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A NONPARAMETRIC TEST FOR SERIAL

INDEPENDENCE OF REGRESSION ERRORS

Miguel A. Delgado and Juan Mora

A B S T R A C T

A test for serial independence of regression errors is proposed that is consistent

in the direction of serial dependence alternatives of …rst order. The test statistic is

a function of a Hoe¤ding-Blum-Kiefer-Rosenblatt type of empirical process, based

on residuals. The resultant statistic converges, surprisingly, to the same limiting

distribution as the corresponding statistic based on true errors.

KEYWORDS: Empirical process based on residuals; Hoe¤ding-Blum-Kiefer-

Rosenblatt statistic; Serial independence test.
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1. PRELIMINARIES AND STATEMENT OF THE PROBLEM

Consider a strictly stationary discrete time process fUi; i ¸ 1g : Let F (¢) be the
distribution function of (Ui; Ui+1)0 and F1(¢) the marginal distribution function of

Ui: De…ne S(u) = F (u)¡F1(u1)F1(u2), for u = (u1; u2)0 2 R2. Given observations

fUign+1i=1 ; Skaug & Tjøstheim (1993), Delgado (1996) and Hong (1998), among

others, have proposed to test

H0 : fUi; i ¸ 1g are independently distributed,

H1 : S (u) 6= 0; for some u 2 R2,

using statistics which are functionals of n1=2Sn(¢); where Sn(¢) is the Hoe¤ding-
Blum-Kiefer-Rosenblatt process (Delgado, 1999), de…ned by

Sn(u) = Fn(u)¡ Fn1(u1)Fn1(u2);

where Fn(u) = n¡1
Pn

i=1 1(Ui · u1)1(Ui+1 · u2), 1(¢) is the indicator function
and F1n(¢) is the univariate empirical distribution function based on fUign+1i=1 . A

popular test statistic for H0 which is based on n1=2Sn(¢) is the Cramér-von Mises

statistic

Cn = n
¡1

nX
i=1

fn1=2Sn(Ui; Ui+1)g2:

Hoe¤ding (1948) and Blum, Kiefer & Rosenblatt (1961) proposed this type of

statistic for testing independence between two samples, and tabulated its limiting

distribution under the null hypothesis. Skaug & Tjøstheim (1993) showed that,

if F (¢) is continuous, Cn and the statistic of Blum et al. (1961) have the same

limiting distribution. Delgado (1996) showed that this is not the case when higher-

order dependence alternatives are considered. Other functionals of n1=2Sn(¢) could
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be used, e.g. based on the supremum distance, as in the case of Kolmogorov-

Smirnov statistics.

Suppose now that fUi; i ¸ 1g are unobservable errors in the linear regression

model Yi = X 0
i¯0 + Ui, where Xi are …xed regressors and ¯0 is a k-dimensional

vector of unknown parameters. In this case, we propose to test H0 as before,

replacing the unobservable errors Ui by residuals Ûni = Yi ¡X 0
i
^̄
n; where ^̄n is a

suitable estimate of ¯0: Thus, S(u) is estimated by

Ŝn(u) = F̂n(u)¡ F̂n1(u1)F̂n1(u2);

where F̂n(¢) and F̂n1(¢) are de…ned as Fn(¢) and Fn1(¢), but replacing Ui by Ûni.

Functionals of n1=2Ŝn(¢) can be used as test statistics, e.g. the Cramér-von Mises

statistic

Ĉn = n
¡1

nX
i=1

fn1=2Ŝn(Ûni; Ûn;i+1)g2:

In view of the existing results on empirical processes depending on parameter

estimates, see e.g. Durbin (1973) for a discussion of this problem in the context

of goodness-of-…t tests, we would expect a di¤erent asymptotic behaviour for

n1=2Sn(¢) and n1=2Ŝn(¢): Surprisingly, we prove in § 2 that n1=2Sn(¢) and n1=2Ŝn(¢)
have the same limiting distribution, and hence Ĉn can be used to test H0 in the

same way as Cn: The results of a Monte Carlo experiment are reported in § 3.

Proofs are con…ned to an Appendix.
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2. ASYMPTOTIC PROPERTIES

The following assumptions must hold under both H0 and H1:

Assumption 1: Yi = X 0
i¯0 + Ui; and fUi; i ¸ 1g is a strictly stationary discrete

time process.

Assumption 2:
Pn

i=1XiX
0
i is a non-random and non-singular matrix such that

max
1·i·n

X 0
i(

nX
i=1

XiX
0
i)
¡1Xi = o (1) :

Assumption 3: The distribution function of (Ui; Ui+1)0 has a density function

with marginal density function f1(¢) uniformly continuous and such that

f1(x) > 0 for all x 2 R:

Assumption 4: ^̄n is an estimator of ¯0 such that

(
nX
i=1

XiX
0
i)
1=2(^̄n ¡ ¯0) = Op (1) :

Assumption 2 is typical when studying asymptotic properties of statistics in this

context; this assumption does not rule out trending regressors. Under Assumption

3, which is necessary to ensure that empirical processes based on residuals behave

properly (Koul, 1992, pp. 36-9), the marginal distribution function is strictly

increasing. If Assumption 2 holds, Assumption 4 is satis…ed by most estimates,

such as ordinary least squares.

The following theorem establishes the asymptotic equivalence between Ŝn(¢)
and Sn(¢):

THEOREM 1: If Assumptions 1-4 hold, then
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(a) under H0, supu2R2
¯̄̄
Ŝn (u)¡ Sn (u)

¯̄̄
= op(n

¡1=2);

(b) under H1, if fUi; i ¸ 1g is ergodic, then supu2R2
¯̄̄
Ŝn (u)¡ Sn (u)

¯̄̄
= op(1):

It follows from Theorem 1, see the proof of the Corollary in the Appendix, that,

underH0, n1=2Ŝn(¢) and n1=2Sn(¢) converge weakly to the same process, which is, as
Skaug & Tjøstheim (1993) prove, a Gaussian process, S1(¢) say, withEfS1(u)g =

0 and covfS1 (u) ; S1 (v)g =
Q2
j=1[minfF1(uj); F1(vj)g ¡ F1(uj)F1(vj)]; and, un-

der H1, Ŝn(¢) and Sn(¢) converge in probability to S(¢). These results are exploited

in the following corollary, which justi…es asymptotic inferences based on Ĉn.

COROLLARY: If Assumptions 1-4 hold, then

(a) under H0, Ĉn converges in distribution to C1 =
R
R2 S1(u)

2dF (u);

(b) under H1, if fUi; i ¸ 1g is ergodic, then, for all c <1, limn!1prfĈn > cg =
1:

The distribution of C1 does not depend on F (¢) and has been tabulated by

Blum et al. (1961). The Corollary states that, asymptotically, the test can be

performed using Ĉn and critical values from the distribution of C1, i.e. in the

same way as if we used Cn. This result may seem surprising at …rst sight because,

in goodness-of-…t tests, the statistic computed with errors and the statistic com-

puted with residuals have di¤erent asymptotic distributions; see e.g. Koul (1992,

pp. 178-86). When testing goodness of …t, replacing the true parameter value by

an estimator introduces a non-negligible random term in the empirical distribu-

tion function, and this a¤ects the limiting distribution of the test statistic. When

testing independence, replacing ¯0 by ^̄n introduces random terms in the joint

empirical distribution function and in the two marginal empirical distribution

functions, but these random terms cancel out asymptotically when we consider
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the Hoe¤ding-Blum-Kiefer-Rosenblatt process.

In a nonlinear regression model Yi = m(Xi; ¯0)+Ui, wherem(¢) is a known func-

tion, continuously di¤erentiable in a neighbourhood of ¯0, the equivalence result

we establish is also expected to hold if we assume, instead of Assumptions 2 and

4, that the estimator ^̄n is such that max1·i·nf _m(Xi; ¹̄n)0Rn(¹̄n)¡1 _m(Xi; ¹̄n)g =

op (1) andRn(¹̄n)
1=2(^̄n¡¯0) = Op (1), for any ¹̄n such that k¹̄n¡¯0k · k^̄n¡¯0k,

where _m(x; ¯) = @m(x; ¯)=@¯ and Rn(¯) =
Pn

i=1 _m(Xi; ¯) _m(Xi; ¯)
0. However,

the reasoning which we use to prove Theorem 1 does not apply directly in the

nonlinear case because it is based on results derived in Koul (1992, Ch.3), where

only linear models are considered.

3. SIMULATIONS

In order to study how the replacement of errors by residuals a¤ects the …nite

sample behaviour of the test statistic, we carried out some Monte Carlo experi-

ments with programs written in GAUSS. We generated n + 1 observations from

a linear regression model with Xi = (1; i)0, ¯0 = (1; 1)
0 and errors Ui satisfying a

…rst-order autoregressive model Ui = ½Ui¡1+ "i; where "i are independent identi-

cally distributed N(0; 1) variables; hence H0 is true if and only if ½ = 0: We used

least squares residuals to compute the test statistic Ĉn. In Table 1, we report the

proportion of rejections of H0 in 5000 Monte Carlo samples for di¤erent parame-

ter values ½, signi…cance levels ® and sample sizes n: The critical values we used,

0:04694 for ® = 0:1; 0:0584 for ® = 0:05 and 0:08685 for ® = 0:01, were obtained

from Table II in Blum et al. (1961).
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TABLE 1: Proportion of rejections of H0 : ½ = 0 from sets of 5000

Monte Carlo samples, using the statistics Cn and Ĉn.

n ½ ® = 0:10 ® = 0:05 ® = 0:01

50

¡0:6

¡0:4
¡0:2

0

0:2

0:4

0:6

Cn Ĉn

0:975 0:978

0:753 0:771

0:289 0:317

0:111 0:110

0:397 0:332

0:829 0:776

0:981 0:964

Cn Ĉn

0:954 0:961

0:650 0:676

0:189 0:213

0:059 0:056

0:278 0:234

0:746 0:685

0:966 0:943

Cn Ĉn

0:882 0:897

0:424 0:454

0:070 0:079

0:015 0:014

0:116 0:093

0:534 0:453

0:908 0:860

250

¡0:6
¡0:4

¡0:2

0

0:2

0:4

0:6

Cn Ĉn

1:000 1:000

1:000 1:000

0:868 0:878

0:105 0:105

0:893 0:880

1:000 1:000

1:000 1:000

Cn Ĉn

1:000 1:000

1:000 1:000

0:786 0:799

0:057 0:057

0:829 0:811

1:000 1:000

1:000 1:000

Cn Ĉn

1:000 1:000

0:999 0:999

0:581 0:597

0:011 0:010

0:637 0:610

0:999 0:999

1:000 1:000
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We observe that Cn and Ĉn yield very similar results. Moreover, the empirical

level of the test is fairly close to the theoretical level and the power is reasonably

high. To study the power of the test in other contexts, we performed some other

Monte Carlo experiments with the same characteristics as those described in Skaug

& Tjøstheim (1993, § 4.4). The results of these experiments are not reported here;

we obtained the same results as Skaug & Tjøstheim (1993), both when using errors

and when using residuals.
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APPENDIX

Proofs

Detailed proofs are available from the authors on request. Hereafter, the interval

[0; 1] is denoted by I, I2 ´ I £ I, D(I2) is the set of all real functions on I2 which

are ‘continuous from above with limits from below’ as in Neuhaus (1971), C(I2)

is the set of all real continuous functions on I2, ‘)’ denotes weak convergence,
t = (t1; t2)

0 is a generic element in I2, j = 1; 2 and i = 1; :::; n, unless otherwise

stated. The proofs of Theorem 1 and the Corollary will be derived from the

following proposition.

PROPOSITION A1: Let f(Y1i; X 0
1i; Y2i;X

0
2i)

0gni=1 be observations from an R£

Rp1 £ R £ Rp2-valued variable such that the following linear regression models
hold: Yji = X 0

ji¯j0 + Uji, where f(U1i; U2i)0; i ¸ 1g is a strictly stationary se-

quence of random vectors. We assume that both regression models satisfy As-

sumption 2, that we have estimators ^̄nj satisfying Assumption 4 and that the

distribution function of (U1i; U2i)0 has a density function with marginal density

functions uniformly continuous and positive in R. Let H(¢) be the distribu-

tion function of (U1i; U2i)0 and Hj(¢) its marginal distribution functions. De…ne

Pn(t) = n
1=2(n¡1

Pn
i=1[
Q2
j=1 1fHi(Uji) · tjg] ¡ n¡2

Q2
j=1[

Pn
i=1 1fHi(Uji) · tjg])

and P̂n(t) in the same way as Pn(t), but replacing errors Uji by residuals Ûnji =

Yji ¡X 0
ji
^̄
nj:

(a) If f(U1i; U2i)0; i ¸ 1g is an ergodic sequence, then supt2I2
¯̄̄
P̂n (t)¡ Pn (t)

¯̄̄
=

op(n
1=2). Moreover, n¡1=2P̂n (¢) converges in probability to L(t) = G(t) ¡ t1t2,

where G(t) = HfH¡1
1 (t1); H

¡1
2 (t2)g:

(b) If f(U1i; U2i)0; i ¸ 1g is an m¡dependent sequence for m 2 N [ f0g
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(Billingsley 1968, p. 167), and H(u) = H1(u1)H2(u2) for all u = (u1; u2)0 2 R2,
then supt2I2

¯̄̄
P̂n (t)¡ Pn (t)

¯̄̄
= op(1). Moreover, P̂n(¢) ) P (m)(¢); where P (m)(¢)

is a Gaussian process in D(I2) with zero mean and

covfP (m)(s); P (m)(t)g =
2Y
j=1

fmin(sj ; tj)¡ sjtjg+

mX
k=1

E(
2Y
j=1

[1fHj(Uj1) · sjg ¡ sj][1fHj(Uj;k+1) · tjg ¡ tj]) +

mX
k=1

E(
2Y
j=1

[1fHj(Uj;k+1) · sjg ¡ sj ][1fHj(Uj1) · tjg ¡ tj]);

where the last two terms on the right-hand side appear only if m > 0:

(c) Let D : R ! R be a continuous function and Qn(¢), Q(¢) processes in

D(I2) such that prfQ(¢) 2 C(I2)g = 1. If f(U1i; U2i)0; i ¸ 1g is an ergodic se-

quence, then the random variable n¡1
Pn

i=1D[QnfH1(Ûn1i); H2(Ûn2i)g] converges
in distribution to

R
I2
DfQ(t)gdG(t):

Proof :

(a) De…ne Wn(t) = n¡1=2
Pn

i=1[1fH1(U1i) · t1g1fH2(U2i) · t2g ¡ G(t)],

Wjn(tj) = n
¡1=2Pn

i=1[1fHj(Uji) · tjg ¡ tj] and Ŵn(t); Ŵjn(t) in the same way

as Wn(t); Wjn(t), but replacing Uji by Ûnji. Then

P̂n(t) = Ŵn(t)¡ t2Ŵ1n(t1)¡ t1Ŵ2n(t2)¡ n¡1=2Ŵ1n(t1)Ŵ2n(t2) + n
1=2L(t); (A1)

Pn(t) =Wn(t)¡ t2W1n(t1)¡ t1W2n(t2)¡ n¡1=2W1n(t1)W2n(t2) + n
1=2L(t): (A2)

De…ne gj(tj) = hjfH¡1
j (tj)g; t̂jni = HjfH¡1

j (tj) + X
0
ji(
^̄
nj ¡ ¯j0)g and t̂ni =

HfH¡1
1 (t1) + X

0
1i(
^̄
n1 ¡ ¯10); H¡1

2 (t2) + X
0
2i(
^̄
n2 ¡ ¯20)g. As Hj (¢) is a one-to-

one mapping, 1fHj(Ûnji) · tjg = 1fHj(Uji) · t̂jnig. Hence, if we de…ne
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Ejn(tj) = n
¡1=2Pn

i=1[1fHj(Uji) · t̂jnig ¡ t̂jni ¡ 1fHj(Uji) · tjg+ tj ];
Zjn(tj) = n

¡1=2Pn
i=1(t̂jni ¡ tj)¡ n¡1=2gj(tj)

Pn
i=1X

0
ji(
^̄
nj ¡ ¯j0);

Bjn(tj) = n
¡1=2gj(tj)

Pn
i=1X

0
ji(
^̄
nj ¡ ¯j0);

En(t) = n¡1=2
Pn

i=1(
Q2
j=1[1fHj(Uji) · t̂jnig] ¡ t̂ni ¡

Q2
j=1[1fHj(Uji) · tjg] +

G(t));

Zn(t) = n
¡1=2Pn

i=1ft̂ni ¡G(t)g ¡ t2B1n(t1)¡ t1B2n(t2);
then it is easily proved that

Ŵjn(tj) = Ejn(tj) + Zjn(tj) +Bjn(tj) +Wjn(tj); (A3)

Ŵn(t) = En(t) + Zn(t) + t1B2n(t2) + t2B1n(t1) +Wn(t): (A4)

With our assumptions, and using similar arguments as in Koul (1992, pp. 28-

39), it may be proved that supt2I jZjn(t)j = op(1), supt2I2
¯̄
n¡1=2Zn(t)

¯̄
= op(1),

supt2I
¯̄
n¡1=2Ejn(t)

¯̄
= op(1), supt2I2

¯̄
n¡1=2En(t)

¯̄
= op(1), supt2I jBjn(t)j = Op(1),

supt2I
¯̄
n¡1=2Wjn(t)

¯̄
= op(1). In view of (A1)-(A4), all these results imply that

supt2I2 n
¡1=2

¯̄̄
P̂n(t)¡ Pn(t)

¯̄̄
= op(1). On the other hand, n¡1=2Pn(t) ¡ L(t) =

n¡1
Pn

i=1[
Q2
j=1 1fHj(Uji) · tjg ¡ G(t)] ¡ n¡1=2ft2W1n(t1) + t1W2n(t2)+

n¡1=2W1n(t1)W2n(t2)g. If we use the Glivenko-Cantelli Theorem in Stute & Schu-

mann (1980) and Theorem 4.1 in Billingsley (1968, p. 25), it follows that n¡1=2P̂n(t)

converges in probability to L(t).

(b) With these assumptions, supt2I jZjn(t)j = op(1), supt2I2 jZn(t)j = op(1),

supt2I jEjn(t)j = op(1), supt2I2 jEn(t)j = op(1), supt2I jBjn(t)j = Op(1),

supt2I jWjn(t)j = Op(1). Thus from (A1)-(A4) it follows that

supt2I2
¯̄̄
P̂n(t)¡ Pn(t)

¯̄̄
= op(1): Moreover, write Vn(t) = Wn(t) ¡ t2W1n(t1) ¡

t1W2n(t2). From (A2) it follows that Pn(t) = Vn(t) ¡ n¡1=2W1n(t1)W2n(t2); if we

use Theorem 4 in Csörgö (1979), Vn(¢)) P (m)(¢) and hence Pn(¢)) P (m)(¢).

12



(c) Write Ĝn(t) = n¡1
Pn

i=1

Q2
j=1[1fHj(Ûnji) · tjg], and de…ne Gn(t) in the

same way as Ĝn(t) but replacing residuals by errors. We must prove thatZ
I2
DfQn(t)gdĜn(t)¡

Z
I2
DfQ(t)gdG(t) = op(1): (A5)

From (A4) we obtain that Ĝn(t)¡Gn(t) = n¡1=2fŴn(t)¡Wn(t)g = n¡1=2fEn(t)+

Zn(t) + t1B2n(t2) + t2B1n(t1)g: Hence, supt2I2
¯̄̄
Ĝn(t)¡Gn(t)

¯̄̄
= op(1), and (A5)

may be proved from this result using the Skorohod embedding theorem.

Proof of Theorem 1: Apply Proposition A1 with A1i = Ai; A2i = Ai+1 for

A = Y;X; U . Under H0, all conditions in part (b) of Proposition A1 hold with

m = 1, and, except for terms which are uniformly op(1); P̂n(¢); Pn(¢), H(¢), H1(¢),

H2(¢) become, respectively, n1=2Ŝ¤n(¢), n1=2S¤n(¢), F (¢); F1(¢), F1(¢), where Ŝ¤n(t) =
ŜnfF¡11 (t1); F

¡1
1 (t2)g and S¤n(t) = SnfF¡11 (t1); F

¡1
1 (t2)g.

Proof of the Corollary: Under H0, apply part (b) of Proposition A1 to deduce

that n1=2Ŝ¤n(¢) ) S¤1(¢), where S¤1(t) = S1fF¡11 (t1); F
¡1
1 (t2)g; then use part

(c) of Proposition A1. Under H1, apply part (a) of Proposition A1 and then

use part (c) to derive that n¡1Ĉn converges in probability to ¢ =
R
R2fF (u1; u2)¡

F1(u1)F2(u2)g2dF (u1; u2). AsH1 is true and F (¢) is continuous, then¢ > 0 (Blum
et al. 1961, p. 490).
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