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1 Introduction

Many empirical studies with �nancial time series data indicate that the distribution of asset

returns is usually rather leptokurtic, even after controlling for volatility clustering e¤ects. Nev-

ertheless, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by Bollerslev

and Wooldridge (1992) remain consistent for the conditional mean and variance parameters in

those circumstances, so long as those moments are correctly speci�ed.

However, a non-normal distribution may be indispensable when one is interested in features

of the distribution of asset returns beyond its conditional mean and variance. For instance,

empirical researchers and �nancial market practitioners are often interested in the so-called Value

at Risk of an asset, which is the positive threshold value V such that the probability of the asset

su¤ering a reduction in wealth larger than V equals some pre-speci�ed level { < 1=2. In addition,

they are sometimes interested in the probability of the joint occurrence of several extreme events,

which is regularly underestimated by the multivariate normal distribution, especially in larger

dimensions. This naturally leads one to specify a parametric leptokurtic distribution for the

standardised innovations, such as the multivariate student t analysed in Fiorentini, Sentana and

Calzolari (2003) (FSC), and to estimate the conditional mean and variance parameters jointly

with the parameters characterising the shape of the assumed distribution by maximum likelihood

(ML). However, while ML will often yield more e¢ cient estimators of the conditional mean and

variance parameters than Gaussian PML if the assumed conditional distribution is correct, it

may end up sacri�cing consistency when it is not, as shown by Newey and Steigerwald (1997).

If one were mostly interested in the �rst two conditional moments, the semiparametric (SP)

estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999) would

o¤er an attractive solution because they are sometimes both consistent and partially e¢ cient,

as proved by Linton (1993), Drost and Klaassen (1997), Drost, Klaassen and Werker (1997), or

Sun and Stengos (2006). However, they su¤er from the curse of dimensionality, which severely

limits their use in multivariate models. To avoid this problem, Hodgson and Vorkink (2003)

and Hafner and Rombouts (2007) have recently discussed elliptically symmetric semiparametric

(SSP) estimators, which retain univariate rates for their nonparametric part regardless of the

cross-sectional dimension of the data, but which are unfortunately less robust.

One of the main objectives of our paper is to study in detail the trade-o¤s between e¢ ciency

and consistency of the conditional mean and variance parameters that arise in this context.

While many of the aforementioned papers provide detailed analyses of one of these issues, es-

pecially in univariate models, or in models with no mean, to our knowledge we are the �rst to

simultaneously analyse all the hard choices than an empirical researcher faces in practice. Fur-
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thermore, we do so in a multivariate framework with non-zero means, in which some of the earlier

results seem misleadingly simple. Moreover, we explicitly look at the e¢ ciency ranking of the

feasible ML procedure that jointly estimates the shape parameters, as well as the infeasible ML,

SSP, SP and PML estimators considered in the existing literature. We also provide conditions

for partial adaptivity of the SSP and SP procedures, which we relate to the conditions for the

consistency of the corresponding parametric ML estimators when the conditional distribution is

misspeci�ed. Finally, we propose simple Hausman tests that compare the feasible ML and SSP

estimators to the Gaussian PML ones to assess the validity of the distributional assumptions.

But given that practitioners often want to go beyond the �rst two conditional moments,

one cannot simply treat the shape parameters as nuisance parameters. For that reason, we also

consider sequential estimators of the shape parameters, which can be easily obtained from the

standardised innovations evaluated at the Gaussian PML estimators, and assess their asymptotic

e¢ ciency relative to their feasible ML counterpart. In particular, we consider a sequential ML

estimator, as well as sequential method of moments (MM) estimators based on higher order

moment parameters such as the coe¢ cient of multivariate excess kurtosis.

The rest of the paper is organised as follows. In section 2, we present closed-form ex-

pressions for the score vector, Hessian and conditional information matrices of a log-likelihood

function based on a spherically symmetric assumption for the innovations, and derive the e¢ -

ciency bounds of the Gaussian PML estimator and both SP estimators, as well as the sequential

estimators of the shape parameters. Then, in section 3 we compare the e¢ ciency of the di¤erent

estimators of the conditional mean and variance parameters, discuss two speci�c models of prac-

tical interest, and obtain some general results on partial adaptivity. In section 4, we compare the

relative e¢ ciency of the di¤erent estimators of the shape parameters, while in section 5 we �rst

study the consistency of the conditional mean parameters when the conditional distribution is

misspeci�ed, and then introduce the Hausman tests. A Monte Carlo evaluation of the di¤erent

parameter estimators and testing procedures can be found in section 6. Finally, we present our

conclusions in section 7. Proofs and auxiliary results are gathered in appendices.

2 Theoretical background

2.1 The model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N dependent variables, yt, is typically assumed to be generated as:

yt = �t(�0) +�
1=2
t (�0)"

�
t ;

�t(�) = �(zt; It�1;�);
�t(�) = �(zt; It�1;�);
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where �() and vech [�()] are N � 1 and N(N + 1)=2 � 1 vector functions known up to the

p� 1 vector of true parameter values �0, zt are k contemporaneous conditioning variables, It�1
denotes the information set available at t�1, which contains past values of yt and zt, �1=2t (�) is

some particular �square root�matrix such that �1=2t (�)�
1=20
t (�) = �t(�), and "�t is a martingale

di¤erence sequence satisfying E("�t jzt; It�1;�0) = 0 and V ("�t jzt; It�1;�0) = IN . Hence,
E(ytjzt; It�1;�0) = �t(�0)
V (ytjzt; It�1;�0) = �t(�0)

�
: (1)

To complete the model, we need to specify the conditional distribution of "�t . We shall

initially assume that, conditional on zt and It�1, "�t is independent and identically distributed

as some particular member of the spherical family with a well de�ned density (see Appendix

A), or "�t jzt; It�1;�0;�0 � i:i:d: s(0; IN ;�0) for short, where � are some q additional parameters

that determine the shape of the distribution of &t = "�0t "
�
t . The most prominent example is the

spherical normal distribution, which we denote by �0 = 0. For illustrative purposes, though,

we shall also look in some detail at the special case of a standardised multivariate t with �0

degrees of freedom, or i:i:d: t(0; IN ; �0) for short. As is well known, the multivariate student t

approaches the multivariate normal as �0 !1, but has generally fatter tails. For that reason,

we de�ne � as 1=�, which will always remain in the �nite range [0; 1=2) under our assumptions.

2.2 The log-likelihood function, its score, Hessian and information matrix

Let � = (�0;�)0 denote the p + q parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T based on a par-

ticular parametric spherical assumption will take the form LT (�) =
PT
t=1 lt(�), with lt(�) =

dt(�) + c(�) + g [&t(�);�], where dt(�) = �1=2 ln j�t(�)j corresponds to the Jacobian, c(�)

to the constant of integration of the assumed density, and g [&t(�);�] to its kernel, where

&t(�) = "
�0
t (�)"

�
t (�), "

�
t (�) = �

�1=2
t (�)"t(�) and "t(�) = yt � �t(�). FSC provide expressions

for c(�) and g [&t(�); �] in the multivariate student t case, which are obviously such that LT (�; 0)

collapses to a conditionally Gaussian log-likelihood.

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s�t(�), whose dimensions conform to those of � and �, respectively. Then, it is straightforward

to show that if �t(�) has full rank, and �t(�), �t(�), c(�) and g [&t(�);�] are di¤erentiable

s�t(�) =
@dt(�)

@�
+
@g [&t(�);�]

@&

@&t(�)

@�
= [Zlt(�);Zst(�)]

�
elt(�)
est(�)

�
= Zdt(�)edt(�); (2)

s�t(�) = @c(�)=@� + @g [&t(�);�] =@� = ert(�); (3)

where

@dt(�)=@� = �Zst(�)vec(IN )

@&t(�)=@� = �2fZlt(�)"�t (�) + Zst(�)vec
�
"�t (�)"

�0
t (�)

�
g; (4)
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Zlt(�) = @�0t(�)=@� ��
�1=20
t (�);

Zst(�) =
1

2
@vec0 [�t(�)] =@��[��1=20t (�)
��1=20t (�)];

elt(�;�) = �[&t(�);�] � "�t (�); (5)

est(�;�) = vec
�
�[&t(�);�] � "�t (�)"�0t (�)� IN

	
; (6)

�[&t(�);�] = �2@g[&t(�);�]=@&; (7)

and @�t(�)=@�
0 and @vec [�t(�)] =@�0 depend on the particular speci�cation adopted.1

Given that �[&t(�);�] is equal to (N� + 1)=[1� 2� + �&t(�)] in the student t case, and to 1

under Gaussianity, it is straightforward to check that s�t(�;�) coincides with the expression in

FSC, while s�t(�;0) reduces to the multivariate normal expression in Bollerslev and Wooldridge

(1992), in which case:

edt(�;0) =

�
elt(�;0)
est(�;0)

�
=

�
"�t (�)

vec ["�t (�)"
�0
t (�)� IN ]

�
:

As for ert(�;0), FSC show that in the multivariate student t case it is proportional to the

second generalised Laguerre polynomial:

ert(�; 0) = &2t (�)=4� (N + 2)&t(�)=2 +N(N + 2)=4:

Let ht(�) denote the Hessian function @st(�)=@�0 = @2lt(�)=@�@�
0. Assuming twice di¤er-

entiability of the di¤erent functions involved, we will have

h��t(�) =
@2dt(�)

@�@�0
+
@2g [&t(�); �]

(@&)2
@&t(�)

@�

@&t(�)

@�0
+
@g [&t(�); �]

@&

@2&t(�)

@�@�0
(8)

h��t(�) = @&t(�)=@� � @2g [&t(�);�] =@&@�0; (9)

h��t(�) = @2c(�)=@�@�0 + @2g [&t(�); �] =@�@�
0;

where

@2dt(�)=@�@�
0 = 2Zst(�)Z

0
st(�)�

1

2

�
vec0

�
��1t (�)

�

 Ip

	
@vec

�
@vec0 [�t(�)] =@�

	
=@�0; (10)

@2&t(�)=@�@�
0 = 2Zlt(�)Z

0
lt(�) + 8Zst(�)[IN 
 "�t (�)"�0t (�)]Z0st(�) + 4Zlt(�)["�0t (�)
 IN ]Z0st(�)

+4Zst(�)["
�
t (�)
 IN ]Z0lt(�)� 2["�0t (�)�

�1=20
t (�)
 Ip]@vec[@�

0
t(�)=@�]@�

0

�fvec0[��1=2t (�)"�t (�)"
�0
t (�)�

�1=20
t (�)]
 Ipg@vecf@vec0[�t(�)]=@�g=@�0;

and @2g(&; �)=(@&)2, @2g(&; �)=@&@�0 and @g(&; �)=@�@�0 depend on the speci�c distribution

assumed for estimation purposes (see FSC for the multivariate student t).

1Note that while both Zt(�) and edt(�) depend on the speci�c choice of square root matrix �
1=2
t (�), s�t(�)

does not, a property that inherits from lt(�). The same result is not generally true for non-elliptical distributions
(see Mencía and Sentana (2005)), in which case one should rede�ne Zst(�) as f@vec0[�1=2

t (�)]=@�g[IN
�
�1=20
t (�)],

as in the proofs of Propositions 6, 13 and 17, or in Appendix B.2.
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Given correct speci�cation, the results in Crowder (1976) imply that et(�) = [e0dt(�); ert(�)]
0

evaluated at �0 follows a vector martingale di¤erence, and therefore, the same is true of the score

vector st(�). His results also imply that, under suitable regularity conditions, which in particular

require that �0 belongs to the interior of the parameter space, the asymptotic distribution of

the feasible ML estimator will be
p
T (�̂T ��0)! N

�
0; I�1(�0)

�
, where I(�0) = E[It(�0)j�0],

It(�) = V [st(�)jzt; It�1;�] = Zt(�)M(�)Z0t(�) = �E [ht(�)jzt; It�1;�] ;

Zt(�) =

�
Zdt(�) 0
0 Iq

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�
;

andM(�) = V [et(�)j�].

The following result generalises Propositions 3 in Lange, Little and Taylor (1989), 1 in FSC

and 5.2 in Hafner and Rombouts (2007):

Proposition 1 If "�t jzt; It�1;� is i:i:d: s(0; IN ;�) with density exp[c(�) + g(&t;�)], then

M(�) =

0@ Mll(�) 0 0
0 Mss(�) Msr(�)
0 M0

sr(�) Mrr(�)

1A ; (11)

Mll(�) = V [elt(�)j�] = mll(�)IN ; (12)

Mss(�) = V [est(�)j�] = mss(�) (IN2 +KNN ) + [mss(�)� 1]vec(IN )vec0(IN ); (13)

Msr(�) = E[est(�)e
0
rt(�)

���] = �E �@est(�)=@�0���	 = vec(IN )msr(�); (14)

Mrr(�) = V [ ert(�)j�] = �E[@ert(�)=@�0
���];

mll(�) = E

�
�2[&t(�);�]

&t(�)

N

������ = E

�
2@�[&t(�);�]

@&

&t(�)

N
+ �[&t(�);�]

������ ;
mss(�) =

N

N + 2

h
1 + V

n
�[&t(�);�]

&t
N

����oi = E

�
2@�[&t(�);�]

@&

&2t (�)

N(N + 2)

������+ 1;
msr(�) = E

��
�[&t(�);�]

&t(�)

N
� 1
�
e0rt(�)

������ = �E� &t(�)N

@�[&t(�);�]

@�0

������ ;
where Kmn is the commutation matrix of orders m and n.

In the multivariate standardised student t case, in particular:

mll(�) =
� (N + �)

(� � 2) (N + � + 2)
; mss(�) =

(N + �)

(N + � + 2)
; msr(�) = �

2 (N + 2) �2

(� � 2) (N + �) (N + � + 2)
;

Mrr(�) =
�4

4

�
 0
��
2

�
�  0

�
N + �

2

��
�

N�4
�
�2 +N(� � 4)� 8

�
2 (� � 2)2 (N + �) (N + � + 2)

;

where  (:) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduce to 1, 1, 0 and N(N + 2)=2, respectively. In this sense, it is interesting to note that as

N increases, mll(�), mss(�) and msr(�) converge to �/(�-2), 1 and 0, respectively. This is due

to the fact that the multivariate student t can be written as a scale mixture of normals, with a

positive mixing variable that can be �ltered out with increasing precision as N !1 (see Mencía

and Sentana (2005)). Thus, lt(�) will become arbitrarily close to the sum of the conditional
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log-likelihood of yt given the mixing variable, which is multivariate Gaussian and only depends

on �, plus the marginal of the mixing variable, which only depends on �. Another point to

note in relation to the student t is that mll(�) increases without bound as � ! 2+ while mss(�)

remains bounded. This di¤erential behaviour is also characteristic of other leptokurtic elliptical

distributions, such as the normal-gamma mixture, the Kotz distribution, or the Pearson type II.

2.3 Gaussian pseudo maximum likelihood estimators of �

If the interest of the researcher lied exclusively in �, which are the parameters characterising

the conditional mean and variance functions, then one attractive possibility would be to estimate

an equality restricted version of the model in which � is set to zero. Let ~�T = argmax� LT (�;0)

denote such a PML estimator of �. As we mentioned in the introduction, ~�T remains root-

T consistent for �0 under correct speci�cation of �t(�) and �t(�) even though the conditional

distribution of "�t jzt; It�1;�0 is not Gaussian, provided that it has bounded fourth moments. The

proof is based on the fact that in those circumstances, the pseudo log-likelihood score, s�t(�;0),

is a vector martingale di¤erence sequence when evaluated at �0, a property that inherits from

edt(�;0). Importantly, this property is preserved even when the standardised innovations, "�t ,

are not stochastically independent of zt and It�1. The asymptotic distribution of the PML

estimator of � is stated in the following result:2

Proposition 2 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

p
T (~�T � �0)! N [0; C(�0)], where

C(�) = A�1(�)B(�)A�1(�);
A(�) = �E [h��t(�;0)j�] = E [At(�)j�] ;

At(�) = �E[h��t(�;0)j zt; It�1;�] = Zdt(�)K(0)Z0dt(�);
B(�) = V [s�t(�;0)j�] = E [Bt(�)j�] ;

Bt(�) = V [s�t(�;0)j zt; It�1;�] = Zdt(�)K(�)Z0dt(�);

and K (�)=V [edt(�;0)j zt; It�1;�]=
�
IN 0
0 (�+1) (IN2+KNN )+�vec(IN )vec

0(IN )

�
; (15)

which only depends on � through the population coe¢ cient of multivariate excess kurtosis

� = E(&2t j�)=[N(N + 2)]� 1: (16)

But if �0 is in�nite then B(�0) will be unbounded, and the asymptotic distribution of some

or all the elements of ~�T will be non-standard, unlike that of �̂T (see Hall and Yao (2003)).

The following result, which speci�es the covariance between the Gaussian pseudo score and

the true score, will repeatedly prove useful below:

2Throughout this paper, we use the high level regularity conditions in Bollerslev and Wooldridge (1992) because
we want to leave unspeci�ed the conditional mean vector and covariance matrix in order to maintain full generality.
Primitive conditions for speci�c multivariate models can be found for instance in Ling and McAleer (2003).
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Proposition 3 If "�t jzt; It�1;�0;%0 is i:i:d: (0; IN ) with density function f("�t ;%), where % are
some shape parameters and % = 0 denotes normality, then

E
�
edt(�;0)

�
e0dt(�;%); e

0
rt(�;%)

��� zt; It�1;�;%	 = [K (0) j0]: (17)

Note that (17) holds regardless of whether or not the conditional distribution of "�t is spher-

ical, provided we interpret ert(�) as the gradient with respect to the shape parameters %.

2.4 Sequential estimators of � and �

In practice, we will often be interested in features of the distribution of asset returns, such

as its quantiles, which go beyond its conditional mean and variance. For that purpose, we can

use ~�T to obtain a sequential ML estimator of � as ~�T = argmax� LT (~�T ;�), possibly subject

to some inequality constraints on �. In the student t case, for instance, ~�T will be characterised

by the �rst-order Kuhn-Tucker (KT) conditions

�s�T (~�T ; ~�T ) +
~��T = 0; ~�T � 0; ~��T � 0; ~��T � ~�T = 0;

where �s�T (�; �) is the sample mean of s�t(�; �), and �� the KT multiplier associated with the

constraint � � 0.

Such a sequential ML estimator of � can be given a rather intuitive interpretation. If �0 were

known, then the squared Euclidean norm of the standardised innovations, &t(�0), would be i:i:d:

over time, with density function h(&;�).3 Therefore, we could obtain the infeasible ML estima-

tor of � by maximising with respect to � the log-likelihood function of the observed &t(�0)0s,PT
t=1 lnh [&t(�0);�]. Although in practice the standardised residuals are usually unobservable,

it turns out that ~�T is the estimator so obtained when we treat &t(~�T ) as if they were really

observed.

The asymptotic distribution of the sequential ML estimator of �, which re�ects the sample

uncertainty in ~�T , is stated in the following result:

Proposition 4 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

p
T (~�T ��0)! N [0;F(�0)], where

F(�0) = I�1�� (�0) + I�1�� (�0)I 0��(�0)C(�0)I��(�0)I�1�� (�0):

Importantly, since C(�0) will become unbounded as �0 !1, the asymptotic distribution of

~�T will also be non-standard in that case, unlike that of the feasible ML estimator �̂T .

If we can obtain closed-form expressions for at least q functions of &t, �(:) say, then we can

also compute a sequential method of moments (MM) estimator of �, ��T (
) say, by minimising

3For instance, when "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0), the distribution of &t will be that of either an F variate
with N and �0 degrees of freedom multiplied by N(�0 � 2)=�0 if �0 < 1, or a chi-square random variable with
N degrees of freedom under Gaussianity (see e.g. Lemma 1 in FSC).
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with respect to � the quadratic form �n0�T (
~�T ;�)
�n�T (~�T ;�), where 
 is a positive de�nite

weighting matrix, and n�t(�;�) = �[&t(�)] � Ef�[&t(�)]j�g. Given that E[&t(�)j�] = N , the

most obvious moment to use is (16), which su¢ ces to identify � in the multivariate student t

case through the theoretical relationship � = 2=(� � 4) (see FSC). In this context, if we de�ne

the in�uence function

n�t(�; �) =
&2t (�)

N(N + 2)
� 1� 2�
1� 4� ;

we obtain

��T =
max[0; ��T (~�T )]

4max[0; ��T (~�T )] + 2
; (18)

where

��T (~�T ) =
T�1

PT
t=1 &

2
t (~�T )

N(N + 2)
� 1

is Mardia�s (1970) sample coe¢ cient of multivariate excess kurtosis of the estimated standardised

residuals. We can obtain a closely related estimator,��T say, from the modi�ed in�uence function

�n�t(�; �) =
&2t (�)

N(N + 2)
� 2(1� 2�)&t(�)

N(1� 6�) +
(1� 2�)2

(1� 4�)(1� 6�) ;

which is the relevant second-order orthogonal polynomial when &t is proportional to an FN;�

random variable. The asymptotic distributions of these two sequential MM estimators of � are

stated in the following result:

Proposition 5 If "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0), with �0 > 8, then under the regularity
conditions A.1 in Bollerslev and Wooldridge (1992) we have that

p
T (��T � �0) ! N [0;G(�0)]

and
p
T (��T � �0)! N [0;J (�0)], where

G(�0) = [E(�0) +R0(�0)C(�0)R(�0)� 2R0(�0)A�1(�0)D(�0)]=N 2(�0);

J (�0) = [L(�0) +Q0(�0)C(�0)Q(�0)]=N 2(�0);

D(�0) = cov[s�t(�0; 0); n�t(�0; �0)j�0] =
4(�0 � 2)(N + �0 � 2)
N(�0 � 4)(�0 � 6)

Ws(�0);

E(�0) = V [n�t(�0; �0)j�0] =
(�0 � 2)2
(�0 � 4)2

�
(N + 6)(N + 4)

N(N + 2)

(�0 � 2)(�0 � 4)
(�0 � 6)(�0 � 8)

� 1
�
;

L(�0) = V [�n�t(�0; �0)j�0] = E(�0)�
8(�0 � 2)2(N + �0 � 2)
N(�0 � 6)2(�0 � 4)

;

R(�0) = cov[s�t(�0; �0); n�t(�0; �0)j�0] =
4(�0 � 2)
N(�0 � 4)

Ws(�0);

Q(�0) = cov[s�t(�0; �0);�n�t(�0; �0)j�0] = �
8(�0 � 2)

N(�0 � 4)(�0 � 6)
Ws(�0);

N (�0) = cov[s�t(�0; �0); n�t(�0; �0)j�0] =
2�20

(�0 � 4)2
;

and

Ws(�0) = Zd(�0)[0
0; vec0(IN )]

0 = E[Zdt(�0)j�0][00; vec0(IN )]0

= E

�
1

2
@vec0 [�t(�0)] =@��vec[��1t (�0)]

�����0� = E[Wst(�0)j�0] = �E f@dt(�)=@�j�0g : (19)
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Note that since both G(�0) and J (�0) will diverge to in�nity as �0 converges to 8 from

above, ��T and ��T will not be root-T consistent for 4 � �0 � 8. Moreover, since � is in�nite for

2 < �0 � 4, ��T and ��T will not even be consistent in the interior of this range.

More generally, we could consider the higher order moment parameters of spherical random

variables introduced by Berkane and Bentler (1986), �k(�), which Maruyama and Seo (2003)

relate to the higher order moments of &t as E(&kt j�) = [�k(�) + 1]E(&kt j0), where

E(&kt j0) = 2k(N=2)(1 +N=2) � � � (k � 2 +N=2)(k � 1 +N=2);

whence we can also obtain the higher-order orthogonal polynomials of &t.4 By using these

additional moments, we can in principle improve the e¢ ciency of the sequential MM estimators,

although the precision with which we can estimate �k(�) rapidly decreases with k (see Newey

and Powell (1998) for a characterisation of e¢ cient sequential estimators).

Finally, if we were to iterate the sequential ML procedure, and achieved convergence, then

we would obtain fully e¢ cient ML estimators of all model parameters. In fact, a single scoring

iteration without line searches that started from ~�T and ~�T (or any other root-T consistent

estimators) would su¢ ce to yield an estimator of � that would be asymptotically equivalent to

the full-information ML estimator �̂T , at least up to terms of order Op(T
�1=2). Speci�cally,�

��T � ~�T
��T � ~�T

�
=

�
I��(�0) I��(�0)
I 0��(�0) I��(�0)

��1
1

T

TX
t=1

�
s�t(~�T ; ~�T )

s�t(~�T ; ~�T )

�
:

If we use the partitioned inverse formula, then it is easy to see that

��T � ~�T =
�
I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)

��1
� 1
T

TX
t=1

h
s�t(~�T ; ~�T )� I��(�0)I�1�� (�0)s�t(~�T ; ~�T )

i
= I��(�0)

1

T

TX
t=1

s�j�t(~�T ; ~�T );

where

I��(�0) =
�
I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)

��1
;

and

s�j�t(�0;�0) = s�t(�0;�0)� I��(�0)I�1�� (�0)s�t(�0;�0)

= Zdt(�0)edt(�0)�Ws(�0) �
�
msr(�0)M�1

rr (�0)ert(�0)
�

(20)

is the residual from the unconditional theoretical regression of the score corresponding to �,

s�t(�0), on the score corresponding to �, s�t(�0). The residual score s�j�t(�0;�0) is sometimes

4 In the standardised multivariate student t, for instance,
�k(�) + 1 = (1� 2�)k�1=f(1� 2k�)[1� 2(k � 1)�] � � � (1� 4�)g for 2 � k < �=2:
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called the parametric e¢ cient score of �, and its variance,

P(�0) = I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)

= I��(�0)�Ws(�0)W
0
s(�0) �

�
msr(�0)M�1

rr (�0)m
0
sr(�0)

�
;

the marginal information matrix of �, or the feasible parametric e¢ ciency bound. In this respect,

note that I��(�0), which is the inverse of P(�0), coincides with the �rst block of I�1(�0), and

therefore it gives us the asymptotic variance of the feasible ML estimator, �̂T .

2.5 Semiparametric estimators of �

It is worth noting that the last summand of (20) coincides with Zd(�0) times the theoretical

least squares projection of edt(�0) on (the linear span of) ert(�0), which is conditionally orthog-

onal to edt(�0;0) from Proposition 3. Such an interpretation immediately suggests alternative

estimators of � that replace our parametric assumption on the shape of the distribution of the

standardised innovations "�t by nonparametric or semiparametric alternatives. In this section,

we shall consider two such estimators.

The �rst one is fully nonparametric, and therefore replaces the linear span of ert(�0) by the

so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant

functions of "�t with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(�0;0). The following proposition, which generalises the univariate

results of Gonzalez-Rivera and Drost (1999) and Propositions 3 and 4 in Hafner and Rom-

bouts (2007) to multivariate models in which the conditional mean vector is not identically zero,

describes the resulting semiparametric e¢ cient score and the corresponding e¢ ciency bound:

Proposition 6 If "�t jzt; It�1;�0;%0 is i:i:d: (0; IN ) with density function f("�t ;%), where % are
some shape parameters and % = 0 denotes normality, such that both its Fisher information
matrix for location and scale

Mdd (%) = V [edt(�;%)jzt; It�1;�;%]

= V

��
elt(�;%)
est(�;%)

������;%� = V

��
�@ ln f ["�t (�);%]=@"�

�vec fIN + @ ln f ["�t (�);%]=@"� � "�0t (�)g

������;%�
and the matrix of third and fourth order central moments

K (%) = V [edt(�;0)j zt; It�1;�;%] (21)

are bounded, then the semiparametric e¢ cient score will be given by:

Zdt(�0;%0)edt(�0;%0)� Zd(�0;%0)
�
edt(�0;%0)�K (0)K+ (%0) edt(�0;0)

�
; (22)

while the semiparametric e¢ ciency bound is

S(�0) = I��(�0;%0)� Zd(�0;%0)
�
Mdd (%0)�K (0)K+ (%0)K (0)

�
Z0d(�0;%0); (23)

where + denotes Moore-Penrose inverses, and I��(�;%) = E
�
Zdt(�)Mdd(%)Z

0
dt(�)j�;%

�
:
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In practice, however, f("�t ;%) has to be replaced by a nonparametric estimator, which su¤ers

from the curse of dimensionality. For this reason, Hodgson and Vorkink (2001), Hafner and

Rombouts (2007) and other authors have suggested to limit the admissible distributions to the

class of spherically symmetric ones. As a consequence, the restricted tangent set in this case be-

comes the Hilbert space generated by all time-invariant functions of &t(�0) with bounded second

moments that have zero conditional means and are conditionally orthogonal to edt(�0;0). The

following proposition, which corrects and extends Proposition 9 in Hafner and Rombouts (2007),

provides the resulting elliptically symmetric semiparametric e¢ cient score and the corresponding

e¢ ciency bound:

Proposition 7 When "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �2=(N + 2) < �0 < 1, the
elliptically symmetric semiparametric e¢ cient score is given by:

�s�t(�0)=Zdt(�0)edt(�0)�Ws(�0)

��
�[&t(�0);�0]

&t(�0)

N
�1
�
� 2

(N+2)�0+2

�
&t(�0)

N
� 1
��
; (24)

while the elliptically symmetric semiparametric e¢ ciency bound is

�S(�0) = I��(�0)�Ws(�0)W
0
s(�0) �

��
N + 2

N
mss(�0)� 1

�
� 4

N [(N + 2)�0 + 2]

�
: (25)

Once again, edt(�) has to be replaced in practice by a semiparametric estimate obtained

from the joint density of "�t . However, the elliptical symmetry assumption allows us to obtain

such an estimate from a nonparametric estimate of the univariate density of &t, h (&t;�), avoiding

in this way the curse of dimensionality.

3 The relative e¢ ciency of the di¤erent estimators of �

3.1 General ranking and full e¢ ciency conditions

In the previous section we have e¤ectively considered �ve di¤erent estimators of �: (1)

the infeasible ML estimator, whose computation requires knowledge of �0; (2) the feasible ML

estimator, which simultaneously estimates �; (3) the elliptically symmetric semiparametric es-

timator, which restricts "�t to have an i:i:d: s(0; IN ;�) conditional distribution, but does not

impose any additional structure on the distribution of &t; (4) the unrestricted semiparametric

estimator, which only assumes that the conditional distribution of "�t is i:i:d:(0; IN ); and (5) the

Gaussian PML estimator, which imposes � = 0 even though the true conditional distribution

of "�t may not be normal. The following proposition ranks (in the usual positive semide�nite

sense) the �information matrices�of those �ve estimators:

Proposition 8 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, then

I��(�0) � P(�0) � �S(�0) � S(�0) � C�1(�0):

11



In general, the above matrix inequalities are strict, at least in part. However, there is

one instance in which all the above inequalities become equalities: when the true conditional

distribution is Gaussian. In that case, the PML estimator is obviously fully e¢ cient, which

implies that all the other estimators of � must also be e¢ cient. Moreover, normality is the only

such instance within the spherical family:

Proposition 9 1. If "�t jzt; It�1;�0 is i:i:d: N(0; IN ), then

It(�0;0) = V [st(�0;0)jzt; It�1;�0;0] =
�
V [s�t(�0;0)jzt; It�1;�0;0] 0

00 Mrr(0)

�
where

V [s�t(�0;0)jzt; It�1;�0;0] = �E [h��t(�0;0)jzt; It�1;�0;0] = At(�0;0) = Bt(�0;0):

2. If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �2=(N + 2) < �0 < 1, and Ws(�0) 6= 0,
then �S(�0) = I��(�0) only if &tjzt; It�1;�0 is i:i:d: Gamma with mean N and variance
N [(N + 2)�0 + 2].

3. If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, and Zl(�0) 6= 0, then S(�0) = I��(�0)
only if �0 = 0.

The �rst part of this proposition, which generalises Proposition 2 in FSC, implies that as

far as � is concerned, there is no asymptotic e¢ ciency loss in estimating � when �0 = 0.5

The second part, which generalises the results in Gonzalez-Rivera (1997), implies that the

SSP estimator can be fully e¢ cient only if "�t has a conditional Kotz distribution (see Kotz

(1975)), which is a su¢ cient but not necessary condition for msr(�0) = 0, which in turn implies

P(�0) = I��(�0). Finally, the last part of Proposition 9 generalises Result 2 in Drost and

Gonzalez-Rivera (1999) and Proposition 6 in Hafner and Rombouts (2007).

Unfortunately, it is virtually impossible to obtain closed-form expressions for the di¤erent

e¢ ciency bounds in dynamic conditionally heteroskedastic non-Gaussian models, as one has

to resort to Monte Carlo integration methods to compute the expected values of Zdt(�) or

Zdt(�)K(�)Z0dt(�) (see e.g. Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost

(1999)). In the next subsection, though, we shall obtain closed-form expressions in two situations

of practical interest.

3.2 Examples

Univariate conditionally heteroskedastic autoregressive models:

Consider the following univariate, covariance stationary Ar(h)-Arch(q) model:

5 In the multivariate student t case, in fact, the feasible ML estimator of � will be numerically identical to the
PML estimator approximately half the time in large samples because � = 0 lies at the boundary of the admissible
parameter space (see e.g. Andrews (1999)).
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yt = �t(�0;�0) + �t(�0)"
�
t ;

�t(�;�) = �(1�
Ph
j=1 �j) +

Ph
j=1 �jyt�j ;

�2t (�) = (1�
Pq
j=1 �j) +

Pq
j=1 �j [yt�j � �t�j(�;�)]2;

"�t jzt; It�1;�0;�0 � i:i:d: s(0; 1;�0):

9>>=>>; (26)

De�ne � = (�1; : : : ; �h)
0 and � = (�1; : : : ; �q)0, so that � = (�;�0; ;�0)0. We can establish

the following result:

Proposition 10 If in model (26) �0 = 0, and all the roots of 1�
Ph
j=1 �j0L

j = 0 are outside
the unit circle, then the feasible ML estimators of �, � and � are as e¢ cient as the infeasible
ML estimators, which require knowledge of �0. If in addition �0 < 1, then the elliptically
symmetric semiparametric estimators of �, � and � are also fully e¢ cient. The same is true
of the semiparametric estimators of � and �, but not of �. In contrast, the ine¢ ciency ratio of
the Gaussian PML estimators is m�1ll (�0) for � and �, and 4=f[3mss(�0)� 1](3�0 + 2)g for �.

Not surprisingly, we can also show that these ine¢ ciency ratios coincide with the ratios of

the non-centrality parameters of the corresponding tests of conditional homoskedasticity against

local alternatives of the form �0T = �0=
p
T in model (26) (see Linton and Steigerwald (2000)).

Multivariate conditionally heteroskedastic autoregressive models:

Consider a single factor version of the conditionally heteroskedastic factor model in Sentana

and Fiorentini (2001) augmented with covariance stationary diagonal Var(1) dynamics:

yt = �t(�0;�0) +�
1=2
t (�0)"

�
t ;

�t(�;�) = [IN � diag(�)]� + diag(�)yt�1;
�t(�) = cc

0�t(�) + �;
�t(�) = 1 +

Pq
j=1 �j [f

2
kt�j(�) + !t�j(�)� 1];

"�t jzt; It�1;�0;�0 � i:i:d: s(0; IN ;�0);

9>>>>>=>>>>>;
(27)

where fkt(�) is the conditionally linear Kalman �lter estimator of the underlying common factor,

and !t(�) the corresponding conditional mean square error (see Sentana (2004) for details).

De�ne � = (�1; : : : ; �N )
0, � = (�1; : : : ; �N )

0,  = vecd(�), and � = (�1; : : : ; �q)
0, so that

� = (�0;�0; c0; 0;�0)0. We can establish the following result:

Proposition 11 If in model (27) �0 = 0, i0 > 0 8i, and j�i0j < 1 8i, then the feasible ML
estimators of �, � and � are as e¢ cient as the infeasible ML estimators, which require �0 to
be known. If in addition �0 < 1, then the elliptically symmetric semiparametric estimators of
�, � and � are also fully e¢ cient. The same is also true of the semiparametric estimators of
� and �, but not of �. In contrast, the ine¢ ciency ratio of the Gaussian PML estimators is
m�1ll (�0) for � and �, and 4=f[3mss(�0)� 1](3�0 + 2)g for �.

These ine¢ ciency ratios coincide with the corresponding ratios in the univariate example

of Proposition 10. In the multivariate student t case with �0 > 4, in particular, they become

(�0� 2)(�0+N +2)=[�0(�0+N)] and (�0 +N + 2) (�0� 4)=[(�0� 1)(�0+N � 1)], respectively.

For any given N , these ratios are monotonically increasing in �0, and approach 1 from below as
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�0 !1 in accordance to Proposition 9, and 0 from above as �0 ! 2+ or �0 ! 4+. For instance,

for N = 1 and �0 = 9, they take the value of :9�3 and :8�3, respectively, while for �0 = 5, their

values are only :8 and :4. At the same time, these ratios are decreasing in N for a given �0, which

re�ects the fact that the information matrix is �increasing�in N , as discussed after Proposition

1. For �0 = 9 and N = 3, for instance, they take the value of :907 and :795, respectively, while

for �0 = 5, their values are only :75 and :357.

Furthermore, we can also show that these ine¢ ciency ratios coincide with the ratios of the

non-centrality parameters of the corresponding tests of conditional homoskedasticity against

local alternatives of the form �0T = �0=
p
T in model (27) (see Sentana and Fiorentini (2001)).

3.3 General results on partial adaptivity

We have just studied two situations in which some, but not all elements of � can be estimated

as e¢ ciently as if �0 were known (see also Lange, Little and Taylor (1989)), a fact that would be

described in the semiparametric literature as partial adaptivity. E¤ectively, this requires that

some elements of s�t(�0) be orthogonal to the relevant tangent set after partiallying out the

e¤ects of the remaining elements of s�t(�0) by regressing the former on the latter. Partial adap-

tivity, though, often depends on the model parametrisation. The following reparametrisation

provides a general su¢ cient condition in multivariate dynamic models:

Reparametrisation 1 A homeomorphic transformation rs(:) = [r01s(:); r
0
2s(:)]

0 of the condi-
tional mean and variance parameters � into an alternative set of parameters # = (#01; #

0
2)
0,

where #2 is a scalar, and rs(�) is twice continuously di¤erentiable with rank[@r0s (�) =@�] = p in
a neighbourhood of �0, such that

�t(�) = �t(#1)
�t(�) = #2�

�
t (#1)

�
8t: (28)

Such a reparametrisation is not unique, since we can always multiply the overall scale para-

meter #2 by some scalar positive smooth function of #1, k(#1) say, and divide ��t (#1) by the

same function without violating (28). As we shall see, a particularly convenient function would

be k(#1) = expfN�1E[ln j��t (#1)jgj�0], so that after re-scaling

E[ln j��t (#1)jj�0] = 1 8#1: (29)

The following proposition generalises and extends earlier results by Bickel (1982), Linton

(1993), Drost, Klaassen and Werker (1997) and Hodgson and Vorkink (2003):

Proposition 12 1. If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0), and (28) holds, then:

(a) the elliptically symmetric semiparametric estimator of #1 is #2-adaptive,
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(b) If�#T denotes the iterated elliptically symmetric semiparametric estimator of #, then
�#2T = #2T (�#1T ), where

#2T (#1) =
1

N

1

T

TX
t=1

&�t (#1); (30)

&�t (#1) = [xt � �t(#1)]0���1t (#1)[xt � �t(#1)]; (31)

(c) rank
h
�S(�0)� C�1(�0)

i
� dim(#1) = p� 1.

2. If in addition condition (29) holds, then:

(a) I##(�0);P(�0); �S(�0);S(�0) and C(�0) are block-diagonal between #1 and #2,

(b)
p
T (�#2T � ~#2T ) = op(1), where ~#

0
T = (~#

0
1T ;
~#2T ) is the PMLE of #, with ~#2T =

#2T (~#1T ).

This proposition provides a saddle point characterisation of the asymptotic e¢ ciency of

the elliptically symmetric semiparametric estimator of �, in the sense that in principle it can

estimate p � 1 �parameters�as e¢ ciently as if we fully knew the true conditional distribution

of the data, while for the remaining scalar �parameter� it only achieves the e¢ ciency of the

PMLE. Obviously, the feasible ML estimator of #1 will also be #2-adaptive when the assumed

parametric conditional distribution of "�t is correct in view of Proposition 8.

At �rst sight, it may seem that the two examples discussed in the previous sections cannot be

rationalised in terms of Proposition 12 because their parametrisations do not satisfy condition

(28). In particular, the Arch parameters � are not generally scale-invariant. However, as

explained by Linton and Steigerwald (2000) in the context of model (26), condition (28) will be

e¤ectively satis�ed under the maintained hypothesis of �0 = 0.

It is also possible to �nd an analogous result for the unrestricted semiparametric estimator,

but at the cost of restricting further the set of parameters that can be estimated in a partially

adaptive manner

Reparametrisation 2 A homeomorphic transformation rg(:) = [r01g(:); r
0
2g(:); r

0
3g(:)]

0 of the
conditional mean and variance parameters � into an alternative parameter set  =( 01; 

0
2; 

0
3)
0,

where  2 = vech(	2), 	2 is an unrestricted positive (semi)de�nite matrix of order N ,  3 is N�
1, and rg(�) is twice continuously di¤erentiable with rank

�
@r0g (�) =@�

�
= p in a neighbourhood

of �0, such that
�t(�) = �

�
t ( 1) +�

�1=2
t ( 1) 3

�t(�) = �
�1=2
t ( 1)	2�

�1=20
t ( 1)

)
8t: (32)

This parametrisations simply requires the pseudo-standardised residuals

"�t ( 1) = �
��1=2
t ( 1)[yt � ��t ( 1)] (33)
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to be i:i:d: ( 3;	2). Again, (32) is not unique, since it continues to hold if we replace 	2 by

K�1=2( 1)	2K
�1=20( 1) and  3 by K

�1=2( 1) 3 � l( 1), and adjust ��t ( 1) and �
�1=2
t ( 1)

accordingly, where l( 1) and K( 1) are a N � 1 vector and a N �N positive de�nite matrix of

smooth functions of  1, respectively. Particularly convenient forms for these functions would be

those for which the Jacobian matrix of vech[K�1=2( 1)	2K
�1=20( 1)] andK

�1=2( 1) 3�l( 1)

with respect to  evaluated at the true values is equal to:(
�V �1

�
s 2t( 0)
s 3t( 0)

�����0�E
"
s 2t( 0)s

0
 1t
( 0)

s 3t( 0)s
0
 1t
( 0)

������0
# ���� IN(N+1)=20

���� 0
IN

)
: (34)

The following proposition, which does not require sphericity, generalises and extends Theo-

rems 3.1 in Drost and Klaassen (1997) and 3.2 in Sun and Stengos (2006):

Proposition 13 1. If "�t jzt; It�1;�0 is i:i:d: (0; IN ), and (32) holds, then

(a) the semiparametric estimator of  1, � 1T , is ( 2; 3)-adaptive,

(b) If � T denotes the iterated semiparametric estimator of  , then � 2T =  2T (� 1T ) and
� 3T =  3T (� 1T ), where

 2T ( 1) = vech

(
1

T

TX
t=1

["�t ( 1)� 3T ( 1)] ["�t ( 1)� 3T ( 1)]
0
)
; (35)

 3T ( 1) =
1

T

TX
t=1

"�t ( 1) (36)

(c) rank
�
S(�0)� C�1(�0)

�
� dim( 1) = p�N �N(N + 1)=2.

2. If in addition condition (34) holds, then

(a) I  (�0);P(�0); �S(�0);S(�0) and C(�0) are block diagonal between  1 and ( 2; 3).

(b)
p
T [(� 

0
2T � ~ 

0
2T ); (� 

0
3T � ~ 

0
3T )]

0 = op(1), where ~ 
0
T = (~ 

0
1T ; ~ 

0
2T ; ~ 

0
3T ) is the PMLE

of  , with ~ 2T =  2T (~ 
0
1T ) and ~ 3T =  3T (~ 

0
1T ).

This proposition provides a saddle point characterisation of the asymptotic e¢ ciency of the

semiparametric estimator of �, in the sense that in principle it can estimate p � N(N + 3)=2

�parameters�as e¢ ciently as if we fully knew the true conditional distribution of the data, while

for the remaining �parameters�it only achieves the e¢ ciency of the PMLE.

Unfortunately, the constant conditional correlation model of Bollerslev (1990), which assumes

that �t(�1;�2) = Dt(�1)RDt(�1), where Dt is a positive diagonal matrix, �2 = vecl(R) and

R a correlation matrix, seems to be the only multivariate Garch speci�cation proposed so far

that can be parametrised as (32) if we additionally assume that �t(�) = 0 8t, in which case

 3 is unnecessary. And even in that case, we could only adaptively estimate the parameters

of ��1=2t ( 1) = Dt(�1)fE[Dt(�1)]j�0g�1, which will typically correspond to the relative scale
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parameters of the N univariate Arch models for the elements of yt, although Ling and McAleer

(2003) consider a more general speci�cation. In most other models, we may need to arti�cially

augment the original parametrisation with  2 and  3 even though we know that  20 = vech(IN )

and  30 = 0, which could be associated with a substantial e¢ ciency cost. Furthermore, in doing

so, we must guarantee that the parameters  1 remain identi�ed (see Newey and Steigerwald

(1997) for a detailed discussion of these issues in univariate models). In this sense, the main

di¤erence between Propositions 12 and 13 is that in the elliptically symmetric case we can restrict

	2 to be a scalar matrix, and  3 to 0 regardless of the mean speci�cation, which reduces the

number of parameters by a factor of N(N + 3)=2.

4 The relative e¢ ciency of ML and sequential estimators of �

The asymptotic variance of the feasible ML estimator of �, �̂T , is

I��(�0) =
�
I��(�0)� I 0��(�0)I�1�� (�0)I

0
��(�0)

��1
;

which coincides with the inverse of the variance of the e¢ cient parametric score of �, s�j�(�0),

which is the residual in the theoretical regression of s�t(�0) on s�t(�0). As a result, this residual

variance, or marginal information matrix, will generally be smaller than I��(�0), which corre-

sponds to the infeasible ML estimator of � that we could compute if the &t(�0)0s were directly

observed. The following proposition characterises the ranking of the asymptotic covariance

matrices of the �ve estimators of � that we have considered:

Proposition 14 1. If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 < 1, then I�1�� (�0) �
I��(�0) � F(�0).

2. If "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0) with �0 > 8, then F(�0) � J (�0). If in addition

A�1(�0)Ws(�0) =
(N + �0 � 2)
(�0 � 4)

B�1(�0)Ws(�0); (37)

then J (�0) � G(�0), with equality if and only if�
&t(�0)

N
� 1
�
� 2(N + �0 � 2)

N(�0 � 4)
W0

s(�0)B�1(�0)s�t(�0; 0) = 0 8t: (38)

Condition (37) is trivially satis�ed in Gaussian models, and in dynamic univariate models

with no mean. Also, it is worth mentioning that (38), which in turn implies (37), is satis�ed by

most dynamic univariate Garch-M models (see Fiorentini, Sentana and Calzolari (2004)).

Given that I��(�0) = 0 under normality from Proposition 9, it is clear that ~�T will be

as asymptotically e¢ cient as the feasible ML estimator �̂T when �0 = 0, which in turn is as

e¢ cient as the infeasible ML estimator in that case. Moreover, if we use a multivariate student t
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log-likelihood function, these estimators will share the same half normal asymptotic distribution

under conditional normality, although they would not necessarily be equal when they are not

zero. Similarly, the asymptotic distributions of ��T and ��T will also tend to be half normal as

the sample size increases when �0 = 0, since ��T (~�T ) is root-T consistent for �, which is 0 in

the Gaussian case. However, while��T will always be as e¢ cient as �̂T under normality because

�n�t(�0; 0) is proportional to s�t(�0; 0), ��T will be less e¢ cient unless condition (38) is satis�ed.

5 Distributional misspeci�cation and parameter consistency

5.1 Parameter estimation

So far, we have maintained the assumption that the conditional distribution of the stan-

dardised innovations "�t is either i:i:d: s(0; IN ;�) or sometimes t(0; IN ; �0). However, one of the

most important reasons for the popularity of the Gaussian pseudo-ML estimator of � despite

its ine¢ ciency is that it remains root-T consistent and asymptotically normally distributed un-

der fairly weak distributional assumptions provided that (1) is true. In contrast, the e¢ cient

spherically-based ML estimator may become inconsistent if the true distribution of "�t given zt

and It�1 does not coincide with the assumed one, even though (1) holds, as forcefully argued by

Newey and Steigerwald (1997) in the univariate case. To focus our discussion, in the remain-

ing of this section we shall assume that (1) is true, and that we speci�cally decide to use the

student t log-likelihood function for estimation purposes. Nevertheless, our results can be triv-

ially extended to any other spherically-based likelihood estimators, as the only advantage of the

student t likelihood four our purposes is the fact that its limiting relationship to the Gaussian

distribution can be made explicit. For simplicity, we shall also de�ne the pseudo-true values of �

and � as consistent roots of the expected t pseudo log-likelihood score, which under appropriate

regularity conditions will maximise the expected value of the t pseudo log-likelihood function.

Two important points to bear in mind in studying the potential inconsistencies in �̂T are

(i) that the spherical distribution assumed for estimation purposes will often nest the Gaussian

distribution as a limiting case, and (ii) that �̂T = ~�T whenever �̂T = 0. For instance, the t

distribution is estimated subject to the inequality constraint � � 0. The following proposition

explains the consequences of this inequality restriction:

Proposition 15 1. Let �1 denote the pseudo-true values of the parameters � and � implied
by a multivariate student t log-likelihood function. If the unconditional coe¢ cient of mul-
tivariate excess kurtosis of "�t is not positive, where the expectation in (16) is taken with
respect to the true unconditional distribution of the data, then �1 = �0 and �1 = 0.

2. If the unconditional coe¢ cient of multivariate excess kurtosis of "�t is strictly negative,
and the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis�ed, thenp
T �̂T = op(1) and

p
T (~�T � �̂T ) = op(1).
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3. If the unconditional coe¢ cient of multivariate excess kurtosis of "�t is exactly 0, and the
regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

p
T �̂T will

have an asymptotic normal distribution censored from below at 0, and ~�T will be identical
to �̂T with probability approaching 1/2. If in addition

H��(�1;'0) = E[[N + 2� &t(�0)]f"�0t (�0)jvec0["�t (�0)"�0t (�0)]gZ0dt(�0)j'0] = 0; (39)

where '0 = (�0;%0), then
p
T (~�T � �̂T ) = op(1) the rest of the time.

In the rest of this section we will concentrate on those distributions for which the condition

�0 � 0 in Proposition 15 is violated. The �rst part of the following proposition extends the �rst

part of Theorem 1 in Newey and Steigerwald (1997) to a broad class of multivariate dynamic

models, while the rest does the same thing for Proposition 4 in Amengual and Sentana (2007).

Proposition 16 If "�t jzt; It�1;'0 is i:i:d: s(0; IN ;%0) but not t with �0 > 0, where '0 =
(#010; #20;%0), and (28) holds, then:

1. The pseudo-true value of feasible student-t based ML estimator of � = (#01; #2; �)
0, �1, is

such that #11 is equal to the true value #10.

2. Ot(�1;'0) = V [st(�1)jzt; It�1;'0] = Zt(#1)MO(�1;'0)Zt(#1), while Ht(�1;'0) =
�E[ht(�1)jzt; It�1;'0] = Zt(#1)MH(�1;'0)Zt(#1), where bothMO(�1;'0) and
MH(�1;'0) share the structure of (11), (12), (13) and (14), with

mOll (�;') = E
�
�2[&t(#); �] � [&t(#)=N ]

��'	
mOss(�;') = N(N + 2)�1 [1 + V f�[&t(#); �] � [&t(#)=N ]j'g] ;
mOsr(�;') = E

�
f�[&t(#); �] � [&t(#)=N ]� 1g e0rt(�)

��'� ;
MO

rr(�;') = V [ ert(�)j'];
mHll (�;') = E f2@�[&t(#); �]=@& � [&t(#)=N ] + �[&t(�); �]j'g ;
mHss(�;') = E

�
2@�[&t(#); �]=@& � &2t (#)=[N(N + 2)]

��'	+ 1;
mHsr(�;') = �E f[&t(#)=N ] � @�[&t(#); �]=@�j'g ;

MH
rr(�;') = �E[ @ert(�)=@�0

��']:
3. If in addition (29) holds, then E[Ot(�1;'0)j'0] and E[Ht(�1;'0)j'0] will be block di-
agonal between #1 and (#2; �).

Part 1 says that the t-based MLE can estimate consistently all the parameters except the

expected value of &�t (#10) in (31), while Part 2 allows us to obtain the asymptotic variance of

the t-based ML estimators with the usual sandwich formula. It should also be straightforward

to consistently estimate the overall scale parameter #2 by combining #̂1T with the expression

for the concentrated PML and iterated SSP estimators in (30).

Importantly, note that the transformed parameters that we can estimate in a partially adap-

tive manner by means of the SSP estimator coincide with the parameters that we continue to

estimate consistently with a misspeci�ed student t-based pseudo-ML estimator.
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If "�t jzt; It�1;�0 is not i:i:d: spherical, and �0 > 0, then in general the feasible student t-

based ML estimator will be inconsistent, and the same applies to the SSP estimator.6 However,

it may still be possible to estimate consistently some parameters:

Proposition 17 If "�t jzt; It�1 is i:i:d: (0; IN ) but not spherical, with �0 > 0, and (32) holds,
then the pseudo-true value of feasible student-t based ML estimator of  1,  11, is equal to the
true value  10.

This proposition is the multivariate generalisation of Theorem 2 in Newey and Steigerwald

(1997).7 In simple terms, it says that the t-based MLE cannot estimate consistently either

the mean or the covariance matrix of the i:i:d: pseudo-standardised residuals "�t ( 10) in (33).

However, it should be straightforward to consistently estimate  2 and  3 by combining � 1T with

the expressions for the concentrated PML and SP estimators in (35) and (36). As discussed at the

end of section 3.3, though, we may only be able to write the conditional mean and covariance

functions as in (32) at the cost of augmenting the model with a large number of additional

parameters, which will generally lead to either ine¢ ciency loss or even lack of identi�cation.

Importantly, note that the transformed parameters that we can estimate in a partially adap-

tive manner by means of the unrestricted semiparametric estimator coincide with the parameters

that we continue to estimate consistently with a misspeci�ed student-t based ML estimator.

However, the semiparametric estimator may also become inconsistent if the i:i:d: assumption

does not hold. In this sense, one should bear in mind that in non-elliptical models the conditional

distribution of yt is not invariant to the speci�c choice of �
1=2
t (�) assumed to generate the data

(see Mencía and Sentana (2005)), a choice that could conceivably change over time.

5.2 Hausman tests

There are several ways in which we can test the validity of the multivariate t assumption.

One possibility is to nest that distribution within a more �exible parametric family, which

allows us to conduct an LM test of the nesting restrictions. This is the approach in Mencía

and Sentana (2005), who use the generalised hyperbolic family as the nesting distribution. An

alternative procedure would be an information matrix test that compares some or all the elements

ofMO(�1;'0) andMH(�1;'0) in Proposition 16 by means of an unconditional moment test.

But we can also consider a Hausman speci�cation test. The rationale is that the feasible elliptical

ML estimator �̂T is e¢ cient under correct speci�cation of the conditional distribution of yt. In

6Hodgson (2000) shows that the consistency of the conditional mean parameters is preserved in non-linear
univariate regression models when the innovations are conditionally symmetric but not i:i:d. if certain conditions
are satis�ed. See also Proposition 5 in Amengual and Sentana (2007) for a multivariate example.

7 It is also possible to generalise the second part of their Theorem 1, in the sense that if the true conditional
mean of yt is 0, and we impose this restriction in estimation, then  3 is unnecessary.
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contrast, if the conditional mean and variance of yt are correctly speci�ed, but the conditional

distribution of "�t is not i:i:d: t(0; IN ; �), then ~�T will remain root-T consistent as long as �0 is

bounded, while �̂T will probably not, as Propositions 16 and 17 illustrate. More formally

Proposition 18 Let

HW
�̂T
= T (~�T � �̂T )0

h
C(�0)� I��(�0)

i+
(~�T � �̂T );

and
Hs
�̂T
= T�s0�T (�̂T ;0)

h
B(�0)�A(�0)I��(�0)A(�0)

i+
�s�T (�̂T ;0);

where �s�T (�̂T ;0) is the sample average of the Gaussian PML score evaluated at the feasible
ML estimator �̂T . If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are

satis�ed and �0 <1, then HW
�̂T

d! �2s and H
W
�̂T
�Hs

�̂T
= op(1) under correct speci�cation of the

conditional distribution of yt, where s = rank
�
C(�0)� I��(�0)

�
.

In practice, we must replace A(�0), B(�0) and I(�0) by consistent estimators to make HW
�̂T

and Hs
�̂T
operational. In order to guarantee the positive semide�niteness of their weighting ma-

trices, it is convenient to estimate all these matrices as the sample averages of the corresponding

conditional expressions in Propositions 1 and 2 evaluated at a common estimator of �, such as

�̂T , (~�T ; ~�T ) or (~�T ; ��T ), the latter being such that B(~�T ; ��T ) is always bounded.

In view of Proposition 9, though, such feasible Hausman tests will become numerically un-

stable when �̂T > 0 but �0 = 0 even though in theory they should be identically 0 because�
C(�0)� I��(�0)

�
= 0 in that case. Similarly, the Hausman tests will not work properly when

�0 � 1
4 because �0 becomes unbounded, although its sample counterpart will obviously remain

bounded, which violates one of the assumptions of Proposition 2. Moreover, it may also have

poor �nite sample properties for �0 � 1=8 because the asymptotic distribution of ��T will not be

root-T consistent in that case.

Given that the power of these Hausman tests depends on the asymptotic biases of �̂T under

misspeci�cation of the conditional distribution of the standardised innovations, it may be con-

venient to concentrate on those parameters that may be more a¤ected by such distributional

misspeci�cation. For instance, in the situation discussed in Proposition 16 power would be max-

imised if we based our Hausman test on the overall scale parameter #2 exclusively, and the same

will be true in the context of Proposition 17 if we look at  2 and  3, which are the variance

and mean parameters of the pseudo standardised residuals "�t ( 1) in (33).

Given that the SSP estimator is also e¢ cient relative to the PML estimator under sphericity,

but it may lose its consistency otherwise, we can consider alternative speci�cation tests as follows:

Proposition 19 Let

HW
��T
= T (~�T ���T )0[C(�0)� �S�1(�0)]+(~�T ���T );
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and
Hs
��T
= T�s0�T (��T ;0)

h
B(�0)�A(�0)�S�1(�0)A(�0)

i+
�s�T (��T ;0);

where �s�T (��T ;0) is the sample average of the Gaussian PML score evaluated at the SSP estimator
��T . If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis�ed, then

HW
��T

d! �2s and H
W
��T
�Hs

��T
= op(1) under correct speci�cation of the conditional distribution of

yt, where s = rank[C(�0)� �S�1(�0)] � p� 1.

Once again, it may be convenient to concentrate on the parameters that are more likely to

re�ect the distributional misspeci�cation, such as  2 and  3.

Finally, the di¤erence between ~�T and �̂T suggests yet another Hausman speci�cation test

of the model, which will be given by the following expression:

HW
�T = T (~�T � �̂T )2 [F(�0)� I��(�0)]+ ;

where the Moore-Penrose generalised inverse in this scalar case is simply the reciprocal of F(�0)�

I��(�0) if F(�0) � I��(�0) is positive, and 0 otherwise. Under correct speci�cation of the

conditional distribution of "�t , H
W
�T will be asymptotically distributed as a chi-square with one

degree of freedom when �0 > 0. But again, feasible versions of HW
�T may become numerically

unstable when �̂T > 0 or ~�T > 0 but �0 = 0, even though the infeasible version would be

identically 0 because [F(�0)� I��(�0)] = 0 in that case. Note that the power of this third

Hausman test depends on the di¤erence between the pseudo true values of ~�T and �̂T when the

conditional distribution of "�t is not multivariate t, which will depend in turn on the asymptotic

bias in �̂T .

6 Monte Carlo Evidence

6.1 Design and estimation details

In this section, we assess the �nite sample performance of the di¤erent estimators and testing

procedures discussed above by means of an extensive Monte Carlo exercise, with an experimental

design that augments (27) withGarch dynamics. Speci�cally, we simulate and estimate a model

in which N = 6, �0 = :1 � �6, �0 = :1 � �6, c0 = �6; 0 = 2 � �6, �6 = (1; 1; 1; 1; 1; 1)0, and

�t(�)� � = �[f2kt�1(�) + !t�1(�)� �] + �[�t�1(�)� �]; (40)

with �0 = 1, �0 = :1 and �0 = :85. As for "�t , we consider a Gaussian distribution, and two

multivariate student t�s with 8 and 4 degrees of freedom respectively. In order to assess the

e¤ects of distributional misspeci�cation, we also consider an i:i:d: normal-gamma mixture with

the same coe¢ cient of multivariate excess kurtosis as the t8, an i:i:d: asymmetric student t such

22



that the marginal distribution of an equally-weighted average of the six series has the maximum

negative skewness possible for the kurtosis of the t8, and a symmetric student t distribution

with time-varying kurtosis, in which the degrees of freedom parameter evolves according to the

following stochastic di¤erence equation

�t = :8 + :8(f2kt�1 + !t�1)�
�1
t�1 + :8�t�1;

which can be regarded as a multivariate version of expression (7) in Demos and Sentana (1998).8

We exploit the results in Mencía and Sentana (2005) to simulate standardised versions of all these

distributions by appropriately mixing a 6-dimensional spherical normal vector with a univariate

gamma random variable, which we obtain from the NAG Fortran 77 Mark 19 library routines

G05DDF and G05FFF, respectively (see Numerical Algorithm Group (2001) for details). With

the objective of speeding up the computations, we systematically resort to Cholesky decompo-

sitions to factorise �t. As explained at the end of section 5.1, this choice is inconsequential for

all simulated distributions except the asymmetric t, and all estimators except the SP one. Al-

though we have considered other sample sizes, for the sake of brevity we only report the results

for T = 1; 000 observations (plus another 100 for initialisation) based on 10,000 Monte Carlo

replications. This sample size corresponds roughly to 20 years of weekly data, or 4 years of daily

data.

Our ML estimation procedure employs the following numerical strategy. First, we estimate

the conditional mean and variance parameters � under normality with a scoring algorithm that

combines the E04LBF routine with the analytical expressions for the score in Appendix B and

the A(�0) matrix in Proposition 2. Then, we compute the sequential MM estimator ��T in (18),

which we use as initial value for a univariate optimisation procedure that obtains the sequential

ML estimator ~�T in Proposition 4 with the E04ABF routine. This estimator, together with the

PML of �, become the initial values for the t-based ML estimators, which are obtained with the

same scoring algorithm as the PML estimator, but this time using the analytical expressions for

the information matrix I(�0) in Proposition 1. We rule out numerically problematic solutions

by imposing the inequality constraints j�ij � :999 and i � 10�10 for i = 1; : : : ; N , � � 10�4,

� � 0, � + � � :999 and 0 � � � :499.9 Given that the scale of the common factor is free,

we set � = 1 in estimation for computational convenience but report results for the alternative

normalisation c1 = 1.
8A direct application of the formulas in Demos and Sentana (1998, sect.3.1) yields inft �t = 4 and E(�t) = 8.
9We implicitly impose the restrictions on � and � by numerically maximising the Gaussian and t log-likelihood

functions with respect to ��I and �
�
II subject to the restrictions 10

�4 � ��I � :999 and 0 � ��II � :999, where
� = ��I�

�
II and � = ��I(1 � ��II). Nevertheless, we always compute scores and information bounds in terms of �

and �, using the chain rule for derivatives whenever necessary.
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Computational details for the two semiparametric procedures can be found in Appendix

B. Given that a proper cross-validation procedure is extremely costly to implement in a Monte

Carlo exercise with N = 6, we have done some experimentation to choose �optimal�bandwidths

by scaling up and down the automatic choices given in Silverman (1986).10

6.2 Sampling distributions of estimators

Figures 1A-1F display box-plots with the sampling distributions of the Gaussian- and t-based

ML estimators, and the two semiparametric ones. In the case of vector parameters, we report

the values corresponding to the third series. As usual, the central boxes describe the �rst and

third quartiles of the sampling distributions, as well as their median. The maximum length of

the whiskers is one interquartile range. Finally, we also report the fraction of estimates outside

those whiskers to complement the information on the tails of the distributions.

As expected from Proposition 9.1, the distribution of the four estimators is essentially iden-

tical under normality across all the parameters, with the only exception of the SP estimator of

3, which is not very surprising given that the ML and PML are numerically identical over half

the time. However, they progressively di¤er under correct student t speci�cation as the degrees

of freedom decrease.

Another thing to note is that the sampling distributions of the Gaussian PML estimators

of �3 and �3 do not seem to be a¤ected much by the true conditional distribution of the data,

which suggests that the di¤erent information bounds of the simulated model are almost block

diagonal between the conditional mean parameters (�;�) and the rest. The same seems to be

true for the SP estimator of �3, which is in line with Proposition 11, and essentially re�ects the

fact that there is no SP adjustment for unconditional means. In contrast, the behaviour of the

SP estimator of the autoregressive coe¢ cient �3 described in Figure 1B is very much at odds

with the same proposition, probably as a result of the fact that the adjustment of this parameter

described in (22) becomes very noisy once we replace the unknown score by the one obtained

with the multivariate kernel estimator.

On the other hand, the sampling distributions of the SSP and t-based ML estimators of

�3 and �3 are quite sensitive to the nature of the underlying distribution. In particular, when

the true distribution is elliptical, the sampling distributions of those estimators are narrower

than the distributions of the PML and SP estimators. This is particularly noticeable in the t4

case, but also in the normal-gamma case, for which the ML estimator should lose its asymptotic

10We considered .3, .5, .8, 1, 1.25, 1.5, 2, 2.5, 3 and 4 times the bandwidth [4=(N + 2)]1=(N+4) � s � T�1=(N+4)
recommended by Silverman (1986) for multivariate density estimation under normality, where s2 is the second
sample moment of "�it(~�T ) averaged across t and i in the case of the SP estimator, and the sample variance of
3

q
&t(~�T ) in the case of the SSP estimator. The reported results use scaling factors of 1.25 (SSP) and 2.5 (SP).
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e¢ ciency but not its consistency according to Proposition 16. At the same time, an asymmetric

distribution introduces substantial positive biases in the ML and SSP estimators of �3. Intu-

itively, since the true distribution of the standardised innovations is negatively skewed, those

estimators are re-centring their estimated distributions so as to make them more symmetric.

Somewhat surprisingly, though, the biases in the unconditional mean seem to go a long way in

mopping up the biases in the autocorrelation coe¢ cients. As for time-varying kurtosis, it seems

to have little e¤ect on the estimators of the two conditional mean parameters that we analyse,

with results that broadly resemble the ones obtained for the t8.

Unlike what happens with the conditional mean parameters, the sampling distributions of

the PML estimators of both the static variance parameters c3 and 3, and the dynamic variance

parameters � and � are quite sensitive to the distribution of the innovations. In this sense,

the �rst thing to note is that those sampling distributions deteriorate as the distribution of

the standardised innovations becomes more leptokurtic. In fact, when �0 = 4 the shape of the

distribution of the PML estimators of the Arch and Garch parameters is clearly non-standard,

as discussed after Proposition 2. On the other hand, the PML estimators of � and � are the

least a¤ected by the existence of time-varying higher order moments. The SP estimators of the

conditional variance parameters also su¤er when �0 increases, becoming substantially downward

biased in the case of 3, as well as in the case of � when the innovations are t4.

In contrast, the ML estimators of the conditional variance parameters behave very much as

expected: there are substantial e¢ ciency gains when the distribution of the innovations coincides

with the assumed one, and some noticeable biases when it does not. However, it is interesting

to note that those biases only a¤ect 3 and � in the normal-gamma case, and � and � in the

time-varying leptokurtic case. The unbiasedness results that we obtain with the asymmetric t

are somewhat remarkable, and suggest once again that the biases in the unconditional mean

that we observe in Figure 1A adequately re-centre the estimated distribution of the innovations.

The behaviour of the SSP estimators of the conditional variance parameters is mixed. When

the distribution is elliptical, this estimator does a reasonably good job, although by no means

does it achieve the e¢ ciency of the ML estimator. This is especially true in the case of t4

innovations, when it also shares a downward bias for � with the SP estimator. Like the ML

estimators, though, the SSP estimators also seem somewhat resilient to misspeci�cation, since

the only noticeable biases correspond to 3 for the asymmetric student t, and � and � for the t

distribution with time-varying degrees of freedom.

Model (27) can be easily reparametrised as in (28) if we ignore the small adjustment term

!t�j(�) in (40). For instance, we can choose #2 to be the cross-sectional average of the idiosyn-
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cratic variances (=  0�N=N), and then re-scale �, � and the elements of  accordingly. Figures

1G and 1H display box-plots of 3=#2 and �=#2. As can be seen, the t-based ML estimators of

these two derived parameters become consistent when the true distribution is normal-gamma,

which con�rms Proposition 16.a (see also Thm.1 in Newey and Steigerwald (1997)). But con-

trary to the asymptotic results in Proposition 12.a, they seem to be at least as e¢ cient as the

SSP estimator in that case. Similarly, the SSP estimators also seem to be consistent in the case

of the asymmetric student t, but the downward bias that a¤ects � when the distribution is t4

continues to contaminate �=#2.

Finally, Figure 2 displays box-plots of the sampling distributions of the ML, sequential ML

and sequential MM estimators of � centred around their true values when �0 = 1, 8 or 4,

or around the pseudo-true values implied by the sequential ML procedure when the i:i:d: t

assumption is incorrect. The �rst thing to note is that the proportions of zero estimates of �

exceed the theoretical value of 1=2 when �0 = 0. Although the three estimators behave similarly

under Gaussianity, they are radically di¤erent in the other two correctly speci�ed cases. As

explained in Section 4, while �̂T is asymptotically normally distributed in those two cases, ��T

has a non-standard asymptotic distribution when �0 = 8 or �0 = 4, and the same applies to ~�T

in the latter case. The sampling distributions are also very di¤erent in the case of the normal-

gamma, but less so in the case of the asymmetric student t or the t with time-varying degrees of

freedom. In this sense, the main e¤ects of �t moving around its average value of 8 (see footnote

8) seem to be small increases in the medians and dispersions of the estimated tail thickness

parameters relative to the i.i.d: t8. case, probably due to the increase in higher order moments

that a time-varying kurtosis entails.

6.3 Hausman tests

Following our discussion on power in section 5.2, we focus our attention on two parameters

only: the cross-sectional mean of the unconditional mean parameters �0s and the cross-sectional

mean of the idiosyncratic variances 0s. In the remaining of this section, we shall refer to those

two average parameters as �� and �. The Wald version of single coe¢ cient tests is straightforward.

The LM version is also easy to obtain if we use the results in the proofs of Propositions 18 and

19 to show that

p
T (~�T � �̂T )�A�1(�0)

p
T�s�T (�̂T ; 0) = op(1);

p
T (~�T ���T )�A�1(�0)

p
T�s�T (��T ; 0) = op(1):

To simplify the comparisons between parametric and semiparametric testing procedures, we

systematically use the PML estimator of � in computing the di¤erent information bounds. We
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also use the sequential MM estimator of � in (18), which amounts to replacing �0 by its sample

analogue when it is positive. We provide further details on how we compute the SSP bound

�S(�0) in Appendix B.

The �rst two panels of Table 1 report the fraction of simulations in which the parametric

and SSP Hausman tests in Propositions 18 and 19, respectively, exceed the 1, 5 and 10% critical

values of a �21 when the true distribution is a student t8, while the last panel reports the

corresponding fractions for the SSP test in the normal-gamma case. All tests tend to overreject,

but the size distortions of the parametric tests are typically small, especially if compared to the

huge distortions shown by the SSP Hausman procedures based on �. Although the estimators

of �S(�0) are noisier than the estimators of I(�0) or C(�0), the main problem with the SSP tests

is that the di¤erence between the Monte Carlo variances of the PML estimators of �� and � and

its asymptotically e¢ cient SSP counterparts is smaller than the Monte Carlo variance of the

di¤erence between those two estimators, which violates the principle underlying Hausman tests.

In fact, the Monte Carlo variance of the SSP estimator of � turns out to be higher than that of

the PML estimator both in the case of the student t8 and the normal-gamma mixture, despite

the fact that the Monte Carlo variances of the estimators of the individual 0is are in the correct

order, which suggests that the SSP estimators of the 0is have a more positive cross-sectional

correlation. Monte Carlo experiments with T = 10; 000 indicate, though, that those problems

are mitigated as the �rst-order asymptotic results become more representative.

Table 2 contains the fraction of simulations in which the parametric (upper panels) and SSP

(lower panels) Hausman tests exceed the 1, 5 and 10% empirical critical values obtained by

simulation when the true distribution is a student t8 (see Table 1).

As expected, the parametric test based on �� has little power when the true distribution is

normal-gamma, which is not surprising given that the ML estimators of the conditional mean pa-

rameters are consistent, but no longer e¢ cient, in that case. In contrast, the power is essentially

1 if we base the test on the idiosyncratic variance parameter �. In the case of the asymmetric

t, though, the parametric Hausman tests based on the unconditional means have substantially

more power than the tests based on the unconditional idiosyncratic variances, which is also in

line with the Monte Carlo distributions presented in the previous section. Finally, neither of

those parameters is useful to detect a t distribution with time-varying degrees of freedom.

On its part, the SSP Hausman test based on �� and � have a lot of power to detect departures

in the asymmetric direction, but again no power against time-varying kurtosis. The odd size-

adjusted power results observed at the 1% level simply re�ect the imprecision of the estimated

Monte Carlo critical values.
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7 Conclusions

In the context of a general multivariate dynamic regression model with time-varying vari-

ances and covariances, we compare the e¢ ciency of the feasible ML procedure that jointly

estimates the shape parameters with the e¢ ciency of the infeasible ML, SSP, SP and Gaussian

PML estimators of the conditional mean and variance parameters considered in the existing

literature. In this respect, we show that if the distribution of the standardised innovations is

i:i:d: spherical, the ranking is infeasible ML, feasible ML, SSP, SP and PML, with equality if

and only if the spherical distribution is in fact Gaussian, in which case there is no e¢ ciency loss

in simultaneously estimating the shape parameters. In this respect, our results generalise earlier

�ndings by Gonzalez-Rivera and Drost (1999), FSC and Hafner and Rombouts (2007).

Furthermore, we study in detail two popular examples of conditionally heteroskedastic mod-

els, one univariate and the other one multivariate, and obtain closed-formed expressions for

the ine¢ ciency ratios of di¤erent subsets of parameters under the assumption of constant vari-

ances. Not surprisingly, those ine¢ ciency ratios coincide with the ratios of the non-centrality

parameters of the tests of conditional homoskedasticity associated with the di¤erent estimators.

More generally, we show that the SSP estimator is adaptive for all but one global scale

parameter in an appropriate reparametrisation of the model. This result directly generalises

the one obtained for univariate Garch models by Linton (1993), as well as the results in

Hodgson and Vorkink (2003) for a speci�c multivariate Garch-M model. We also show that the

general SP estimator is adaptive for a much more restricted set of parameters in an alternative

reparametrisation that only seems to �t the constant conditional correlation model of Bollerslev

(1987) when the conditional mean is 0. This second result generalises the ones obtained for

speci�c univariate Garch models by Drost and Klaassen (1997) and Sun and Stengos (2006),

which seem overly simple from a multivariate perspective. Importantly, we prove that both

semiparametric estimators share a saddle point e¢ ciency property, in that they are as ine¢ cient

as the Gaussian PMLE for the parameters that they cannot estimate adaptively.

We also thoroughly analyse the e¤ects of distributional misspeci�cation on the consistency

of the conditional mean and variance parameters. In particular, we initially show that when

the conditional distribution is platykurtic, so that the coe¢ cient of multivariate excess kurtosis

is negative, the feasible ML estimators based on the multivariate student distribution converge

to the Gaussian PML estimators. On the other hand, we show that when the conditional

distribution is spherical and leptokurtic, but neither t nor Gaussian, the feasible student t-based

ML estimator is consistent for exactly the same parameters for which the SSP estimator is

adaptive, which are e¤ectively all but a global scale factor. This result generalises Theorem 1 in

28



Newey and Steigerwald (1997), which applies to univariate models. Furthermore, we show that

when the conditional distribution is leptokurtic but not spherical, the feasible ML estimator

is consistent for exactly the same restricted subset of parameters for which the general SP

estimator is adaptive, which excludes both the mean and the covariance matrix of the i:i:d:

pseudo-standardised innovations. This second result also generalises Theorem 2 in Newey and

Steigerwald (1997), which again looks misleadingly simple from a multivariate perspective. We

would also like to emphasise that our inconsistency results apply not only to the multivariate

student t log-likelihood, but also to any other spherically-based likelihood estimators. The main

advantage of the student t for our purposes is that we can make explicit its limiting relationship

to the Gaussian distribution. In any case, we provide closed-form expressions for consistent

estimators of the parameters that the feasible ML estimator cannot estimate consistently.

In view of the importance of the distributional assumptions, we propose simple Hausman

tests that compare the feasible ML and SSP estimators to the Gaussian PML ones.

Finally, we also consider sequential estimators of the shape parameters, which can be easily

obtained from the standardised innovations evaluated at the Gaussian PML estimators. In

particular, we consider a sequential ML estimator, as well as sequential MM estimators based

on the coe¢ cient of multivariate excess kurtosis. The main advantage of such estimators is

that they preserve the consistency of the conditional mean and variance functions, but at the

same time allow for a more realistic conditional distribution. We show that the usual e¢ ciency

ranking of the estimators of the shape parameters is infeasible ML, feasible ML, sequential ML

and sequential MM. These results are important in practice because empirical researchers often

want to go beyond the �rst two conditional moments, which implies that one cannot simply

treat the shape parameters as if they were nuisance parameters. We also propose an alternative

Hausman test that compares the feasible and sequential ML estimator of the shape parameters.

In a detailed Monte Carlo experiment we �nd that there is a substantial di¤erence between

the estimation of the following four groups of parameters: (a) the unconditional mean parame-

ters, (b) the unconditional variance parameters, (c) the dynamic mean parameters, and (d) the

dynamic variance parameters. We also �nd that the �nite sample performance of the semipara-

metric procedures is not well approximated by the �rst-order asymptotic theory that justi�es

them. This is particularly true of the SP estimators of the dynamic mean and variance parame-

ters, but also a¤ects the SSP estimators of the latter. As for the feasible ML estimators based on

the student t, we �nd that they o¤er substantial e¢ ciency gains relative to the PML estimators

when the true distribution coincides with the one assumed for estimation purposes, but they be

biased otherwise. Nevertheless, we �nd that the biases seem to be limited to the unconditional
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mean parameters when the true distribution is asymmetric, and the variance parameters when

it is elliptical but not t. In this second case, our simulation results also con�rm that we can

obtain consistent estimators of all parameters but one by using one of the reparametrisations

previously discussed.

As for the Hausman tests, we �nd that the one based on the feasible ML estimator works

quite well, both in terms of size and power, while the one based on the SSP estimator su¤ers

from substantial size distortions when we base it on the unconditional variance parameters. In

this sense, it would be useful to explore bootstrap procedures that exploit the fact that elliptical

distributions are parametric in N � 1 dimensions, and non-parametric in only one.

Further work is required in at least four other directions. First, from a modelling point

of view, the assumption of i:i:d: innovations in non-spherical multivariate models seems rather

strong, for it forces the conditional distribution of the observed variables to depend on the

choice of square root matrix used to obtain the underlying innovations from the observations.

Secondly, from an estimation point of view, the development of semiparametric estimators that

do not require the assumption of i:i:d: innovations remains an important unresolved issue that

merits further investigation. Thirdly, the availability of analytical �nite sample results would

probably make the choice between bias and e¢ ciency look more balanced than what standard

root-T asymptotics suggests. Finally, the existing literature, including our paper, places too

much emphasis on parameter estimation, while practitioners are often more interested in func-

tionals of the conditional distribution, such as the forecasting intervals required in value at risk

calculations. An evaluation of the consequences that the di¤erent estimation procedures that

we have considered have for such objects constitutes a fruitful avenue for future research.
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Appendix

A Proofs and auxiliary results

Some useful distribution results

A spherically symmetric random vector of dimension N , "�t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as "�t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of "�t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <1,

we can standardise "�t by setting E(e
2
t ) = N , so that E("�t ) = 0, V ("

�
t ) = IN . Speci�cally, if "

�
t

is distributed as a standardised multivariate student t random vector of dimension N with �0

degrees of freedom, then et =
p
(�0 � 2)�t=�t, where �t is a chi-square random variable with N

degrees of freedom, and �t is an independent Gamma variate with mean �0 > 2 and variance

2�0. If we further assume that E(e4t ) < 1, then the coe¢ cient of multivariate excess kurtosis

�0, which is given by E(e4t )=[N(N +2)]� 1, will also be bounded. For instance, �0 = 2=(�0� 4)

in the student t case with �0 > 4, and �0 = 0 under normality. In this respect, note that since

E(e4t ) � E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
p
N

so that "�t is proportional to ut, then �0 � �2=(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V ("�t ) = IN are given by

E("�t"
�
t
0 
 "�t ) = 0; (A1)

E("�t"
�
t
0
"�t"�t 0)=E[vec("�t"�t 0)vec0("�t"�t )]= (�0+1)[(IN2+KNN )+vec (IN ) vec

0 (IN )]: (A2)

We shall also make use of the fact that in the student t case �t=(�t+�t) has a beta distribution

with parametersN=2 and �0=2, which is independent of ut. As is well known, if a random variable

X de�ned over [0; 1] has a beta distribution with parameters (a; b), where a > 0, b > 0, then its

density function is

fX(x; a; b) =
1

B(a; b)
xa�1(1� x)b�1;

where

B(a; b) =

Z 1

0
xa�1(1� x)b�1dx = �(a)�(b)

�(a+ b)

is the usual beta function. Fortunately, it is often trivial to �nd apparently complex moments
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of a beta random variable from �rst principles. For instance,

E[Xp(1�X)qja; b] = 1

B(a; b)

Z 1

0
xp(1� x)qxa�1(1� x)b�1dx = B(a+ p; b+ q)

B(a; b)

for any real values of p and q such that a+ p > 0 and b+ q > 0. Similarly, sinceZ 1

0
ln(1� x)xa+p�1(1� x)b�1dx = @

@b

Z 1

0
xa+p�1(1� x)b�1dx = @

@b
B(a+ p; b);

we can also write

E[Xp(1�X)q ln(1�X)ja; b] =
B(a+ p; b+ q)

B(a; b)

@ lnB(a+ p; b+ q)

@b

=
B(a+ p; b+ q)

B(a; b)
[ (b+ q)�  (a+ p+ b+ q)] ;

thanks to the de�nition of the beta function in terms of the gamma function above.

Lemmata

Lemma 1 Let & denote a scalar random variable with continuously di¤erentiable density func-
tion h(&;�) over the possibly in�nite domain [a; b], and let m(&) denote a continuously di¤eren-
tiable function over the same domain such that E [m(&)j�] = k(�) <1. Then

E [@m(&)=@&j�] = �E [m(&)@ lnh(&;�)=@&j�] ;

as long as the required expectations are de�ned and bounded.

Proof. If we di¤erentiate

k(�) =E [m(&)j�] =
Z b

a
m(&)h(&;�)d&

with respect to &, we get

0=

Z b

a

@m(&)

@&
h(&;�)d&+

Z b

a
m(&)

@h(&;�)

@&
d&=

Z b

a

@m(&)

@&
h(&;�)d&+

Z b

a
m(&)h(&;�)

@ lnh(&;�)

@&
d&;

as required. �

Proposition 1

For our purposes it is convenient to rewrite edt(�0) as

elt(�0) = �[&t(�0);�0]"
�
t (�0) = �(&t;�0)

p
&tut;

est(�0) = vec
�
�[&t(�0);�0]"

�
t (�0)"

�0
t (�0)� IN

	
= vec

�
�(&t;�0)&tutu

0
t � IN

�
;

where &t and ut are mutually independent for any standardised spherical distribution, with

E(ut) = 0, E(utu0t) = N�1IN , E(&t) = N and E(&2t ) = N(N +2)(�0+1). Importantly, we only
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need to compute unconditional moments because &t and ut are independent of zt and It�1 by

assumption. Then, it easy to see that

E[elt(�0)] = E[�(&t;�0)
p
&t] � E(ut) = 0;

and that

E[est(�0)] = vec
�
E [�(&t;�0)&t] � E(utu0t)� IN

	
= vec(IN ) fE [�(&t;�0)(&t=N)]� 1g :

In this context, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of &t as

h(&t;�) =
�N=2

�(N=2)
&
N=2�1
t exp[c(�) + g(&t;�)]; (A3)

whence

[�(&t;�0)(&t=N)� 1] = �
2

N
[1 + &t � @ lnh(&t;�)=@&] : (A4)

On this basis, we can use Lemma 1 to show that E(&t) = N <1 implies

E [&t � @ lnh(&t;�)=@&] = �E [1] = �1;

which in turn implies that

E [�(&t;�0)(&t=N)� 1] = 0 (A5)

in view of (A4). Consequently, E[est(�0)] = 0, as required.

Similarly, we can also show that

E[elt(�0)e
0
lt(�0)] = E

�
�2(&t;�0)&tutu

0
t

	
= IN � E[�2(&t;�0)(&t=N)];

E[elt(�0)e
0
st(�0)] = E

�
�(&t;�0)

p
&tutvec

0 ��(&t;�0)&tutu0t � IN�	 = 0
by virtue of (A1), and

E[est(�0)e
0
st(�0)] = E

�
vec

�
�(&t;�0)&tutu

0
t � IN

�
vec0

�
�(&t;�0)&tutu

0
t � IN

�	
= E [�(&t;�0)&t]

2 1

N(N + 2)
[(IN2 +KNN ) + vec (IN ) vec

0 (IN )]

�2E [�(&t;�0)(&t=N)] vec (IN ) vec0 (IN ) + vec (IN ) vec0 (IN )

=
N

(N + 2)
E [�(&t;�0)(&t=N)]

2 (IN2 +KNN )

+

�
N

(N + 2)
E [�(&t;�0)(&t=N)]

2 � 1
�
vec (IN ) vec

0 (IN )]

by virtue of (A2), (A4) and (A5).

Finally, it is clear from (3) that ert(�0) will be a function of &t but not of ut, which imme-

diately implies that E[elt(�0)e
0
rt(�0)] = 0, and that

E[est(�0)e
0
rt(�0)] = E

�
vec

�
�(&t;�0)&t � utu0t � IN

�
e0rt(�0)

	
= vec(IN )E

�
[�(&t;�0)(&t=N)� 1] e0rt(�0)

	
:
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To obtain the expected value of the Hessian, it is also convenient to write h��t(�0) in (8) as

�4Zst(�0)[IN 
 f�[&t(�0); �0]"�t (�0)"�0t (�0)� INg]Z0st(�0)

+[e0lt(�0;�0)�
�1=20
t (�)
 Ip]

@vec

@�0

�
@�0t(�)

@�

�
+
1

2
fe0st(�0;�0)[�

�1=2
t (�0)
��1=2t (�0)]
 Ipg

@vec

@�0

�
@vec0[�t(�)]

@�

�
�2Zlt(�0)[e0lt(�0;�0)
 IN ]Z

0
st(�0)� 2Zst(�0)[elt(�0;�0)
 IN ]Z

0
lt(�0)

��[&t(�0);�0]Zlt(�0)Z0lt(�0)�2Zst(�0)Z0st(�0)�
2@� [&t(�0);�0]

@&
fZlt(�0)"�t (�0)"�0t (�0)Z0lt(�0)

+Zlt(�0)"
�
t (�0)vec

0["�t (�0)"
�0
t (�0)]Z

0
st(�0) + Zst(�0)vec["

�
t (�0)"

�0
t (�0)]"

�
t (�0)Z

0
lt(�0)

+ Zst(�0)vec["
�
t (�0)"

�0
t (�0)]vec

0["�t (�0)"
�0
t (�0)]Z

0
st(�0)

	
:

Clearly, the �rst four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (A1). As for the remaining terms, we can write them as

��(&t;�0)Zlt(�0)Z0lt(�0)� 2@�(&t;�0)=@& � Zlt(�0)&tutu0tZ0lt(�0)

�2Zst(�0)Z0st(�0)� 2@�(&t;�0)=@& � &2tZst(�0)vec(utu0t)vec0(utu0t)Z0st(�0);

whose conditional expectation will be

�Zlt(�0)Z0lt(�0)E[�(&t;�0) + 2(&t=N) � @�(&t;�0)=@&j�0]� 2Zst(�0)Z0st(�0)

�Zst(�0)
2E[&2t � @�(&t;�0)=@&j�0]

N(N + 2)
[(IN2 
KNN ) + vec(IN )vec

0(IN )]Z
0
st(�0):

As for h��t(�0), it follows from (9) and (4) that we can write it as

fZlt(�0)"�t (�0) + Zst(�0)vec
�
"�t (�0)"

�0
t (�0)

�
g � @� [&t(�0);�0] =@�0

= [Zlt(�)ut
p
&t + Zst(�)vec(utu

0
t)&t] � @�(&t;�)=@�0;

whose conditional expected value will be Zst(�0)vec(IN )E[(&t=N) � @�(&t;�0)=@�0j�]. �

Proposition 2

The proof is based on a straightforward application of Proposition 1 in Bollerslev and

Wooldridge (1992) to the spherically symmetric case. Since s�t(�0;0) = Zdt(�0)edt(�0;0), and

edt(�0;0) is a vector martingale di¤erence sequence, then to obtain Bt(�0) we only need to

compute V [edt(�0;0)jzt; It�1;�0]. But since�
elt(�0;0)
est(�0;0)

�
=

�
"�t (�0)

vec ["�t (�0)"
�0
t (�0)� IN ]

�
=

� p
&tut

vec(&tutu
0
t � IN )

�
for any spherical distribution, with &t and ut both mutually and serially independent, then (15)

follows from (A1) and (A2). As for At(�0), we know that its formula, which is valid regardless

of the exact nature of the true conditional distribution, coincides with Bt(�0) when �0 = 0 by

the (conditional) information matrix equality. �
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Proposition 3

We can use the conditional analogue to the generalised information matrix equality (see e.g.

Newey and McFadden (1994)) to show that

E
�
s�t(�;0)

�
s0�t(�;%); s

0
%t(�;%)

��� zt; It�1;�;%	 = �E
��

@s�t(�;0)

@�0

���� @s�t(�;0)@%0

����� zt; It�1;�;%�
= �E f [h��t(�;0)j0]j zt; It�1;�;%g = [At(�)j0]

irrespective of the conditional distribution of "�t , where we have used the fact that s�t(�;0) does

not vary with % when regarded as the in�uence function for ~�T . Then, the required result follows

from the martingale di¤erence nature of both edt(�0;0) and et(�0;%0). �

Proposition 4

We can use standard arguments (see e.g. Newey and McFadden (1994)) to show that the

sequential ML estimator of � is asymptotically equivalent to a MM estimator based on the

linearised in�uence function

s�t(�0;�)� I 0��(�0)A�1(�0)s�t(�0;0):

Then, the expression for F(�0) follows from the de�nitions of B(�0), C(�0) and I��(�0) in

Propositions 1 and 2, together with the martingale di¤erence nature of edt(�0;0) and et(�0).�

Proposition 5

In this case, the linearised in�uence functions corresponding to ��T and ��T are

n�t(�0; �)�R0(�0)A�1(�0)s�t(�0; 0);

and

�n�t(�0; �)�Q0(�0)A�1(�0)s�t(�0; 0);

respectively, whence we can directly obtain the formulae for G(�0) and J (�0). Therefore, the

only remaining task is to obtain closed-form expressions for the required moments. In this

respect, we can use the law of iterated expectations to show that

cov[s�t(�0; 0); n�t(�0; �0)j�0] = Zd(�0) � E[edt(�0; 0) � n�t(�0; �0)j&t;�0]

= Ws(�0)E
h� &t
N
� 1

�
n�t(�0; �0)

����0i ;
and

cov[s�t(�0; �0); n�t(�0; �0)j�0] = Zd(�0) � E[edt(�0; �0) � n�t(�0; �0)j&t;�0]

=Ws(�0)E

��
N + �0

�0 � 2 + &t
&t
N
� 1

�
n�t(�0; �0)

�����0� :
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Then, we can use the properties of the beta distribution discussed before to show that

E

"�
&2t

N(N + 2)
� �0 � 2
�0 � 4

�2#
=

(�0 � 2)2
(�0 � 4)2

�
(N + 6)(N + 4)

N(N + 2)

(�0 � 2)(�0 � 4)
(�0 � 6)(�0 � 8)

� 1
�
;

E

�� &t
N
� 1
�� &2t

N(N + 2)
� �0 � 2
�0 � 4

��
=

4(�0 � 2)(N + �0 � 2)
N(�0 � 4)(�0 � 6)

;

and

E

��
N + �0

�0 � 2 + &t
&t
N
� 1
��

&2t
N(N + 2)

� �0 � 2
�0 � 4

��
=
4(�0 � 2)
N(�0 � 4)

:

On the other hand, since �n�t(�0; �0) is the residual from the least squares projection of

n�t(�0; �0) on &t=N � 1, we can obtain the relevant expressions for �n�t(�0; �0) from those of

n�t(�0; �0) by using the fact that

E

�� &t
N
� 1
�2�

=
2(N + �0 � 2)
N(�0 � 4)

and

E

��
N + �0

�0 � 2 + &t
&t
N
� 1
�� &t

N
� 1
��
=
2

N
:

�

Proposition 6

It trivially follows from (21) and (17) that

E
��
edt(�;%)�K (0)K+ (%) edt(�;0)

�
e0dt(�;0) jzt; It�1;�;%

	
= 0

for any distribution. In addition, we also know that

E
��
edt(�;%)�K (0)K+ (%) edt(�;0)

�
jzt; It�1;�;%

	
= 0:

Hence, the second summand of (22), which can be interpreted as Zd(�0) times the residual from

the theoretical regression of edt(�0) on a constant and edt(�0;0), belongs to the unrestricted

tangent set, which is the Hilbert space spanned by all the time-invariant functions of "�t with zero

conditional means and bounded second moments that are conditionally orthogonal to edt(�0;0).

Now, if we write (22) as

[Zdt(�)� Zd(�;%)] edt(�;%) + Zd(�;%)K (0)K+ (%) edt(�;0);

then we can use the law of iterated expectations to show that the semiparametric e¢ cient score

(22) evaluated at the true parameter values will be unconditionally orthogonal to the unrestricted

tangent set because so is edt(�0;0), and E [Zdt(�)� Zd(�;%)j�;%] = 0.
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Finally, the expression for the semiparametric e¢ ciency bound will be

E

�
fZdt(�)edt(�;%)� Zd(�;%) [edt(�;%)�K (0)K+ (%) edt(�;0)]g
�fedt(�;%)0Z0dt(�)� [e0dt(�;%)� e0dt(�; 0)K+ (%)K (0)]Z0d(�;%)g

�����;%�
= E

�
Zdt(�)edt(�;%)e

0
dt(�;%)Zdt(�)j�;%

�
�E

�
Zdt(�)edt(�;%)

�
e0dt(�;%)� e0dt(�;0)K+ (%)K (0)

�
Z0d(�;%)j�;%

	
�E

�
Zd(�;%)

�
edt(�;%)�K (0)K+ (%) edt(�;0)

�
edt(�)

0Z0dt(�)j�;%
	

+E
�
Zd(�;%)

�
edt(�;%)�K (0)K+ (%) edt(�; 0)

� �
e0dt(�;%)� e0dt(�; 0)K+ (%)K (0)

�
Z0d(�;%)j�;%

	
= I��(�;%)� Zd(�;%)

�
Mdd (%)�K (0)K+ (%)K (0)

�
Z0d(�;%)

by virtue of (21), (17) and the law of iterated expectations. �

Proposition 7

First of all, it is easy to show that for any spherical distribution

�edt(�0;0) = E

�
elt(�0;0)
est(�0;0)

���� &t(�0);�0� = E

�
"�t (�0)

vec ["�t (�0)"
�0
t (�0)� IN ]

���� &t(�0);�0�
= E

� p
&tut

vec(&tutu
0
t�IN )

���� &t� = � &tN � 1
�� 0

vec(IN )

�
; (A6)

and

�edt(�0) = E

�
elt(�0)
est(�0)

���� &t(�0);�0�
= E

�
�[&t(�0);�0] � "�t (�0)

vec [�[&t(�0);�0] � "�t (�0)"�0t (�0)� IN ]

���� &t(�0);�0�
= E

�
�(&t;�0)

p
&tut

vec[�(&t;�0)&tutu
0
t � IN ]

���� &t� = h�(&t;�0) &tN -1i
�

0
vec(IN )

�
; (A7)

where we have used again the fact that E(ut) = 0, E(utu0t) = N�1IN , and &t and ut are

stochastically independent.

In addition, we can use the law of iterated expectations to show that

E
�
�edt(�)e

0
dt(�;0)j�

�
= E

�
edt(�)�e

0
dt(�;0)j�

�
= E

�
�edt(�)�e

0
dt(�;0)j�

�
and

E
�
�edt(�;0)e

0
dt(�;0)j�

�
= E

�
edt(�;0)�e

0
dt(�; 0)j�

�
= E

�
�edt(�;0)�e

0
dt(�;0)j�

�
:

Hence, to compute these matrices we simply need to obtain the scalar moments

E
n� &t

N
� 1
� h
�(&t;�0)

&t
N
� 1
i����o

and

E

�� &t
N
� 1
�2������ :
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In this respect, we can use (16) to show that the latter is simply [(N + 2)�+ 2]=N , so that

E
�
�edt(�;0)e

0
dt(�;0)j�

�
=
(N + 2)�+ 2

N

�
0 0
0 vec(IN )vec

0(IN )

�
= �K (�) :

As for the former, we can use Lemma 1 to show that E(&2t ) = N(N + 2)(�+ 1) <1 implies

E
�
&2t � @ lnh(&t;�)=@&

���� = �E [2&tj�] = �2N:
If we then combine this result with (A4) and (A5), we will have that for any spherically symmetric

distribution

E
n� &t

N
� 1
� h
�(&t;�0)

&t
N
� 1
i����o = 2

N
;

so that

E
�
�edt(�)e

0
dt(�;0)j�

�
= �K (0) ;

which coincides with the value of E [�edt(�;0)e0dt(�;0)j�] under normality.

Therefore, it trivially follows from the expressions for �K (0) and �K (�0) above that

E
nh
�edt(�)� �K (0) �K+ (�)�edt(�;0)

i
e0dt(�;0) jzt; It�1;�

o
= E

nh
�edt(�)� �K (0) �K+ (�)�edt(�;0)

i
�e0dt(�;0) jzt; It�1;�

o
= 0

for any spherically symmetric distribution. In addition, we also know that

E
nh
�edt(�)� �K (0) �K+ (�)�edt(�;0)

i
jzt; It�1;�

o
= 0:

Thus, even though
h
�edt(�0)� �K (0) �K+ (�0)�edt(�0;0)

i
is the residual from the theoretical re-

gression of�edt(�) on a constant and�edt(�;0), it turns out that the second summand of (24)

belongs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant

functions of &t(�0) with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(�0;0).

Now, if write (24) as

Zdt(�)edt(�)� Zd(�)�edt(�) + Zd(�)�K (0) �K+ (�)�edt(�;0);

then we can use the law of iterated expectations to show that the elliptically symmetric semi-

parametric e¢ cient score is indeed unconditionally orthogonal to the restricted tangent set.
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Finally, the expression for the semiparametric e¢ ciency bound will be

E[�s�t(�)�s
0
�t(�)j�] = E

24 n
Zdt(�)edt(�)� Zd(�)

h
�edt(�)� �K (0) �K+ (�)�edt(�;0)

io
�
n
edt(�)

0Z0dt(�)�
h
�e0dt(�)��e0dt(�;0)�K+ (�) �K (0)

i
Z0d(�)

o �������
35

= E
�
Zdt(�)edt(�)e

0
dt(�)Zdt(�)j�

�
�E

n
Zdt(�)edt(�)

h
�e0dt(�)��e0dt(�;0)�K+ (�) �K (0)

i
Z0d(�)j�

o
�E

n
Zd(�)

h
�edt(�)� �K (0) �K+ (�)�edt(�;0)

i
edt(�)

0Z0d(�)j�
o

+E
n
Zd(�)

h
�edt(�)� �K (0) �K+ (�)�edt(�;0)

i h
�e0dt(�)��e0dt(�;0)�K+ (�) �K (0)

i
Z0d(�)j�

o
= I��(�0)�Ws(�0)W

0
s(�0) �

��
N + 2

N
mss(�)� 1

�
� 4

N [(N + 2)�+ 2]

�
by virtue of the law of iterated expectations. �

Proposition 8

The proof that I��(�0) is at least as large as P(�0) in the positive semide�nite matrix sense

follows trivially from the fact that the latter is the residual variance in the multivariate theoretical

regression of s�t(�0) on s�t(�0), while the former is the unconditional variance of s�t(�0). The

fact that the residual variance of a multivariate regression cannot increase as we increase the

number of regressors also explains why P(�0) is at least as large (in the positive semide�nite

matrix sense) as �S(�0), and why the latter is at least as large as S(�0), re�ecting the fact

that the relevant tangent sets become increasing larger. Finally, the positive semide�niteness

of S(�0)�A(�)B�1(�)A(�) follows from the fact that it coincides with the residual covariance

matrix in the theoretical regression of the semiparametric e¢ cient score on the Gaussian pseudo-

score since

E[fZdt(�)edt(�;%)� Zd(�;%)
�
edt(�;%)�K (0)K+ (%) edt(�;0)

�
ge0dt(�;0)Z0dt(�)j�] = A(�)

because e0dt(�;0) is conditionally orthogonal to [edt(�;%)�K (0)K+ (%) edt(�;0)] by construc-

tion. �

Proposition 9

The proof of the �rst part is trivial, except perhaps for the fact that msr(0) = 0, which

follows from Proposition 3 because est(�0;0) coincides with est(�0) under normality.

To prove the second part, note that I��(�) � �S(�) is Wd(�)W
0
d(�) times the residual

variance in the theoretical regression of �(&t;�0)&t=N�1 on (&t=N)�1, which given thatWd(�) 6=

0 can only be 0 if the regression residual is identically 0 for all t. The solution to the resulting

di¤erential equation is

g(&t;�) = �
N(N + 2)�

2[(N + 2)�+ 2]
ln &t �

1

[(N + 2)�+ 2]
&t + C;
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which in view of (A3) implies that

h(&t;�) /&
N

(N+2)�+2
�1

t exp

�
� 1

[(N + 2)�+ 2]
&t

�
;

i.e. the density of Gamma random variable with mean N and variance N [(N +2)�0+2]. In this

sense, it is worth recalling that � � �2=(N + 2) for all elliptical distributions, with the lower

limit corresponding to the uniform.

Finally, to prove the third part we use the fact that after some tedious algebraic manipula-

tions we can writeMdd (�)�K (0)K+ (�)K(0) as(
[mll(�)-1]IN 0

0
h
mss(�)- 1

�+1

i
(IN2+KNN )+

h
mss(�0)-1+

2�
(�+1)[(N+2)�+2]

i
vec(IN )vec

0(IN )

)
:

Therefore, given that Zl(�0) 6= 0, I��(�)� S(�) will be zero only if mll(�) = 1, which in turn

requires that the residual variance in the multivariate regression of �(&t;�0)"
�
t on "

�
t is zero for

all t, or equivalently, that �(&t;�0) = 1. But since the solution to this di¤erential equation is

g(&t;�) = �:5&t + C, then the result follows from (A3). �

Proposition 10

It is tedious but otherwise straightforward to prove that when �0 = 0

Zdt(�0) =

26664

�1=2
0 (1�

Ph
j=1 �j0) 0


�1=2
0 (yt�1 � �0; : : : ; yt�h � �0)0 0

0 1
2
�1
0

0 1
2("

�2
t�1 � 1; : : : ; "�2t�q � 1)0

37775 ;
so that

Zd(�0) =

26664

�1=2
0 (1�

Ph
j=1 �j0) 0

0 0

0 1
2
�1
0

0 0

37775 :
Proposition 1 then implies that the information matrix will have only four non-zero blocks along

its diagonal, which correspond to �, �, � and (;�). The same proposition also implies that

I��(�0) = mll(�0)
�1
0 (1�

hX
j=1

�j0)
2;

I��(�0) = mll(�0)
�1
0 �0;

where �0 is the h� h autocovariance matrix of (yt�1; : : : ; yt�h)0, and

E [I��t(�0)j�0] = [3mss(�0)� 1] � E
�
1

4
("�2t�1 � 1; : : : ; "�2t�q � 1)0("�2t�1 � 1; : : : ; "�2t�q � 1)

�
=

3mss(�0)� 1
4

� E[("�2t � 1)2j�0] � Iq =
[3mss(�0)� 1](3�0 + 2)

4
Iq;
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in view of the fact that "�t is serially independent when �0 = 0, and E("�2t � 1)2 = V ("�2t ) =

(3�0+2).

Given that Zd(�0) has a block-structure, the block-diagonality of �S(�0) and S(�0) follows

from expressions (25) and (23), respectively. Finally, we can use Proposition 1 in Demos and

Sentana (1998) to show that C(�0) is also block-diagonal, with C��(�0) = (1 �
Ph
j=1 �j0)

�2,

C��(�0) = ��10 , and C��(�0) = Iq, although note that there is a missing scalar term in front

of their expression for C(�0). �

Proposition 11

Using the results in appendix A.5 of Sentana and Fiorentini (2001), and appendices C and

D in Sentana (2004), it is tedious but otherwise straightforward to prove that when �0 = 0

Zdt(�0) =

8>>>>>>>>>>><>>>>>>>>>>>:

[IN � diag(�0)]�
�1=20
0 0

diag[yt�1 � �]��1=200 0

0 (c00�
�1=20
0 
��1=200 )

0 1
2E

0
N (�

�1=20
0 
��1=200 )

0 1
2

264 f2kt�1(�0) + !(�0)� 1
...

f2kt�q(�0) + !(�0)� 1

375 (c00��1=200 
 c00�
�1=20
0 )

9>>>>>>>>>>>=>>>>>>>>>>>;
where E0N is the unique matrix that transforms vec(A) in vecd(A) as vecd(A) = E0Nvec(A),

and � is shorthand for cc0 + �. As a result,

Zd(�0) =

2666664
[IN � diag(�0)]�

�1=20
0 0

0 0

0 (c00�
�1=20
0 
��1=200 )

0 1
2E

0
N (�

�1=20
0 
��1=200 )

0 0

3777775 ;

where we have used the fact that fkt(�0) = c00�
�1
0 "t and !t(�0) = 1 � c00��10 c0 = (1 +

c00�
�1
0 c0)

�1 = !(�0) 8t when �0 = 0 (see Sentana and Fiorentini (2001)), so that E[f2kt(�0) +

!(�0)� 1j�0] = E(c00�
�1
0 "t"

0
t�
�1
0 c0�c00�

�1
0 c0j�0) = 0.

Proposition 1 then implies that the information matrix will have only four non-zero blocks

along its diagonal, which correspond to �, �, � and (c;;�). The same proposition also implies

that

I��(�0) = mll(�0)[IN � diag(�0)]��10 [IN � diag(�0)];

I��(�0) = mll(�0)E[diag(yt � �0)��10 diag(yt � �0)j�0];
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and

E [I��t(�0)j�0]=
1

4
E

8><>:
0B@ f2kt�1(�0)+!(�0)�1

...
f2kt�q(�0)+!(�0)�1

1CA (c00��1=200 
c00�
�1=20
0 ) [mss(�0) (IN2+KNN )

+ [mss(�0)� 1]vec(IN )vec0(IN )
�
(�

�1=2
0 c0 
��1=20 c0)

0B@ f2kt�1(�0) + !(�0)� 1
...

f2kt�q(�0) + !(�0)� 1

1CA
09>=>;

=
3mss(�0)� 1

4
(c00�

�1
0 c0)

2Ef[f2kt(�0) + !(�0)� 1]2j�0gIq

in view of the fact that fkt is serially independent when �0 = 0. In this respect, we can show

that

Ef[f2kt(�0) + !(�0)� 1]2j�0g = E(c00�
�1
0 "t"

0
t�
�1
0 c0)

2 � (c00��10 c0)2

= E[vec(c00�
�1
0 "t"

0
t�
�1
0 c0)vec

0(c00�
�1
0 "t"

0
t�

�1
0 c0)j�0]� (c00�

�1
0 c0)

2

= (c00�
�1=20
0 
 c00�

�1=20
0 )E[vec("�t"

�0
t )vec

0("�t"
�0
t )j�0](�

�1=2
0 c0 
 ��1=20 c0)� (c00��10 c0)2

= (c00�
�1=20
0 
 c00�

�1=20
0 )(�0 + 1)[(IN2 +KNN ) + vec (IN ) vec

0 (IN )](�
�1=2
0 c0 
 ��1=20 c0)

�(c00��10 c0)2 = (3�0 + 2)(c00�
�1
0 c0)

2 = (3�0 + 2)(c
0
0�
�1
0 c0)

2(1 + c00�
�1
0 c0)

�2:

Given that Zd(�0) has a block-structure, the block-diagonality of �S(�0) and S(�0) follows

from expressions (25) and (23), respectively. Finally, it follows directly from Proposition 6 that

C(�0) will also be block-diagonal, with

A��(�0) = B��(�0) = C�1��(�0) = [IN � diag(�0)]��10 [IN � diag(�0)];

A��(�0) = B��(�0) = C�1�� (�0) = E[diag(yt � �0)��10 diag(yt � �0)j�0];

A��(�0) = :5(c00�
�1
0 c0)

2Ef[f2kt(�0) + !(�0)� 1]2j�0gIq;

B��(�0) = :25(3�0 + 2)(c
0
0�

�1
0 c0)

2Ef[f2kt(�0) + !(�0)� 1]2j�0gIq;

so that

C�1��(�0) =
(c00�

�1
0 c0)

2

3�0 + 2
Ef[f2kt(�0) + !(�0)� 1]2j�0gIq = (c00��10 c0)4 =

(c00�
�1
0 c0)

4

(1 + c00�
�1
0 c0)

4
:

�

Proposition 12

Given our assumptions on the mapping rs(:), we can directly work in terms of the # para-

meters. In this sense, since the conditional covariance matrix of yt is of the form #2�
�
t (#1), it
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is straightforward to show that

Zdt(#) =

(
#
�1=2
2 [@�0t(#1)=@#1]�

��1=20
t (#1)

0

1
2f@vec

0[��t (#1)]=@#1g[�
��1=20
t (#1)
���1=20t (#1)]

1
2#
�1
2 vec0(IN )

)
=

�
Z#1lt(#) Z#1st(#)

0 Z#2st(#)

�
: (A8)

Thus, the score vector for # will be�
s#1t(#;�)
s#2t(#;�)

�
=

�
Z#1lt(#)elt(#;�) + Z#1st(#)est(#;�)

Z#2st(#)est(#;�)

�
; (A9)

where elt(#;�) and est(#;�) are given in (5) and (6), respectively.

It is then easy to see that the unconditional covariance between s#1t(#;�) and s#2t(#;�) is

E

��
Z#1lt(#) Z#1st (#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2st(#)

�����#;��
=

f2mss(�) +N [mss(�)� 1]g
2#2

E

�
1

2

@vec0[��t (#1)]

@#1
[�

��1=20
t (#1)
���1=20t (#1)]

����#;�� vec(IN )
=

f2mss(�) +N [mss(�)� 1]g
2#2

Z#1s(#;�)vec(IN );

with Z#1s(#;�) = E[Z#1st(#)j#;�], where we have exploited the serial independence of "�t , as

well as the law of iterated expectations, together with the results in Proposition 1.

We can use the same arguments to show that the unconditional variance of s#2t(#;�) will

be given by

E

��
0 Z#2st(#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2st(#)

�����#;��
=

1

4#22
vec0(IN )[mss(�) (IN2 +KNN ) + [mss(�)� 1])vec(IN )vec0(IN )]vec(IN )

=
f2mss(�) +N [mss(�)� 1]gN

4#22
:

Hence, the residuals from the unconditional regression of s#1t(#;�) on s#2t(#;�) will be:

s#1j#2t(#;�) = Z#1lt(#)elt(#;�) + Z#1st(#)est(#;�)

� 4#22
f2mss(�)+N [mss(�)-1]gN

f2mss(�)+N [mss(�)-1]g
2#2

Z#1s(#)vec(IN )
1

2#2
vec0(IN )est(#;�)

= Z#1lt(#)elt(#;�) + [Z#1st(#)� Z#1s(#;�)]est(#;�):

The �rst term of s#1j#2t(#0;�0) is clearly conditionally orthogonal to any function of &t(#0).

In contrast, the second term is not conditionally orthogonal to functions of &t(#0), but since the

conditional covariance between any such function and est(#0;�0) will be time-invariant, it will be

unconditionally orthogonal by the law of iterated expectations. As a result, s#1j#2t(#0;�0) will

be unconditionally orthogonal to the elliptically symmetric tangent set, which in turn implies

that the elliptically symmetric semiparametric estimator of #1 will be #2-adaptive.
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To prove Part 1b, note that Proposition 7 and (A8) imply that the elliptically symmetric

semiparametric e¢ cient score corresponding to #2 will be given by

�s#2t(#) = �
1

2#2
vec0(IN )vec

�
�[&t(#);�]"

�
t (#)"

�0
t (#)� IN

	
� N

2#2

��
�[&t(#);�]

&t(#)

N
� 1
�
� 2

(N + 2)�+ 2

�
&t(#)

N
� 1
��

=
1

2#2
f�[&t(#);�]&t(#)�Ng �

N

2#2

��
�[&t(#);�]

&t(#)

N
� 1
�
� 2

(N + 2)�+ 2

�
&t(#)

N
� 1
��

=
N

#2[(N + 2)�+ 2]

�
&t(#)

N
� 1
�
:

But since the iterated elliptically symmetric semiparametric estimator of #must set to 0 the sam-

ple average of this modi�ed score, it must be the case that
PT
t=1 &t(

�#T ) =
PT
t=1 &

�
t (�#1T )=

�#2T =

NT , which is equivalent to (30).

To prove Part 1c note that

s#2t(#;0) =
1

2#2
[&t(#)�N ] (A10)

is proportional to elliptically symmetric semiparametric e¢ cient score �s#2t(#), which means

that the residual covariance matrix in the theoretical regression of this e¢ cient score on the

Gaussian score will have rank p� 1 at most. But this residual covariance matrix coincides with
�S (�)�A (�)B�1 (�)A (�) since

E[�s�t(�)s
0
�t(�;0)j�] = E[Zdt(�)edt(�)e

0
dt(�;0)Z

0
dt(�)j�] = A(�) (A11)

because the regression residualh
�(&t;�)

&t
N
� 1
i
� 2

(N + 2)�0 + 2

� &t
N
� 1
�

is conditionally orthogonal to edt(�0;0) by the law of iterated expectations, as shown in the

proof of proposition 7.

Tedious algebraic manipulations that exploit the block-triangularity of (A8) and the con-

stancy of Z#2st(#) show that the di¤erent information matrices will be block diagonal when

W#1s(�0) is 0. Then, part 2a follows from the fact that W#1s(�0) = �E f@dt(#0)=@#1j�0g

will trivially be 0 if (29) holds.

Finally, to prove Part 2b note that (A10) implies that the Gaussian PMLE will also satisfy

(30). But since the asymptotic covariance matrices in both cases will be block-diagonal between

#1 and #2 when (29) holds, the e¤ect of estimating #1 becomes irrelevant. �
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Proposition 13

We can directly work in terms of the  parameters thanks to our assumptions on the mapping

rg(:). Given the speci�cation for the conditional mean and variance in (32), and the fact that

"�t is assumed to be i:i:d: conditional on zt and It�1, it is tedious but otherwise straightforward

to show that the score vector will be24 s 1t( ;%)s 2t( ;%)
s 3t( ;%)

35 =
24 Z 1lt(#)elt( ;%) + Z 1st(#)est( ;%)Z 2st(#)est( ;%)

Z 3lt(#)elt( ;%)

35 ; (A12)

where

Z 1lt( )=
n
@��0t ( 1)=@ 1+@vec

0[�
�1=2
t ( 1)]=@ 1 �( 3 
 IN )

o
�
��1=20
t ( 1)	

�1=20
2 ;

Z 1st( )=@vec
0[�

�1=2
t ( 1)]=@ 1 � [	

1=2
2 
���1=20t ( 1)	

�1=20
2 ];

Z 2st( )=D
0
N (IN 
	

�1=20
2 )=Z 2s( );

Z 3lt( )=	
�1=20
2 =Z 3l( );

9>>>>=>>>>; (A13)

DN is the duplication matrix of order N (see Magnus and Neudecker (1988)),

elt( ;%) = �@ ln f ["
�
t ( );%]

@"�
;

est( ;%) = �vec
�
IN +

@ ln f ["�t ( );%]

@"�
"�0t ( )

�
;

"�t ( ) = 	
�1=2
2 �

��1=2
t ( 1)[yt � ��t ( 1)��

�1=2
t  3]; (A14)

and f("�;%) is the conditional density of "�t given zt, It�1 and the shape parameters %.

It is then easy to see that the unconditional covariance between s 1t( ;%) and the remaining

elements of the score will be given by�
Z 1l( ;%) Z 1s( ;%)

� � Mll(%) Mls(%)
M0

ls(%) Mss(%)

�"
0 Z0 3l( )

Z0 2s( ) 0

#
with Z 1l( ;%) = E[Z 1lt( )j ;%] and Z 1s( ;%) = E[Z 1st( )j ;%], where we have ex-

ploited the serial independence of "�t and the constancy of Z 2st( ) and Z 3lt( ), together with

the law of iterated expectations and the de�nition�
Mll(%) Mls(%)
M0

ls(%) Mss(%)

�
= V

�
elt( ;%)
est( ;%)

���� ;%� :
Similarly, the unconditional covariance matrix of s 2t( ;%) and s 3t( ;%) will be�

0 Z 2s( )
Z 3l( ) 0

� �
Mll(%) Mls(%)
M0

ls(%) Mss(%)

�"
0 Z0 3l( )

Z0 2s( ) 0

#
:

Hence, the residuals from the unconditional least squares projection of s 1t( ;%) on s 2t( ;%)

and s 3t( ;%) will be:

s 1j 2; 3t( ;%) = Z 1lt( )elt( ;%) + Z 1st(#)est( ;%)

�
�
Z 1l( ;%) Z 1s( ;%)

� � elt( ;%)
est( ;%)

�
= [Z 1lt( )� Z 1l( ;%)]elt( ;%) + [Z 1st( )� Z 1s( ;%)]est( ;%);
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because both Z 2s( ) and Z 3l( ) have full row rank when 	2 has full rank.

Although neither elt( ;%) nor est( ;%) will be conditionally orthogonal to arbitrary func-

tions of "�t , their conditional covariance with any such function will be time-invariant. Hence,

s 1j 2; 3t( ;%) will be unconditionally orthogonal to @ ln f ["
�
t ( );%]=@%i by virtue of the law

of iterated expectations, which in turn implies that the unrestricted semiparametric estimator

of  1 will be ( 2; 3)-adaptive.

To prove Part 1b note that the semiparametric e¢ cient scores corresponding to  2 and  3

will be given by�
0 Z 2s( )

Z 3l( ) 0

�
K (0)K+ (%0)

�
"�t ( )

vec["�t ( )"
�0
t ( )� IN ]

�
because Z 2st(#) = Z 2s(#) and Z 3lt(#) = Z 3l(#) 8t. But if (35) and (36) hold, then the

sample averages of elt[ 1; 2T ( 1); 3T ( 1);0] and est[ 1; 2T ( 1); 3T ( 1);0] will be 0, and

the same is true of the semiparametric e¢ cient score.

To prove Part 1c note that�
s 2t( ;0)
s 3t( ;0)

�
=

�
0 Z 2s( )

Z 3l( ) 0

� �
"�t ( )

vec["�t ( )"
�0
t ( )� IN ]

�
; (A15)

which implies that the residual covariance matrix in the theoretical regression of the semipara-

metric e¢ cient score on the Gaussian score will have rank p�N(N +3)=2 at most because both

Z 2s( ) and Z 3l( ) have full row rank when 	2 has full rank. But as we saw in the proof of

Proposition 8, that residual covariance matrix coincides with S(�0)�A(�)B�1(�)A(�).

Tedious algebraic manipulations that exploit the block structure of (A13) and the constancy

of Z 2st( ) and Z 3lt( ) show that the di¤erent information matrices will be block diagonal

when Z 1l( ;%) and Z 1s( ;%) are both 0. But those are precisely the necessary and su¢ cient

conditions for s 1t( ;%) to be equal to s 1j 2; 3t( ;%), which is also guaranteed by (34).

Finally, to prove Part 2b simply note that (A15) implies that the Gaussian PMLE will

also satisfy (35) and (36). But since the asymptotic covariance matrices in both cases will be

block-diagonal between  1 and ( 2; 3) when (34) holds, the e¤ect of estimating  1 becomes

irrelevant. �

Proposition 14

The proof of the �rst part trivially follows from Proposition 8 and the fact that the partitioned

inverse formula implies that

I��(�0) = I�1�� (�0) + I�1�� (�0)I 0��(�0)I��(�0)I��(�0)I�1�� (�0):

To prove that F(�0) � J (�0) it is convenient to note that both these matrices can also be

decomposed into a component that re�ects the asymptotic variance of these estimators if �0
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were known, plus a second component that re�ects the sample variability in the PML estimator

~�T . With respect to the �rst component, it is clear that I�1�� (�0) � L(�0)=N 2(�0). As for the

second component, we must compare

I 0��(�0)C(�0)I��(�0)=I2��(�0) =
�

2 (N + 2) �2

(� � 2) (N + �) (N + � + 2) I��(�0)

�2
W0

s(�0)C(�0)Ws(�0)

with

Q0(�0)C(�0)Q(�0)=N 2(�0) =

�
4(� � 2) (� � 4)
N�2 (� � 6)

�2
W0

s(�0)C(�0)Ws(�0):

The second expression will be larger than the �rst one if and only if

I��(�0)�
(N + 2)N�4 (� � 6)

2 (� � 2)2 (� � 4) (N + �) (N + � + 2)
� 0:

We can then show that this inequality will be true for N + 2 if it is true for N by using the

recursion  0(�=2) �  0(1 + �=2) = �4�2 (see Abramowitz and Stegun (1964)), which reduces

the problem to proving the inequality for N = 1 and N = 2. The proof for N = 2 immediately

follows from the same recursion. The proof for N = 1 is more tedious, as it involves the

asymptotic expressions for  0(:) in Abramowitz and Stegun (1964).

To prove the last statement, it is also convenient to decompose the asymptotic variance of

��T into two components, namely:

G(�0) = [E(�0)�D0(�0)B�1(�0)D(�0)]=N 2(�0)

+f[R(�0)�D0(�0)B�1(�0)A(�0)]0C(�0)[R(�0)�D0(�0)B�1(�0)A(�0)]g=N 2(�0)

In this set up, it is straightforward to prove that

[R(�0)�D0(�0)B�1(�0)A(�0)] = Q(�0)

if condition (37) holds. As for the �rst component, since L(�0) is the residual variance in the

regression ofm�t(�0; �0) on &t=N�1, while E(�0)�D0(�0)B�1(�0)D(�0) is the residual variance

in the regression of m�t(�0; �0) on s�t(�0; 0), and the Gaussian pseudo-score can be written as

Ws(�0)[&t=N � 1] plus an extra term that is orthogonal to &t, it is clear that

L(�0) � E(�0)�D0(�0)B�1(�0)D(�0);

with equality if and only if [&t=N�1] can be written as an exact linear combination of s�t(�0; 0),

as in (38). �
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Proposition 15

The consistency of the Gaussian PML derives from the fact that E[s�t(�0; 0)jzt; It�1;�0;%0] =

0. Thus, if the pseudo-true value of �, �1 say, is 0, then the student-t based pseudo-true values

of the conditional mean and variance parameters, �1 say, will coincide with their true values �0

by the law of iterated expectations. But since � is estimated subject to the inequality constraint

� � 0, the population KT conditions that de�ne �1 will be

E[s�t(�1; �1)j�0;%0] + ��1 = 0; �1 � 0; ��1 � 0; �1 � ��1 = 0;

where ��1 is the pseudo-true value of the KT multiplier, and the expectation is taken with

respect to the true unconditional distribution of the observations (see Calzolari, Fiorentini and

Sentana (2004)). Hence, �1 = 0 if and only if E[s�t(�0; 0)j�0;%0] � 0.

Given that &t(�0) = "�0t "
�
t , we can write

s�t(�0; 0) =
N(N + 2)

4
� N + 2

2
&t(�0)+

1

4
&2t (�0)

=
N(N + 2)

4

�
("�0t "

�
t )
2

N(N + 2)
� 1
�
+
N + 2

2
[("�0t "

�
t )�N ]:

But since we have normalised the innovations so that E("�t"
�0
t jzt; It�1;�0;%0) = IN , then

N = tr(IN ) = tr[E("�t"
�0
t jzt; It�1;�0;%0)] = E[tr("�t"

�0
t )jzt; It�1;�0;%0] = E("�0t "

�
t jzt; It�1;�0;%0)

by the linearity of the expectation and trace operators. Therefore, it immediately follows that

��1 = minf0;�E[s�t(�0; 0)j�0;%0]g = min
�
0;�N(N + 2)

4
�0

�
in view of the de�nition of �0. Therefore, �1 = 0 if and only if �0 � 0.

To prove the second and third parts, we can use Propositions 1 and 2 in Calzolari, Fiorentini

and Sentana (2004) if we regard the student t based estimator �̂T as the �inequality restricted�

PML estimator of �, and the Gaussian-based estimator ~�T = (~�T ; 0) as its �equality restricted�

counterpart, both of which share not only the pseudo-true values (�0; 0; ��1) when �0 � 0,

but also the modi�ed pseudo-score mt(�0; 0; ��1) = s�t(�0; 0) + ep+1 � ��1, where ep+1 is the

(p + 1)th column of Ip+1, as well as the expected value of the average Hessian H(�1;'0) =

E[�hT (�0)j�0;%0].

Speci�cally, Proposition 1 in Calzolari, Fiorentini and Sentana (2004) implies here that

��1 �
p
T �̂T = op(1);
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while their Proposition 2 implies that�
H��(�1;'0) H��(�1;'0)
H0��(�1;'0) H��(�1;'0)

�p
T

�
�̂T � �0
�̂T

�
+ep+1

p
T (�̂�T � ��1)

�
p
T �mT (�0; 0; ��1)= op(1);�

H��(�1;'0) H��(�1;'0)
H0��(�1;'0) H��(�1;'0)

�p
T

�
~�T � �0
0

�
+ep+1

p
T (~��T � ��1)

�
p
T �mT (�0; 0; ��1)= op(1);

where �̂�T and ~��T are the sample versions of the KT and Lagrange multipliers associated to

the constraint � = 0. As a consequence,�
H��(�1;'0) H��(�1;'0)
H0��(�1;'0) H��(�1;'0)

�p
T

�
�̂T � ~�T
�̂T

�
+ ep+1

p
T (�̂�T � ~��T ) = op(1):

Part 2 immediately follows from the fact that ��1 > 0 when �0 < 0. Similarly, the �rst

statement of Part 3 follows from the fact that ��1 = 0 when �0 = 0. As for the condition (39),

which derives directly from the expression for h��(�) in FSC evaluated at (�0; 0), its role is to

guarantee that H��(�1;'0) = 0. In this sense, it is worth mentioning that condition (39) will

be satis�ed for instance if "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 = 0 irrespective of whether

or not it is Gaussian because in that case

Ef[N + 2� &t(�0)]"�t (�0)jzt; It�1;�0;�0] = E[(N + 2� &t)
p
&tutj�0] = 0

by the serial and mutual independence of &t and ut, and the fact that E(ut) = 0, while

Ef[N + 2� &t(�0)]"�t (�0)"�0t (�0)jzt; It�1;�0g = E[(N + 2� &t)&tutu0tj�0]

= N�1E[(N + 2� &t)&tj�0]IN = 0

by the de�nition of �0 and the fact that E(utu0t) = N�1IN . �

Proposition 16

As in the proof of Proposition 12, we can directly work in terms of the # parameters thanks

to our assumptions on the mapping rs(:). Let us initially keep � �xed to some positive value.

The student t score vector for the remaining parameters will then be given by (A9). But since

"�t (#10; #2) =
p
1=#2�

��1=2
t (#10)[yt � �t(#10)] =

p
#20=#2"

�
t ;

so that

&t(#10; #21) = (#20=#2)&t;

we will have that

elt(#10; #2; �)=�[(#20=#2)&t; �]
p
#20=#2"

�
t=�[(#20=#2)&t; �]

p
#20=#2

p
&tut;

est(#10; #2; �)=vec
�
�[(#20=#2)&t; �](#20=#2)"

�
t"
�0
t �IN

�
=vec

�
�[(#20=#2)&t; �](#20=#2)&tutu

0
t�IN

�
:
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Then, it follows that E[elt(#10; #2; �)jzt; It�1;'0] = 0 regardless of #2 and � because of the

serial and mutual independence of &t and ut, and the fact that E(ut) = 0. On the other hand,

E[est(#10; #2; �)jzt; It�1;'0] = E f�[(#20=#2)&t; �](#20=#2)(&t=N)� 1j'0g vec(IN )

because of the serial and mutual independence of &t and ut, and the fact that E(utu0t) = N�1IN .

If we de�ne #21(�) as the value that solves the implicit equation

E [�f[#20=#2(�)]&t; �g[#20=#2(�)](&t=N)� 1j'0] = 0; (A16)

then it is straightforward to show that

Efs#t[#10; #21(�); �]jzt; It�1;'0g = 0: (A17)

Finally, if we choose �1 as the solution to the implicit equation

Efs�t[#10; #21(�); �]j'0g = 0; (A18)

then it is clear that #10; #21(�1) and �1 will be the pseudo-true values of the parameters.

To obtain the variance of the t-score under misspeci�cation, we can follow exactly the same

steps as in the proof of Proposition 1 by exploiting the fact that (A16), (A17) and (A18) hold

at the pseudo-true parameter values �1.

These three conditions also allow us to obtain the expected value of the Hessian along the

lines of Proposition 1.

As we mentioned in the proof of Proposition (12), we can tediously show that the condition

for block-diagonality of the expected value of the Hessian and the covariance matrix of the

score is E[W#1st(#10; #21)j'0] = 0. But this condition will be satis�ed if (29) holds because

W#1st(#10;#21) coincides withW#1st(#10; #20) in view of (A8). �

Proposition 17

As in the proof of Proposition 13, we can directly work in terms of the  parameters thanks

to our assumptions on the mapping rg(:). Let us initially keep � �xed to some positive value.

The student t score vector for the remaining parameters will then be given by (A12), where

the elements of Zt are de�ned in (A13), elt( ; �) and est( ; �) are analogous to (5) and (6),

respectively, and "�t ( ) is de�ned in (A14).

We can immediately see from (A14) that

"�t ( 10; 2; 3) = 	
�1
2 ( 30 � 3) +	

�1
2 	20"

�
t ;
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so that both this variable and &t( 10; 2; 3) = "�0t ( 10; 2; 3)"
�
t ( 10; 2; 3) will be i:i:d:

conditional on zt and It�1. Let  21(�) and  31(�) solve the implicit system of N+N(N+1)=2

equations

E

�
N� + 1

1� 2� + �&t[ 10; 21(�); 31(�)]
"�t [ 10; 21(�); 31(�)]

����'0� = 0;

vech

�
E

�
N� + 1

1� 2� + �&t[ 10; 21(�); 31(�)]
"�t [ 10; 21(�); 31(�)]

����'0�� = 0:

Then, it is follows that

Efs t[ 10; 21(�); 31(�)]jzt; It�1;'0g = 0;

where we have exploited the symmetry of the matrix

N� + 1

1� 2� + �&t[ 10; 21(�); 31(�)]
"�t [ 10; 21(�); 31(�) � "�0t [ 10; 21(�); 31(�)]]:

Finally, if we choose �1 as the solution to the implicit equation

Efs�t[ 10; 21(�); 31(�)]j'0g = 0;

then it is clear that  10,  21(�1),  31(�1) and �1 will be the pseudo-true values of the

parameters. �

Proposition 18

Let �1 denote the pseudo-true values of � corresponding to the student t-based log-likelihood

function, which can be implicitly characterised by the moment conditions

E[s�t(�1; �1)j'0] = 0;
E[s�t(�1; �1)j'0] = 0:

(A19)

The score version of the Hausman test can be regarded as an unconditional moment test of

E[s�t(�1; 0)j'0] = 0; (A20)

which will hold if the conditional distribution of "�t is i:i:d: t(0; I; �0) because �1 = �0 in that

case. If we knew �1, it would be straightforward to test whether (A20) holds. But since we do

not know �1, we replace it by its consistent estimator �̂T , where �̂T and �̂T satisfy the sample

analogues of (A19). In order to account for the sampling variability that this introduces, we can

compute the limiting unconditional least squares regression of
p
T�s�T (�1; 0) on

p
T�s�T (�1; �1)

and
p
T �s�T (�1; �1), and retain the residuals. But since s�t(�0; 0), s�t(�0; �0) and s�t(�0; �0)

are martingale di¤erence sequences under the null, we can simply regress the �rst on the last
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two. To do so, we need their joint asymptotic distribution, which in view of Propositions 1, 2

and 3 will be given by

p
T

24 �s�T (�0; 0)
�s�T (�0; �0)
�s�T (�0; �0)

35 d! N

8<:
0@ 0
0
0

1A ;

24 B(�0) A(�0) 0
A(�0) I��(�0) I��(�0)
00 I 0��(�0) I��(�0)

359=; :

Hence, we can use standard arguments to show that

p
T�s�T (�̂T ; 0)

d! N [0;B(�0)�A(�0)I��(�0)A(�0)]

and
p
T

�
~�T � �0
�̂T � �0

�
d! N

��
0
0

�
;

�
C(�0) �I��(�0)

�I��(�0) I��(�0)

��
;

whence we can easily prove that

p
T�s�T (�̂T ; 0)�A(�0)

p
T (~�T � �̂T ) = op(1);

p
T (~�T � �̂T )! N

h
0; C(�0)� I��(�0)

i
;

as well as the asymptotic chi-square distribution of HW
�T . �

Proposition 19

The proof proceeds along the same lines of the previous one once we show that

E[�s�t(�)s
0
�t(�;0)j�] = �@E[s�t(�;0)j�]=@� (A21)

and

E[�s�t(�)�s
0
�t(�)j�] = �@E[�s�t(�)j�]=@�: (A22)

Condition (A21) follows immediately from (A11) and the generalised information matrix equal-

ity. As for (A22), we can use the same equality together with some of the arguments in the

proof of Proposition 7 to show that

�@E[�s�t(�0)j�0]
@�

= E[�s�t(�0)s
0
�t(�0)j�] = E[Zdt(�0)edt(�0)e

0
dt(�0)Z

0
dt(�0)j�0]

�E
�
Ws(�0)

�h
�(&t;�0)

&t
N
� 1
i
� 2

(N + 2)�0 + 2

� &t
N
� 1
��
e0dt(�0)Z

0
dt(�0)

�����0�
= I��(�0)�Ws(�0)E

��n
�(&t;�0)

&t
N
� 1
o
� 2

(N + 2)�0 + 2

� &t
N
� 1
��
e0dt(�0)

�����0�Zd(�0)
= I��(�0)-Ws(�0)E

��h
�(&t;�0)

&t
N
-1
i
-

2

(N + 2)�0 + 2

� &t
N
-1
��h

�(&t;�0)
&t
N
-1
i�����0�W0

s(�0)

= I��(�0)�Ws(�0)W
0
s(�0) �

��
N + 2

N
mss(�0)� 1

�
� 4

N [(N + 2)�0 + 2]

�
= �S(�0):

�
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B Computational issues

B.1 Elliptically symmetric e¢ cient score and semiparametric e¢ ciency bound

If we combine model (27) with the conditional variance speci�cation in (40), then � =

(�0;�0; c0; 0; �; �)0 after normalising the unconditional variance parameter � to 1.

The Jacobian matrices of �t(�) and �t(�) are:

@�t(�)

@�0
= [IN � diag(�)]

@�

@�0
+ diag(yt�1 � �)

@�

@�0

and

@vec [�t(�)]

@�0
= (IN2 +KNN )[�t(�)c
 IN ]

@c

@�0
+EN

@

@�0
+ (c
 c)@�t(�)

@�0
;

respectively, where E0N = (e1e
0
1j : : : jeNe0N ), with (e1j : : : jeN ) = IN , is the unique N2 � N

�diagonalisation� matrix that transforms vec(A) into vecd(A) as vecd(A) = E0Nvec(A) (see

Magnus (1988)).

After some straightforward algebraic manipulations, (2)-(6) lead to:

s�t(�) =

0BBBBBBB@

[IN � diag(�)]��1t (�)"t(�)�[&t(�);�]
diag(yt�1 � �)��1t (�)"t(�)�[&t(�);�]

��1t (�)"t(�)"
0
t(�)�

�1
t (�)c�t(�)�[&t(�);�]���1t (�)c�t(�)

1
2vecd

h
��1t (�)"t(�)"

0
t(�)�

�1
t (�)�[&t(�);�]��

�1
t (�)

i
0
0

1CCCCCCCA
+
1

2

@�0t(�)

@�

h
c0��1t (�)"t(�)"

0
t(�)�

�1
t (�)c�[&t(�);�]� c

0��1t (�)c
i
;

@�t(�)

@�
= �

�
2fkt�1(�)

@fkt�1(�)

@�
+
@!t�1(�)

@�

�
+ �

@�t�1(�)

@�

+[f2kt�1(�) + !t�1(�)� 1]
@�

@�
+ [�t�1(�)� 1]

@�

@�
:

Finally, if we take as initial conditions �1(�) = � and �1(�) = 1, then @�1(�)=@�
0 = @�=@�0

and @�1(�)=@�0 = 0.

If  > 0, we can use the Woodbury formula to prove that

fkt(�) = !t(�)c
0��1"t(�);

!t(�) = [��1t (�) + c
0��1c]�1;

&t(�) = "0t(�)�
�1"t(�)� f2kt(�)=!t(�);

��1t (�) = ��1 � !t(�)��1cc0��1;
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��1t (�)c = �
�1c!t(�)=�t(�);

c0��1t (�)c = c�
�1c!t(�)=�t(�)

��1t (�)"t(�)"
0
t(�)�

�1
t (�)c�t(�)�[&t(�);�]���1t (�)c�t(�)=�

�1[vt(�)fkt(�)�[&t(�);�]�c!t(�)];

��1t (�)"t(�)"
0
t(�)�

�1
t (�)�[&t(�);�]���1t (�) = �

�1[vt(�)v
0
t(�)�[&t(�);�] + !kt(�)cc

0 � �]��1

and

c0��1t (�)"t(�)"
0
t(�)�

�1
t (�)c�[&t(�);�]� c0��1t (�)c =

f2kt(�)

�2t (�)
�[&t(�);�]�

!t(�)

�t(�)
c0��1c;

where vt(�) = "t(�)� cfkt(�), which greatly simpli�es the computations (see Sentana (2000)).

Speci�cally,

s�t(�) =

0BBBBBBB@

[IN � diag(�)]��1vt(�)�[&t(�);�]
diag(yt�1 � �)��1vt(�)�[&t(�);�]
��1[vt(�)fkt(�)�[&t(�);�]� c!t(�)]

1
2vecd

n
��1[vt(�)v

0
t(�)�[&t(�);�] + !t(�)cc

0 � �]��1
o

0
0

1CCCCCCCA
+
1

2

@�0t(�)

@�

�
f2kt(�)�[&t(�);�]

�2t (�)
� !t(�)c

0��1c

�t(�)

�
:

The last two items that we require for the score are

@fkt(�)

@�
= c0��1"t(�)

@!t(�)

@�
+
@c0

@�
��1"t(�)!t(�)

�@
0

@�
E0N [�

�1"t(�)
 !t(�)��1c]�
@�0t(�)

@�
c0��1!t(�)

and
@!t(�)

@�
= �2!2t (�)

@c0

@�
��1c+ !t(�)

@ 0

@�
E0N (�

�1c
 ��1c) + !2t (�)

�2t (�)

@�t(�)

@�
:

To compute the elliptically symmetric semiparametric bound we need expressions for

@�0t(�)

@�
��1t (�)

@�t(�)

@�0
;

@vec0 [�t(�)]

@�
[��1t (�)
�

�1
t (�)]

@vec [�t(�)]

@�0
;

and
@vec0 [�t(�)]

@�
vec[��1t (�)]vec

0[��1t (�)]
@vec [�t(�)]

@�0
:

The �rst term will be given by

@�0t(�)

@�
��1t (�)

@�t(�)

@�0
=
@�0

@�
[IN � diag(�)]��1t (�)[IN � diag(�)]

@�

@�0

+
@�0

@�
diag(yt�1 � �)��1t (�)diag(yt�1 � �)

@�

@�0

+
@�0

@�
diag(yt�1 � �)��1t (�)[IN � diag(�)]

@�

@�0
+
@�0

@�
[IN � diag(�)]��1t (�)diag(yt�1 � �)

@�

@�0
;
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which e¤ectively has four non-zero blocks only, two of which are equal by symmetry.

The second term is also straightforward. Speci�cally:

@vec0 [�t(�)]

@�
[��1t (�)
�

�1
t (�)]

@vec [�t(�)]

@�0

=
@c0

@�
[�t(�)c

0 
 IN ](IN2 +KNN )[�
�1
t (�)
�

�1
t (�)](IN2 +KNN )[�t(�)c
 IN ]

@c

@�0

+
@ 0

@�
E0N [�

�1
t (�)
�

�1
t (�)]EN

@

@�0
+
@�t(�)

@�
(c0 
 c0)[��1t (�)
�

�1
t (�)](c
 c)

@�t(�)

@�0

+
@c0

@�
[�t(�)c

0 
 IN ](IN2 +KNN )[�
�1
t (�)
�

�1
t (�)]EN

@

@�0

+
@ 0

@�
E0N [�

�1
t (�)
�

�1
t (�)](IN2 +KNN )[�t(�)c
 IN ]

@c

@�0

+
@c0

@�
[�t(�)c

0 
 IN ](IN2 +KNN )[�
�1
t (�)
�

�1
t (�)](c
 c)

@�t(�)

@�0

+
@�t(�)

@�
(c0 
 c0)[��1t (�)
�

�1
t (�)](IN2 +KNN )[�t(�)c
 IN ]

@c

@�0

+
@ 0

@�
E0N [�

�1
t (�)
�

�1
t (�)](c
 c)

@�t(�)

@�0
+
@�t(�)

@�
(c0 
 c0)[��1t (�)
�

�1
t (�)]EN

@

@�0

= 2�2t (�)
@c0

@�
f[c0��1t (�)c ���1t (�) +��1t (�)cc0��1t (�)]

@c

@�0

+
@ 0

@�
[��1t (�)���1t (�)]

@

@�0
+ [c0��1t (�)c]

2@�t(�)

@�

@�t(�)

@�0

+2�t(�)
@c0

@�
[c0��1t (�)
��1t (�)]EN

@

@�0
+ 2�t(�)

@ 0

@�
E0N [�

�1
t (�)c
��1t (�)]

@c

@�0

+2�t(�)[c
0��1t (�)c]

@c0

@�
��1t (�)c

@�t(�)

@�0
+ 2�t(�)[c

0��1t (�)c]
@�t(�)

@�
c0��1t (�)

@c

@�0

+
@ 0

@�
[��1t (�)c���1t (�)c]

@�t(�)

@�0
+
@�t(�)

@�
[c0��1t (�)� c0��1t (�)]

@

@�0
;

where � denotes Hadamard products.

But if we assume that  > 0, we can use again the Woodbury formula to considerably

simplify the previous expressions. The only slightly complex term left is

[c0��1t (�)
��1t (�)]EN

But if we exploit the explicit shape of EN , then we can show that the (i,j)th element of this

matrix takes the following form

!t(�)

�t(�)

bj
j

�
I(i = j)

i
� bibj
ij

!t(�)

�
;

where I(:) is the usual indicator function.

Finally,

Wst(�) =
1

2

@vec0 [�t(�)]

@�
vec[��1t (�)] =

1

2

@c0

@�
[�t(�)c

0 
 IN ](IN2 +KNN )vec[�
�1
t (�)]

+
1

2

@ 0

@�
E0Nvec[�

�1
t (�)]+

1

2

@�t(�)

@�
(c0 
 c0)vec[��1t (�)]

= 2�t(�)
@c0

@�
vec[��1t (�)c] +

1

2

@ 0

@�
ved[��1t (�)]+

1

2

@�t(�)

@�
c0��1t (�)c;

55



whose computation can also be greatly simpli�ed by using the Woodbury formula.

To estimate �[&t(�);�] non-parametrically, we can exploit expression (A4) to write

�2@g[&t(�);�]
@&

= �2@ lnh[&t(�);�]
@&

+
N � 2
2

1

&t(�)
:

Then, we can compute h[&t(�);�] either directly by using a kernel for positive random vari-

ables (see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting

the Box-Cox-type transformation v = &k (see Hodgson, Linton and Vorkink (2002)). In the

second case, the usual change of variable formula yields

p(v;�) =
�N=2

k�(N=2)
v�1+N=2k exp[c(�) + g(v1=k;�)];

whence

g(v1=k;�) = ln p(v;�) +

�
1� N

2k

�
ln v � N

2
ln 2� + ln k � ln �(N=2)� c(�)

and
@g(v1=k;�)

@v1=k
= k

@ ln f(v;�)

@v
v1�1=k +

k �N=2
v1=k

:

We use the second procedure in our Monte Carlo simulations because the distribution of

&t(�) becomes more normal-like as N increases, which reduces the advantages of using kernels

for positive variables. Still, we use a cubic root transformation to improve the approximation,

with a common bandwidth parameter for both the density and its �rst derivative.

The last thing we need is to estimate mll(�) and mss(�). In our experience, the sample

analogue of the OOS expression for mll(�) in Proposition 16 based on the nonparametric esti-

mators of �[&t(�);�] tends to overestimate mll(�) even in fairly large samples because �[&t(�);�]

is imprecisely estimated when &t is either very small or very large. For that reason, we have

considered an alternative estimator based on the following equivalent expression:

mll(�) = cov
n
�[&t(�);�]; �[&t(�);�]

&t
N

����o+ (N � 2)E[&�1(�)j�];

where we have exploited (A5), as well as Lemma 1 applied to m(1) = 1, which yields

E[�(&t;�)] = �(N � 2)E[&�1j�]; (B23)

as long as E[&�1j�] is bounded, which in the Gaussian case, for instance, requires N � 3.

Importantly, note that (B23) does not depend at all on the semiparametric estimator. Still, its

sample analogue typically underestimates mll(�), for which reason in the end we average the

two estimators.

As for mss(�), our experience is that the sample analogue of the OOS expression for mss(�)

in Proposition 16 tends to underestimate it. For that reason, we divide it by the square of the
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sample mean of �[&t(�);�]&t=N , which converges in probability to 1 asymptotically in view of

(A5).

In order to make sure that �S(�0)� S(�0) is positive semide�nite, we also impose the theo-

retical restrictions mll(�0) � 1 and

V

��
�(&t;�)&t

N
�1
�
� 2

(N + 2)�0 + 2

� &t
N
� 1
��
=

�
N + 2

N
mss(�0)�1

�
� 4

N [(N + 2)�0 + 2]
�0;

after replacing �0 by its sample analogue. These restrictions also guarantee that our estimates

of C(�0) � �S�1(�0) will be positive semide�nite too as long as we evaluate these matrices at

the same parameter values using the analytical expressions in Propositions 2 and 7. Finally, we

deal with the fact that rank[C(�0)� �S�1(�0)] � p� 1 in view of Proposition 12.1.c by setting

to 0 those eigenvalues that are smaller than 10�7=T in computing the Moore-Penrose inverse of

the di¤erence between those matrices.

B.2 The semiparametric e¢ cient score

As pointed out by Mencía and Sentana (2005), the �rst thing to note regarding a non-

elliptical distribution function for the innovations is that the choice of �1=2t (�) a¤ects the value

of the log-likelihood function and its score. In what follows, we shall use the standard (i.e.

lower triangular) Cholesky decomposition of �t(�) because it is much faster to compute than

its symmetric square root matrix, which requires the spectral decomposition of �t(�) for each

t. As a result, we will have that

dvec(�t) = [(�
1=2
t 
 IN ) + (IN 
�1=2t )KNN ]dvec(�

1=2
t ):

Unfortunately, this transformation is singular, which means that we must �nd an analogous

transformation between the corresponding dvech0s. In this sense, we can write the previous

expression as

dvech(�t) = [LN (�
1=2
t 
 IN )L0N + LN (IN 
�

1=2
t )KNNL

0
N ]dvech(�

1=2
t );

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as �1=2t has full rank, which means that we can readily obtain the Jacobian matrix of vech(�1=2t )

from the Jacobian matrix of vech(�t).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(�t) = [D
+
N (�

1=2
t 
 IN )DN +D

+
N (IN 
�

1=2
t )DN ]dvech(�

1=2
t );

where DN is the duplication matrix and D+
N = (D

0
NDN )

�1D0
N its Moore-Penrose inverse (see

Magnus and Neudecker, 1988).
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From a numerical point of view, the calculation of both LN (�
1=2
t 
 IN )L0N and LN (IN 


�
1=2
t )KNNL

0
N is straightforward. Speci�cally, given that LNvec(A) = vech(A) for any square

matrixA, the e¤ect of premultiplying by the 12N(N+1)�N
2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A0),

the e¤ect of postmultiplying by KNNL
0
N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (�
1=2
t 
 IN )L0N + LN (IN 
�

1=2
t )KNNL

0
N ,

which will be upper triangular. The fastest way to compute

@vec0[�
1=2
t (�)]

@�
[IN 
��1=2t (�)] =

1

2

@vech0 [�t(�)]

@�
FtLN (IN 
��1=2t )

is as follows:

1. From the expression for @vec0 [�t(�)] =@� we can readily obtain @vech0 [�t(�)] =@� by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft

3. Next, we construct the matrix

LN (IN 
�1=2t ) = LN

0BBBB@
�
�1=2
t 0 � � � 0

0 �
�1=2
t � � � 0

...
...

. . .
...

0 0 � � � �
�1=2
t

1CCCCA
by eliminating the �rst row from the second block, the �rst two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by @vech0 [�t(�)] =@� � Ft.

The last task that we must perform is the computation of K(0)K+(%)edt(�;0). The two

main problems here are the singular nature of K(%), and its positive semide�niteness. The �rst

problem is easy to solve because

K(0)K+(%)edt(�;0) = K. (0)K. �1(%)e.dt(�;0);

where

K. (0) =
�
IN 0
0 2D+0

N

�
; K. (�) =

�
IN �0

� �

�
; e.dt(�;0) =

�
"�t (�)

vech ["�t (�)"
�0
t (�)� IN ]

�
;

� = Efvech["�t (�)"�0t (�)� IN ] � "
�0
t (�)j�;%g

and

� = Efvech["�t (�)"�0t (�)� IN ] � vech
0["�t (�)"

�0
t (�)� IN ]j�;%g:

As for the second problem, there are two alternative solutions:

58



1. Re-centre and orthogonalise "�t (�) as "
��
t (�) = �P

�1=2
T ["�t (�)� �pT ], where �pT is the sample

mean of "�t (�) and �PT its sample covariance. In this way, the sample covariance matrix of

the vector f"��0t (�); vech0["��t (�)"��0t (�)]g will have exactly the same structure as K. (%).

2. Replace K. (%) by either the sample covariance matrix or the second moment matrix of the

vector e.dt(�;0).

The advantage of the �rst procedure is that we can exploit the fact that the sample covariance

matrix of "��t (�) will be the identity matrix in using the partitioned inverse formula for K. (%).

On the other hand, the advantage of the second procedure is that there is no need to standardise

again the standardised innovations "�t (�), which in our experience makes it more attractive.

It is also worth mentioning that the most convenient way to compute K. (0)K.
�1(%)e.dt(�;0) is

by �rst computing K.
�1(%)e.dt(�;0), and then exploiting the shape of K. (0) as follows: (a) copy

the �rst N elements of K.
�1(%)e.dt(�;0); and (b) duplicate the remaining

1
2N(N+1) elements, but

doubling the ones in the following positions: N+1, 2N+1, 3N, 4N-1, 5N-2,. . . ,N+N2. Intuitively,

in doing so we are simply using the fact that 2D+0
N vech(AL) = vec(AL + A

0
L) for any lower

triangular matrix AL.

Finally, we use a multivariate spherical Gaussian kernel to compute the density of "�t (�) and

its derivatives with a common bandwidth parameter.
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Table 1

Size properties of Hausman tests in �nite samples

Parametric

student t8
Nominal �� �
size (%) Wald LM Wald LM

1 1.68 1.77 2.35 1.33
5 6.28 6.67 6.69 5.23
10 11.2 11.7 11.1 10.2

Semiparametric

student t8
Nominal �� �
size (%) Wald LM Wald LM

1 2.68 4.75 36.1 23.1
5 8.95 11.4 52.5 36.9
10 15.2 17.5 61.9 45.7

normal-gamma
Nominal �� �
size (%) Wald LM Wald LM

1 1.13 2.53 66.0 48.4
5 5.40 7.03 80.9 66.1
10 10.5 12.2 87.0 74.5
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Table 2

Size-adjusted power properties of Hausman tests in �nite samples

Parametric

normal-gamma
Actual �� �
size (%) Wald LM Wald LM

1 3.40 3.04 99.9 99.9
5 11.1 10.1 100. 100.
10 18.5 16.8 100. 100.

asymmetric t
Actual �� �
size (%) Wald LM Wald LM

1 100. 100. 52.5 55.0
5 100. 100. 78.7 76.5
10 100. 100. 87.9 84.6

t with time-varying df
Actual �� �
size (%) Wald LM Wald LM

1 1.03 1.09 0.59 0.65
5 4.90 5.08 4.10 4.25
10 10.3 10.3 9.55 9.83

Semiparametric

asymmetric t
Actual �� �
size (%) Wald LM Wald LM

1 100. 50.8 99.9 0.37
5 100. 100. 100. 99.8
10 100. 100. 100. 99.9

t with time-varying df
Actual �� �
size (%) Wald LM Wald LM

1 0.94 0.85 0.98 0.63
5 5.06 5.10 5.07 4.56
10 10.2 9.71 9.37 9.19
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Figure 1A: Monte Carlo distributions of estimators of unconditional mean

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1B: Monte Carlo distributions of estimators of autoregressive coefficient

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1C: Monte Carlo distributions of estimators of normalised factor loadings

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1D: Monte Carlo distributions of estimators of idyosincratic variances

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1E: Monte Carlo distributions of estimators of ARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1F: Monte Carlo distributions of estimators of GARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1G: Monte Carlo distributions of estimators of re−scaled idyosincratic variances

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1H: Monte Carlo distributions of estimators of re−scaled ARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 2: Monte Carlo distributions of estimators of shape parameter

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
In the Normal case the numbers on the left are the fraction of replications in which η is estimated as 0. Estimators
are centred around their (SML pseudo−) true value η*. SMM means sequential method of moments estimator, SML
sequential ML Student t−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator.
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