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1 Introduction

Mean-variance analysis continues to be widely used in economics and finance, with ap-

plications that cover such key issues as portfolio choice, asset pricing tests and performance

evaluation. In this sense, finance students nowadays learn that there is not just one, but two

types of mean-variance frontiers: one for portfolios due to Markowitz (1952), and another one

for stochastic discount factors (SDFs), due to Hansen and Jagannathan (1991). They learn that

the first frontier characterises the risk-return trade-offs that an investor faces, while the second

one describes the mean-variance constraints that financial markets data imposes on asset pricing

models.1

Students also learn that asset returns are predictable, if not in mean at least in variance,

and that investors can exploit this fact to their advantage by using conditional distributions as

opposed to unconditional ones in designing their portfolio strategies.2 For instance, an investor

can not only choose a passive “buy and hold” portfolio strategy whose weights are fixed over

time, but also define a dynamic trading strategy as a function of the volatility level of the stock

market. As a result, more advanced students learn that there are different versions of the return

and SDF mean variance frontiers, depending on the information used in their construction.

Frontiers for such active strategies were introduced by Hansen and Richard (1987) in the case of

portfolios, and Gallant, Hansen and Tauchen (1990) for SDFs, and have been recently revisited

by Ferson and Siegel (2001, 2003, 2006), Bekaert and Liu (2004), and Abhyankar, Basu and

Stremme (2007).

This paper systematises and extends our knowledge on the precise relationship between

mean-variance frontiers across both these dimensions, namely type (i.e. portfolio vs SDF) and

information. This is an important issue because portfolio and stochastic discount factor frontiers

are usually regarded as dual objects (in the sense that every element in one frontier is believed

to have a counterpart in the other one), to the extent that sometimes researchers use one type

of frontier to answer questions that arise more naturally in the other type. For instance, De

Santis (1995) and Bekaert and Urias (1996) assess the gains for a mean-variance investor from

internationally diversifying her portfolio by testing if the restrictions that domestic market data

imposes on asset pricing models are strengthened by the inclusion of data on foreign assets.3

1 In line with most of the literature, in this paper we do not consider SDF frontiers that impose positivity of
the SDF. See Hansen and Jagannathan (1991) for details.

2See Cochrane (2001) for a summary of the empirical evidence on mean predictability, and Sentana (2005) for
a recent example of the link between regression forecasts and optimal portfolios.
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Similarly, Cochrane (2001, sec. 21.1) uses unconditional Sharpe ratios of traded assets to infer

the volatility of the SDF required to explain the equity premium puzzle with a consumption-

based asset pricing model.

Nevertheless, it is important to remember that the widely cited duality result in Hansen and

Jagannathan (1991) applies to their specific set-up: unconditional moments of passive strategies

based on a given vector of asset payoffs. Moreover, it is also important to bear in mind that the

portfolio frontier that they consider may only have unit cost on average, as the prices of the asset

payoffs under consideration may depend on the information available at the time of trading. In

that case, the Hansen-Jagannathan portfolio frontier will differ from the usual Markowitz frontier

for returns, which is the relevant object from the perspective on an uninformed investor.

In this paper, we first show that the conditional portfolio frontier in Hansen and Richard

(1987) is dual to the conditional SDF frontier in Gallant, Hansen and Tauchen (1990), both

of which refer to conditional moments of active strategies. In contrast, we show that duality

usually fails when we work with unconditional moments of active portfolios. Specifically, we show

that the unconditional frontiers in those papers are not dual objects, so that the questions on

investors’ risk-return trade-offs and constraints on asset pricing models that they respectively

answer are not necessarily equivalent either. In this context, we explicitly characterise the

random variables for which the appropriate dual objects are themselves frontiers, as opposed

to mere volatility bounds. An important implication of our results is that empirical researchers

should be careful, and focus on the type of frontier that is really relevant for the particular

question that they want to address.

In order to avoid the misspecification of a conditional model for asset payoffs, the most

popular empirical strategy to construct unconditional mean-variance frontiers approximates the

effect of conditioning information by constructing passive frontiers with managed portfolios, i.e.,

portfolios whose scale is a function of some variables in the econometrician’s information set.

For that reason, we will also relate the mean-variance frontiers that such a procedure generates

to the frontiers mentioned in the previous paragraph. Our analysis implies that an empirical

researcher who is interested in SDF frontiers should use unrestricted managed portfolios, while

a researcher who is interested in portfolio frontiers should use managed portfolios of constant

cost instead.

3See De Roon and Nijman (2001) for a survey on spanning tests, including a review of their implementation
under conditioning information.
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Table 1 summarises our analysis. Columns are arranged by a decreasing use of conditioning

information, while for each column the last two rows couple the appropriate dual frontiers.

Constant Cost Random CostRandom CostConstant Cost

Hansen-
Jagganathan

(1991) Hansen-
Jagganathan

(1991)

Gallant
et al. 

(1990)

Extended
SDF

Frontier

Gallant
et al. 

(1990)

Markowitz
(1952)

Extended
Return
Frontier

Hansen-
Richard
(1987)

Hansen-
Richard
(1987)

ReturnsManaged PortfoliosUnconditional MomentsConditional
Moments

Passive Strategies

(Unconditional Moments)

Active Strategies

Constant Cost Random CostRandom CostConstant Cost
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Jagganathan

(1991) Hansen-
Jagganathan

(1991)

Gallant
et al. 

(1990)

Extended
SDF

Frontier

Gallant
et al. 

(1990)

Markowitz
(1952)

Extended
Return
Frontier

Hansen-
Richard
(1987)

Hansen-
Richard
(1987)

ReturnsManaged PortfoliosUnconditional MomentsConditional
Moments

Passive Strategies

(Unconditional Moments)

Active Strategies

Porfolio
Frontiers

SDF
Frontiers

Duality

Decreasing use of conditioning information

“Optimal” Managed Portfolios:
Ferson-
Siegel
(2003)

Bekaert-
Liu

(2004)

Table 1: Mean-variance frontiers across type and information.

Finally, we also study some special cases of simplified mean-variance frontiers, the most

important of which arises in the presence of an asset that is either conditionally or uncondi-

tionally riskless. In that case, we show that the geometric interpretation of duality in terms of

Sharpe ratios in Hansen and Jagannathan (1991) applies once again to their specific set-up (i.e.

unconditional moments of passive strategies), so that one must be careful in extending their

result to other frameworks. We also show that some other results that are sometimes taken for

granted may fail too. For instance, while it is true that portfolio mean-variance frontiers with

and without a safe asset share the so-called tangency portfolio when we work with either uncon-

ditional moments of passive strategies, or conditional moments of active strategies, no tangency

portfolio exists any longer when we work with unconditional moments of active portfolios. This

result is relevant for the correct interpretation of the Sharpe ratios used in some recent papers

on mean-variance frontiers with conditioning information.
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The rest of the paper is organised as the columns of Table 1. We introduce the general

theoretical set-up in section 2. Then, we study conditional and unconditional mean-variance

frontiers in sections 3 and 4, respectively. In section 5, we introduce what we call extended

mean-variance frontiers, which are the correct dual objects to the unconditional frontiers of

active portfolios. Next, we discuss passive frontiers with and without managed portfolios in

section 6. Finally, we extend our analysis in the presence of a riskless asset and other special

cases in sections 7 and 8, respectively, and present our conclusions in section 9. Proofs are

gathered in the appendix.

2 Theoretical Background

2.1 Information Structure and Active Portfolio Strategies

Consider an economy with a finite number N of risky assets whose random payoffs x =

(x1, . . . , xN)
′ are defined on an underlying probability space. These payoffs may correspond to

stocks, bonds, derivatives, mutual funds, etc. To incorporate conditional information, we closely

follow Hansen and Richard (1987), where further details can be found. Specifically, we assume

that there are three important dates in this economy: 0, 1 and 2. We identify 0 as the decision

date, 1 as the trading date and 2 as the payoff date. Investors design ex ante portfolio strategies

at 0 that may depend on the information that they will observe at 1, when trading takes place.

Finally, they receive payoffs at 2.

LetG1 denote the investors’ information at date 1. We will typically think ofG1 as containing

one or more signals observed at 1 that are informative about future asset payoffs (see section

2.2 for an example). We denote the set of all random variables that are measurable with respect

to G1 by I1, while G2 and I2 have a similar interpretation with reference to date 2.

In this context, we denote the first two conditional moments of the primitive payoffs and

their conditional costs by

E (x|G1) = ν1, E
(
xx′|G1

)
= Γ1, C (x|G1) = c1, (1)

respectively, all of which belong to I1. To avoid a trivial uninformative set up, we assume that

not all these random variables are degenerate. We also assume that the diagonal elements of Γ1

are uniformly bounded with probability one (a.s.), so that a fortiori all the elements of x belong

to L2, which is the collection of all random variables defined on the underlying probability space
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with bounded (unconditional) second moments.4 Hence, we can obtain the covariance matrix

of x as Σ1 = Γ1 − ν1ν
′
1
, whose smallest eigenvalue we initially assume is uniformly bounded

away from 0 a.s., which implies that none of the primitive assets is either conditionally riskless

or redundant, and moreover, that it is not possible to generate a conditionally riskless portfolio

from x other than the trivial one.

Although we deliberately allow asset prices c1 to depend on the values of the signals, there

are two important examples of payoffs whose costs are non-random: gross returns, which are

payoffs with unit prices, and arbitrage portfolios, or zero-cost payoffs. Obviously, any payoff

with a nonzero cost can be normalised to be a gross return, but the scaling factor may be a

function of G1. For simplicity, though, we exclude the possibility that all primitive assets are

arbitrage portfolios by assuming that the vector c1 has at least one entry different from 0 a.s.

We also assume that not all expected payoffs are conditionally proportional to their prices with

a common factor of proportionality. In this way, we implicitly rule out those situations in which

all conditionally expected returns are the same.5

We denote the unconditional counterparts to (1) as

E (x) = E (ν1) = ν, E
(
xx′
)
= E (Γ1) = Γ, C (x) = E (c1) = c, (2)

which are now real numbers instead of random variables. Following Hansen and Richard (1987),

we will often use the term pseudo-prices to refer to average costs.

As we said before, investors can condition their portfolios weights on the information they

know they will have at the time of trading, which is given by G1. For instance, investors

may prefer different portfolios depending on whether yield spreads at date 1 are high or low.

Consequently, they can construct active portfolio strategies with payoffs p = x′w1, where the

portfolio weights w1 ∈ I1. In what follows, we will refer to the payoff space defined by

Pa = 〈x〉1 =
{
p ∈ I2 : p = x

′w1, w1 ∈ I1
}

as the active payoff space, where 〈x〉
1
denotes the conditional span of x, which includes its

unconditional span 〈x〉 =
{
p ∈ I2 : p = x′w,w ∈ RN

}
.

Trivially, the conditional moments and costs of the elements of Pa will be

E (p|G1) = w
′
1
ν1, E

(
p2|G1

)
= w′

1
Γ1w1, C (p|G1) = w

′
1
c1,

4Such a restriction on conditional moments is stronger than required for our conditional analysis in section 3,
but it allows us to work with unconditional moments in later sections.

5The special cases of a riskless asset, arbitrage portfolios, and equal expected returns can also be analysed in
our set up, but for pedagogical reasons we postpone them to sections 7 and 8 of the paper.
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all of which belong to I1. Similarly, their unconditional moments and average cost will be the

real numbers

E (p) = E
(
w′
1
ν1

)
, E

(
p2
)
= E

(
w′
1
Γ1w1

)
, C (p) = E

(
w′
1
c1
)
.

2.2 A Multinomial Example

From the perspective of date 0, the payoff space at date 2 will generally be infinite dimen-

sional, even though investors only have access to a finite set of primitive asset payoffs, because

they can use any piece of information known at date 1 in designing their investment strategies.

For pedagogical reasons though, in this section we will illustrate the previous concepts in a situ-

ation in which the dimension of Pa is finite. We will do so by particularising our analysis to the

special case of an information set effectively characterised by a multinomial random variable.

Such a set up will arise, for instance, if the investor can observe two signals at date 1, each

of which can only take two values. As in most of the figures that illustrate this paper, if we

start from a vector x that represents gross returns (whose nonrandom c1 is equal to a vector of

ones), the first signal could reveal one of two possible expected return vectors, while the second

signal could indicate one of two possible covariance matrices. In such a context, we can always

understand the investor’s information set G1 as containing a single multinomial random variable

z that can take the following four values

Signals 1\2 Low High

Low z = 1 z = 2

High z = 3 z = 4

whose probabilities as of time 0 we shall denote by πk, k = 1, 2, 3, 4, with
∑4

k=1 π
k = 1.

Let us define the dummy variables

ξk = I (z = k) , k = 1, 2, 3, 4,

where I (·) is the usual indicator function. The key feature of a multinomial set-up is that

Pa =

{

p ∈ I2 : p = x
′

(
4∑

k=1

ξkwk
1

)

=
4∑

k=1

(
ξkx

)′
wk
1
, wk

1
∈ RN

}

.

where wk
1
denotes the four possible values that w1 may take at date 1. As a result, the payoff

space Pa is indeed finite dimensional from the point of view of date 0 since it could be generated

by passive strategies on an augmented but finite dimensional set of managed portfolios whose
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payoffs take the form ξkx (k = 1, . . . , 4). In this sense, we say that a portfolio strategy is passive

if the four vectors wk
1
are equal; otherwise, we say that it is active.

It is also very easy to obtain expressions for the mean, second moment and cost of a portfolio

in a multinomial set up. For instance, while the conditional cost of a portfolio with weights w1

will be given by

C (p|z = k) = wk′
1
ck
1
, k = 1, 2, 3, 4,

where ck
1
∈ RN denotes the four possible values that c1 may take at date 1, its unconditional

cost is

C (p) =
4∑

k=1

πkwk′
1
ck
1
.

Nevertheless, it is important to bear in mind that an investor is always concerned with the

four possible values of C (p|z = k), i.e. the cost of her portfolio at every possible realisation of

z, and not simply its average C (p). In particular, if she is endowed with some positive wealth at

date 1, which we can normalize to 1 without loss of generality, then she will only be interested

in portfolio strategies that cost 1 at date 1 for every possible value of z. From the point of

view of such an investor, a strategy whose cost is only 1 on average will be either infeasible or

suboptimal, as its real cost will be higher than her wealth for some values of z, and lower for

others.

2.3 Representing Portfolios and Stochastic Discount Factors

Hansen and Richard (1987) introduce a conditional analogue to a standard Hilbert space

based on the mean square inner product, E(xy|G1), and the associated mean square norm
√
E(x2|G1), where x, y ∈ L2

2
, and L2

2
is the conditional analogue to L2. Such a topology allows

them to define the conditional least squares projection of any y ∈ L2
2
onto Pa as

E(yx′|G1)E
−1(xx′|G1)x, (3)

which is the element of Pa that is closest to y in the conditional mean square norm.

In this context, we can formally understand C(·|G1) and E(·|G1) as conditionally continuous

linear functionals that map the elements of Pa onto I1. The expected value functional is always

conditionally continuous on L2
2
by a conditional version the Markov inequality. Similarly, our

full rank assumption on Σ1 implies that Γ1 has full rank too, and consequently, that the cost

functional is also conditionally continuous on Pa, which is tantamount to the law of one price. A
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conditional version of the Riesz representation theorem then implies that there exist two unique

elements of Pa that represent these conditional functionals over Pa.
6 In particular, the active

mean and cost representing portfolios, p+a and p∗a, respectively, will be such that:

E (p|G1) = E
(
p+a p|G1

)
, C (p|G1) = E (p∗ap|G1) , ∀p ∈ Pa.

It is then straightforward to show that

p+a = x
′Γ−1
1
ν1, p∗a = x

′Γ−1
1
c1. (4)

If Pa included the conditionally (and unconditionally) safe payoff x0 = 1, then p+a would

coincide with it. But even though it does not, it follows from (3) that we can interpret p+a as

the conditional projection of x0 onto Pa. We can also use (3) to interpret p∗a as the conditional

projection of any valid SDF onto Pa. As is well known, a SDF is any scalar random variable

m ∈ I2 that prices all conceivable payoffs in terms of their expected cross product with it. More

formally,

E (mp|G1) = C (p|G1) , ∀p ∈ Pa. (5)

Equivalently, admissible SDFs are fully characterised by the condition

E (mx|G1) = c1

since they satisfy E[w′
1
(mx− c1) |G1] = 0 for any w1 ∈ I1. In addition, since C(1|G1) =

E(1 ·m|G1), the conditionally expected value of m defines the shadow price of the unit payoff.

In practice, each (frictionless) asset pricing model can be represented by a particular SDF. For

instance, the CAPM states that m is affine in the return of the market portfolio, while the

CCAPM implies that m is the intertemporal marginal rate of substitution in consumption of

the representative agent.

Finally, it is worth mentioning that both representing portfolios and SDFs can also be defined

in terms of unconditional moments. Specifically, the law of iterated expectations implies that

p+a and p∗a also represent unconditional means and average costs on the active payoff space Pa,

so that:

E (p) = E
(
p+a p

)
, C (p) = E (p∗ap) , ∀p ∈ Pa.

6Chamberlain and Rothschild (1983) introduced mean and cost representing portfolios to study unconditional
mean-variance analysis in infinite dimensional payoff spaces in which conditional information plays no role. Hansen
and Richard (1987) extended their results to conditioning information.
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Similarly, we could also define SDFs as those m ∈ I2 that give the right pseudo-price for any

conceivable p, i.e.

E (mp) = C (p) , ∀p ∈ Pa.

Therefore, as Hansen and Richard (1987) point out, there is no loss of information in moving

from pricing to pseudo-pricing, but only as long as we focus on the whole of Pa, and not simply

on a subset, as in sections 5 and 6.

3 Conditional Mean-Variance Frontiers

Let us begin by focusing on the first column of Table 1, that is, those active portfolio strategies

that are optimal with respect to conditional moments. These frontiers are the relevant ones for

both informed investors and researchers, even though it is difficult to construct them in practice,

as they require the correct specification of the first two moments of the joint distribution of asset

returns given the agents’ information set.

3.1 Conditional Return and SDF Frontiers: CRF and CSF

Hansen and Richard (1987) define the Conditional Return Mean-Variance Frontier (CRF)

as the highest lower bound on conditional variances for a given profile of conditional expected

returns that can be achieved by portfolios whose weights may depend on conditioning informa-

tion, but whose price is always one. Thus, the CRF will be given by the set of active portfolio

strategies that solve the non-standard optimisation problem

min
p∈Pa

E
(
p2|G1

)
s.t. E (p|G1) = ν̄1, C (p|G1) = 1, (6)

where, importantly, the objective function is a random variable in I1, while the first constraint

imposes a particular conditional mean profile on the returns that can be considered. Hansen

and Richard (1987) go on to show that the active portfolio strategies that solve (6) can be

represented as

pC (ν̄1) = R∗a + ω1 (ν̄1)A
+
a , (7)

ω1 (ν̄1) =
ν̄1 − �1
�1

,

where

R∗a =
1

�1

p∗a (8)
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is the return associated to the active cost representing portfolio,

A+a = p+a −
�1

�1

p∗a (9)

is the residual from the conditional projection of p+a onto 〈p∗a〉1,
7 and

�1 = ν
′
1
Γ−1
1
c1 = E (p∗a|G1) = C

(
p+a |G1

)
= E

(
p+a p

∗
a|G1

)
,

�1 = ν
′
1
Γ−1
1
ν1 = E

(
p+a |G1

)
= E

(
p+2a |G1

)
,

�1 = c
′
1
Γ−1
1
c1 = C (p∗a|G1) = E

(
p∗2a |G1

)
,

�1 = �1/�1 = E (R∗a|G1) ,

�1 = �1 − �
2
1
/�1 = E

(
A+a |G1

)
= E

(
A+2a |G1

)
,

all of which belong to I1. Finally, Hansen and Richard (1987) also mention that there is condi-

tional two-fund spanning on the CRF, so that any element on the CRF can be replicated by an

active portfolio of two other elements on the CRF.

In this context, the conditional second moment of portfolios on the CRF is given by

E[p2C (ν̄1) |G1] = �1 + ω2
1
(ν̄1)�1,

where

�1 =
1

�1

= E
(
R∗2a |G1

)
.

As a consequence, the CRF will be a parabola in [V ar (p|G1) , E (p|G1)] space and a hyperbola

in [
√
V ar (p|G1), E (p|G1)] space for a particular value of the conditioning variables in G1.

0

0,6

1,2

0,9 0,95 1
MEAN

S
D

z=4

z=1

z=2

z=3

1,01

1,06

1,11

0 0,08 0,16
SD

M
E

A
N

z=4

z=3

z=2

z=1

Figure 1: Mean-variance frontiers conditional on specific signal values. Portfolio frontiers on

the left and SDF frontiers on the right.

7A+a can be interpreted as the mean representing portfolio in the space of arbitrage portfolios, i.e. the unique
arbitrage portfolio that satisfies E

(
A+a p|G1

)
= E (p|G1 ) for any portfolio p ∈ Pa such that C (p|G1 ) = 0.
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The first panel of Figure 1 illustrates the CRF for the multinomial illustration described in

section 2.2. Given a specific mean profile ν̄1(=ν̄
1
1
, ν̄2
1
, ν̄3
1
, ν̄4
1
), the position of the corresponding

pC (ν̄1) in (7) can be easily located.

On the other hand, Gallant, Hansen and Tauchen (1990) define the Conditional SDF Mean-

Variance Frontier (CSF) as the highest lower bound on the conditional variance of those SDFs

that correctly price all the active portfolios that can be generated from the vector of asset payoffs

x, as defined in (5). Hence, the CSF will be given by the set of scalar random variables that

solve the non-standard optimisation problem

min
m∈I2

E
(
m2|G1

)
s.t. E (m|G1) = c̄1, E (mx|G1) = c1, (10)

where, once again, the objective function is a random variable in I1, while the first constraint

imposes a particular mean profile on the potential SDFs that can be considered. Gallant, Hansen

and Tauchen (1990) go on to show that the solution to (10) can be represented as

mC (c̄1) = p∗a +̟1 (c̄1)E
+
a , (11)

̟1 (c̄1) =
c̄1 − �1
1− �1

,

where p∗a was defined in (4) and

E+a = 1− p+a . (12)

is the residual from the conditional projection of 1 onto 〈x〉
1
. Finally, it is also possible to

show that there is conditional two fund spanning on the CSF, in the sense that we can use a

conditionally linear combination of two elements of the CSF to replicate any other element.

In this context, the conditional second moment of SDFs on the CSF is given by

E[m2
C (c̄1) |G1] = �1 +̟2

1
(c̄1) (1− �1) .

Therefore, the CSF will also be a parabola in [E (m|G1) , V ar (m|G1)] space and a hyperbola

in [E (m|G1) ,
√
V ar (m|G1)] space for a given value of the conditioning variables in G1. The

second panel of Figure 1 illustrates the CSF for the multinomial illustration described in section

2.2. Given a specific mean profile c̄1(=c̄11, c̄
2
1
, c̄3
1
, c̄4
1
), the position of the corresponding mC (c̄1)

in (11) can be easily located.
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3.2 Duality between CSF and CRF

Expression (11) implies that the CSF can be represented as the sum of two components:

p∗a−̟1 (c̄1) p
+
a , which belongs to Pa and can therefore be traded, and ̟1 (c̄1), which cannot be

traded in the absence of a conditionally safe asset. In this context, the following question arises:

Is the traded component of mC (c̄1) related to the CRF? A simple example is p∗a, which belongs

to the CSF, while its return R∗a belongs to the CRF. The following proposition, which relates

the mean profile of a given element of one frontier to the mean profile of some element of the

other frontier for every signal value, extends to active strategies the well-known duality results

obtained by Hansen and Jagannathan (1991) for passive strategies (see section 6.2 below):

Proposition 1 Let ν̄1 and c̄1 denote some specific conditional mean profiles for the CRF and
CSF, respectively, and let ω1 (ν̄1) and ̟1 (c̄1) be the conditional weights on A+a and E+a of the
corresponding CRF and CSF elements (7) and (11), respectively. Then:

1. The traded component of any element of the CSF mC (c̄1) such that �1 −̟1 (c̄1)�1 
= 0
will be conditionally proportional to some element of the CRF pC (ν̄1) if and only if the
conditional mean profiles ν̄1 and c̄1 satisfy

̟1 (c̄1)− �1̟1 (c̄1)ω1 (ν̄1) + �1ω1 (ν̄1) = 0. (13)

2. Any element of the CRF pC (ν̄1) such that 1 − ω1 (ν̄1)�1 
= 0 will be conditionally pro-
portional to the traded component of some element of the CSF mC (c̄1) if and only if the
profiles ν̄1 and c̄1 satisfy (13).

As a consequence, there is an element-by-element duality between the CRF and CSF fron-

tiers, in the sense that given an element of one frontier, we can find its counterpart in the other

one by choosing the conditional mean profile ν̄1 or c̄1 in such a way that (13) is satisfied. Given

that the relationship between those two dual elements is conditionally affine, they will show

perfect conditional correlation. The first panel of Figure 2 illustrates this duality for a particular

value of the signals.

Strictly speaking, there are two exceptions to this rule. Still, in both cases we can establish

a link between an element of one frontier and the asymptotes of the other. More specifically,

the exception to the first part of Proposition 1 occurs when the conditional mean profile c̄1 is

such that �1 −̟1 (c̄1)�1 = 0. In that case,

mC

[
1

�1

(1− �1)

]
=
1

�1

(
1−A+a

)
,

which does not have a position on R∗ as required by the CRF. Intuitively, we need the cost

of the traded element of mC (c̄1) to be different from zero for every possible realisation of the

12



signals in order to be able to construct a return. However, as we let |ν̄1| grow without bound,

the term A+a becomes the main driver of pC (ν̄1), in the sense that

lim
ν̄1→±∞

E

[(
pC (ν̄1)

ν̄1
−

A+a
�1

)2
|G1

]

= lim
ν̄1→±∞

1

ν̄2
1

E

[(
R∗a −

�1

�1

A+a

)2
|G1

]

= 0,

and we can only relate mC [(1− �1) /�1] to the asymptotes of the CRF

lim
ν̄1→±∞

√
V ar [pC (ν̄1) |G1]

ν̄1
= ±

√
1− �1
�1

.
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Figure 2: Duality between conditional frontiers and its exceptions at a particular signal value.

Portfolio frontiers on the left and SDF frontiers on the right.

Similarly, the exception to the second part of Proposition 1 occurs when the conditional

mean profile ν̄1 is such that 1− ω1 (ν̄1)�1 = 0. In that case,

pC

(
�1

�1

)
=
1

�1

p+a ,

which does not have a position on p∗a as required by the CSF. However, as we let |c̄1| grow

without bound, the term E+a becomes the main driver of mC (c̄1), in the sense that

lim
c̄1→±∞

E

[(
mC (c̄1)

c̄1
−

E+a
1− �1

)2
|G1

]

= lim
c̄1→±∞

1

c̄2
1

E

[(
p∗a −

�1

1− �1
E+a

)2
|G1

]

= 0,
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and we can relate pC (�1/�1) to the asymptotes of the CSF

lim
c̄1→±∞

√
V ar [mC (c̄1) |G1]

c̄1
= ±

√
�1

1− �1
.

The two duality exceptions are illustrated for a particular signal value in the second and

third panels of Figure 2, respectively.

4 Unconditional Mean-Variance Frontiers

Let us now focus on those active portfolio strategies that are optimal with respect to un-

conditional moments, which correspond to columns 2 and 3 in Table 1. At first sight, it might

seem odd to study unconditional moments when we think of active strategies whose weights

depend on conditioning information. However, in many practical situations the observer of the

agents’ decisions only has access to an information set that is much coarser than the agents’

information set. The performance evaluation of a portfolio manager by means of the first two

unconditional moments of her returns is a typical example of the use of unconditional return

frontiers by an outside evaluator who may not have access to the proprietary strategies followed

by the manager. Similarly, the evaluation of a specific asset pricing model by computing the first

and second unconditional moments of the corresponding SDF is the typical example of the use

of unconditional SDF frontiers by an econometrician who wants to avoid the use of the wrong

conditional model for returns.

4.1 Unconditional Return and SDF frontiers: URF and USF

Hansen and Richard (1987) define the Unconditional Return Mean-Variance Frontier (URF)

as the highest lower bound on the variance for each level of expected return that can be achieved

by portfolios with weights that may depend on conditioning information, but whose price is

always one. Hence, the URF will be given by the set of active portfolio strategies that solve the

more standard problem

min
p∈Pa

E
(
p2
)

s.t. E (p) = ν̄, C (p|G1) = 1, (14)

where both the objective function and the mean constraint are now real-valued. Hansen and

Richard (1987) go on to show that the gross returns that solve (14) can be represented as

pU (ν̄) = R∗a + ωU (ν̄)A
+
a , (15)

ωU (ν̄) =
ν̄ −E (�1)

E (�1)
,

14



where R∗a and A+a are defined in (8) and (9), respectively. Importantly, note that in contrast

to (7), the weight on A+a is no longer conditional on G1.
8 Further, it directly follows from

the results in Hansen and Richard (1987) that there is unconditional two fund spanning on the

URF, in the sense that a passive strategy of two elements of the URF can replicate any other

element.

In this context, the unconditional second moment of portfolios on the URF will be given by

E[p2U (ν̄)] = E (�1) + ω2U (ν̄)E (�1) .

As a consequence, the URF will be a hyperbola in [
√
V ar (p), E (p)] space.

On the other hand, Gallant, Hansen and Tauchen (1990) define the Unconditional SDF

Mean-Variance Frontier (USF) as the highest lower bound on the unconditional variance of

those SDFs that correctly price all the active portfolios that can be generated from the vector

of asset payoffs x, as defined in (5). Hence, the USF will be given by the set of scalar random

variables that solve the more standard optimisation problem

min
m∈I2

E
(
m2
)

s.t. E (m) = c̄, E (mx|G1) = c1, (16)

where both the objective function and the first constraint are now real-valued. Gallant, Hansen

and Tauchen (1990) go on to show that the solution to (16) can be represented as

mU (c̄) = p∗a +̟U (c̄)E
+
a , (17)

̟U (c̄) =
c̄−E (�1)

1−E (�1)
,

where p∗a and E+a are defined in (4) and (12), respectively. Importantly, note that in contrast

to (11), the weight on E+a is no longer conditional on G1.
9 One can also show that there is

unconditional two fund spanning on the USF, in the sense that we can use an unconditional

combination of two elements on mU (c̄) to replicate any other element on mU (c̄).

8Perhaps the best known result of Hansen and Richard (1987) is that while unconditional frontier portfolios
always lie on the conditional frontier, the converse is not generally true. More specifically, a CRF portfolio will
also be located on the URF if and only if we choose the conditional mean profile as

ν̄1 =

[
ν̄ −E (�1 )

E (�1 )

]
�1 + �1 ,

so that ω1 (ν̄1 ) is in fact constant (= ωU (ν̄)).
9Another important result of Gallant et al. (1990) is that while unconditional frontier SDFs always lie on the

conditional frontier, the converse is not generally true. More specifically, a SDF on the CSF will also be located
on the USF if and only if we choose the conditional mean profile as

c̄1 =

[
c̄− E (�1 )

1− E (�1 )

]
(1− �1 ) + �1 ,

so that ̟1 (c̄1 ) is in fact constant (= ̟U (c̄)).
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Finally, the unconditional second moment of SDFs on the USF is given by

E[m2
U (c̄)] = E (�1) +̟2

U (c̄) (1−E (�1)) .

Therefore, the USF will also be a hyperbola in [E (m) ,
√
V ar (m)] space. Figure 3 illustrates

the shapes that the URF and USF can take for the multinomial illustration described in section

2.2.
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Figure 3: Unconditional and extended frontiers and their duality. Portfolio frontiers on the left

and SDF frontiers on the right.

4.2 Lack of Duality between USF and URF

Given the close analogies between conditional and unconditional return and SDF frontiers,

one is tempted to conclude that there must exist an unconditional analogue to Proposition

1. Moreover, the fact that p∗a belongs to the USF, while its return R∗a belongs to the URF

strengthens such an intuition. As our next result shows, however, it turns out that p∗a and R∗a

are the only dual points:

Proposition 2 Let ν̄ and c̄ denote some specific means for the URF and USF, respectively, and
let ωU (ν̄) and ̟U (c̄) be the unconditional weights on A+a and E+a of the corresponding URF
and USF elements (15) and (17), respectively. Then:

1. The traded component of any element of the USF mU (c̄) such that �1 −̟U (c̄)�1 
= 0 is
conditionally proportional to some element of the URF pU (ν̄) if and only if ν̄ and c̄ satisfy

̟U (c̄)− �1ωU (ν̄)̟U (c̄)− �1ωU (ν̄) = 0. (18)

2. Any element of the URF pU (ν̄) such that 1 − ωU (ν̄)�1 
= 0 is conditionally proportional
to the traded part of some element of mU (c̄) if and only if ν̄ and c̄ satisfy (18).
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Condition (18) trivially holds if we choose ν̄ = E (�1) and c̄ = E (�1), so that ωU [E (�1)] =

̟U [E (�1)] = 0, which confirms the unconditional dual character of R∗a and p∗a. But in general,

it is not possible to find any other real numbers (ν̄, c̄) such that the stochastic left hand side of

(18) is 0 for every conceivable realisation of the signals in G1. For this reason, the next section

is devoted to the dual objects to the URF and USF. More specifically, we will characterise in

full the random variables for which the dual objects to these two unconditional frontiers are

themselves frontiers, as opposed to mere bounds.

5 Extended Mean-Variance Frontiers

Let us again study optimal active strategies from the point of view of unconditional moments

in columns 2 and 3 of Table 1, but this time with weaker pricing constraints. In particular, we

will consider a portfolio frontier whose elements are not proper returns and a SDF frontier whose

elements only price constant cost portfolios on average.

5.1 Extended Return Frontier: ERF

5.1.1 Extended Returns and Extended Arbitrage Portfolios

We define extended returns as portfolios with unitary average cost,10 so that

C (p) = E[C (p|G1)] = 1.

Obviously, one could transform an extended return into a proper return by dividing its weights

by C (p|G1) if C (p|G1) 
= 0, but in general such a transformation would depend on G1.

In our multinomial illustration described in section 2.2, extended returns satisfy

C (p) =
4∑

k=1

πkwk′
1
ck
1
= 1

while returns satisfy the stronger condition

C (p|z = k) = wk′
1
ck
1
= 1, k = 1, 2, 3, 4.

Similarly, we can also define extended arbitrage portfolios as

C (p) = E[C (p|G1)] = 0.

10Hansen and Richard (1987) refer to them as pseudo-returns.
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5.1.2 Mean-Variance Frontier for Extended Returns

By analogy with the frontiers discussed in the previous section, we define the Extended

Return Mean-Variance Frontier (ERF) as the highest lower bound on the variance for each

level of expected return that can be achieved by portfolios with weights that may depend on

conditioning information, but whose price is only one on average. More formally, the ERF is

the set of active portfolio strategies that solve the problem

min
p∈Pa

E
(
p2
)

s.t. E (p) = ν̄, C (p) = 1, (19)

which is an unconditional mean-variance problem similar to (14), but in the space of extended

returns. Therefore, it is perhaps not surprising that as in the case of the URF, we can represent

its solution by the following orthogonal decomposition:

Proposition 3 The solution to program (19) is given by

pE (ν̄) = R∗e + ωE (ν̄)A
+
e =

[
�1

E (�1)
+ ωE (ν̄)

(
�1 −

�1E (�1)

E (�1)

)]
R∗a + ωE (ν̄)A

+
a , (20)

ωE (ν̄) =
ν̄ −E (�1) /E (�1)

E (�1)−E2 (�1) /E (�1)
,

where

R∗e =
1

E (�1)
p∗a (21)

is the extended return associated to the cost representing portfolio, and

A+e = p+a −
E (�1)

E (�1)
p∗a, (22)

which is the residual from the unconditional projection of p+a onto 〈p∗a〉, is the (unconditional)
mean representing portfolio is the space of extended arbitrage portfolios.

The main difference between expressions (15) and (20) is that in the latter the weight on

R∗a is not systematically one, although it is one on average.11 We can also show that there

is unconditional two fund spanning on the ERF, in the sense that a passive strategy of two

elements of the ERF can replicate any other element.

Finally, given that the second moment of the portfolios on the ERF is

E[p2E (ν̄)] =
1

E (�1)
+ ω2E (ν̄)

[
E (�1)−

E2 (�1)

E (�1)

]
,

the ERF will also be a hyperbola in [
√
V ar (p), E (p)] space. Figure 3 shows the ERF jointly

with the URF. As this figure illustrates, the ERF will generally be to the left of the URF on

11Therefore, the elements of the ERF do not generally belong to the CRF, unlike the elements of the URF (see
footnote 8). In this sense, note that in general R∗a will not belong to the ERF, while R∗e always will.
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this space because (19) has the same objective function as (14) but with less demanding cost

constraints. Nevertheless, the relative position of the ERF in mean-variance space does not really

reflect an improvement of the investors’ investment opportunities with respect to the URF. As

we mentioned before, the reason is that the conditional cost of the portfolios on the ERF is not

necessarily 1 for every possible value of the signals in G1, as in the case of returns, but only 1

on average, which renders them useless for an investor with positive wealth.

5.1.3 Duality between USF and ERF

Given that both the ERF and USF have constant weights on (p∗a, p
+
a ), we might expect the

elements of the ERF and the USF to be linked by an unconditionally affine relationship, and

as a consequence to show perfect unconditional correlation. The following result characterises

precisely the element-by-element duality between these two frontiers:

Proposition 4 Let ν̄ and c̄ denote some specific means for the ERF and USF, respectively, and
let ωE (ν̄) and ̟U (c̄) be the unconditional weights on A+e and E+a of the corresponding ERF
and USF elements (20) and (17), respectively. Then:

1. The traded component of any element of the USF mU (c̄) such that E (�1)−̟U (c̄)E (�1) 
=
0 is unconditionally proportional to some element of the ERF pE (ν̄) if and only if ν̄ and
c̄ satisfy

̟U (c̄)−E (�1)̟U (c̄)ωE (ν̄)−E (�1)ωE (ν̄) = 0. (23)

2. Any element of the ERF pE (ν̄) such that 1−ωE (ν̄)E (�1) 
= 0 is unconditionally propor-
tional to the traded part of some element of the USF mU (c̄) if and only if ν̄ and c̄ satisfy
(23).

Figure 3 shows a particular dual point of the ERF and the USF. Note that while Proposition

2 showed that in general only one specific point on the URF (namely R∗a) could be related to

another specific point on the USF (namely p∗a), Proposition 4 shows that there are only two

elements on the ERF and the USF for which it is not possible to find a counterpart on the other

frontier.

Those two duality exceptions are analogous to the ones in Proposition 1, and their geometry

is analogous to Figure 2. The exception to the first part of Proposition 4 occurs when c̄ is such

that E (�1)−̟U (c̄)E (�1) = 0, in which case the USF point is E−1 (�1)E (�1) (1−A+e ), whose

risky part has a zero average cost. Still, we can establish a link between this element of the USF

and the asymptotes of the ERF, as it was the case of the CRF. Similarly, the exception to the

second part of Proposition 4 occurs when ν̄ is such that 1−ωE (ν̄)E (�1) = 0, in which case the

ERF point is E−1 (�1) p
+
a , which does not have any weight on p∗a. But again, we can establish a
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link between this element of the ERF and the asymptotes of the USF, as it was the case of the

CSF.

Finally, it is important to emphasise once again that although the USF delivers the optimal

constraints on asset pricing models, its dual, i.e. the ERF, is useless from the vantage point of

an investor.

5.2 Extended SDF Frontier: ESF

5.2.1 Constant-Cost Payoff Space and Extended SDFs

Let us now focus on constant conditional cost portfolios by defining the restricted payoff

space Pe ⊂ Pa as

Pe = {p ∈ Pa : C (p|G1) = C (p)} ,

which includes returns and arbitrage portfolios.12

To clarify the constraint that a constant cost imposes on active strategies, it is convenient

to re-express an arbitrary active strategy p = x′w1 as

p = R1w1 + (x−1 −R1c1,−1)
′
w1,−1,

where the subscript −1 means that we have deleted the first element of the corresponding

vector, R1 is the gross return on the first asset (which we have assumed that has a nonzero price

without loss of generality), and the vector x−1−R1c1,−1 transforms the remaining asset payoffs

into arbitrage portfolios. In this way, we can establish a direct connection between the weight

on R1 and the portfolio cost because C (p|G1) = w1. Specifically, while the active payoff space

Pa does not impose any constraint on the dependence of w1 and w1,−1 on the information in G1,

the constant-cost payoff space Pe in contrast imposes the constraint w1 = w ∈ R. Therefore,

p ∈ Pe if and only if

p = R1w + (x−1 −R1c1,−1)
′
w1,−1, w ∈ R, w1,−1 ∈ I1. (24)

In this context, we define extended SDFs as those random variables m ∈ I2 that price

correctly on average any payoff that belongs to the constant-cost payoff space:

E (mp) = C (p) , ∀p ∈ Pe.

12Mathematically, Pe has the structure of a subspace of Pa with respect to unconditional linear combinations
(passive strategies) of constant conditional cost portfolios.
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Given that (5) implies that proper SDFs satisfy an analogous condition for the richer set of

payoffs in Pa, extended SDFs may not price correctly portfolios whose cost is not constant. The

following lemma provides an equivalent characterisation for extended SDFs:

Lemma 1 Extended SDFs are fully characterised by the condition

E (mx|G1) = h1c1, h1 ∈ I1
E (h1) = 1.

Obviously, any extended SDF could also be transformed into a true SDF by the normalisation

h−1
1
m if h1 
= 0, but such a transformation would depend on G1. In our multinomial illustration

described in section 2.2, extended SDFs satisfy

E (mx|z = k) = hk
1
ck
1
, k = 1, 2, 3, 4,

4∑

k=1

πkhk
1
= 1,

while active SDFs must satisfy the stronger condition

E (mx|z = k) = ck
1

k = 1, 2, 3, 4.

5.2.2 Mean-Variance Frontier for Extended SDFs

The Extended SDFs Mean-Variance Frontier (ESF) yields the highest lower bound on the

variance of those univariate random variables that price correctly on average any portfolio of

x whose weights may depend on conditioning information, but whose cost is constant. Using

Lemma 1, we can formally define the ESF as the set of scalar random variables m that solve the

problem

min
m∈I2

E
(
m2
)

s.t. E (m) = c̄, E (mx|G1) = h1c1, (25)

where h1 ∈ I1 is a scalar random variable such that E (h1) = 1. Given that (25) is an uncondi-

tional mean-variance problem similar to (16), but in the space of extended SDFs, it is perhaps

not surprising that we can also represent its solution by the following orthogonal decomposition:

Proposition 5 The solution to program (25) is given by

mE (c̄) = p∗e +̟E (c̄)E
+
e =

[
�1

E (�1)
+̟E (c̄)

(
�1 −

�1E (�1)

E (�1)

)]
p∗a +̟E (c̄)E

+
a (26)

̟E (c̄) =
c̄−E (�1) /E (�1)

1−E (�1)−E2 (�1) /E (�1)
,

where
E+e = 1− p+e (27)
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and

p∗e =
1

E (�1)
R∗a, p+e = A+a +

E (�1)

E (�1)
R∗a, (28)

with R∗a and A+a defined in (8) and (9), respectively.

It is not difficult to prove that the portfolios p∗e and p+e are the two unique elements of Pe

that represent unconditional means and average costs on Pe. That is,

E (p) = E
(
p+e p

)
, C (p) = E (p∗ep) , ∀p ∈ Pe.

As a result, we will refer to p+e and p∗e as the extended mean and cost representing portfolios,

respectively. Not surprisingly, p+e can be interpreted as the unconditional projection of a safe

unit payoff x0 onto Pe, E
+
e as its residual, and p∗e as the unconditional projection of extended

SDFs onto Pe. Moreover, the return corresponding to p∗e is equal to R∗a (as opposed to R∗e in

(21)), and the residual of the unconditional projection of p+e onto 〈p∗e〉 is equal to A
+
a (as opposed

to A+e in (22)).

The main difference between expressions (17) and (26) is that in the latter the weight on

p∗a is not systematically one, only on average.13 We can also show that there is unconditional

two fund spanning on the ESF, in the sense that an unconditionally linear combination of two

elements of the ESF can replicate any other element.

Finally, given that the second moment of the extended SDFs on the ESF is

E[m2
E (c̄)] =

1

E (�1)
+̟2

E (c̄)

[
1−E (�1)−

E2 (�1)

E (�1)

]
,

the ESF will also be a hyperbola in [E (m) ,
√
V ar (m)] space. Figure 3 shows the ESF jointly

with the USF. As this figure illustrates, the ESF will be generally below the USF in this space

because (25) has the same objective function as (16) but with less demanding pricing constraints.

The elements of the USF price correctly on average every payoff in Pa, while those on the ESF

do so for payoffs in Pe ⊂ Pa only. As a result, we cannot usually guarantee that for a given c̄

those optimal extended SDFs will provide the correct pricing over Pa.

5.2.3 Duality Between ESF and URF

Given that both the URF and ESF have constant weights on (R∗a, A
+
a ), we might expect the

elements of the URF and ESF to be linked by an unconditionally affine relationship, and as a

13Therefore, the elements of the ESF do not belong to the CSF, as it was the case for the elements of the USF.
For instance, p∗a itself will not generally belong to the ESF, while p∗e always will.
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consequence, to show perfect unconditional correlation. The following result fully characterises

the element-by-element duality between these two frontiers:

Proposition 6 Let ν̄ and c̄ denote some specific means for the URF and ESF, respectively, and
let ωU (ν̄) and ̟E (c̄) be the unconditional weights on A+ and E+e of the corresponding URF
and ESF elements (15) and (26), respectively. Then:

1. The traded component of any element of the ESF mE (c̄) such that 1−̟E (c̄)E (�1) 
= 0
is unconditionally proportional to some element of the URF pU (v̄) if and only if ν̄ and c̄
satisfy

̟E (c̄)−
E (�1)

E (�1)
̟E (c̄)ωU (v̄) +

1

E (�1)
ωU (v̄) = 0. (29)

2. Any element of the URF pU (v̄) such that E (�1) − ωU (v̄)E (�1) 
= 0 is unconditionally
proportional to the traded part of some element of the ESF mE (c̄) if and only if ν̄ and c̄
satisfy (29).

Figure 3 shows a particular dual point of the ESF and the URF. Once again note that while

Proposition 2 showed that in general only one specific point on the URF could be related to

another specific point on the USF, Proposition 6 shows that there are only two elements on URF

and ESF for which it is not possible to find a counterpart on the other frontier.

Those two duality exceptions are similar to the ones in Proposition 1 and their geometry is

analogous to Figure 2. The exception to the first part of Proposition 6 occurs when c̄ is such

that 1−̟E (c̄)E (�1) = 0, in which case the ESF point is E−1 (�1) (1−A+a ), whose risky part

has a zero average cost. Nevertheless, we can establish a link between this element of the ESF

and the asymptotes of the URF, as it was the case of the CRF. Similarly, the exception to the

second part of Proposition 6 occurs when ν̄ is such that E (�1) − ωU (v̄)E (�1) = 0, in which

case the URF point is E−1 (�1)E (�1) p+e , which does not have any weight on p∗e. But again, we

can establish a link between this element of the URF and the asymptotes of the ESF, as it was

the case of the CSF.

In any case, while the URF characterises the optimal unconditional risk-return trade offs,

its dual, i.e. the ESF, only provides suboptimal constraints on asset pricing models.

6 Passive Mean-Variance Frontiers

Let us now study those situations in which investors do not use the information available at

the trading date 1 in constructing their portfolio weights, so that they rely on passive strategies.

To be internally consistent, we will work with unconditional moments in such a framework, which

corresponds to the last three columns in Table 1. At first sight, it may seem irrelevant to study

passive strategies in the presence of conditioning information. However, most of the empirical
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work on mean-variance frontiers relies on passive strategies of managed portfolios as a way of

approximating the complexity of active strategies without running the risk of misspecifying the

conditional distribution of asset returns (see chapter 8 in Cochrane (2001) for a justification).

6.1 Passive Payoff Space and SDFs

Given a vector of asset payoffs x, we define the passive payoff space P ⊆ Pa as the space14

of constant weight portfolios

P =
{
p ∈ Pa : p = w

′x,w ∈ RN
}
.

In our multinomial illustration described in section 2.2, P represents strategies where w1
1
=

w2
1
= w3

1
= w4

1
= w.

In this context, we can define the passive representing portfolios as the two unique elements

(p+, p∗) of P that represent average mean and cost over P . That is,

E (p) = E
(
p+p

)
, C (p) = E (p∗p) , ∀p ∈ P,

whence it is easy to see that

p+ = x′Γ−1ν, p∗ = x′Γ−1c. (30)

Note that p+ is the unconditional projection of the safe payoff x0 = 1 onto P . As for p∗, we

can interpret it as the unconditional projection of a new type of SDFs that we will call passive

SDFs onto P . More formally, we define passive SDFs as those random variables m ∈ I2 that

price any payoff in P correctly on average, i.e.:

E (mp) = C (p) , ∀p ∈ P.

Recall that active SDFs satisfy an analogous equation for a richer set of payoffs, namely the

whole Pa. Passive SDFs are equivalently characterised by the condition

E (mx) = c

because they satisfy E[w′ (mx− c)] = 0 for any w ∈ R
N . In our multinomial illustration

described in section 2.2, passive SDFs satisfy

E (mx) =
4∑

k=1

πkck
1
.

14Like Pe, P also has the structure of a subspace of Pa with respecto to unconditional linear combinations.
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6.2 Passive Return and SDF Frontiers: PRF and PSF

Hansen and Jagannathan (1991) define a frontier, which we will label as the Passive Return

Mean-Variance Frontier (PRF), made up of those passive portfolio strategies that solve a problem

analogous to (19) but this time defined over P :

min
p∈P

E
(
p2
)

s.t. E (p) = ν̄, C (p) = 1. (31)

Importantly, the elements of the PRF will generally be extended returns instead of returns since

the cost constraint in (31) is stated as an average. In this sense, note that it is not possible to

construct proper returns with passive strategies unless the original payoffs x have nonrandom

prices, a special case that will be analysed in detail in sections 6.4 and 6.5.2.

The results in Hansen and Jagannathan (1991) imply that the PRF can be represented by

the (unconditionally) orthogonal decomposition

pP (ν̄) = R∗ + ω (ν̄)A+, (32)

ω (ν̄) =
ν̄ − �/�

�− �2/�
,

where

R∗ =
1

�
p∗ (33)

is the extended return associated to p∗,

A+ = p+ −
�

�
p∗ (34)

is the extended arbitrage portfolio given by the residual of the unconditional projection of p+

onto 〈p∗〉, and

� = ν ′Γ−1c =E (p∗) = C
(
p+
)
= E

(
p+p∗

)
,

� = ν ′Γ−1ν =E
(
p+
)
= E

(
p+2

)
,

� = c′Γ−1c =C (p∗) = E
(
p∗2
)
.

As expected, the PRF also shows unconditional two fund spanning. In addition, given that

the second moment of portfolios on the PRF is

E[p2P (ν̄)] =
1

�
+ ω2 (ν̄)

(
�−

�
2

�

)
,

the PRF will be a hyperbola in [
√
V ar (p), E (p)] space. In this sense, we can easily prove

that the PRF will be to the right of the ERF on this space because (35) and (19) are identical
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programs, except that the former is defined on the narrower feasible set of passive strategies,

P ⊆ Pa. In contrast, the PRF and URF may in principle cross. As a result, the PRF is not

necessarily a relevant object for an investor when it is not constructed from constant cost payoffs,

neither can it be used to place a bound on the URF in that case.

On the other hand, Hansen and Jagannathan (1991) define a frontier that we will label as

the Passive SDF Mean-Variance Frontier (PSF), which puts the highest variance bound on those

univariate random variables that price on average any portfolio with constant weights. These

random variables, though, are generally passive SDFs, and not necessarily valid SDFs, since

they may not price correctly portfolios with time-varying weights. More formally, the PSF is

given by the set of scalar random variables that solve the problem

min
m∈I2

E
(
m2
)

s.t. E (m) = c̄, E (mx) = c. (35)

Their results directly imply that the PSF can be represented as

mP (c̄) = p∗ +̟ (c̄)E+, (36)

̟ (c̄) =
c̄− �

1− �
,

where p∗ is defined in (30) and

E+ = 1− p+ (37)

is the residual of the unconditional projection of 1 onto P . Finally, Hansen and Jagannathan

also show that there is unconditional two fund spanning in this frontier too.

Given that the second moment of SDFs on the PSF are

E[m2
P (c̄)] = �+̟2 (c̄) (1− �) ,

the PSF will also be a hyperbola in [E (m) ,
√
V ar (m)] space. As Gallant, Hansen and Tauchen

(1990) point out, the PSF will be below the USF in this space because (35) and (16) are identical

programs, except for the fact that the latter adds more demanding pricing constraints. While

the USF prices correctly on average every payoff in Pa, the PSF only prices correctly on average

payoffs in P ⊆ Pa. Hence, the PSF places a lower bound on the USF. In contrast, the ESF and

PSF may in principle cross since the elements of each frontier yield average prices in a subspace

of payoffs that does not necessarily contain the other one. Consequently, the ESF does not

necessarily sharpen the SDF bounds provided by the PSF.
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6.3 Duality Between PRF and PSF

One of the most cited results in Hansen and Jagannathan (1991) is that there is an element-

by-element duality between the PRF and PSF. Specifically, these authors show that the traded

component of any element of the (35) mP (c̄) such that �−̟ (c̄)�
= 0 will be unconditionally

proportional to some element of the (31) pP (v̄) if and only if v̄ and c̄ satisfy

̟ (c̄)− �̟ (c̄)ω (v̄) + �ω (v̄) = 0. (38)

Likewise, any element of the PSF pP (v̄) such that 1 − ω (v̄)�
= 0 will be unconditionally pro-

portional to the traded part of some element of the mP (c̄) if and only if v̄ and c̄ also satisfy

(38).

The two exceptions to this duality are easy to understand by a direct translation of the

comments made for conditional frontiers after Proposition 1. Similarly, the geometry of duality

and its exceptions are analogous to Figure 2.

6.4 Passive Frontiers with Returns

Let us focus on the last column in Table 1, when x is effectively an N × 1 vector of gross

returns R, possibly after scaling by their non-random cost.

As is well known, the PRF coincides with the Markowitz (1952) frontier in this case. Further,

the PRF will be a constrained version not only of the ERF but also of the URF because any

extended return in P will also be a return in those circumstances. Therefore, we will come across

the ERF, the URF and the PRF as we go from left to right on the [
√
V ar (p), E (p)] space, as in

Figure 4. In those circumstances, we can understand the PRF as providing a weak lower bound

on the actual risk-return trade-offs that investors face, which are described by the URF, not the

ERF.

Let us turn to SDF frontiers. If c1 is nonrandom then the ESF will be a constrained version

of the PSF because P ⊂ Pe in this special case. Therefore, as we move downwards on the

[
√
V ar (p), E (p)] space we will come across the USF, the ESF and finally the PSF, as illustrated

in Figure 4.
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Figure 4: Passive frontiers based on returns alone (PRF0 and PSF0) jointly with unconditional

and extended frontiers. Portfolio frontiers on the left and SDF frontiers on the right.

6.5 Passive Frontiers with Managed Portfolios

6.5.1 Unrestricted Managed Portfolios

In practice, the passive payoff space P ⊂ Pa spanned from the return vector R only may be

too narrow relative to Pa, which is the relevant space of active strategies available to investors.

For that reason, Hansen and Jagannathan (1991) also relied on an alternative empirical approach

that augments the payoff space P with the payoffs of some managed portfolios in an attempt to

approximate Pa as closely as possible, and thereby sharpen both the PRF and PSF. This strategy,

which has gained much popularity in empirical work because it avoids the (mis)specification of

a conditional model for asset payoffs, corresponds to the penultimate column of Table 1.

As an extreme example, consider the enlarged payoff vector

x =
(
ξ1R′ ξ2R′ ξ3R′ ξ4R′

)′
.

in the multinomial example of section 2.2. In this case, it is easy to see that P = Pa, in which

case Pe ⊂ P . The scaled payoffs ξkR, which are called managed portfolios in the empirical

literature since their scale belongs to I1, are no longer returns since their true cost

C (x|G1) =
(
ξ1ℓ′ ξ2ℓ′ ξ3ℓ′ ξ4ℓ′

)′

varies with the values of the signals, where ℓ is anN×1 vector of ones. As far as the unconditional

and extended frontiers discussed in the previous versions is concerned, though, the use of x or

R leads to the same answer because 〈x〉
1
= 〈R〉

1
, i.e. x does not increase the payoff spaces Pe
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and Pa. Given that P = Pa in this extreme example, a sharpened PRF (31) constructed with

this x instead of the initial R is exactly equal to the ERF in (19), while a sharpened PSF in (35)

constructed with this x is exactly equal to the USF in (16). In other words, the fifth column in

Table 1 coincides with the third column in this case.

Therefore, the use of unrestricted managed portfolios and passive frontiers gives a relevant

object when applied to SDF frontiers, but not when applied to portfolio frontiers. As we have

repeatedly mentioned, PRFs constructed from unrestricted managed portfolios are useless from

the vantage point of an investor because they are made up of portfolios whose average cost is 1,

but whose real cost depends on the value of the signals.

The difference between the PRF and the Markowitz frontier in the case of managed portfolios

does not seem to be widely known, perhaps because empirical work initially relied on returns.

However, more recent empirical work on the PSF tends to rely on managed portfolios, which

are payoffs with possibly non-constant cost.

Of course, in actual empirical work it is not usually possible to explore all the relevant

managed portfolios. Consequently, the sharpened PRF and PSF will rely on passive strategies

based on a subset of the vector of all conceivable managed portfolios. For instance, we could use

x =
(
R′ ξ1R′

)′
,

which (passively) spans a payoff space P that is richer than the one based on R, but poorer

than Pa. Specifically, in this example P is constrained to those active strategies in which

w2
1
= w3

1
= w4

1
. In [

√
V ar (p), E (p)] space, a sharpened PRF constructed with such an x will

lie between the ERF and the PRF based on R alone, and could cross the URF. On the other

hand, a sharpened PSF constructed with such an x will be between the USF and the PSF based

on R in [E (m) ,
√
V ar (m)] space, and might even cross the ESF.

Figure 5 shows two alternative ways of partially sharpening the PRF and the PSF by

means of managed portfolios. In one case we use x = ( R′ ξ1R′ )′ and in the other one

x = ( R′ ξ4R′ )′. The PRF that relies on ξ1 is between the PRF based on returns alone and

the URF, but the PRF that relies on ξ4 is very close to the ERF, crossing the URF around

its global minimum variance point. More importantly, the PSF that relies on ξ1 is between the

PSF that relies on returns alone and the ESF, but the PSF that relies on ξ4 is very close to the

USF, crossing the ESF out of the relevant range of points in this plot. This figure confirms that

the ESF does not necessarily improve upon a simple application of managed portfolios.
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Figure 5: Passive frontiers with unrestricted managed portfolios. PRF0 and PSF0 are based on

returns alone, PRF1 and PSF1 are based on returns and ξ1, and PRF2 and PSF2 are based on

returns and ξ4. Portfolio frontiers on the left and SDF frontiers on the right.

6.5.2 Managed Portfolios of Constant Cost

Imagine now that we restrict the managed portfolios that we use to have constant cost,

which corresponds to the fourth column in Table 1. If the primitive assets in (24) are a vector

of returns R, then we can represent any p ∈ Pe as

p = R1w + e
′
−1w1,−1, w ∈ R, w1,−1 ∈ I1,

where e−1 = R−1 − R1ℓ−1. This expression motivates the approximation of Pe by means of

passive strategies on an augmented set of payoffs used by Bansal, Dahlquist, and Harvey (2004)

and Brandt and Santa-Clara (2006) among others, who re-scale e−1 with random variables that

belong to I1. Note that such a space would be the relevant one for a passive investor who has

access to active funds.

As an extreme example, consider the enlarged payoff vector

x =
(
R1 ξ1e′−1 ξ2e′−1 ξ3e′−1 ξ4e′−1

)′
, (39)

in the multinomial example of section 2.2. In this case, it is easy to see that P = Pe ⊂ Pa, which

means that a sharpened PRF (31) constructed with this x instead of the initial R is exactly

equal to the URF in (14), while a sharpened PSF in (35) constructed with this x is exactly

equal to the ESF in (25). In other words, the fourth column in Table 1 coincides with the second

column in this case.
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Obviously, passive frontiers that rely on a subvector of (39) will lie between the PRF based

on R alone and the URF, and between the PSF based on R alone and the ESF. Therefore,

the use of constant cost managed portfolios and passive frontiers gives a relevant object when

applied to return frontiers, but not when applied to SDF frontiers.

6.5.3 “Optimal” Managed Portfolios

Given that the choice of managed portfolios is empirically relevant, Ferson and Siegel (2003)

and Bekaert and Liu (2004) sharpen the PSF bounds obtained from R with some carefully

chosen managed portfolios, as indicated at the bottom of Table 1.

Ferson and Siegel (2003) construct a PSF from any two arbitrary returns on the URF (15).

More formally, if we call ν̄1 and ν̄2 the two chosen expected returns, with ν̄1 
= ν̄2, then we can

express their problem as (35) with

x =
(
pU (ν̄1) pU (ν̄2)

)′
. (40)

Ferson and Siegel (2003) motivate this choice of payoffs on the grounds that these two

portfolios optimally use conditioning information from the point of view of an unconditional

mean-variance investor. However, Proposition 6 implies that their procedure generates the ESF

(25),15 so that they effectively bound the unconditional variances of extended SDFs, which are

not necessarily true SDFs because they will not generally price correctly on average managed

portfolios with random cost. Moreover, a simple application of (unrestricted) managed portfolios

may even improve upon the ESF, as Figure 5 illustrates.

Bekaert and Liu (2004) consider a different type of optimality in choosing their managed

portfolios. In particular, they first use (35) to obtain the minimum unconditional variance of

any SDF m with unconditional mean c̄ that prices correctly on average some single payoff x.

Given that such a bound depends not only on c̄ but also on x, Bekaert and Liu (2004) then

find the managed portfolio x (c̄) ∈ Pa that yields the highest possible bound. In this way, they

generate the whole USF by means of a PSF-like object that prices on average a “single” payoff

that nevertheless changes with c̄. Strictly speaking, therefore, the frontier that they obtain is

not a standard PSF (35).

Using our notation, we can express the optimal payoff x (c̄) of Bekaert and Liu (2004) as the

traded component of a particular point on the USF (17), and the problem that they solve as

15Similarly, a simple application of unconditional two-fund spanning shows that a PRF problem (31) with this
x is equivalent to the URF (14).
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a transformation of problem (35) where the single managed portfolio that they consider for a

fixed c̄ will be

x (c̄) = p∗a −̟U (c̄) p
+
a = mU (c̄)−̟U (c̄) . (41)

This expression of x (c̄) motivates an interpretation of the equality between their bounds and

the USF (16) by means of a dual’s dual argument since x (c̄) is unconditionally proportional to

an element on the ERF.16 In any case, Proposition 4 shows that one should be careful when

trying to use the frontier obtained by Bekaert and Liu (2004) to guide dynamic asset allocation

because its dual object is the ERF, which is not the relevant object for investment decisions

since its elements are not necessarily returns.

Finally, it is important to note that Ferson and Siegel (2003) and Bekaert and Liu (2004)

obtained different SDF bounds because they applied their methods to different payoffs, not

because their methods were fundamentally different. In particular, if x contained two extended

returns on the ERF (20) instead of the two returns on the URF in (40), then the solution

to the Ferson and Siegel’s approach would be the USF.17 Similarly, if instead of (41) we used

x (c̄) = mE (c̄)−̟E (c̄), which is the traded component of a point on the ESF (26) with mean

c̄, then the solution of Bekaert and Liu’s approach would be the ESF, as Abhyankar, Basu and

Stremme (2007) show.18

7 The Riskless Asset Case

In the remaining of the paper, we will focus on three special cases in which it becomes

easier to characterise the different frontiers discussed in the previous sections. We will initially

study the potentially relevant situation in which a safe asset exists, and leave the cases of equal

expected returns and arbitrage portfolios for the next section.

Imagine that investors have access to a set of assets y that includes not only the original risky

asset payoffs in x, but also the safe payoff x0 = 1, so that y′ = (x0,x′). In this context, Qa = 〈y〉1

will be an enlarged payoff space such that Qa ⊃ Pa. In addition, we define the corresponding

16 In particular, the boundary point associated to c̄ obtained by Bekaert and Liu (2004) must necessarily belong
to the PSF based on the trivial passive portfolio space that simply scales x (c̄) with a real number. Therefore,
it must have a dual point on the corresponding PRF, which will trivially coincide with the element given by the
extended return of x (c̄). As shown in the proof of Proposition 4, the extended return of x (c̄) (which is the traded
part of mU (c̄)) can be expressed as R∗e + ωE (v̄)A

+
e , which is a point on the ERF (20). But since we know that

any point on the ERF has a dual point on the USF (17), the Bekaert and Liu’s boundary point from which we
started must be a point on the USF.

17For analogous reasons, the PRF based on P =
〈
p+a , p

∗

a

〉
will be equal to the ERF.

18These authors compare the theoretical and empirical properties of Ferson and Siegel’s and Bekaert and Liu’s
SDF bounds by focusing on the corresponding x (c̄)′ s.
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price vector as d′
1
= (c01, c

′
1
), while the vector of average prices will be d = E (d1). The first

entry of d is the pseudo-price of the safe payoff c0 = E (c01). On this basis, we can define the

conditionally safe return and the extended return associated to the riskless asset as

R0 =
1

c01
∈ I1, S0 =

1

c0
∈ R (42)

respectively. We say that the safe asset is unconditionally riskless when c01 = c0, so that

R0 = S0. For simplicity, in constructing Figures 6-9 we maintain the assumption that there is

an unconditionally safe asset.

The conditional mean and cost active representing portfolios in the payoff space Qa will be

q+a = 1, q∗a = p∗a +

[
c01 − �1
1− �1

]
E+a , (43)

respectively. Note that q+a is trivially the conditional projection of x0 onto Qa, and hence the

corresponding residual will be 0. On the other hand, q∗a is the conditional projection of any valid

SDF onto Qa, which obviously coincides with mC (c01) (see (11)).

In the rest of this section we will describe in detail the different mean-variance frontiers that

one can construct, with a special emphasis on their shape, the relationship between frontiers

with and without a safe asset, and a geometrical interpretation of duality by means of Sharpe

ratios.

7.1 Conditional Frontiers

The mean-variance problems that we must solve in this context are very similar to the

analogous problems without a safe payoff discussed in section 3. In particular, the elements of

the CRF will solve the same problem as (6), except that p is allowed to belong to the enlarged

conditional span Qa. Therefore, it is not surprising that (7) is still valid after the introduction

of a safe payoff if we simply replace p+a and p∗a in (4) with q+a and q∗a in (43), respectively.

Obviously, the notation (�1,�1,�1) and its variants should also be adapted to q+a and q∗a.

As expected, the elements of the CRF lie along two straight lines in [
√
V ar (p|G1), E (p|G1)]

space for each possible signal value in G1. Moreover, those two lines intersect on the vertical

axis at R0, which was defined in (42). The first panel of Figure 6 illustrates the CRF for each

signal value of the multinomial illustration described in section 2.2.

In addition, there is a conditional mean profile ν̄1 such that the weight of the CRF on

the conditionally safe payoff x0 will be identically 0 for every possible signal realisation, which
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implies that it will be equal to the CRF without a safe asset pC (ν̄1) at that point. This shared

element is usually referred to as the tangency portfolio. Figure 7 shows the connection between

the CRFs with and without the safe asset at a particular signal value.
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Figure 6: Mean-variance frontiers conditional on specific signal values in the presence of an

unconditionally riksless asset. Portfolio frontiers on the left and SDF frontiers on the right.
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Figure 7: Duality between conditional frontiers at a particular signal value in the presence of

an unconditionally riskless asset. Portfolio frontiers on the left and SDF frontiers on the right.

Similarly, the elements of the CSF solve the same problem as in (10), although this time they

will also have to satisfy the additional pricing restriction E (mx0|G1) = c01. But since the only

conditional mean profile c̄1 for which the mean and pricing constraints will be compatible is c01,
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which is the conditional cost profile of the safe payoff, the CSF will be given by the singleton

q∗a. Not surprisingly, q∗a also belongs to the CSF without a safe payoff since it coincides with

mC (c01). The second panel of Figure 6 illustrates the CSF for each signal value, while Figure 7

shows the connection between the CSFs with and without the safe asset for a particular signal

value.

In this context, the duality between the CRF and CSF is trivial since the latter is fully

traded and its corresponding return is

S∗a =
1

E (q∗2a |G1)
q∗a. (44)

Alternatively, we can illustrate the duality between the CRF and CSF by adapting the geo-

metrical argument on mean-standard deviation spaces that relates the PRF and PSF in Hansen

and Jagannathan (1991). Specifically, if we take into account that S∗a lies on the inefficient

branch of the CRF for each signal’s realisation, then the optimal conditional Sharpe ratio on

the CRF will be equal to the slope of the ray that joins the origin with the single point on the

CSF, so that

SR1 =
|E (S∗a|G1)−R0|

V ar1/2 (S∗a|G1)
=

V ar1/2 (q∗a|G1)

E (q∗a|G1)
,

as illustrated in Figure 7.

7.2 Unconditional Frontiers

When a safe payoff is available, the elements of the URF solve the same problem as (14),

except that p is allowed to belong to the enlarged conditional span Qa. Again, (15) is still valid

after the introduction of a safe payoff if we simply replace p+a and p∗a in (4) with q+a and q∗a in

(43), respectively. Figure 8 shows the URFs with and without a safe asset.

In this context, we find two facts that contradict conventional wisdom on mean-variance

frontiers with a safe asset. First, the elements of the URF do not lie along two straight lines

in [
√
V ar (p), E (p)] space if R0 is random, which means that there is not a unique optimal

risk-return trade-off, nor is R0 a frontier portfolio in that case (see Hansen and Richard (1987)).

But if the conditionally safe return is also unconditionally riskless because the price of x0 is

constant, then the URF will indeed consist of two straight lines that intersect on the vertical

axis at R0 = S0, where both R0 and S0 were defined in (42).

Second, there is no tangency portfolio irrespective of whether R0 = S0, because the risky

component of the elements of the augmented URF will not be conditionally proportional to the
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pU (ν̄)
′ s in (15) that conform the original URF. Intuitively, the reason is that investors can

trade random amounts of the safe asset by means of active strategies, which implies that even a

nonrandom R0 leads to additional investment opportunities in terms of unconditional moments.

As a result, the Sharpe ratios that Bekaert and Liu (2003) and Abhyankar, Basu and Stremme

(2007) consider must be interpreted with some care, as they relate to passive strategies that

combine an unconditionally riskless asset (traded or fictitious) with a portfolio on the URF of

risky assets alone. As a result, those Sharpe ratios underestimate the maximum unconditional

risk-return trade-off that can be achieved through active portfolio strategies.
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Figure 8: Unconditional and extended frontiers with and without an unconditionally riskless

asset. Portfolio frontiers on the left and SDF frontiers on the right.

As for the elements of the USF, they solve the same problem as in (16), but with the

additional pricing restriction E (mx0|G1) = c01. Once again, the only c̄ for which the mean and

pricing constraints will be compatible is c0, which is the pseudo-price of the safe payoff. As a
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result, the USF will also be a singleton. In fact, the only difference between the problems that

define the USF and the CSF is the criterion function, as the former minimises E
(
m2
)
while the

latter minimises E
(
m2|G1

)
. Therefore, a simple application of the law of iterated expectations

implies that the solution to both problems must be the same since the corresponding feasible

sets are equal and m2 ≥ 0. In other words, the USF will also consist of q∗a only. However, this

portfolio does not generally coincide with any mU (c̄) (see (17)) because its weight on E+a will

be random even in the case of an unconditionally riskless asset. Figure 8 shows the USFs with

and without a safe asset.

Let us turn to the potential duality between the URF and the USF. As we have just seen,

the latter is given by a single element, q∗a, which is fully traded, with a return S∗a (defined

in (44)) that clearly belongs to the URF. But q∗a and S∗a are only conditionally proportional,

which means that even in the case of an unconditionally riskless asset we cannot establish a

relationship between the slope of the URF and the slope of the ray that goes from the origin to

q∗a in [E (m) ,
√
V ar (m)] space. More formally, we will generally have that

SRU =
|E (S∗a)− S0|

V ar1/2 (S∗a)

=

V ar1/2 (q∗a)

E (q∗a)
,

where the middle expression can be better described as a pseudo-Sharpe ratio,19 since it is based

on the unconditional moments of S∗a in excess of the “safe” extended return S0. Therefore,

one must be careful in extending to unconditional frontiers of actively managed portfolios the

geometrical relationship obtained by Hansen and Jagannathan (1991) in terms of pseudo-Sharpe

ratios of passive portfolios. In particular, such a relationship does not hold between the elements

of the URF and the USF, which simply reflects the fact that these two frontiers are not dual,

as indicated by Proposition 2.

7.3 Extended Frontiers

The elements of the ERF solve the same problem as in (19), except that p is allowed to

belong to the enlarged conditional span Qa. In addition, they will lie along two straight lines

in [
√
V ar (p), E (p)] space that cross on the vertical axis at a point with mean S0 regardless

19SRU was already defined by Jagannathan (1996). Nevertheless, his result relating the pseudo-Sharpe ratio of
the URF with the Sharpe-ratio of the CRF

1

1 + SR2
U

= E

[
1

1 + SR21

]

does not necessarily hold unless the safe asset is unconditionally riskless, in which case SRU will be a proper
Sharpe ratio.
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of whether the riskless asset is unconditionally safe or not. In either case, the ERF will not

generally share any point with pE (ν̄) in (20). Figure 8 illustrates the ERFs with and without a

safe asset.

As expected, the single element of the USF q∗a defined in (43) has a dual element on the

ERF, which is given by

S∗e =
1

E (q∗2a )
q∗a.

In addition, there is a clear connection between slopes of the return and SDF frontiers because

both elements are unconditionally proportional. Specifically,

SRE =
|E (S∗e )− S0|

V ar1/2 (S∗e )
=

V ar1/2 (q∗a)

E (q∗a)
,

which means that the constant pseudo-Sharpe ratio20 of the elements of the ERF will be equal

to the slope of a ray from the origin to the single element of the USF. This geometry is analogous

to the one illustrated in Figure 7.

Let us turn to the ESF. To do so, we must first define the subspace of constant-cost portfolios

Qe ⊃ Pe, and obtain the extended representing portfolios q+e and q∗e in that subspace. Then, we

simply need to translate (28) to this context by defining for instance

q∗e =
1

E (S∗2a )
S∗a.

A key novel feature of this extended set-up is that while the residual in the conditional

projection of x0 onto Qa is 0, the residual from the unconditional projection of x0 onto Qe

(= 1 − q+e ) is not necessarily 0 because the safe asset will have a random cost unless it is

unconditionally riskless.

The elements of the ESF solve the same problem as in (25), but with the additional “pricing”

constraint

E (mx0|G1) = h1c01.

Nevertheless, this pricing constraint is not generally enough to pin down a particular c̄, and

hence the ESF will contain infinite points. However, when there is an unconditionally riskless

asset, extended SDFs must price a unit payoff correctly on average, in which case the ESF will be

given by the single point q∗e . This point will be such that E (q∗e) = c0 and V ar (q∗e) ≤ V ar (q∗a).

In either case, the ESF with and without a safe asset will not generally share any points, as

illustrated in Figure 8.

20Note that SRE will not a proper Sharpe ratio even if R0 = S0 because S∗e is not a proper return.
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As for the duality between the ESF and the URF, it is easy to see that the ESF will always

be fully traded, and moreover, that its return will be S∗a, which is defined in (44). Hence, if

we think in terms of returns the ESF effectively consists of the single element S∗a, which also

belongs to the URF. However, transforming an element of the ESF into a return will require a

conditional scaling unless we specifically focus on q∗e . Not surprisingly,

SRU =
|E (S∗a)− S0|

V ar1/2 (S∗a)
=

V ar1/2 (q∗e)

E (q∗e)
,

which means that the pseudo-Sharpe ratio of S∗a is equal to the slope of a ray from the origin to

q∗e in [E (m) ,
√
V ar (m)] space, so that the geometry is analogous to the one in Figure 7.

If there is an unconditionally riskless asset, then SRU ≤ SRE, which means that a bound

on the volatility of SDFs obtained from SRU might be too low, and a pseudo-Sharpe ratio

obtained from q∗a might be too high. As a result, the intertemporal marginal rate of substitution

in consumption of a specific CCAPM may look volatile enough from the perspective of SRU

even though it would be insufficiently volatile to match q∗a (cf. Cochrane (2001, sect 21.1).

7.4 Passive Frontiers

The unconditional span of y, i.e. Q = 〈y〉, defines an alternative payoff space Qa ⊇ Q ⊃ P ,

which is the relevant one for passive strategies. In this context, we can define the passive mean

representing portfolio q+ as the unconditional projection of x0 onto Q, and the associated cost

representing portfolio q∗ as the unconditional projection of any passive SDF onto Q (trivially

mP (c0) from (36)), so that

q+ = 1, q∗ = p∗ +

[
c0 − �

1− �

]
E+.

Once again, the residual in the unconditional projection of x0 onto Q will be 0.

The PRF solves a problem analogous to the one in (31), with the only difference that p ∈ Q.

Not surprisingly, its elements will lie along two straight lines in [
√
V ar (p), E (p)] space that

cross on the vertical axis at a point whose mean is S0 defined in (42), regardless of whether the

riskless asset is unconditionally safe or not. In either case, the PRF will always share a point

with the pP (ν̄)
′ s in (32).

On the other hand, the elements of the PSF will be given by the solution to a problem

analogous to (35), with the only change that the pricing constraints become E (my) = d. But

as expected, the point c̄ = c0 is the only choice compatible with the pricing constraints, which
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implies that the PSF is a singleton. In this sense, Hansen and Jagannathan (1991) show that

this single element will be q∗, which is equal to mP (c0), where mP (c̄) was defined in (36).

Importantly, q∗ has exactly the same mean as the single element of the USF although it will lie

below it in [E (m) ,
√
V ar (m)] space.

Finally, Hansen and Jagannathan (1991) also show that the point on the PRF given by

S∗ =
1

E(q∗2)
q∗

has a pseudo-Sharpe ratio that equals the slope of a ray from the origin to q∗ in [E (m) ,
√
V ar (m)]

space, so that

SRP =
|E (S∗)− S0|

V ar1/2 (S∗)
=

V ar1/2 (q∗)

E (q∗)
.

Figure 9 shows the passive, unconditional and extended frontiers for portfolios and SDF’s

for the case of an unconditionally safe asset and x given by a return vector. Obviously, we can

also add managed portfolios to this set-up. For instance, Ferson and Siegel (2006) use constant

cost managed portfolios in the computation of SRP .
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Figure 9: Passive frontiers with an unconditionally riskless asset, jointly with unconditional

and extended frontiers. Portfolio frontiers on the left and SDF frontiers on the right.

8 Other Special Cases

As we mentioned before, there are two other special cases in which mean-variance frontiers

adopt a particularly simple form. One such case arises when all expected payoffs are conditionally

proportional to their prices, with a common scalar factor of proportionality. The other one occurs

when all the primitive assets are arbitrage portfolios.
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8.1 Prices Proportional to Expected Payoffs

Although this situation is typically associated with the equilibrium of an economy with a

risk-neutral agent, it also arises when N = 1, an example that was used by Ferson and Siegel

(2003) and Bekaert and Liu (2004) to differentiate their papers.21 Given that in either case

p+a = k1p
∗
a, with k1 ∈ I1, the geometry of the return and SDF frontiers turns out to be the

mirror image of the safe asset case if we interchange the shapes of the return and SDF frontiers.

In particular, while the main implication of the existence of a safe asset was that 1 − q+a = 0,

with the additional feature that 1− q+e = 0 if the safe asset asset was unconditionally riskless,

the main implication now is that A+a defined in (9) will be 0, with the additional feature that

A+e defined in (22) will also be 0 if expected payoffs are unconditionally proportional to their

prices, i.e. if k1 = k ∈ R.

In this context, the CRF pC (v̄1) will be given by the single element R∗a, which was defined

in (8). On the other hand, the risky part of the CSF mC (c̄1) can be obtained by conditionally

scaling R∗a. As a result, for each signal value the CSF will be represented by two straight lines in

[E (m|G1) ,
√
V ar (m|G1)] space that touch at the horizontal axis when c̄1 = k−1

1
. The duality

between the straight lines that characterise mC (c̄1) and the point pC (v̄1) relies on the fact that

the return corresponding to the traded part of any mC (c̄1) is always R
∗
a.

A similar type of duality applies for the pairs URF/ESF and ERF/USF. Specifically, the

URF pU (v̄) will be given by the same single point R∗a for the reasons explained when we discussed

the CRF in the presence of a riskless asset. The ESF mE (c̄) is now given by two straight lines

in [E (m) ,
√
V ar (m)] space that touch the horizontal axis at c̄ = E−1 (k1) because the scaling

of R∗a is nonrandom.

In contrast, the USF mU (c̄) and the ERF pE (v̄) do not show any relevant changes with

respect to the general case. However, if k1 = k ∈ R, then the USF will be given by two straight

lines in [E (m) ,
√
V ar (m)] space that touch the horizontal axis at c̄ = k−1, and the ERF will

be the single point R∗e defined in (21) with E (R∗e) = E (R∗a) = k.

The situation is slightly different when we consider passive frontiers. While in the safe asset

case 1 − q+ = 0 irrespective of whether or not the safe asset is unconditionally riskless, here

passive frontiers do not show any relevant changes unless k1 = k ∈ R or N = 1, in which two

21 Intuitively, the approach used by Ferson and Siegel (2003) to obtain SDF bounds cannot exploit the existence
of conditioning information when N = 1 because the elements of the URF (14) are constrained to have constant
(unit) cost. See equation (24).
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cases A+ (defined in (34)) is equal to 0. Therefore, it is only in those circumstances that we will

have the mirror image situation to the safe asset case, in that the PRF pP (v̄) will collapse to

the point R∗, while the PSF mP (c̄) will given by two straight lines in [E (m) ,
√
V ar (m)] space.

8.2 Arbitrage Portfolios

Let us finally study the situation in which all primitive assets are arbitrage portfolios, so that

c1 = 0. This case is quite common in empirical work, as asset payoffs are routinely transformed

into excess returns in the presence of a (conditionally) riskless asset. From the point of view

of mean-variance frontiers, the main implication of dealing with arbitrage portfolios is that the

active and passive cost representing portfolios defined in (4) and (30), respectively, are both

zero. Therefore, there is one-fund spanning in every frontier and consequently, all of them can

be represented by straight lines that start from the origin in the appropriate mean-standard

deviation space.

More specifically, since the cost of any portfolio of x is 0 in this case, the portfolio frontiers

problems can be defined as before (see problems (6), (14),(19), and (31)) after dropping the cost

constraints. That is, each problem consists now in minimising the second moment of portfolios

given a constraint on their first moment. As a result, the URF and ERF coincide in this context

since their only difference was the cost constraint. The CRF is constructed by a conditional

scaling of p+a , the URF by an unconditional scaling of p+a , and the PRF by an unconditional

scaling of p+.

Interestingly, if the N arbitrage portfolios under analysis correspond to the excess returns of

N risky assets over an unconditionally riskless asset, the slope of the URF/ERF discussed in the

previous paragraph will coincide with the slope of the URF discussed at the beginning of section

7.2, which combines the original N risky returns and the unconditionally safe asset. Therefore,

the maximum unconditional Sharpe ratios attainable in both situations will also be the same,

and will exceed the unconditional Sharpe ratios in Bekaert and Liu (2003) and Abhyankar, Basu

and Stremme (2007) mentioned in the same section.

On the other hand, the pricing constraints of the SDF frontiers (see problems (10), (16),(25),

and (35)) imply that any valid SDF must be orthogonal to x. Moreover, since Pa = Pe in this

context, the USF and ESF will also coincide. The CSF is constructed by a conditional scaling

of E+a , the USF by an unconditional scaling of E+a , and the PSF by an unconditional scaling

of E+, where E+a and E+ were defined in (12) and (37), respectively. Obviously, we can also
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add managed portfolios to this set-up. For instance, Bekaert and Hodrick (1992) use managed

portfolios of zero cost in the computation of the PSF’s slope.

9 Conclusion

We use representing portfolios to analyse four mean-variance frontiers for SDF-like objects,

which differ in the type of portfolios that they price. One frontier relies on conditional mo-

ments, while the other three, which are the usual focus of empirical work, rely on unconditional

moments. Specifically, we consider:

1) The USF introduced by Gallant, Hansen, and Tauchen (1990), which computes the highest

lower bound on the variance of SDFs, i.e. those univariate random variables that correctly price

any portfolio with weights that may depend on conditioning information. This frontier coincides

with the one discussed by Bekaert and Liu (2004).

2) The ESF, which provides the highest lower bound on the variance of those univariate

random variables that price on average any portfolio with weights that may depend on condi-

tioning information but whose cost is constant. These are not necessarily valid SDFs because

they may not price correctly portfolios whose cost is a function of the conditioning information.

This frontier coincides with the one advocated by Ferson and Siegel (2003).

3) The PSF introduced by Hansen and Jagannathan (1991), which computes the highest

lower bound on the variance of those univariate random variables that price on average any

portfolio with constant weights. Again, these are not necessarily valid SDFs either, as they may

not price correctly portfolios with time-varying weights.

Given these precise characterisations, it is not surprising that the USF will always be above

both the ESF and PSF in the usual mean-standard deviation space. In contrast, depending on

whether the payoffs under consideration have constant or random cost, the PSF may be above

or below the ESF, either over its entire domain, or over some part.

In this context, we explicitly characterise the random variables for which the appropriate

dual portfolio objects are themselves frontiers, as opposed to mere volatility bounds. Using the

same order as before, these dual objects are a frontier for conditional moments, as well as:

1) The ERF, which for each level of expected return computes the highest lower bound on

the variance of any portfolio with weights that may depend on conditioning information whose

price is one on average. Thus, the USF delivers interesting constraints on asset pricing models,
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but its dual (ERF) does not deliver interesting risk-return trade offs.

2) The URF introduced by Hansen and Richard (1987), which for each level of expected

return computes the highest lower bound on the variance of any portfolio with weights that

may depend on conditioning information but whose price is always one. Thus, the URF de-

livers interesting risk-return trade offs, but its dual (ESF) does not deliver equally interesting

constraints on asset pricing models.

3) The PRF mentioned by Hansen and Jagannathan (1991), which for each level of expected

return computes the highest lower bound on the variance of any portfolio with constant weights

whose price is one on average. The PRF and its dual (PSF) are easy to implement but in general

they are not the relevant objects to study regarding either risk-return trade-offs or constraints

on asset pricing models.

Given these precise characterisations, it is not surprising that the ERF will always be to

the left of both the URF and PRF in the usual mean-standard deviation space. In contrast,

depending on whether the payoffs under consideration have constant or random cost, the PRF

may be above or below the URF, either over its entire domain, or over some part.

Most empirical work on unconditional mean-variance frontiers relies on passive strategies

of managed portfolios as a way of approximating the complexity of active strategies without

running the risk of misspecifying the conditional distribution of asset returns. In this context,

we show that if we used all the relevant (unrestricted) managed portfolios, then we would

generate the USF. In the more plausible situation in which a researcher only uses some of them,

she will generate a frontier between the PSF based on returns alone and the USF, which might

still improve upon the ESF. But if she focuses on managed portfolios of constant cost, then the

PSF converges to the ESF instead of the USF as the number of managed portfolios increases.

Then, our duality results imply that the use of all the relevant (unrestricted) managed

portfolios would deliver the ERF, not the URF. In the more plausible situation in which a

researcher only uses some of them, she will generate a frontier between the PRF based on

returns alone and the ERF. But if she focuses on managed portfolios of constant cost, then the

PRF converges to the URF instead of the ERF as the number of managed portfolios increases.

Therefore, an important empirical implication of our analysis is that a researcher who is

interested in asset pricing questions should use unrestricted managed portfolios to approximate

the unconditional SDF frontier (USF). In contrast, a researcher interested in portfolio choice
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questions should use managed portfolios of constant cost to approximate the unconditional re-

turn frontier (URF). By construction, though, passive frontiers of managed portfolios cannot

approximate the conditional frontiers CRF and CSF.

Finally, we also study some special cases, the most important being the presence of an asset

which is either conditionally or unconditionally riskless. In that case, we show that the geometric

interpretation of duality in terms Sharpe ratios in Hansen and Jagannathan (1991) applies to

their specific set-up of unconditional moments and passive strategies, and that we must again be

careful in extending that result to other frameworks. For instance, the intertemporal marginal

rate of substitution in consumption of a specific CCAPM may look volatile enough from the

perspective of the Sharpe ratio on the URF even though it would be insufficiently volatile to

match the USF.

We also show that there are some other results that are sometimes taken for granted, but

which may also fail. For instance, a tangency portfolio does not exist on the URF and ERF

irrespective of whether the safe asset is conditionally or unconditionally riskless. As a result,

the Sharpe ratios that Bekaert and Liu (2003) and Abhyankar, Basu and Stremme (2007) con-

sider must be interpreted with some care, as they relate to passive strategies that combine an

unconditionally riskless asset (traded or fictitious) with a portfolio on the URF of risky assets

alone.

The results in this paper are also useful to develop testing procedures related to those mean-

variance frontiers that utilise conditioning information, as illustrated by Peñaranda and Sentana

(2006) in the context of mean-variance spanning tests.

45



References

Abhyankar, A., D. Basu, and A. Stremme (2007): Portfolio Efficiency and Discount Factor

Bounds with Conditioning Information: An Empirical Study, Journal of Banking & Finance 31,

419-437.

Bansal, R., M. Dahlquist, and C.R. Harvey (2004): Dynamic Strategies and Portfolio Choice,

NBER WP 10820.

Bekaert, G., and R.J. Hodrick (1992): Characterizing Predictable Components in Excess

Returns on Equity and Foreign Exchange Markets, Journal of Finance 47, 467-509.

Bekaert, G.,and J. Liu (2004): Conditioning Information and Variance Bounds on Pricing

Kernels, Review of Financial Studies 17, 339-378.

Bekaert, G., and M.S. Urias (1996): Diversification, Integration and Emerging Market

Closed-End Funds, Journal of Finance 51, 835-869.

Brandt, M.W., and P. Santa-Clara (2006): Dynamic Portfolio Selection by Augmenting the

Asset Space, Journal of Finance 61, 2187-2217.

Chamberlain, G. and M. Rothschild (1983): Arbitrage, Factor Structure, and Mean-Variance

Analysis on Large Asset Markets, Econometrica 51, 1281-1304.

Cochrane, J.H. (2001): Asset Pricing, Princeton University Press.

De Roon, F.A., and T.E. Nijman (2001): Testing for Mean-Variance Spanning: A Survey,

Journal of Empirical Finance 8, 111-155.

De Santis, G. (1995): Volatility Bounds for Stochastic Discount Factors: Tests and Implica-

tions from International Financial Markets, mimeo, University of Southern California.

Ferson, W.E., and A.F. Siegel (2001): The Efficient Use of Conditioning Information in

Portfolios, Journal of Finance 56, 967-982.

Ferson, W.E., and A.F. Siegel (2003): Stochastic Discount Factor Bounds with Conditioning

Information, Review of Financial Studies 16, 567-595.

Ferson, W.E., and A.F. Siegel (2006): Testing Portfolio Efficiency with Conditioning Infor-

mation, NBER Working Paper No. 12098.

Gallant, A.R., L.P. Hansen and G. Tauchen (1990): Using Conditional Moments of As-

set Payoffs to Infer the Volatility of Intertemporal Marginal Rates of Substitution, Journal of

Econometrics 45, 141-179.

46



Hansen, L.P., and R. Jagannathan (1991): Implications of Security Market Data for Models

of Dynamic Economies, Journal of Political Economy 99, 225-262.

Hansen, L.P., and S.F. Richard (1987): The Role of Conditioning Information in Deducing

Testable Restrictions Implied by Dynamic Asset Pricing Models, Econometrica 55, 587-613.

Jagannathan, R. (1996): Relation between the Slopes of the Conditional and Unconditional

Mean-Standard Deviation Frontiers of Asset Returns, in S. Saito, K. Sawaki, and K. Kubota

(eds.) Modern Portfolio Theory and its Applications, Center for Academic Societies, Osaka.

Markowitz, H. (1952): Portfolio Selection, Journal of Finance 7, 77-99.

Peñaranda, F., and E. Sentana (2006): Spanning Tests in Return and Stochastic Discount

Factor Mean-Variance Frontiers: A Unifying Approach, mimeo.

Sentana, E. (2005): Least Squares Predictions and Mean-Variance Analysis, Journal of Fi-

nancial Econometrics 3, 56-78.

47



Appendix

Proofs
Lemma 1:

If we use equation (24) to represent Pe then the definition of an extended SDF m is equivalent

to

E
[
m
(
R1w+ (x−1 −R1c1,−1)

′
w1,−1

)]
= w, ∀w ∈ R, ∀w1,−1 ∈ I1.

This is true if and only if

E (mR1) = 1,

E (m (x−1 −R1c1,−1) |G1) = 0.

The former condition can be re-written as

E (mR1|G1) = h1 ∈ I1, E (h1) = 1,

and the last condition as

E (mx−1|G1) = E (mR1|G1) c1,−1 = h1c1,−1.

Therefore, m is an extended SDF if and only if

E (mx|G1) = h1c1, h1 ∈ I1

E (h1) = 1,

which completes the proof. �

Proposition 1:

a) We can express the CSF (11) as

mC (c̄1) = [�1 −̟1 (c̄1)�1]R
∗
a −̟1 (c̄1)A

+
a +̟1 (c̄1) .

Then we only have to rescale its risky part by its conditional cost �1 −̟1 (c̄1)�1 when it is

not 0 to get a return on the CRF (7). Specifically,

R∗a −
̟1 (c̄1)

�1 −̟1 (c̄1)�1
A+a

is the element on the CRF such that

ω1 (ν̄1) = −
̟1 (c̄1)

�1 −̟1 (c̄1)�1
.
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b) We can express the CRF (7) as

pC (ν̄1) =

(
1− ω1 (ν̄1)�1

�1

)
p∗a + ω1 (ν̄1) p

+
a .

Hence, when 1 − ω1 (ν̄1)�1 
= 0, we can rescale pC (ν̄1) to get the traded part of a SDF on

the CSF (11). In particular,

p∗a +
ω1 (ν̄1)�1

1− ω1 (ν̄1)�1
p+a

is the traded part of an element of the CSF such that

̟1 (c̄1) = −
ω1 (ν̄1)�1

1− ω1 (ν̄1)�1
,

which completes the proof. �

Proposition 2:

a) We can express the USF (17) as

mU (c̄) = [�1 −̟U (c̄)�1]R
∗
a −̟U (c̄)A

+
a +̟U (c̄) .

We could rescale the risky part by its conditional cost �1 −̟U (c̄)�1, when it is not 0, to

look for a dual point on the URF (15). Specifically,

R∗a −
̟U (c̄)

�1 −̟U (c̄)�1
A+a

should be linked to R∗a + ωU (ν̄)A
+
a .

b) We can express the URF (15) as

pU (ν̄) =

(
1− ωU (ν̄)�1

�1

)
p∗a + ωU (ν̄) p

+
a .

Hence, when 1 − ωU (ν̄)�1 
= 0, we could look for a dual point on the the USF (17). In

particular,

p∗a +
ωU (ν̄)�1

1− ωU (ν̄)�1
p+a

should be linked to p∗a −̟U (c̄) p
+
a . �
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Proposition 3:

We can decompose any portfolio p satisfying the constraints in (19) as its unconditional projec-

tion onto 〈R∗e, A
+
e 〉 = 〈p

+
a , p

∗
a〉 plus some unconditionally orthogonal residual u. Specifically,

p = p̃+ u,

p̃ =



 R∗e

A+e





′

E−1



 R∗2e R∗eA
+
e

R∗eA
+
e A+2e



E



 pR∗e

pA+e





=



 R∗e

A+e





′ 

 E
(
R∗2e

)
0

0 E (A+e )





−1 

 1/E (�1)

ν̄ −E (�1) /E (�1)



 .

Hence

p̃ =
1/E (�1)

E (R∗2e )
R∗e +

ν̄ −E (�1) /E (�1)

E
(
A+e
) A+e = R∗e + ωE (ν̄)A

+
e ,

where ωE (ν̄) is defined as in (20).

It is easy to see that p̃ satisfies the constraints in (19): First,

E (p̃) = E (R∗e) + ωE (ν̄)E
(
A+e
)
=

E (�1)

E (�1)
+

[
ν̄ −E (�1) /E (�1)

E
(
A+e
)

]

E
(
A+e
)
= ν̄,

and also

C (p̃) = C (R∗e) + ωE (ν̄)C
(
A+e
)
= 1 + ωE (ν̄) 0 = 1,

Finally, by construction,

E
(
p2
)
= E

(
p̃2
)
+E

(
u2
)
,

and hence the solution to (19) is p̃, which is exactly pE (ν̄) in (20). �

Proposition 4:

a) We can express the USF (17) as

mU (c̄) = (E (�1)−̟U (c̄)E (�1))R
∗
e −̟U (c̄)A

+
e +̟U (c̄) .

Then we only have to rescale the risky part by its average cost E (�1)−̟U (c̄)E (�1) when

it is not 0 to get an extended return on the ERF (20). Specifically,

R∗e −
̟U (c̄)

E (�1)−̟U (c̄)E (�1)
A+e

is equal to an element on the ERF for the corresponding ωE (ν̄).
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b) We can represent the ERF (20) as

pE (ν̄) =

[
1− ωE (ν̄)E (�1)

E (�1)

]
p∗a + ωE (ν̄) p

+
a .

Hence, for each ωE (ν̄) such that 1− ωE (ν̄)E (�1) 
= 0, this can be re-written as the traded

the traded part of a SDF on the USF (17). In particular,

p∗a +
ωE (ν̄)E (�1)

1− ωE (ν̄)E (�1)
p+a

is equal to an element on the USF for the corresponding ̟U (c̄). �

Proposition 5:

We can decompose any extended SDF m satisfying the constraints in (25) as its unconditional

projection onto 〈p∗e, E
+
e 〉 plus some unconditionally orthogonal residual u. In particular,

m = m̃+ u,

m̃ =



 p∗e

E+e





′

E−1



 p∗2e p∗eE
+
e

p∗eE
+
e E+2e



E



 mp∗e

mE+e





=



 p∗e

E+e





′ 

 E
(
p∗2e
)

0

0 E (E+e )





−1 

 1/E (�1)

c̄−E (�1) /E (�1)



 .

If we define ̟E (c̄) as in (26) then we can write

m̃ =
1/E (�1)

E (p∗2e )
p∗e +

c̄−E (�1) /E (�1)

E
(
E+e
) E+e = p∗e +̟E (c̄)E

+
e .

It is easy to see that m̃ satisfies the constraints in (25): First,

E (m̃) = E (p∗e) +̟E (c̄)E
(
E+e
)
=

E (�1)

E (�1)
+

[
c̄−E (�1) /E (�1)

E
(
E+e
)

]

E
(
E+e
)
= c̄,

and also

E (m̃x|G1) = E (p∗ex|G1) +̟E (c̄)E
(
E+e x|G1

)

=
1

E (�1)
E (R∗ax|G1) +̟E (c̄)

[
E
((
1−A+a

)
x|G1

)
−

E (�1)

E (�1)
E (R∗ax|G1)

]

= h1c1, h1=

(
1−̟E (c̄)E (�1)

E (�1)

)
�1 +̟E (c̄)�1,

with

E (h1)=

(
1−̟E (c̄)E (�1)

E (�1)

)
E (�1) +̟E (c̄)E (�1) = 1.

Finally, by construction,

E
(
m2
)
= E

(
m̃2
)
+E

(
u2
)

and hence the solution to (25) is m̃, which is exactly mE (c̄) in (26). �
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Proposition 6:

a) We can express the ESF (26) as

mE (c̄) =

(
1−̟E (c̄)E (�1)

E (�1)

)
R∗a −̟E (c̄)A

+
a +̟E (c̄) .

Then we only have to rescale the risky part by its conditional cost (1−̟E (c̄)E (�1)) /E (�1)

(which is constant) when it is different from 0 to get a return on the URF (15). Specifically,

R∗a −
̟E (c̄)

(1−̟E (c̄)E (�1)) /E (�1)
A+a

is equal to an element on the URF given by the corresponding ωU (ν̄).

b) We can express the URF (15) as

pU (ν̄) = (�1 − ωU (ν̄)�1) p
∗
a + ωU (ν̄) p

+
a .

Rescaling this expression by its average position on p∗a when E (�1)− ωU (ν̄)E (�1) 
= 0, we

construct the traded part of an extended SDF on the ESF (26). In particular,

(E (�1)− ωU (ν̄)E (�1))
−1
[
(�1 − ωU (ν̄)�1) p

∗
a + ωU (ν̄) p

+
a

]

is the traded part of an element on the ESF given by the corresponding ̟E (c̄). �
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