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EXISTENCE AND NASH IMPLEMENTATION OF EFFICIENT
SHARING RULES FOR A COMMONLY OWNED TECHNOLOGY

Luis Corchén & M. Socorro Puy

ABSTRACT

Suppose that a group of individuals owns collectively a technology which pro-
duces a consumption good by means of a (possibly heterogeneous) input. A
sharing rule associates input contributions with a vector of consumptions that
are technologically feasible. We show that the set of allocations obtained by any
continuous sharing rule contains a subselection that is Pareto efficient. We also
present a mechanism that implements in Nash equilibrium the Pareto efficient
allocations contained in an arbitrary sharing rule.

JEL classification: D5051; 1.3132; H82; P13.
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1. Introduction

Consider a group of people owning a technology which transforms a possibly
heterogeneous input (labor) in an homogeneous output (consumption). Inputs are
also provided by the owners. Different proposals on how to distribute the output
can be found in the literature.

From the point of view of fairness some authors have translated philosophical
criteria into solution concepts in the class of environments in which the input
is homogenous: Roemer and Silvestre (1988) proposed the Proportional Solution
and the Equal Benefit Solution, Mas-Colell (1980) proposed the Constant Returns
Equivalent Solution. Several characterizations of these solutions are provided in
Moulin (1990), Moulin and Roemer (1989), and Maniquet (1996). When heteroge-
nous inputs are considered, other solutions have been proposed: Equal Sharing,
Marginal Cost Rule, Aumann-Shapley Prices, Reference Welfare Equivalent Bud-
get, etc. (see Aumann and Shapley (1974), Billera and Heath (1982), Moulin
(1987), Tauman (1988), Pfingsten (1991) and Fleurbaey and Maniquet (1996)).

In this note we approach this problem from a different angle. We focus our
attention on contracts that are offered to the owners of the inputs. We assume
that the quantity of inputs is contractible but preferences are not. These con-
tracts, that we will call Sharing Rules, are a function which specifies the list
of consumptions depending on input contributions. The sharing rule together
with the quantity of inputs determine income distribution inside the firm. It is
worth to notice that in spite of the different motivations, all solutions mentioned
above qualify as Sharing Rules except the constant return equivalent solution (the
idea of expressing the share of output in terms of the inputs appeared in Moulin
(1990), p.445 for the proportional and the equal benefit solutions). Our analyti-
cal task consists in checking which Sharing Rules satisty two basic requirements:
Efficiency and Implementability.

Firstly, we focus attention on those Sharing Rules which are compatible with
Pareto efficiency, which we call Efficient Sharing Rules. It is well known that
the proportional and the equal benefit solutions are Efficient Sharing Rules. We
generalize these results by showing that any continuous sharing rule is an efficient
sharing rule in the set of classical economies (continuous and convex preferences).
Our proof is inspired by the proof of Negishi (1960) of the existence of a Walrasian
Equilibrium.

Secondly, we consider the incentive properties of efficient sharing rules. A shar-
ing rule that gives incentives to distort preferences or productivities can not be



regarded as satisfactory. Roemer (1988), Gevers (1986) and Maniquet and Fleur-
baey (1996) showed respectively that the proportional, the equal benefit solution
and the reference welfare equivalent budget are Nash implementable!, i.e. there is
a mechanism whose Nash equilibrium strategies generate the desired allocations.
Suh (1995) introduced a mechanism that implements the proportional solution
in Nash, undominated Nash and Strong equilibria. Shin and Suh (1997) provide
a simple mechanism which doubly implements a class of solutions in Nash and
strong equilibrium. In this paper we provide a simple mechanism that implements
in Nash equilibrium every efficient sharing rule in the set of classical economies
when there are at least three individuals®. We assume that the planner knows the
sharing rule but not the preferences of the agents that determine the set of Pareto
efficient allocations for each economy. Our procedure has the advantage over Shin
and Suh’s that our conditions on the solutions to be implemented are easy to check
and they include economies with heterogeneous inputs, but the disadvantage that
we only implement in Nash equilibrium.

Our mechanism has been inspired by the canonical mechanism used in Nash
implementation. People are arranged in a circle and each agent proposes the
amount of input supplied by him and the agent next to him. Three cases are then
identified:

First, when the amount of input proposed by each agent coincides with the
amount suggested by her monitor. In this case the mechanism distributes the
output according to the sharing rule.

Second, when there are, at most, two consecutive agents whose proposals differ
from what was proposed for them. Then, the agent with the lowest index (the
dissident) has the right to choose an allocation in a certain budget set that is only
profitable if he has deviated from a non efficient allocation. Since a deviation can
only happen if the monitor of the dissident has tried to fool the mechanism, then
the monitor is severely fined: he gets zero consumption and has to contribute up
the maximum amount of labor. All other agents obtain some arbitrary bundle.

Third, for any other message it is not possible to identify the dissident. Thus
things are very muddy and the mechanism has to reflect that. In this case, the
mechanism divides the agents into two groups: the ones that consume but do not
work, and the ones that work but do not consume, in such a way that the agents

Implementation in dominant strategies is usually impossible. However see Schmeidler and
Tauman (1989) for a case in which it is possible.

2We consider adverse selection problems only. Moral hazard in teams is considered in Holm-
strom (1982).



of the second group always have incentive to deviate the mechanism to the second
case. Notice that, contrarily to what happens in the canonical mechanism, agents
do not play integer games.

Our construction avoids some of the criticism made by Jackson (1992) to
Maskin-type mechanisms: Message spaces are bounded and thus, there is always
a best reply for each agent.

2. The Model and the Main Results

There is one consumption good produced from a vector of possibly heterogenous
inputs using a publicly owned technology.

There are n individuals indexed by i. Let N = {1,... n}. They are endowed with
7 € R, , units of input®. Each individual consumption set is defined by:

X={(#:6;) : x; € Ry, 4; € [0,7] }

where x; is agent 7’s consumption and ¥¢; is input contribution. Each agent has
preferences defined on X, that can be represented by a utility function

u; - X — R

The utility function is assumed to be continuous, concave, strictly increasing in
x; and strictly decreasing in ¢;. Thus

arg min u; (z;, 4;) = (0,@) Vi € N.
(SE@,&)EX

The technology is represented by a production function
R} — Ry
The function f is continuous, increasing in each component, concave, continuously
differentiable in each component and with f (0, ...,0) = 0.
We define the feasible set, denoted by X as follows

iCN

X = {(a:l,él,....,a:n,ﬁn) < X" > xX; S f <€17;€n>}

3When inputs are heterogenous, we shall consider that each agent is endowed with l; € R,
units of labor, where each ¢; is common knowledge.
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A feasible allocation is denoted by (x,¢) € X where z = (z1,..,2,) and £ =
(b1, b))

We assume that X is fixed and utility functions vary. Thus, an economy, denoted
by u = (uy,...,uy) , is a list of utility functions satisfying the assumptions listed
above. The set of admissible economies is denoted by £.

The Pareto efficient solution ¢ : £ — X associates to each economy in the
domain the set of Pareto Efficient allocations for this economy. Formally,

" (u) = (x,0) e X : A (a:/,é/) eX [ up(x),0) > up (zy,0y) Yhe N
v N and u; (2, ;) > u; (z;,¢;) for at least one j € N.
We next introduce the concept of a sharing rule. A sharing rule is a contract that
specifies the consumptions as a function of input s contributions.
A Sharing Rule P = (P,,...,P,) is a collection of functions such that P; :
[0,/]" — R, Vie N with © P,(¢)=f () Ve [0,0]".
iEN

Each F; yields the consumption of 7 as a function of £. Moreover, P distributes

the total output. Some examples of solutions that can be expressed as sharing

rules are the following;:
The Proportional Solution in which the sharing rule is:

Py (6) = J;i?

iCN

l; for Vie N

%

where the amount of output consumed by an agent is proportional to the amount
of input that she contributes.
The Fqual Benefit Solution, in which the sharing rule is:

F=>" <8géf)€i>] for Vi € N

€N

_ar®

1
lit—
[

where each agent consumes according to the budget constraint in the Walrasian
equilibrium with equal profits. Clearly, other rules of profit distribution also
qualify as sharing rules.

The Equal Sharing Solution, in which the sharing rule is:

Pi(ﬁ):MforWEN

T



where each agent consumes an equal part of the total output.
The Aumann-Shapley prices, in which denoting by ¢ € [0, ﬂn a vector of input
contributions, the sharing rule is:

1

P, (0) :/ 8f—<t€)dt l; for Vie N
o 04

where each agent consumes proportionally to the contribution of her input to the

total production. When the input is homogenous it coincides with the propor-

tional sharing rule.

Furthermore, the family of methods proposed by Moulin (1987) also qualify
as sharing rules, indeed, all these methods are compromise between the equal and
the proportional sharing rules:
>From Moulin (1987) Theorem 1, where for each p € Ry,

P = (04 <y
&
Eiu+%<f(€)—u E€Z> if%ZuforWEN.

€N

iEN

>From Moulin (1987) Theorem 4, where for each A € [0,1],

<1+ /) >A—1] for Vi € N.

B(€)=M+<éi—% zei>

n iEN

Ez‘eN ¢;

>From Moulin (1987) Theorem 5, where for each A € [0,1],

o>
> 4

€N

P (0) = f () for Vi € N.

>From Moulin (1987) Theorem 6, where for each A € [0,1)

1
P () = (é}”‘ + a) 1=» — ¢, and « is unique
1
solution of : > (E}f)‘ + a) =2 =30, + f(¢) for Vi € N.
iEN iEN

Finally, note that every convex combination of the mentioned solutions, is also
a sharing rule, see for instance Corchén and Puy (1998).
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We assume that every sharing rule verifies that if ¢; = ¢, P, (El, 0, EHl..,En) =+ 0.
Pareto Efficiency and Sharing Rules

In the sequel we will be interested in the intersection of the Pareto efficient solu-
tions ¥ and a given sharing rule P, that we denote Efficient Sharing Rule ¥
and is defined by

e (u, P) = {(z,0) € " (u) 1z, =P (¢), Vie N}.

We now prove that ¢f'F exists provided that the sharing rule is continuous®.

Theorem 1: Given u € € and a continuous sharing rule P, then "% (u, P) # ().

€N

Proof: Let o € A" ! where A" ! = {a €ERY : Y a; = 1} )

Consider the problem:

max > oouuy; (a:l-, gl)
(z,0)eX  4eN

by continuity of u; and compactness of X', there always exists a solution to this
problem, which is by definition Pareto efficient.
This maximization defines a correspondence denoted by ¢, such that

G A" —x

By concavity of u and convexity of X', ¢ is convex valued. By Berge’s Maximum
Theorem, ¢ is upper hemicontinuous.

We define D; : R, x [0, ﬂn — R for each 7 € N as follows:

Note that for every i, D; is continuous by continuity of F;.

Fix an allocation (i:, @) and consider the following maximization program:

max > Oél'DZ' (i?l, g)

acA"~1  4eN

4Tt can be easily checked that all the rules mentioned before are continuous (for Aumann-
Shapley prices, see Mirman and Tauman (1980)).



by continuity of each D; and compactness of A" ! there always exists a solution
to this problem. This maximization defines a correspondence denoted by @, such
that

P X—A"!

where @ is convex valued and upper hemicontinuous by Berge’s Maximum Theo-
rem.
Now consider the following mapping

Pxp: A" X — AV X

This is a upper hemicontinuous mapping from a compact convex set into itself,

with non empty and convex values. By Kakutani’s fixed point theorem, there

exist a fixed point (a*, z* £*).

Notice that it is impossible to have (x}, ¢*) such that D; (x},¢*) < 0 Vi € N or

D; (zf,0*) > 0 Vi € N, because the sharing rules verify that EN x = f(£).
(2

Thus if D; (},£*) > 0, then 3j € N : D; (23,0*) < 0 and so of = 0. But this
implies that ¢ will assign (a:j, E;‘) = (0, E) and so D; (a:j, E*) > 0, a contradiction.

Therefore the fixed point verifies D; (z},¢*) = 0 Vi € N and this implies that
xi = P;(¢) Vi e N. Q.E.D.

Remark 1. We shall point out that to guarantee the continuity of these sharing
rules, the continuity of f, in some cases, and the continuous differentiability of
f are crucial. As a first approach we do not deal with non-continuous or/and
non-differentiable technologies.

Remark 2. Note that all the examples of sharing rules that we have already men-
tioned as well as all the convex combination of these sharing rules are continuous
sharing rules so that they are FEfficient Sharing Rules.

Implementation of Efficient Sharing Rules

A mechanism [ is a list {(Si)z‘eN ,g} where S; is the strategy space for agent 1
and ¢ 1s the outcome function, mapping each strategy profile into an element of
the feasible set :

g:II S; — X

€N



The outcome received by each agent is g; (s) = (x4, 4;) -
Let s_; the list of strategies for all the agents except for i, then, the set of Nash
equilibria of the game (T, u) is denoted by NE(T', u) .

NE (T, u)= {3 €I S; = ui (95 (8)) = wi(g: (s,5-5) Vi€ N, Vs, € Sz)}

icN

We say that a mechanism implements ©® in Nash equilibrium when it verifies
that:
NE (T,u)#0

o"P (u, P) = g (NE (T',u)), Yu € E.

Let us introduce the mechanism I' (P) which implements the efficient sharing rule
P.

Each individual strategy space is defined by S; = [0,@2 C R2.

A strategy for i is a pair, si:@ﬁ,@H), whenever © = n we define i + 1 = 1 and
when 7 = 1, 7 — 1 = n. Each individual strategy may be interpreted as a proposed
labor allocation for herself (¢) and the individual next to her <€§+1>. This is a

particular instance of a “T'weed Ring” mechanism®.

The outcome function is divided in three cases which we denote as rules:
Rule 1 (Unanimity):

IfY jeN: & =4~¢_ then g;(s) = (P;(€),£) where £ = (£},.... 7).

Rule 2 (Dissident right):

Ifvje N —{i}: E; = 6;271 and for i : 0 £ 0 |,

orifVje N —{iji+1}: E; = 6;271 and for i and i 4+ 1: €6 £ €1 | and €77 £ 64,
agent 7 is called the dissident, agent 7 — 1 is the punished agent and the rest are
denoted by k, then,

. 61,.,62:2,5,@,.,62 —
i (s) = (ﬂ%g;) , im1(s) = (07@ , gr(8) = <f< - 2 ) ’ JZ)

n—2

where z; = P; () + 288 (¢ — 71 \) with £ = (¢}, 03,62 | 00, 0m).

And only in the case that from this rule x; > f (ﬁl 200 E") then,

129 %4—22%r %4y v *n

gi(s) = (f (00, 65,0,6,.60) . 63)  gia (s) = (0,0), gu(s) = (0. 65)

5 Another example of a “Tweed Ring” mechanism is due to M. Walker (1981).
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Rule 3:
It applies when we are not in rule 1 nor in 2. Tet M = {ie N:s;=(0,0)},

then, for Vi € M : g;(s) = (%,0) and for those j € N — M : g;(s) =

(O,max{%, min {ﬂﬁi,g} , min {ﬂﬁ;“,g}}) with 3 > 1.

The interpretation of this mechanism is the following:
In Rule 1 each individual is given the share of the total output according to the
sharing rule P.
Rule 2 applies when one individual deviates. Notice that the maximization
problem for the dissident agent is

max (R- ) + or(r) G—a) 7@)

tiefo,] ot

considering interior solutions, the first order condition to this problem is a neces-
sary condition for an efficient allocation:

Ou; /06— Of (¢) )0

and it is sufficient if this equality is verified for every agent. Thus, if the an-
nouncement of the rest of agents does not lead to a Pareto efficient allocation, one
individual have incentive to deviate®. Also, Rule 2 punishes the individual who
did not monitor adequately. The punished individual is given her worst allocation.
If the consumption proposed by the dissident is not feasible, we give him all the
output.

In Rule 3, the mechanism divides the agents into two groups: the ones that
consume and do not work, which announce s; = (0,0) and the ones that work but
do not consume, which announce s; # (0,0) . As we next show, there is always an
agent of this second group with incentive to deviate the mechanism to Rule 2.

Theorem 2. If n > 3;the mechanism I' (P) implements ¥ (u, P) in Nash
equilibrium.

Proof : First, let us show that ¥ (u, P) C g (NE (T (P),u)) Vu € €.

81t can be shown that for non interior solutions, rule 2 also gives incentives to deviate from
a non optimal allocation.
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Let (x,¢) € @7 (u, P) for some u € € and some P, let s 6'1}\/ S; be a strategy pro-
2€
file defined by s = (s1, ...., 8,) and s; = (ﬁﬁ, @H) such that £ = ¢ | Vi € N. Then,
the outcome induced by s is g (s) = (x,¢) . We verify that s € NE(I'(P) ,u).
If (xz,¢) € ¥ (u) is an interior solution, then Vi, ¢% verifies first order optimallity
conditions:
8%1/8371 . -
Ou;/0t; — Of (¢) 04,

and so, if one agent deviates, rule 2 applies and the dissident agent can not get

Vie N

anything preferred to (z;, £%). Even if (z,f) € ¢ (u) is a non interior solution,

there is no dissident agent which can get anything preferred to (x;, £%) . Therefore,
se NE(T(P),u).
Second, let us show that g (NE (T (P) ,u)) C " (u, P) Vu € €.
Let s € NE(T'(P),u) and g (s) = (z,{).
Case 1: when (z,¢) is in rule 1 but (z,4) ¢ ¢ (u). Then, 3 (z',0) € X
such that at least one agent strictly improves. If this agent deviates in the
announcement of the components of the strategy space, rule 2 applies. Let
0 = (G, ..,Eﬁj,ﬁﬁfl,ﬁzﬂ, ..,EZ) then, the attainable set for this agent A; is as
follows

A = {(a:i,éi) €X:m= P () + 4 (¢, - é;i,l)}
Since (x,£) is not efficient, there is at least one agent for whom the marginal rate
of substitution is greater (respectively lower) than the marginal rate of transfor-
mation, then by announcing a lower (respectively higher) input contribution, he
improves. This contradicts that s € NE (I (P) ,u).
Case 2: (z, /) comes from rule 2. The punished individual i — 1 receives g;_1 (s) =
(0, 57) and then, any deviation in the announcement of ¢+ — 1, will improve her:
- When E; = E;fl Vj € N — {i}, then a deviation of agent i — 1 announcing
E;él = /! leads to the unanimity rule.
- When E; = @:71 Vje N —{i i+ 1}, a deviation of agent i — 1 in the announce-
ment of £, 1 will lead to the third rule.
Case 3: (z,/) comes from rule 3. Therefore, one of the following two cases must
occur:
Case 3.1: there are at least three successive disagreements, i.e., at least three
successive agents for whom: E; + @;1-
Case 3.2: there are at least two non-successive disagreements.
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In both cases, for all j € N — M, s; = (E;:,E;H) where E; > BL; or E;H > Blg, can
not be a strategy of a Nash equilibrium.
Suppose first that s is a Nash equilibrium satisfying case 3.1:

If n = 3, we have that there are three disagreements. Therefore, there are at

least two agents with payoff (0, %) . One of these agents, however, have incentive

to move the mechanism to rule 2 by means of announcing s; = (ﬁ;fl, E;E) , since
then, he obtains the payoff (z;,¢;) where 2; > 0 and ¢; < % .Thus, s can not be

B
a Nash equilibrium.

If n > 3, suppose first that there are three or more successive agents, that we
denote by {1,2,3,...}, such that s; # (0,0) which obtain g, (s) = (0, %) . We have

then that agent 2 can deviate to s, = (0,0) so that the mechanism does not move
from rule 3 (there are at least two non-successive disagreements or three successive
disagreements) and agent 2 improves since he obtains the payofl (x4, 0) where 2o >
0. Therefore, if there is a Nash equilibrium satisfying Case 3.1, it can not consist of
more than two successive agents, denoted by {1,2} ; who announce s; # (0,0) . We

then have that, s; = (1,02, sy = (¢3,¢3) and s; = (0,0) for Vi € N—{1,2} where

V£ 0,2 £ 2 and £ £0. And so, g (s) = ((0, g) , (0, g) (23,0) ..., (a:n,O)) .
However, agent 1 can improve deviating the mechanism to rule 2 by means of
announcing s; = (0,¢3), since then he obtains the payoff (z1,0) with z; > 0. We
therefore conclude that there is no Nash equilibrium which satisfies case 3.1.
Suppose second that s is a Nash equilibrium satisfying case 3.2:

Consider first that there are more than two non-successive disagreements.
Then, there must be at least three agents such that s; # (0,0) , which obtain a pay-

off of (0, %) . Clearly, one of these agents have incentive to deviate to s;- = (0,0)

since rule 3 also applies, but then, he obtains a payofl of (z;,0) where z; > 0.
Therefore, if there is a Nash equilibrium satisfying case 3.2, it can not consist
of more than two non-successive agents announcing s; # (0,0). Thus, it shall
consist of two non-successive agents {j,k} announcing s; # (0,0), sy # (0,0)
and for Vi € N — {j,k}, s; = (0,0). However, it can not be a Nash equilibrium
since agent j improves moving the mechanism to rule 2 by means of announcing
s, = (0,0) . He then obtains the payoff (x;,0) where z; > 0.

We therefore conclude that there is no Nash equilibrium in rule 3. Q.E.D.

Remark 3. The proposed mechanism satisfies some nice properties. Indeed, we
propose a natural message space where the announcements are the amounts of
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input contributions. Furthermore, participants contribute, in equilibrium, with
the amount they announce (a similar property is called Forthrightness by Saijo,
Tatamitani and Yamato (1996)). Finally, the proposed mechanism is bounded
(see Jackson (1992)), as we have already shown, there is always a best reply for
each agent.

Remark 4. Our result is related to that of Shin and Suh (1997). They succeed in
showing a class of interior and efficient solutions which are double implementable
in Nash and Strong Nash equilibria. Although we do not show doubly implemen-
tation, the class of efficient solutions that we implement, also includes efficient
solutions for economies with heterogeneous inputs.

It is also interesting, that our class of efficient solutions, are characterized by a
novel property (continuity of the sharing rule), since it is not only an easy-checking
property but also a meaningful property (in the sense that it is contractible). We
consider that it establish some links between Implementation Theory and Con-
tract Theory within the commons problem, with worthy implications for future
research.

3. Final Comments

In this note we have shown that any continuous sharing rule is compatible with
efficiency and incentives. In this sense, our results suggest the existence of a large
degree of freedom concerning income distribution within the firm, unless other
consideration are introduced. See Corchén and Puy (1998) for a study of sharing
rules yielding individually rational allocations and sharing rules that arise from
voting inside the firm.
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