
Economic Analysis Working Papers.- 7th Volume – Number 11 
 

Documentos de Trabajo en Análisis Económico.- Volumen 7 – Número 11 
 

 
 
 

MULTIVARIATE RISK-RETURN DECISION MAKING 
WITHIN DYNAMIC ESTIMATION 
 
Josip Arnerić1, Elza Jurun, 2 and Snježana Pivac, 3 
University of Split, Faculty of Economics, Croatia 
 
 

 
 
ABSTRACT 
 
Risk management in this paper is focused on multivariate risk-return decision making 
assuming time-varying estimation. Empirical research in risk management showed that the 
static "mean-variance" methodology in portfolio optimization is very restrictive with unrealistic 
assumptions. The objective of this paper is estimation of time-varying portfolio stocks weights 
by constraints on risk measure. Hence, risk measure dynamic estimation is used in risk 
controlling. By risk control manager makes free supplementary capital for new investments. 
 
Univariate modeling approach is not appropriate, even when portfolio returns are treated as 
one variable. Portfolio weights are time-varying, and therefore it is necessary to reestimate 
whole model over time. Using assumption of bivariate Student's t-distribution, in multivariate 
GARCH(p,q) models, it becomes possible to forecast time-varying portfolio risk much more 
precisely. The complete procedure of analysis is established from Zagreb Stock Exchange 
using daily observations of Pliva and Podravka stocks. 
 
 
  

 
RESUMEN 

 
El manejo del riesgo es enfocado en este trabajo como la toma de decisión sobre la 
estimación de un riesgo del retorno multivariado asumiendo variabilidad en el tiempo.. 
Investigaciones empíricas del manejo del riesgo han mostrado que la metodología estática de 
"media-varianza" en la optimización de portafolio es muy restrictiva bajo  asunciones poco 
realistas. El objetivo de este trabajo es la estimación de pesos para los portafolios de 
acciones con variación en el tiempo con restricciones sobre la medida de riesgo. Entonces, la 
estimación dinámica de la medida de riesgo es usada en el control del riesgo. Controlando el 
riego el manager libera capital suplementario para nuevas inversiones. 
 
El enfoque univariado no es apropiado, aun cuando los retornos de portafolio sean tratados 
como una variable. Los pesos para los portafolios varían en el tiempo, por tanto es necesario  
re-estimar todo el modelo en el tiempo. Asumiendo una distribución T-Student bivariada, en el 
modelo de GARCH(p, q) mutivariado, es posible predecir el riesgo del portafolio que varia en 
el tiempo mucho mas precisamente. El procedimiento completo de análisis es desarrollado 
para el Zagreb Stock Exchange usando las observaciones diarias de los stocks de Pliva y 
Podravka. 
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1. INTRODUCTION 
 
The aim of this paper is estimation of time-varying stocks weights in portfolio optimization using 
multivariate approach. The purpose of this approach, realized using multivariate GARCH(p,q) model, 
is forecasting of time-varying conditional expectation and conditional variance. Those forecasted 
values of first and second order moments are inputs for portfolio return maximization by constraints on 
standard deviation as risk measure. 
 
The assumption of bivariate Student's t-distribution is used in maximization of the likelihood function to 
estimate parameters of DVEC-GARCH(1,1) model with Cholesky factorization. Sample properties, 
especially leptokurtosis of distribution with fat tails, shows that assumption of Student distribution is the 
most appropriate (Arnerić, Jurun, Pivac 2007). 
 
Modern financial analysis requires forecasting the dependences in the second order moments of 
portfolio returns. Forecasting is necessary, apart from other reasons, because financial volatilities 
moves together over time across assets and markets.  
 
According to these requirements multivariate modeling framework leads to more relevant empirical 
models in comparison to estimations based on separate univariate models. This appears from the 
practical need for options pricing, portfolio selection, hedging and Value-at-Risk estimation. 
Furthermore, a fundamental characteristic of modern capital markets leads to application of 
multivariate volatility models. This can be summarized in following facts: 
 

• the volatility of one market leads to volatility of other markets; 
• the volatility of an stock transmits to another stock; 
• the correlation between stock returns change over time; 
• the correlation between stock returns increases in the long run because of the globalization of 

financial markets. 
 
In order to respect all these facts and modern financial requirements as the most useful 
methodological tool financial econometrics offers Multivariate Generalized Autoregressive Conditional 
Heteroscedasticity models - MGARCH (Bauwnes, Laurent, Romboust 2006). 
 
The complete procedure of analysis is established using daily observations of Pliva and Podravka 
stocks, as the most frequently traded stocks from CROBEX index at Zagreb Stock Exchange. Data 
on observed stocks was provided by Croatia capital market. In this paper daily data of compound 
returns of named stocks from 1st January 2005 to 16th October 2007 are used (www.zse.hr). 
 
This paper is organized as follows. After introduction, assumption of the bivariate Student's t-
dustribution is presented. Next section presents the methodology employed in MGARCH model 
selection. Following part gives estimation of conditional variances and correlation. The topic of the 
next section is optimal dynamic portfolio weights forecasting. The final section is dedicated to 
conclusion remarks.  
 
 
 
 
 
2. ASSUMPTION OF THE BIVARIATE STUDENT'S T-DISTRIBUTION 

 
Returns from financial instruments such as exchange rates, equity prices and interest rates measured 
over short time intervals, i.e. daily or weekly, are characterized by high kurtosis. In practice, the 
kurtosis is often larger than three, leading to estimation of non-integer degrees of freedom. Thus, 
degrees of freedom can easily be estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm. BFGS is a method to solve an unconstrained nonlinear optimization problem (Bazarra, 
Sherali, Shetty 1993) 
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The BFGS method is derived from the Newton's optimization methods, as a class of hill-climbing 
optimization techniques that seeks the stationary point of a function, where the gradient is zero. 
Newton's method assumes that the function can be locally approximated as a quadratic in the region 
around the optimum, and use the first and second derivatives to find the stationary point. 
 
In Quasi-Newton methods the Hessian matrix of second derivatives of the function to be optimized 
does not need to be computed at any stage. The Hessian is updated by analyzing successive 
gradient vectors instead. The BFGS method is one of the most successful algorithms of this class. In 
this paper it will be used in bivariate Student's t-distribution degrees of freedom estimation by 
maximization of the likelihood function. 
The standardized multivariate Student density from the k-dimensional vector of returns X is given as: 
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where ( )⋅Γ  is gamma function and df  is a shape parameter - degrees of freedom.  
 
Figure 1: Contour plot of the Bivariate Student's t-distribution Density ( 2.3=df ) 
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    Source: According to data on ZSE 
 
It is imposed that df  is larger than 2 to ensure the existence of the variance matrix. There are no 
mathematical reasons why the degrees of freedom should be an integer, however when 2→df  the 
tails of the density become heavier (Heikkinen, Kanto 2002). Hence, the assumption that returns are 
independently and identically normally distributed is unrealistic. 
 
According to BFGS algorithm degrees of freedom of the bivariate Student t-distribution for Pliva and 
Podravka stock returns are estimated at level 23. . Standard error of estimated degrees of freedom is 
0.200705, which means that parameter distribution is statistically significant. Figure 1 shows elliptic 
contour plot of the bivariate Student's t-distribution density with estimated degrees of freedom. 
Namely, as contour of bivariate Student's t-distribution density is more elliptic, the less are estimated 
degrees of freedom (Bauwnes, Laurent 2005). 
 
The Student density has become widely used due to it's simplicity and it's inherent ability to fit excess 
kurtosis. 
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3. APPROPRIATE MULTIVARIATE GARCH(p,q) MODEL SELECTION 
 
Typical example when it is necessary to simultaneously observe return movements of several stocks 
is market portfolio return. If market portfolio consists of k stocks, expected return ( tPr , ) and variance of 

complete portfolio ( 2
,tPσ ) can be defined in the following way: 
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where w  is the vector of portfolio weights, tµ  is the vector of expected returns and tΣ  is the variance-
covariance matrix of the returns. 
 
According to equation (2) it's obvious that the mean vector tµ  and the variance-covariance matrix tΣ  
are not constant over time. Univariate GARCH(p,q) model for portfolio variance can be estimated for a 
given weights vector. Because the weights vector changes over time, it is necessary to estimate the 
model again and again. That's way it is wisely to introduce the possibilities of MGARCH model. If a 
MGARCH model is fitted, the multivariate distribution of the returns can be directly used to compute 
time varying mean vector and variance-covariance matrix of the returns. Hence there is no need to 
reestimate the model for a different weights vector. 
 
Consider a bivariate vector stochastic process { }tr  of dimension 12× . Dynamic model with time 
varying means, variances and covariances for 2 component can be denoted by: 
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In above relations tµ  is mean vector conditioned on past information, and tΣ  is conditional variance 

matrix. Furthermore, it is assumed that expected value of tu  is null-vector with variance equal to 

identity matrix, as well as that variance tΣ  is positive definite matrix. This assumption is not generally 
satisfied automatically. Positive definite variance-covariance matrix can be obtained by the Cholesky 
factorization of tΣ  (Tsay, 2005). Before the concrete modeling procedure it is useful to estimate 
autocorrelation and partial autocorrelation coefficients of squared returns.  
 
Therefore correlograms and cross-correlograms are presented in Figure 2 for thirty time lags. 
It is obvious from Figure 2 that estimated autocorrelation coefficients are statistically significant in 
many time lags when exceed critical value presented by dotted lines. This confirms hypothesis that 
observed return time series contain ARCH effects (heteroscedasticity). 
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Figure 2: Correlograms and cross-correlograms between Pliva and Podravka square returns 

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

 rpliva  

0 5 10 15 20 25

-0
.0

5
0.

00
0.

05
0.

10

 rpliva and rpodravka

-25 -20 -15 -10 -5 0

Lag

-0
.0

5
0.

00
0.

05
0.

10

AC
F

 rpodravka and rpliva

0 5 10 15 20 25

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 rpodravka  

 
Source: According to data on www.zse.hr 

 
 
According to given assumptions a diagonal VEC model with Cholesky factorization is estimated. 
Univariate GARCH(1,1) model can be generalized into bivariate, as folows: 
 

)()()( 111 −−− Σ++=Σ t
T
ttt BvechAvechCvech εε      (4) 

 
In equation (4) )(⋅vech  operator denotes the column-stacking operator applied to the lower portion of 
the symmetric matrix. The model (4) requires the estimation of 21 parameters (C matrix has 3 
elements, A and B matrices each 9 elements). 
 
To overcome dimensionality problem in VEC methodology A and B matrices can be restricted to 
diagonal elements. Therefore, bivariate DVEC-GARCH(1,1) model is restricted to 9)1(3 =+k  
parameters. Furthermore, DVEC model can be simplified  by restricting A and B to be a vectors or a 
positive scalars (Zivot, Wang 2006). 
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Table 1. VAR(1)-DVEC(1,1) model with Cholesky factorization 
 
 
Estimated Coefficients: 
-------------------------------------------------------------- 
                  Value Std.Error t value Pr(>|t|)  
         C(1) 0.0005129 0.0003415  1.5019 0.066800 
         C(2) 0.0004966 0.0004663  1.0649 0.143660 
  AR(1; 1, 1) 0.1047563 0.0390424  2.6831 0.003740 
  AR(1; 2, 2) 0.0508917 0.0448776  1.1340 0.128605 
      A(1, 1) 0.0036373 0.0002112 17.2239 0.000000 
      A(2, 1) 0.0002860 0.0004458  0.6416 0.260690 
      A(2, 2) 0.0045237 0.0004084 11.0764 0.000000 
ARCH(1; 1, 1) 0.7506377 0.0234564 32.0013 0.000000 
ARCH(1; 2, 1) 0.1746712 0.0569743  3.0658 0.001131 
ARCH(1; 2, 2) 0.4859494 0.0323898 15.0031 0.000000 
  GARCH(1; 1) 0.7753328 0.0133463 58.0935 0.000000 
  GARCH(1; 2) 0.8275629 0.0157466 52.5551 0.000000 
-------------------------------------------------------------- 
Information criteria: 
-------------------------------------------------------------- 
AIC(12) = -7406.841 
BIC(12) = -7353.080  
Source: According to data on www.zse.hr 

 
 
A disadvantage of the DVEC model is that there is no guarantee of a positive definite variance-
covariance matrix. Hence, different DVEC(1,1) models with different restrictions on coefficients 
matrices will be analyzed, undertaking Cholesky factorization. 
 
For complete estimation procedure it is necessary to estimate mean vector of returns using VAR(1) 
system. Also in vector autoregression model of order 1, only diagonal coefficients will be estimated. 
Estimation results of VAR(1)-DVEC(1,1) model with Cholesky factorization are presented in Table 1. 
 
According to Table 1, in which matrix A is restricted to be diagonal and matrix B a vector, the results 
are presented as follows: 
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In Table 2 the results of normality test, Ljung-Box test and Lagrange multiplier test are presented, 
indicating that in estimated model (5) remains no autocorrelation and no ARCH effects, i.e. there is no 
heteroscedasticity left. 
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Table 2: Diagnostic tests of standardized residuals 
 
 
 

Normality Test: 
-------------------------------------------------------------- 
          Jarque-Bera P-value Shapiro-Wilk    P-value  
   rpliva      1779.3       0       0.9114 0.000e+000 
rpodravka       704.7       0       0.9619 4.441e-016 
 
Ljung-Box test for standardized residuals: 
-------------------------------------------------------------- 
          Statistic P-value Chi^2-d.f.  
   rpliva     10.55  0.5677         12 
rpodravka     10.17  0.6010         12 
 
Ljung-Box test for squared standardized residuals: 
-------------------------------------------------------------- 
          Statistic P-value Chi^2-d.f.  
   rpliva     9.737  0.6390         12 
rpodravka     7.282  0.8385         12 
 
Lagrange multiplier test: 
--------------------------------------------------------------  
           TR^2 P-value F-stat P-value  
   rpliva 8.810  0.7191 0.8121  0.7380 
rpodravka 6.468  0.8907 0.5940  0.9269  

 
Source: According to data on www.zse.hr 

 
 
 
 
 
 
4. ESTIMATION OF CONDITIONAL VARIANCES AND CORRELATION 
 
 
 
On Figure 3 there is evident similarity between Pliva and Podravka stock return movements. It can be 
seen increase in volatility movement in last quarter of 2006. The main precondition for this rise was an 
intensive increase of investment in investment funds. Especially the increase of investment in the 
stock funds, caused by increased public awareness of the advantages of such investment (above 
average yield, higher interest rates offered by banks) as well as the broadening of market supply 
allowing better risk diversification, has significantly affected the trading volume on the Croatian capital 
market and thus the volatility of Pliva and Podravka stocks.  
 
These market movements are characteristic of the emerging capital market. 
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Figure 3: Returns of Pliva and Podravka stocks with their conditional volatilities 
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Source: According to data on www.zse.hr 

 
Therefore, positive correlation between them can be expected. Considering that correlation is 
conditioned on past information, it is time-varying. Namely, correlation coefficients are calculated using 
data of covariances and variances of stock returns in matrix tΣ . Data are time-varying as it is shown 
on Figure 4. 
 
 
 

Figure 4: Conditional correlation of Pliva and Podravka stock returns 
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Source: According to data on www.zse.hr 
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It is obvious that conditional correlation values of stock returns are positive in most trading days. This 
may be an indicator of emerging bull market.  
 
 
 
 
5. FORECASTING OPTIMAL DYNAMIC PORTFOLIO 
 
According to estimated model (5) predicted values of mean vector and variance-covariance matrix are 
computed and presented in Table 3 for 10 days-ahead. 
 
 

Table 3: Ten-days prediction of returns, standard deviations, and correlation between 
Pliva and Podravka stocks 

Predicted 
Pliva returns 

Predicted 
Podravka 
returns 

Predicted 
Pliva 
S.dev. 

Predicted 
Podravka 
S.dev. 

Predicted 
correlation 

 -0.0012574771 0.0004609494 
  0.0003811753 0.0005200320 
  0.0005528344 0.0005230389 
  0.0005708168 0.0005231919 
  0.0005727006 0.0005231997 
  0.0005728979 0.0005232001 
  0.0005729186 0.0005232001 
  0.0005729207 0.0005232001 
  0.0005729210 0.0005232001 
  0.0005729210 0.0005232001 

0.01877445 0.00928619 
0.02058464 0.01012907 
0.02251005 0.01087058 
0.02456287 0.01153195 
0.02675579 0.01212782 
0.02910213 0.01266881 
0.03161594 0.01316294 
0.03431216 0.01361647 
0.03720672 0.01403442 
0.04031662 0.01442085 

0.040395556 
0.031090784 
0.024723091 
0.020176599 
0.016816266 
0.014258517 
0.012261221 
0.010666151 
0.009366925 
0.008290239 

 
Source: According to data on www.zse.hr 

 
 
Using results from Table 3 in equation (2) vector tµ  and matrix tΣ  are obtained in following 
optimization problem: 
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In accordance with optimization problem in (6) dynamic portfolio selection is defined on daily basis, 
where *

,tpSD  is desired portfolio standard deviation in moment t . In this paper optimization is done 
under assumption of constant risk preference at level of 2% and 3%. Maximization problem (6) is 
nonlinear programming problem solved using Solver by generalized reduced gradient method 
(Rombouts, Rengifo 2004). 
 
Ten days forecast results are given in Table 4. 
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Table 4: Ten days forecast optimal portfolio weights at the standard deviation level of 2% and 3% 

Stock weights of optimal portfolio selection 
k-days forecast 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

tplvw ,  0 0 1 1 1 1 0,9484 0,8723 0,8022 0,7374
03,0, ≤tpSD  tpodw ,  1 1 0 0 0 0 0,0516 0,1277 0,1978 0,2626

tplvw ,  0 0 0,8854 0,8074 0,7359 0,6700 0,6094 0,5534 0,5019 0,4545
02,0, ≤tpSD  tpodw ,  1 1 0,1146 0,1927 0,2641 0,3300 0,3906 0,4466 0,4981 0,5455

 
Source: According to data on www.zse.hr 

 
From Table 4 it can be seen that portfolio weights change daily with constant risk preference. It is 
obvious that portfolio weights are changing at the third day, and more intensively in given time frame 
at lower risk level (2%). In other words, if investor is willing to accept higher risk his portfolio weights 
would changed after sixth day (risk level 3%). 
 
According to presented data in Tables 3 and 4 it can be concluded that stock with higher return has 
higher weight in optimal portfolio. If we compare 9th and 10th prognostic days portfolio is chosen 
according to defined standard deviation level. Namely, regardless to equal stocks returns higher 
weight is associated to the stock with lower risk measure.   
 
 
 
6. CONCLUSION 
 
This paper is focused on dynamic estimation of stocks weights in portfolio optimization by multivariate 
approach. For the purpose of the risk controlling it is important to forecast the rate of return and its 
variance over the holding period and to estimate the risk associated with holding a particular asset.  
 
By risk control manager makes free supplementary capital for new investments. In comparison to the 
conventional approach, empirical research in risk management showed that the static "mean-variance" 
methodology is very restrictive with unrealistic assumptions. So, multivariate GARCH(p,q) volatility 
modeling is more adequate for the purpose of forecasting of time-varying conditional first and second 
order moments. From MGARCH family models, DVEC(1,1) model with restrictions to positive-definite 
covariance matrix was used. 
 
The complete procedure of analysis is established using daily observations of Pliva and Podravka 
stocks, as the most frequently traded stocks from CROBEX index at Zagreb Stock Exchange. 
The analysis shows that stocks with negative predicted returns have no weight in portfolio regardless 
investor risk preference. Stocks with positive predicted returns will have relevant weights in portfolio 
taking into account profit maximizing with proposed risk measure, i.e. standard deviation. Dynamic 
portfolio optimization for ten days forecast is solved as nonlinear programming problem by generalized 
reduced gradient method. 
 
 
Finally, respecting different investor risk preference at chosen standard deviation level up to 2% and 
3% forecasts of optimal portfolio weights for ten days out of sample are made. 
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