations, which is a rather flexible

multivariate asymmetric distribution that also nests as particular cases many other well

known and empirically realistic examples. Methodologically, our main contribution is to

explain how to overcome the identification problems that the use of the GH distribution

as an embedding model entails. We also decompose our proposed LM test statistics into

skewness and kurtosis components, from which we obtain more powerful one-sided KT

versions that are asymptotically equivalent to the LR test.

We assess the finite sample size properties of both the testing procedures that we

propose and previously suggested methods by means of detailed Monte Carlo exercises.

Our results indicate that the asymptotic sizes of our normality tests are very reliable in

finite samples. However, we also find that the kurtosis component of the Student t test

is too conservative, and the same is true of the corresponding LR test. Nevertheless,

we show that one can correct those distortions by means of a parametric bootstrap,
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although obtaining reliable p-values for the LR test is computationally time consuming.

Finally, we present an empirical application to the ten US sectoral excess stock returns

from Datastream. We can easily reject normality because the skewness and especially

kurtosis components of our tests are highly significant. And while a multivariate sym-

metric Student t seems to fit well the kurtosis of the data, the skewness component of the

Student t is still significant. In sum, our results suggest that the conditional distribution

of the returns on those US indices is mildly asymmetric and strongly leptokurtic.

An interesting extension of our results would be to test multivariate normality against

a general location-scale mixture of normals, although the resulting tests will also be

affected by the same type of underidentification problems under the null. Alternatively,

we could consider as our null hypothesis other special cases of the GH distribution,

such as the symmetric normal-gamma. Finally, one could use the test statistics that we

have derived to improve the efficiency of indirect estimators along the lines suggested by

Calzolari, Fiorentini, and Sentana (2004).
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A Student t tests for η ≥ .25

A.1 Student t vs symmetric GH innovations

When η ≥ .25, sψψt (π, 1,0) has infinite variance. Thus, we can no longer apply a

central limit theorem to find the asymptotic distribution of τkT (π̄T ). The source of this

problem is the presence of N− ςt(θ) in the second component of sψψt (π, 1,0). Note that

this second component has zero mean both under the null and under the alternative.

We will develop a modified version of τkT (π̄T ), which will be based exclusively on the

first part of sψψt (π, 1,0) multiplied by (1− 4η):

msψψt (π, 1,0) =
η2

(1− 2η)

ςt(θ)−N (1− 2η)

1− 2η + ηςt(θ)
, (A1)

This test will not only be valid for η ≥ .25, but also for lower values. However, we

recommend using τkT (π̄T ) in the latter case, since it will be more powerful against GH

alternatives. In what follows, we will derive the Student t tests using (A1) instead of

(17). The proofs are analogous to those of the results in Section 4.

It is not difficult to show that the expected value of msψψt (π, 1,0) − sψψt (π, 1,0)

is zero under the null and under the alternative. Hence, under the null of standardised

Student t innovations with η−1
0 degrees of freedom,

E [msψψt (π0, 1,0) |zt, It−1,π0, ψ0 = 1,b0 = 0] = 0,

while under the alternative of standardised symmetric GH innovations

E [msψψt (π0, 1,0) |π0, ψ0 < 1,b0 = 0] > 0. (A2)

Furthermore, it can be shown that, if ε∗t is conditionally distributed as a standardised

Student t with η−1
0 degrees of freedom, then, for η < .5,

√
TmsψψT (π̄T , 1,0)

d→ N
{
0, V [msψψt(π0, 1,0)]−M′

m(π0)I−1
ππ(π0, 1,0)Mm(π0)

}
,

(A3)

where Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix in FSC,

V [msψψt(π0, 1,0)] =
2Nη4

0

(1− 2η0)
2 (1 + (N + 2) η0)

,

and

Mm(π0) = E

[
Mmθt(π0)
Mmηt(π0)

]
= E

[
E [sθt(π0, 1,0)msψψt(π0, 1,0)| zt, It−1; π0, 1,0]
E [sηt(π0, 1,0)msψψt(π0, 1,0)| zt, It−1; π0, 1,0]

]
,
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where

Mmθt(π0) =
η2

0 (1− 2η0)
−1

1 + (N + 2) η0

∂vec′[Σt(θ0)]

∂θ
vec[Σ−1

t (θ0)],

Mmηt(π0) =
−2N (N + 2) η3

0 (1− 2η0)
−2

(1 +Nη0) [1 + (N + 2) η0]
.

Thus, the modified statistic that we propose to test for H0 : ψ = 1 versus H1 : ψ 6= 1

under the maintained hypothesis that b = 0 is given by

τmkT (π̄T ) =

√
TmsψψT (π̄T , 1,0)

V̂
1
2 [msψψt (π̄T , 1,0)]

,

where V̂ [msψψt (π̄T )] is a consistent estimator of the asymptotic variance ofmsψψt (π̄T , 1,0)

given in (A3). Under the null hypothesis of Student t innovations, it is easy to see that

the asymptotic distribution of τmkT (π̄T ) will be N (0, 1). But given (A2), since ψ can

only be less than 1 under the alternative, a one-sided test against H1 : ψ < 1 should

again be more powerful in this context (see Andrews, 2001). Specifically, we should use

τmkT (π̄T )1
[√

TmsψψT (π̄T , 1,0) > 0
]
.

A.2 Student t vs asymmetric GH innovations

By construction, the modified extremum test discussed in the previous subsection

maintains the assumption that b = 0. However, it is straightforward to extend it to

incorporate this symmetry restriction as an explicit part of the null hypothesis. In

particular, the only thing that we need to do is to include E[sbt (π, 1,0)] = 0 as an

additional condition in our moment test, where sbt (π, 1,0) is defined in (16). In this

sense, it can be shown that, if ε∗t is conditionally distributed as a standardised Student

t with η−1
0 degrees of freedom, then[ √

T s̄bT (π̄T , 1,0)√
TmsψψT (π̄T , 1,0)

]
d→ N [0,Vm(π0)] ,

where

Vm(π0) =

[
Vbb (π0) Vmbψ (π0)
V ′mbψ (π0) Vmψψ (π0)

]
=

{
Ibb(π0, 1,0) 0

0′ V [msψψt(π0, 1,0)]

}
−

[
I ′πb(π0, 1,0)I−1

ππ(π0, 1,0)Iπb(π0, 1,0) I ′πb(π0, 1,0)I−1
ππ(π0, 1,0)Mm(π0)

M′
m(π0)I−1

ππ(π0, 1,0)Iπb(π0, 1,0) M′
m(π0)I−1

ππ(π0, 1,0)Mm(π0)

]
,

Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix derived in FSC,

Iπb(π0, 1,0) = E[Iπbt(π0, 1,0)] and Ibb(π0, 1,0) = E[Ibbt(π0, 1,0)] are defined in
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Proposition 6, and V [msψψt(π0, 1,0)] and Mm(π0) are given in Section A.1. There-

fore, if we consider a two-sided test, we will use

τmgT (π̄T ) =

[ √
T s̄bT (π̄T , 1,0)√

TmsψψT (π̄T , 1,0)

]′
V−1
m (π̄T )

[ √
T s̄bT (π̄T , 1,0)√

TmsψψT (π̄T , 1,0)

]
, (A4)

which is distributed as a chi-square with N + 1 degrees of freedom under the null of

Student t innovations. Alternatively, we can again exploit the one-sided nature of the

ψ-component of the test. However, since Vm (π0) is not block diagonal in general, we

must first orthogonalise the moment conditions. Specifically, instead of using directly

the score with respect to b, we consider

sm,⊥bt (π̄T , 1,0) = sbt (π̄T , 1,0)− Vmbψ (π̄T )V−1
ψψ (π̄T )msψψt (π̄T , 1,0) ,

whose sample average is asymptotically orthogonal to
√
TmsψψT (π̄T , 1,0) by construc-

tion. Note, however, that there is no need to do this orthogonalisation when

E [∂µt(θ0)/∂θ0] = 0, since in this case Vmbψ (π0) = 0 because Iπb(π0, 1, 0) = 0.

It is then straightforward to see that the asymptotic distribution of

τoT (π̄T ) = T s̄m,⊥′bt (π̄T , 1,0)

[
Vbb (π̄T )−

Vmbψ (π̄T )V ′mbψ (π̄T )

Vψψ (π̄T )

]−1

s̄m,⊥bt (π̄T , 1,0)

+τkT (π̄T )1 [msψψT (π̄T , 1,0) > 0] , (A5)

is another 50:50 mixture of chi-squares with N and N + 1 degrees of freedom under the

null, because asymptotically, the probability that msψψT (π̄T , 1,0) is negative will be .5 if

ψ0 = 1. Such a one-sided test benefits from the fact that a non-positive msψψT (π̄T , 1,0)

gives no evidence against the null, in which case we only need to consider the orthog-

onalised skewness component. In contrast, when msψψT (π̄T , 1,0) is positive, (A5) nu-

merically coincides with (A4).

B Proofs of Propositions

Proposition 1

To compute the score when η goes to zero, we must take the limit of the score function

after substituting the modified Bessel functions by the appropriate expansion (see Menćıa

and Sentana, 2008). We operate in a similar way when ψ → 0+. Then, the conditional

information matrix under normality can be easily derived as the conditional variance

of the score function by using the property that, if ε∗t is distributed as a multivariate
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standard normal, then it can be written as ε∗t =
√
ζtut, where ut is uniformly distributed

on the unit sphere surface in RN , ζt is a chi-square random variable with N degrees of

freedom, and ut and ζt are mutually independent. �

Proposition 2

For fixed b and ψ, the LM1 test is based on the average scores with respect to η and

θ evaluated at 0+ and the Gaussian maximum likelihood estimates θ̃T . But since the

average score with respect to θ will be 0 at those parameter values, and the conditional

information matrix is block diagonal, the formula for the test is trivially obtained. The

proportionality of the log-likelihood scores corresponding to η evaluated at 0± and θ̃T

with the score corresponding to ψ evaluated at 0+ and θ̃T leads to the desired result.�

Proposition 3

Consider initially the situation in which we fix b and ψ, and only allow η to be

positive under the alternative. The first thing to note is that such a LR ratio will be

identically 0 if the sample average of (6) evaluated at the Gaussian PML estimators is

negative, which happens approximately half the time in large samples. Therefore, the

results in Gouriéroux, Holly, and Monfort (1980) imply that the LR test will not be

asymptotically equivalent to the corresponding LM test LM1

(
θ̃T , ψ,b

)
, but rather to

the Kuhn-Tucker test

KT1

(
θ̃T , ψ,b

)
= 1(s̄ηT

(
θ̃T , 0

+, ψ,b
)
≥ 0) · LM1

(
θ̃T , ψ,b

)
,

which does not depend on ψ.

Similarly, if we fix b and ψ, but this time we only allow η to be negative under the

alternative, we will have that the LR test will be asymptotically equivalent to

KT2

(
θ̃T , ψ,b

)
= 1(s̄ηT

(
θ̃T , 0

−, ψ,b
)
≤ 0) · LM2

(
θ̃T , ψ,b

)
Finally, it is not surprising that if we fix b and η then the LR test is asymptotically

equivalent to the Kuhn-Tucker test

KT3

(
θ̃T , η,b

)
= 1(s̄ψT

(
θ̃T , η, 0

+,b
)
≥ 0) · LM3

(
θ̃T , η,b

)
,

which does not depend on η.

But since those three Kuhn-Tucker tests numerically coincide in any given sample,

we will have that the LR that estimates over both η and ψ for a given value of b will be
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asymptotically equivalent under the null to the following test statistic:

KT
(
θ̃T ,b

)
= 1(s̄ηT

(
θ̃T , 0,b

)
≥ 0) · LM

(
θ̃T ,b

)
,

as required. �

Proposition 4

LM
(
θ̃T ,b

)
can be trivially expressed as

LM
(
θ̃T ,b

)
=
Tb+′m̄T (θ̃T )m̄T (θ̃T )b+

(N + 2)b+′DTb+
, (B6)

where b+ = (1,b′)′, m̄T (θ̃T ) =
[
m̄kT (θ̃T ), m̄sT (θ̃T )

]
, m̄kT (θ) and m̄sT (θ) are the sample

means of mkt(θ) and mst(θ), which are defined in (11) and (15), respectively, and

DT =

[
N/2 0

0′ 2Σ̂T

]
.

But since the maximisation of (B6) with respect to b+ is a well-known generalised eigen-

value problem, its solution will be proportional to D−1
T m̄T . If we select N/[2m̄kT (θ̃T )]

as the constant of proportionality, then we can make sure that the first element in b+

is equal to one. Substituting this value in the formula of LM
(
θ̃T ,b

)
yields the required

result. Finally, the asymptotic distribution of the sup test follows directly from the fact

that
√
Tm̄kT (θ0) and

√
Tm̄sT (θ0) are asymptotically orthogonal under the null, with

asymptotic variances N(N + 2)/2 and 2(N + 2)Σ, respectively. �

Proposition 5

For the sake of simplicity, let us consider the asymmetric t distribution, which is a

particular case of the GH distribution in which η > 0 and ψ = 1. Hence, normality will

be obtained when η = 0. Under normality, the score with respect to b is zero, while the

score with respect to η is given by (6). Now, consider a reparametrisation in terms of η‡

and b‡, where η‡ = η and b‡ = bη. This reparametrisation is such that under normality

both η‡ and b‡ will be zero, while under local alternatives of the form η‡T = T−1/2η̄‡

and b‡T = T−1/2b̄‡ we will have an asymmetric student t distribution with parameters

ηT = T−1/2η̄ and bT = b̄. If we apply the chain rule we can express the score with

respect to the new parameters as

lim
η→0+

sη‡t(φ) =
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4
, (B7)

lim
η→0+

sb‡t(φ) = εt(θ) [ςt(θ)− (N + 2)] , (B8)
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under normality. Note that the maximum likelihood estimate of η‡, which cannot be

negative, will be zero when (B7) is negative, which approximately happens half the time

in large samples. Hence, we need to consider the partially one-sided test (13) to obtain

a test equivalent to the LR test. Furthermore, (B7) and (B8) will be asymptotically

independent under normality.

Proposition 6

The proof is straightforward if we rely on the results in the appendix of Fiorentini and

Sentana (2007), who indicate that when ε∗t is distributed as a standardised multivariate

Student t with 1/η0 degrees of freedom, it can be written as ε∗t =
√

(1− 2η0)ζt/(ξtη0)ut,

where ut is uniformly distributed on the unit sphere surface in RN , ζt is a chi-square

random variable with N degrees of freedom, ξt is a gamma variate with mean η−1
0 and

variance 2η−1
0 , and the three variates are mutually independent. These authors also

exploit the fact that X = ζt/ (ζt + ξt) has a beta distribution with parameters a = N/2

and b = 1/ (2η0) to show that

E [Xp (1−X)q] =
B (a+ p, b+ q)

B (a, b)
,

E [Xp (1−X)q log (1−X)] =
B (a+ p, b+ q)

B (a, b)
[ψ (b+ q)− ψ (a+ b+ p+ q)] ,

where ψ (·) is the digamma function and B (·, ·) the usual beta function. �

Propositions 7 and 8

We can use again the results of Fiorentini and Sentana (2007) mentioned in the proof

of Proposition 6, together with the results in Crowder (1976), to show that

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 d→ N

0, E

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


 ,

where

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 =

 Iππt(π0, 1,0) Iπbt(π0, 1,0) Mt(π0)
I ′πbt(π0, 1,0) Vt−1 [sbt(π0, 1,0)] 0
M′

t(π0) 0′ V [sψψt(π0, 1,0)]


under the null hypothesis of Student t innovations. To account for parameter uncertainty,

consider the function

g2t (π̄T ) =

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
−

[
I ′πb(π0, 1,0)
M′(π0)

]
I−1

ππ(π0, 1,0)sπt (π̄T , 1,0)

=

[
−I ′πb(π0, 1,0)I−1

ππ(π0, 1,0) IN 0
−M′(π0)I−1

ππ(π0, 1,0) 0′ 1

]  sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 =A2(π0)

 sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 .
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We can now derive the required asymptotic distribution by means of the usual Taylor

expansion around the true values of the parameters

0 =

√
T

T

∑
t

g2t (π̄T ) =

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


+A2(π0)E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

√T (π̄T − π0) + op (1) ,

where it can be tediously shown by means of the Barlett identities that

E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 = −

 Iππ(π0, 1,0)
I ′πb(π0, 1,0)
M′(π0)

 .

As a result

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 ,
from which we can obtain the asymptotic distributions in the Propositions. �

C Power of the normality tests

We can determine the power of the sup test by rewriting it as a quadratic form in[
2/[N (N + 2)] 0′

0 Σ̂−1/[2 (N + 2)]

]
evaluated at m̄T

(
θ̃T

)
= [m̄kT

(
θ̃T

)
, m̄′

sT

(
θ̃T

)
]′, where θ̃T must be interpreted as a PML

estimator of θ0 = (µ′
0, vech

′(Σ0))
′ under the alternative of GH innovations. Hence, its

asymptotic distribution will be given by the robust formulae provided by Bollerslev and

Wooldridge (1992), which, in terms of the Gaussian score can be written as

√
T

[
θ̃T − θ0

]
= A−1 (θ0)

√
T s̄θT (θ0, 0, 0,0) + op (1) ,

where

A (φ0) =
∂µ′

∂θ
Σ−1∂µ

∂θ
+

1

2

∂vec′Σ

∂θ

[
Σ−1 ⊗Σ−1

] ∂vecΣ
∂θ

.

Hence, the usual Taylor expansion around the true parameter values yields

√
Tm̄T

(
θ̃T

)
=

[
−B (θ0)A−1 (θ0) IN+1

]√
T

[
s̄θT (θ0, 0, 0,0)

m̄T (θ0)

]
+ op (1) , (F1)

where B (θ0) = −E [∂m̄T (θ0) /∂θ
′]
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Fortunately, A (φ0), B (θ0), as well as the mean and variance of s̄θt (θ0) and m̄T (θ0)

under the alternative can be computed analytically by using the location-scale mixture

of normals interpretation of the GH distribution. In particular, we can write

ε∗t = c(φ)b (ht − 1) +
√
htArt,

ςt = ε∗′t ε∗t = c2(φ) (ht − 1)2 b′b + 2c(φ)
√
ht (ht − 1)b′Art + htr

′
tA

′Art,

with ht = ξ−1
t γ/Rν (γ), and

A =

[
IN +

c(φ, ν, γ)− 1

b′b
bb′

] 1
2

,

where rt|zt, It−1 ∼ N (0, IN) and ξt|zt, It−1 ∼ GIG[.5η−1, ψ−1(1 − ψ), 1] are mutually

independent. But since both ξt and rt are iid, then ε∗t and ςt = ε∗′t ε∗t will also be iid. As a

result, given that all the moments of normal and GIG random variables are finite (except

when ψ = 1, in which case some moments may become unbounded for large enough η;

see Jørgensen, 1982), we can apply the Lindeberg-Lévy Central Limit Theorem to show

that the asymptotic distribution of
√
Tm̄T

(
θ̃T

)
is N [m(θ0, η, ψ,b), V (θ0, η, ψ,b)], where

the required expressions can be computed from (F1). In particular, we can use Magnus

(1986) to evaluate the moments of quadratic forms of normals, such as r′tA
′Art.

Finally, we can use Koerts and Abrahamse’s (1969) implementation of Imhof’s proce-

dure for evaluating the probability that a quadratic form of normals is less than a given

value (see also Farebrother, 1990).

To obtain the power of the KT test, we will use the following alternative formulation

KT

T
=

2

N (N + 2)
m̄2
kT

(
θ̃T

)
· 1

(
m̄kT

(
θ̃T

)
≥ 0

)
+

1

2 (N + 2)
m̄′
sT

(
θ̃T

)
Σ̂−1m̄sT

(
θ̃T

)
.

Hence, the distribution function of the KT statistic can be expressed as

Pr

(
KT

T
< x

)
=

∫ ∞

−∞
Pr

(
KT

T
< x

∣∣∣∣ m̄kt = l

)
fk (l) dl, (F2)

where fk (·) is the pdf of the distribution of the kurtosis component. But since the joint

asymptotic distribution of
√
Tm̄T

(
θ̃T

)
is normal, so that the conditional distribution of

√
Tm̄sT

(
θ̃T

)
given

√
Tm̄kT

(
θ̃T

)
will also be normal, the KT test can also be written as

a quadratic form of normals for each value of the kurtosis component. As a result, we

can use Imhof’s procedure again to evaluate

Pr

[
1

2 (N + 2)
m̄sT

(
θ̃T

)
Σ̂−1m̄sT

(
θ̃T

)
< x− 2

N (N + 2)
l2 · 1 (l ≥ 0)

∣∣∣∣ m̄kt = l

]
= Pr

(
KT

T
< x

∣∣∣∣ m̄kt = l

)
.
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Once we know this conditional probability, we can evaluate the integral in (F2) by

numerical integration with a standard quadrature algorithm.
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic single factor model for

10 Datastream US sectoral stock indices

Gaussian Student t Asymmetric t
Parameter SE SE SE
η 0 - 0.095 0.003 0.095 0.004
ψ 0 - 1 - 1 -
Log-likelihood -53132.29 -52008.98 -51997.25

(b) Normality tests

Test p-value
Score based Asymptotic Bootstrap

Kurtosis 9289.32 0.000 0.000
Skewness 204.34 0.000 0.000
Sup-LM 9493.66 0.000 0.000
Kuhn-Tucker 9493.66 0.000 0.000

LR Asymptotic Bootstrap
H1: sym. GH 2246.63 0.000 0.000
H1: asym. t 2270.09 0.000 0.000
H1: asym. GH 2270.09 0.000 0.000

(c) Student t tests

Test p-value
Score based Asymptotic Bootstrap

Kurtosis 0.00 1.000 1.000
Skewness 25.35 0.005 0.007
Joint 25.35 0.006 0.007

LR Asymptotic Bootstrap
H1: sym. GH 0.00 1.000 1.000
H1: asym. t 23.45 0.012 0.010
H1: asym. GH 23.45 0.012 0.010

Note: The Student t score based Kurtosis test denotes the one-sided test of Student t vs. symmetric
GH innovations. In the LR tests, “H1: sym. GH”, “H1: asym. t” and “H1: asym. GH” indicate
whether the alternative hypothesis is symmetric GH, asymmetric t or asymmetric GH, respectively.
Bootstrapped p-values have been obtained from a parametric bootstrap with 1,000 samples, except
for the LR p-values, where only 100 samples have been considered.
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Figure 1a: Power of the normality tests under
symmetric t alternatives
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Figure 1b: Power of the normality tests under
asymmetric t alternatives (bi = .75, ∀i)
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Figure 1c: Power of the multivariate normality
tests against asymmetric t alternatives with
increasing skewness (η = .005, N = 3)
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Figure 1d: Power of the multivariate nor-
mality tests against asymmetric t alternatives
with increasing skewness (η = .01, N = 3)
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Figure 1e: Power of Sup-LM, Mardia and
Lütkepohl normality tests against symmetric
t alternatives (N = 3).
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Figure 1f: Power of Sup-LM, Mardia and
Lütkepohl normality tests against asymmetric
t alternatives (N = 2).
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Notes: Thicker lines represent the power of the trivariate tests. Figures 1b-1d share the legend of
Figure 1a, while Figure 1f shares the legend of figure 1e.



Figure 2: p-value discrepancy plots of the joint normality tests

(a) Asymptotic p-values

0 0.05 0.1 0.15
−0.03

−0.02

−0.01

0

0.01

 

 

Sup−LM
Kuhn−Tucker
Adj. Mardia
Adj. Lütkepohl
LR

(b) Bootstrapped p-values
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Figure 3: p-value discrepancy plots of the skewness components of the joint normality tests

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Figure 4: p-value discrepancy plots of the kurtosis components of the joint normality tests

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Notes: p-value discrepancy plots obtained from a Monte Carlo study with 10,000 simulations with
T=1,000. Parametric bootstraped p-values are computed from 1,000 samples for all the tests
except the LR, which is based on 100 only.



Figure 5: p-value discrepancy plots of the Student t tests

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Notes: p-value discrepancy plots obtained from a Monte Carlo study with 10,000 simulations with
T=1,000. Parametric bootstraped p-values are computed from 1,000 samples for all the tests
except the LR, which is based on 100 only.



Figure 6: Kernel estimation of the density of the symmetric Student t test
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Figure 7: Comparison of univariate and multivariate Gaussian estimates of the (log)standard deviation
of the Datastream equally weighted portfolio
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