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DYNAMIC FACTOR ANALYTIC MODEL ESTIMATION
USING DYNFAC: A GUIDE FOR USERS

Francisco Goerlich

ABSTRACT

This is a user’s guide for the DYNFAC package. A program written in GAUSS to
estimate, by maximum likelihood in the time domain, DYNamic FACtor analytic models
with one common factor (single-index models), by means of the Kalman filter.

The underlying theory and methods are briefly explained.

KEY WORDS: Dynamic Factor models, Kalman filter, software.

RESUMEN

Esta es la gufa de usuario del programa DYNFAC. Un programa escrito en
lenguaje matricial GAUSS para estimar, por médxima verosimilitud en el dominio
temporal, modelos FACtoriales DYNdmicos con un factor comiin no observable, por
medio del filtro de Kalman.

La teorfa y los métodos que forman la base del programa son explicados de

forma concisa.

PALABRAS CLAVE: Modelos factoriales dindmicos, filtro de Kalman, software.







1. INTRODUCTION

DYNFAC is a program written in the GAUSS matrix programming language to
estimate Dynamic Factor Analytic Models from a cross section of time series. At
present the program is quite modest and it can only be used to estimate a very
limited set of models that have been used successfully in business cycle analysis
but it is planned to do further developments. Moreover with some knowledge of GAUSS
it is possible to estimate variants of the implemented model at a little cost.

The program has been used and seems to be free of errors. However, the
author does not assume responsibility for any remaining errors. In no event shall I
be liable for any damages whatsoever arising out of the use of or inability to use

this program package.

The guide is organized as follows. Section 2 describes how DYNFAC can be
installed and how the data should be organized. Section 3 contains an account of
the econometric models that can be estimated with DYNFAC, it contains some
technical material and relevant references to the literature for the interested
reader. It also stablises the limitation of the current version and the planning
for further developments. Section 4 provides detailed instructions on how to use
DYNFAC by means of the explanation of the command file DYNFAC.RUN, and section 5

contains an example.

No knowledge of GAUSS is required to use the program, nevertheless it is an
advantage if you experience problems. Moreover by modifying the appropriate
procedures it is possible to estimate a wider set of models than the ones contained

in this guide.




2. INSTALLATION

DYNFAC is contained in 4 files: DYNFAC.RUN, DYNFAC.SRC, DYNFAC.ERR
and DYNFAC.LIB, plus a set of general procedures, all of which have the SRC (*.SRC)
extension, a DEClaration file (*.DEC) and an EXTernal file (*.EXT).! In addition
DYNFAC.TXT contains the revisions of the program and information not contained in
the manual. The DYNFAC.LIB file gives access to all of the procedures needed by the
program. These were written using Version 3.1 of GAUSS.2 In addition to the main
program the MAXLIK module is required for DYNFAC to run. For speed reasons a 486
chip or higher is recommended, even if DYNFAC will still run on a lower machine.
For the same reason the program should only be run from a hard disk.

The DYNFAC disk is organized in the same way as the GAUSS disks and an
installation BATch file is supplied, DYNFAC.BAT. The program is located in the
subdirectory DYNFAC of the root directory of the distribution disk, so Change
Directory to DYNFAC to install the program.

Assume GAUSS has been fully installed (see chapter 1 of GAUSS’ manual). The
DYNFAC.BAT will copy the DYNFAC.LIB file to the LIBrary subdirectory of GAUSS
(\GAUSS\LIB), all the files in the SRC subdirectory to the GAUSS SRC subdirectory
(\GAUSS\SRCQ), the files in the EXAMPLES subdirectory to the GAUSS EXAMPLES
subdirectory (\GAUSS\EXAMPLES), and the DYNFAC.RUN, DYNFAC.SRC,
DYNFAC.ERR and DYNFAC.TXT files to the subdirectory where the GAUSS program is
located (\GAUSS). If your prefer to keep separated the programs and data from the
GAUSS files, which is probably the best option, just copy the DYNFAC.RUN,
DYNFAC.SRCand DYNFAC.ERRfilesto your working directory. The program should work
fine in this case as is supplied. Other configurations are however possible.

In addition a new directory will be created within the GAUSS structure
(\GAUSS\MANUAL) which contains this guide, written in ChiWriter 4.10.

I Naming convention follows GAUSS.

2 In particular the GAUSSI Version 3.1.4 with virtual memory was used in the
development of DYNFAC; if a non-i version of GAUSS is used some changes in the
eigenvalue and eigenvector commands contained in the procedures may be needed.
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2.1. Data

DYNFAC has been thought to work from a matrix in memory. As the command file
is designed, the data will be loaded from an ASCII file containing a TxN matrix of
data, where T is the number of observations, the time dimension, and N the number
of variables, the cross section dimension.

3. ECONOMETRIC MODELS

In classical Factor Analysis it is assumed that a set of N observed
variables y, depends linearly on Q < N unobserved common factors ¢, and on

individual factors u,,
yo=B + Tc +uy 1)

where I' is a NxQ matrix of factor loadings, the components of ¢, are assumed to be
uncorrelated with u, and the components of u, are assumed to be uncorrelated, that
is, Var(u,) is a diagonal matrix. Moreover serial correlation in either ¢, or u, is
not allowed, which in turn implies the absence of serial correlation in y,. (Harman
(1976), Srivastava y Carter (1983) y Magnus and Neudecker (1988)). The objective of
factor analysis is, usually, to estimate the matrix of factor loadings, I', and/or

the unobserved factors c,.

There are a number of programs that estimate models such as (1), among
others the PRIN command of TSP and the PRIN procedure supplied with the DYNFAC
package.3

3 The PRIN procedure, which performs a PRINcipal components analysis, can be used
independently of DYNFAC, see information in the PRIN.SRC file.

As is explained below, DYNFAC can also be used to estimate, by maximum
likelihood, a static factor analytic model like (1) when Q = 1.




In a time series context serial correlation is the rule, rather than the
exception, so it may be more sensible to assume that the factors and/or unobserved
components are autocorrelated. For example, they may be generated by VAR o VARMA
processes. Assuming a VAR process we have

C =06, + 0,6, + .. + 0pCp + N, 2)

or
¢(L)e, = M, @)
where L is the lag operator, and
u =Du,, + Dyu, + ..+ Du, + ¢ 3)
or
D(L)u, = ¢ 3")
where 1, and € are white noise processes.

In this case we have what has been called a Dynamic Factor Analytic Model.
These kind of models were introduced into economics by Sargent and Sims (1977),
Geweke (1977) and Engle and Watson (1981).

Model (1)-(3) is the focus of the DYNFAC program, with some restrictions to
make the model more easily interpretable from an economic point of view. In
particular, we assume that the number of factors is equal to one, Q = 1, so we have
what has been called a single-index model (Sargent and Sims (1977), Geweke (1977)).

In addition, some identifying assumptions are made. The main one expresses
the core notion of the dynamic factor model that the co-movements of the multiple
time series, y, arise from a single source c,. In statistical terms this implies
assuming that u, and c, are mutually uncorrelated at all leads and lags, which in
turn is achieved by assuming that D(L) is diagonal and that the N + 1 disturbances




(0721, cél,...,cén) are mutually and serially uncorrelated?.

D(L) = diag(d,(L), ... .dpy(L))

and

n Q = dia 02,02,...,02 if s=t
E ‘.[nse’s]= 12g(on, O,-0g,) if s

€, 0 ifs=t

Moreover, only the relative variances of disturbances are identified so we

shall assume that Var(n) = 0'72] = 1, this is just a normalization restriction and

fixes the scale of c,.

In summary, the model we focus on is

yt=B+YC(+ul 4)
¢(L).c, = n, &)
D(L).u, = ¢ (6)

where I = v, ¢(L) is an scalar polynomial in the lag operator of order p, D(L) is a
diagonal =~ matrix  polynomial  in the lag operator of  order Kk,
D(L) = diag(d,(L),....dy(L)), M, and € are gaussian white noise processes with
zero mean and variance given by Var(n,) = 1 and Var(g) = diag(oél,...,o'én), and B
allows for non-zero means in the elements of the y, process, but since this vector

can be concentrated out of the likelihood function it will be dropped in what

4 Tt should be pointed out that when there are more than three uncorrelated series
in the analysis or when the variables in y, are serially correlated the dynamic

factor  formulation imposes  testable  overidentifying  restrictions. This
overidentification in the model allows us to interpret the single source
specification as implying that there is a single causal source of common variation,
or shock, among the variables y. But the econometrician should be careful not to

read too much into the factor formulation, which is a purely statistical model
(Stock and Watson (1989)).




follows without loss of generality.’

In addition, note that ¢, is assumed to enter the model only
contemporaneously. This could be generalized by considering a polynomial in the lag
operator Y(L) instead of vy, so (4) becomes

Y. = B + y(L)e, + u, 4)

Imposing Y(L) = 7y further restricts the impulse response function from 7, to y, to
be proportional across the observable series.

The estimation of this model can be performed in the frequency domain, as
has been suggested by Sargent and Sims (1977) and Geweke (1977), or in the time
domain, as has been enfasized by Aigner et al (1984) and Stock and Watson (1989,
1991, 1992). DYNFAC focuses on the time domain estimation.

3.1. The state space representation

The first step towards estimating the model (4)-(6) is to cast it into a
(linear) state space form so that the Kalman filter can be used to evaluate the
likelihood function.

State space models are based on the idea that an observed multiple time
series, y, depends upon a possibly unobserved state, o, which is driven by a
(linear) stochastic process. The state space system consists, then, if two
equations, the measurement equation®

Y. = Z.a, + & @)

and the transition equation

5 In practice this is achieved by standardizing variables prior to the analysis,
this is also a common practice in static factor analysis.

¢ I follow the notation in Harvey (1989), suitable modified to the problem at hand,
and assume that y is a zero mean vector of observations.
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o, = T.o, + R (8)

that describes the transition of the state of nature from period t-1 to period t.
In the simplest formulation & and {; are assumed to be (gaussian) uncorrelated
white noise sequences with variance matrices Var(§) = H and Var({) = Q. The
system (7)/(8) is one form of a linear state space system.

Defining the state vector as

Cy
ct-p+l
o = u,
ut-k+l
J (p+N.k)x1
and choosing
¢l .. ¢p-l ¢p
1 0 0
. 0
T 0 1 O
D, . Dy, D
Iy 0 o
0
0 Iy 0
i 1 (p+N.K)x(p+N.k)
[,
C.:t = e
| Y] (1+N)x1
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and

! 00 4 (p+N.k)x(1+N)

where Iy is the NxN identity matrix and D; = diag(d,;,...,dy;), we can write the
transition equation (8).

The corresponding measurement equation is obtained by defining

Z=1|v0..01.0.0
[Y N ] Nx(p+N.k)

which allows us to write the measurement equation as
y, = [y 0..01,0..0 ].al = Z.a, 9)

Note that, in this formulation, the measurement noise, &, is set to zero.

As is usually the case, the state space representation given by the above
equations is not unique. In practice, it is computationally more efficient to work
with a lower dimensional state vector, since otherwise the dimension of the model
may grow so fast that estimation becomes unfeasible because of memory constraints.
This reduction in the dimensionality of the model can be achieved by filtering y,,
Y., and u, in equation (4) by D(L) and treating € as a measurement noise. The

transformed model is then
D(L).y, = D(L).y.c, + ¢ (10)

o(L).c, = M, (11)
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The resulting state vector has then dimension max(p, k+1).

DYNFAC takes advantage of this transformation but, since this is not of
interest to the user, discussion in what follows will proceed in terms of model
(4)-(6), and the corresponding reparametrization in terms of the state space form
given above.

3.2. Estimation

Once the model has been cast into the state space form, the Kalman Filter
(Kalman (1960), Kalman and Bucy (1961)) is a well-known way to compute the Gaussian
likelihood function for a given set of parameters (Schweppe (1965), Harvey (1981,
1989), Liitkepohl (1991)). The filter recursively constructs optimal estimators (in
the sense of minimizing the mean square error) of the unobserved components in the
state vector, given observations on Yy, the system matrices, Z, T, R, H and Q, and
initial conditions. Under normality assumptions the optimal estimator produced by
the Kalman Filter is the conditional expectation E(o|y,,....y,). The Kalman Filter
also provides the conditional covariance matrix Var(a,|y,,....y,), which may serve

as a measure for estimation uncertainty.

The filter consists of two sets of equations, the prediction and updating
equations.  Letting o, = E(o|y;s....y) and X, = Var(oy|y,,....y)  the
prediction equations for the Kalman Filter for system (7)/(8) are’

Oy = To0 (12)
Ly, = TX,,, T + RQR’ (13)

Prediction for y, given information up to and including t-1 is given by

Yor = Z'am—l

7 The Kalman Filter for more general systems can be found in Anderson and Moore
(1979) or Harvey (1989).
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And the updating equations for the Kalman Filter are

Oy = Oy + Zm-rle;l-Dz (14)
Ly = Ty, - Zl,[_,.Z’F;IZ.Em_l (15)
where YV, =Y - Y are the prediction €rrors, and

F, = EQOUV! |Ypny) = ZZ,,.Z" + H.

The filter needs to be initialized with oy, and X, Given the assumption
that 'y, is (covariance) stationary these initial values are taken from the
unconditional distribution of the state vector, so ag, = 0 and X, = X, being T

the unique solution of the Lyapunov equation
2 =TZXZT" + RQR’ (16)

Note that since the unconditional distribution of o, is the same as the
unconditional distribution of gy,, the Kalman Filter can also be initialized as
Oy = 0 and X, = X. The covariance matrices X,, and X,, are consistent with
each other, as can be seen by comparing (16) with the prediction equation (13).

When the system matrices, Z, T, R, H and Q, contain unknown time invariant
parameters, as is the case in the present context, they should be estimated, and
the Kalman Filter is a useful tool in computing the likelihood function for a trial
set of parameters. Assuming

ytlyl"”’yt-l ~ N(ytlt-l’ Fz) 17)

the log-likelihood function is given by

NT 1 . -1
In L() = - 2—ln(2n) - E'Z In(det(F)) + v{F;'v, (18)

t=1

where 0 is a vector that picks up all the time invariant parameters that have to be
estimated. Note that v, and F, are both functions of 8.

14




If a specific vector 8 is assumed all the quantities in the log-likelihood
function can be computed with the Kalman Filter recursions. Thus, in this way the
Kalman Filter is seen to be a useful tool for evaluating the log-likelihood
function. Given initial values, 6, equation (18) can be maximized over the

parameter space with standard numerical optimization algorithms.

3.3. Computational remarks about the Kalman Filter

Some computational aspects of the Kalman Filter need to be taken into

account.

(1) Numerical accuracy.

From the computational point of view, using the Kalman Filter recursions as
written in equations (12)-(15) is not necessarily the best way to proceed.
Computational inaccuracies may accumulate in such a way that the actually computed
covariance matrices are not positive semidefinite. Numerical modifications of the
recursions are suggested in the literature, such as the information or square root
filters, to overcome these difficulties. (Anderson and Moore (1979, Chap.-6),
Schneider (1990)).

However even if the use of square root filters are generally regarded as
being the most numerically stable algorithms, they have not been extensively used
outside engineering given that they require more programming and involve a higher
computational burden. The fact that economic time series are typically much shorter
than engineering series perhaps makes them less necessary. See however an exception
in Kitagawa (1981).

DYNFAC uses the Kalman Filter in the way equations (12)-(15) have been
written above. No computational problems have been detected even if the positive

semidefinite of the covariance matrices are not guaranteed by construction.

(2) Normality.
It is possible to justify the Kalman Filter even if the disturbances in the
state space model are not normally distributed. In this case the quantities

obtained by the recursions are no longer moments of conditional normal
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distributions but if attention is restricted to estimators that are linear
combinations of the observations, then o, is the Minimum Mean Square Linear
Estimator (MMSLE) of o, based on observations up to and including time t. (Duncan
and Horn (1972), Anderson and Moore (1979), Harvey (1981, Chap.-4, 1989), Schneider
(1988)).

However, the normality assumption is necessary to justify maximum likelihood

estimation.

(3) Initial conditions.

DYNFAC assumes that y, is stationary so the Kalman Filter is initialized
with the mean and variance of the unconditional distribution of the state vector.
DYNFAC offers two algorithms for solving for Z in equation (16).

(1) One is based on the observation that
Vee(®) = [1- ToT’ | Vec(RQR")

(i) The other is an iterative doubling algorithm.

The default algorithm is (ii) which works in all situations. When the state
vector is reasonably small both should work well, but as the state vector grows the
use of algorithm (i) may be binding because of memory or computing time

restrictions.8

In both algorithms the symmetry of X is checked before exiting the

procedure.

When the transition equation is non-stationary, the unconditional
distribution of the state vector is not defined and the above initial values are
not correct. DYNFAC, however, does not take into account this case. See de Jong
(1988, 1991), Harvey (1989) and Gémez and Maravall (1993) for a discussion about

8 Algorithm (ii) is faster for very large models. In an example it was found that
the computation time could be reduced from 20 to about 3 hours by using algorithm
(i1) instead of (i).
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this point.

Given the model (4)-(6) an interesting case arises when y, is non-stationary
so it can be characterized as integrated of order 1, I(1), and the only source of
non-stationarity enter the model through c,. In this case each element of y, would
contain a stochastic trend, but this trend would be common to each element of y,.
Thus y, would be cointegrated of order (1,1) in the sense of Engle and Granger
(1987). The current version of DYNFAC is not suitable to estimate this class of
models. Harvey, Ferndndez-Macho and Stock (1987) and King, Plosser, Stock and
Watson (1991) discuss modeling strategies of vector autoregressions with unobserved

components and cointegrated variables.

(4) Initial conditions and convergence.

For our model the covariance matrix X, , has a steady state solution, so
F, also converges to a steady state. It can be shown that, given some regularity
conditions that are satisfied in our case, convergence to the steady state is
monotonic in the sense that the variance matrix of o, exceeds the variance

matrix of o by a positive semidefinite matrix, that is X, , = X, for

+11t
some t onwards. Intuitively this follows because there is no information at time 0
and so the estimator at t is based on more information than the estimator at t-1,

and its precision, X ;, does not depend on the actual observations.

The knowledge that a state space model has a steady state Kalman filter can
be exploited in computational algorithms, since the most time-consuming part of the
filter is the updating of F,, the covariance matrix of the innovations. Thus once
it is known that X_,, has converged to I the equations (13) and (15) become
redundant, as the covariance matrix of the innovations is time invariant. In
practice it is necessary to monitor the progress of the filter in order to
determine when X, is sufficiently close to £ to deem it to have converged. This
may be carried out indirectly by examining the sequence of prediction error
covariance matrix since by a similar argument F, = F,,, so F, = F,,, = F, where F
is the steady state of F, given by

lim,, F, = F=2%£2" +H
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In fact, this is simply a consequence of the above condition, since
F,=ZZXZ,,Z’ + H and Z is of rank N, while H is a positive semidefinite matrix.

DYNFAC exploits this result in the implementation of the Kalman filter,
switching to a time invariant Kalman Filter once a suitable converge criterion is
satisfied.?

(5) Filtering and smoothing.

Sometimes reconstruction of the state vector given all sample information
Yi»---¥yr 1is of interest.!® Recursions are also available to compute oy and Z,;
for t < T. The evaluation of o for t < T is known as smoothing.

DYNFAC only performs the statistical estimation of 6 and uses the Kalman
filter to construct the log-likelihood function (18). Filtering and/or smoothing
for known (or assumed) values of the system matrices, Z, T, R, H and Q, can be done
with the additional procedures KFILTER and KSMOOTH supplied with the program.!!

4. USER INPUT INFORMATION: THE DYNFAC.RUN FILE

This section provides detailed instructions on how to use DYNFAC by means of
the command file DYNFAC.RUN.

The DYNFAC.RUN file is organized into several sections, but only the section
between USER and END USER should be changed by the user. Most of the information

> The convergence criterion is given by max(abs(F,, - F)) < €, where € is a
global variable with default value 10" and max(e) refers to the maximum element
in the matrix.

10 In business cycle analysis an estimate of the unobserved common factor ¢, given
all sample information can be used to date business cycles turning points.

11 See the information in the KFILTER.SRC and KSMOOTH.SRC files.
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the program needs is self-explanatory since comments provide "on-line" assistance,
but a brief description follows. Don’t change the name of the variables (left hand
side references), since they are used in other parts of the program.

DYNFAC is controlled with the following parameters:!2

Input/output information

Parameter Meaning
outf = "." File name for the results. This file will be located on the

directory from which you run the program, unless a path is
specified, and will be reset each time you run the program

data = "." File name for the data set. Data are assumed to be organized in

a TxN matrix. This file should be located on the directory from

which you run the program, unless a path is specified.

nvar = N Number of variables, N.
nobs = T Number of observations, T.
Transformations
Parameter Meaning
logs = 0 Don’t take logs of data.
=1 Take logs of data.
diff = 0 Don’t take differences of the data.
=1 Take differences of the data.
lags = scalar If diff is set to 1 set lags to the order of the difference.

Note that if both, logs and diff, are set to 1 logarithms are taken first so

you are performing logarithmic differences, i.e. calculating growth rates.

Transformations are applied to all variables in y. Other kind of
transformations should be performed prior to the analysis.

12 Vectors are assumed to be column vectors, unless otherwise is specified.
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Analysis to perform

Parameter
ident = 0
=1
estim = 0
=1
varde = 0
=1
irf = 0
=1

Meaning
Don’t perform identification analysis.

Perform identification analysis.

Identification is based on the correlogram and preliminary
autoregression analysis of the estimates of ¢, and u, from the
static ML estimation of (1). The order of the autoregression
comes determined by plag and klag below.

Don’t perform estimation.

Perform estimation.

After estimation a likelihood ratio test of the static factor
analysis model (1) against the specified dynamic factor analysis
model is automatically performed.

Don’t perform variance decomposition analysis after estimation.
Perform variance decomposition analysis after estimation.

In this case the variance decompositions are stored in a matrix
with rows equal to the number of elements in the vector horizon
plus one (see below) and columns equal to 2xN, the first N
columns are the percentage of variance of the forecast error
that, for each variable, can be attributed to c, and the last N
columns are the percentaje of variance that, for each variable,
can be attributed to u,.

The horizons at which the variance decomposition are calculated
are given by the vector horizon, but the last row gives the
unconditional (steady state) decomposition of variance.

Don’t perform impulse response function analysis.

Perform impulse response function analysis.

In this case the impulse response functions are stored in a
matrix with rows equal to the maximum element the vector horizon
plus one (see below) and columns equal to 2xN, the first N
columns are the impulse response functions of each variable to a
one standar deviation in 1, and the last N columns are the
impulse response functions of each variable to a one standar
deviation in €. The horizon at which the impulse response
functions are calculated are given by the maximum element in the
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vector horizon.

mar = 0 Don’t obtain the moving average responses.

=1 Obtain the moving average responses.

In this case the moving average responses are stored in a matrix
with rows equal to the maximum element the vector horizon plus
one (see below) and columns equal to N+1, the first column is
the moving average response corresponding to the AR polynomial
¢(L) and the last N columns are the moving average responses
corresponding to the AR polynomials D(L). The horizon at which
the moving average responses are calculated are given by the
maximum element in the vector horizon.

horizon = vector Horizons at which the variance decomposition is calculated. The
maximum element of this vector determines the maximum horizon in
the calculations of impulse response functions and/or moving
average responses.
It is not necessary that the elements in horizon are in

increasing order.

After estimation the one step ahead prediction errors (innovations) of the
estimated model are stored in the matrix OSAPE. The innovations are obtained from
the filtered model, so is a (T-k)xN matrix, and can be used for diagnostic testing
of the estimated model since they should be random, in particular they should be
unpredictable from lagged information, this is, lagged innovations or lagged

variables in the system.

After estimation, the vector of parameters and its covariance matrix is in
memory under the names b and cov, respectively. These can be used for further
analysis, like calculation of bootstrap confidence interval of variance

decomposition or impulse responses to shocks in the system.

State Space Information

Parameter Meaning
plag = vector Elements in the ¢(L) polynomial that are nonzero.
klag = vector Elements in the D(L) polynomial that are nonzero.
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Note that the same restrictions apply to all equations in D(L).
Example: Assume p in ¢(L) is 3 but ¢, = O, then set plag = {1, 2}. If ¢, = O,
then set plag = (1, 2, 3} or using the GAUSS function seqa(###),
plag = seqa(1,1,3). The same convention applies to k and klag.

It is no necessary that the elements in plag/klag are in increasing order.

If both plag = 0 and klag = O then we have the static factor analytic model
(1). In this case DYNFAC generates two sets of results: (i) a PRINcipal components
analysis using the PRIN procedure, and (ii) a maximum likelihood (ML) estimation of
the static factor model using the Kalman Filter algorithm described above. The ML
estimation of the static model is always printed. If in addition plag = 0 and
klag = O the results from the PRIN procedure are also printed.

Starting values for the Kalman Filter

Parameter Meaning
kf0 = 1 Direct method for solving for X in equation (16).
=2 Iterative doubling algorithm for solving for Z.

For globals used in this case see the UNCONDD.SRC file.

Starting values

Because (18) is nonlinear in 6 estimation should be performed by a nonlinear
optimization algorithm, which implies that a starting point, 6, should be
specified. There are no general methods for computing starting values and it may be
necessary to attempt the estimation from a variety of starting values. Good

starting values are crucial in reducing computing time.

The user may choose between to supply their own starting values, in which
case a vector of dimension [p + N*(k + 2)}x1 should be given in x0, where p or k
should be understood as the nonzero elements of the ¢(L) and D(L) polynomials, or
to allow DYNFAC to calculate their own starting values. Starting values provided by
DYNFAC exploit the fact that there are well known algorithms for the static version
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of our problem.!* They have been found to work well. In any case these are printed

before the results on estimation.

Parameter Meaning
x0 =0 Starting values for y and Q will be found and the elements of
o(L) and D(L) will be set to zero.
=1 Starting values for Y and Q will be found from static factor

analysis and the elements of ¢(L) and D(L) will be obtained from
preliminary regression analysis.
This is probably the best choice.

= vector Vector of dimension [p + N*(k + 2)Ix1 of starting values. Note
again that p or k should be understood as the nonzero elements
of the ¢(L) and D(L) polynomials. If starting values are
supplied it is important to know the order of the parameters in
0, first the elements in ¢(L), second the elements in D(L)
equation by equation, third the elements in y and eventually the
standard errors of €, Og....O¢ . Please note that what is

estimated are the standard errors, not the variances.

Optimization information

Eventually you can supply information about the optimization. At present
optimization is carried out by the MAXLIK module of GAUSS, so consult the MAXLIK
manual or the MAXLIK.DOC file for details, but please don’t change the _row = 0
global variable since this is used in the procedure that calculates the log-
likelihood function. By default MAXLIK uses the Broyden, Fletcher, Goldfarb and
Shanno method (Luenberger (1984)) with numerical derivatives and covariance matrix

of parameters obtained from the inverse of the Hessian.

There are currently under development two other optimization algorithms, the
EM and the scoring algorithm with analytical derivatives (Watson and Engle (1983),

13 In particular DYNFAC uses the PRINcipal components analysis (PRIN procedure) in
first instance, these estimates are used as starting values for ML estimation of
the static factor analysis, plag = klag = 0. The estimates from this procedure are
used to construct the initial starting values for final estimation.
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Harvey (1989, Chap.-3)).

Three global variables are included in the DYNFAC.RUN file, but see the
MAXLIK manual for a complete reference list.

Parameter Meaning

__title = "." Title to be printed.

_row =0 DON’T CHANGE THIS parameter.

__output = Determines printing of intermediate results. Nothing is written.

0
=1 Serial ASCII output format suitable for disk files or printers.

2 Output is suitable for screen only. ANSL.SYS must be active. See
DOS manual for details.

Once DYNFAC.RUN has been edited the program is ready to run. It can be run
fromthe dos prompt by typing GAUSSI DYNFAC.RUN or within GAUSS incommand mode
by typing RUN DYNFAC.RUN. The output file is self explanatory, and an example is
included in the next section.

5. AN EXAMPLE

In this section I present an example file together with the output file that
it produces. The example data set is in file VAB80.ASC and is supplied with DYNFAC
inthe EXAMPLES subdirectoryunderthename DYNFAC1.RUN. The VAB80.ASC contains
the gross value added sectorial series at constant prices of Garcia, Goerlich and
Orts (1994), the data set includes 14 series for the period 1964-1989, and is

organized accordingly in a 26x14 matrix.

The example DYNFAC1.RUN specifies an AR(1) for both ¢, and u, in the growth
rates of the variables. The output from the example, which follows next, is send to
the file DYNFACI.OUT. A more complex example that uses data from the Industrial
Production Index (IPI.ASC) is in DYNFAC2.RUN in the EXAMPLES subdirectory of the
distribution disk.
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DYNFAC is supplied with some other procedures that are used by the DYNFAC
program but that can be used independently. Information on the syntax of these
procedures are in the corresponding files.
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e e 0 0 N e e e e He e e e e e A B A B U6 e NN BB B A B e I A e 6 I Nl e B B U N B N B e 0 0 e 0k

* COMMAND FILE: DYNFAC.RUN *
A A A A A A HE e A A e I HE e e e A6 A6 AN N e A A A A N e 2 A e B BN e N e A A A A A 36 HE e e e e A6 HE I A N BB N6 HE N B e N B e e e e
/*

* % DYNFAC.RUN 20/6/95

** Version: 1.2 - 21/4/97

* ¥

* This is a command file to estimate a DYNAMIC FACTOR model.

* * See Goerlich (1997) "Dynamic Factor Analytic Models using DYNFAC.
** - A user guide - Version 1.2" Working Paper 97-06. IVIE.

* ¥

**  Below is provided an example.

¥ ¥

*x The user only has to change information under the headings USER.
*/

/*  Starting */
new;

library dynfac,maxlik;
#include maxlik.ext;

f jgset;

maxset;

/**********i******************************i***************************/

% USER */

/********#*****************************#******************************/

/* Input/output information */

outf = "DYNFAC1.0UT"; /* File name for output */
data = "VABSO.ASC"; /* File name for data */
nvar = 14; /* Number of variables */
nobs = 26; /* Number of observations */

/* Transformations 1 = yes, 0 = no. Applied to all variables */

logs = 1; /* Take logs */
diff = 1; /* Take differences */
lags = 1; /* Order of lags in diff  */
/*  Analysis to perform */

ident = 1; /* Identification */
estim = 1; /* Estimation */
varde = 1; /* Variance decomposition */
irf =1; /* Impulse response analysis */
mar = 1; /* Moving average responses */
horizon = {1, 5, 10}; /* Horizon for varde & irf */
/* State Space information */

plag = 1; /* AR poly in c(t) */

klag = 1; /* AR poly in ul(t) */

/*  Starting values for Kalman filter */
kfo = 2;

/* Starting values: If x0 scalar they will be calculated */
x0 = 1;

/* MAXLIK global variables: See MAXLIK.DOC for details */
_title = "Dynamic Factor Model: VAB example";
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_row = 0; /* Do not change this !!! */
__output = 2;

/**************!*******!**#***************¥**#*¥******************#***/

/* END USER */

/**************************************************************i*t****/

e e 0 e A e N A e e e A A e e e e e A A e A e I N e HE N AN N B e N A A e e e e Al e e e e B A e AN A A I A e e K ¢

* OUTPUT *

A AN N A AN A N A e N A e B N BN A NN HE N A6 N NN N NN N A A N N B Nl N

Dynamic Factor Model: VAB example - Static Analysis

MAXLIK: Version 3.1.3 4/21/97 5:21 pm

return code = 0
normal convergence

Mean log-likelihood -3.33576
Number of cases 25

Covariance matrix of the parameters computed by the following method:
Inverse of computed Hessian

Parameters Estimates Std. err. Est./s.e. Prob. Gradient
01G 0.2110 0.1996 1.057 0.1452 0.0000
02G 0.8354 0.1594 5.241 0.0000 0.0000
03G 0.8713 0.1549 5.626 0.0000 -0.0000
04G 0.6413 0.1780 3.603 0.0002 -0.0000
05G 0.7930 0.1636 4,849 0.0000 -0.0000
06G 0.4536 0.1897 2.390 0.0084 0.0000
07G 0.1607 0.2001 0.803 0.2109 0.0000
08G 0.6800 0.1747 3.892 0.0000 0.0000
09G 0.7099 0.1725 4.114 0.0000 0.0000
10G 0.1596 0.2016 0.792 0.2143 -0.0000
11G 0.7030 0.1722 4,082 0.0000 -0.0000
12G 0.6191 0.1795 3.448 0.0003 -0.0000
13G 0.8852 0.1529 5.788 0.0000 -0.0000
14G 0.6442 0.1791 3.596 0.0002 -0.0000
01s 0.9568 0.1357 7.049 0.0000 0.0000
02s 0.5120 0.0888 5.767 0.0000 0.0000
03S 0.4481 0.0842 5.322 0.0000 -0.0000
04s 0.7407 0.1102 6.723 0.0000 0.0000
05s 0.5754 0.0919 6.264 0.0000 0.0000
06S 0.8685 0.1248 6.961 0.0000 ~0.0000
07S 0.9665 0.1369 7.059 0.0000 0.0000
08Ss 0.7054 0.1061 6.647 0.0000 -0.0000
09S 0.6753 0.1037 6.512 0.0000 -0.0000
10S 0.9667 0.1370 7.057 0.0000 0.0000
118 0.6825 0.1027 6.643 0.0000 -0.0000
12S 0.7595 0.1120 6.780 0.0000 0.0000
13S 0.4201 0.0814 5.161 0.0000 -0.0000
14S 0.7382 0.1116 6.616 0.0000 0.0000




Correlation matrix

1.
0.

000
005

.043
.023

.023
.021
.026
.000

0.090
0.070
0.006

0.034
0.018
0.013

0.
0.
-0.

-0.
-0.

of the parameters

126
089
002

032
020

.008

Number of iterations
Minutes to convergence

IDENTIFICATION

0.099 0.083
0.124 0.091
0.005 0.015
-0.033 -0.011
0.037 -0.089
0.025 -0.056
14
0.25083

0.057
-0.019
0.003

0.017
0.008
0.005

.022
. 055
.025

.032
.098
.031

Asymptotic standar errors for autocorrelations 0.2000

Autocorrelation of common factor

RO1
RO2
RO3
RO4
ROS
RO6
RO7
RO8
RO9
R10

C1

.0000
.7193
.5201
. 4985
.3514
.1824
.0781
.0077
. 1355
L2759

Autocorrelation of individual

RO1
RO2
RO3
RO4
ROS
RO6
RO7
ROS8
RO9
R10

Co1
.0000
. 0492
.0244
.0883
.0995
.0363
.0824
.0665
.0800
.0020

coz
.0000
.4341
.0464
L2177
. 4027
. 3684
.2224
.0602
.2515
.3454

Autocorrelation of individual

RO1
RO2
RO3
R0O4
ROS
RO6
RO7

OO0OOO0OOOr

Cco8
. 0000
.2583
.4732
.0799
.0159
.0905
.2716

Co9
. 0000
. 1354
.0750
.1438
. 1456
. 3267
.2209

factors
Co3

.0000 1
.2660 0.
.0051 -0.
.0677 -0
.0263 -0.
.0410 -0.
.2348 -0.
.0634 -0.
.0706 0
.1579 0.

co4

.0000

3334
1842

.2027

3700
3973
1514
0144

. 3265

3752

factors (cont)

Cio0
.0000 1
.0393 -0.
L1911 -0.
.2310 -0.
.0105 0
.2180 0.
L2977 -0.

28

C11

. 0000

0999
3854
2670

. 1899

3318
0446

Cos

.0000
.0360
.0327
.3197
.0663
.0199
.2250
.1720
.1484
.1389

Ci12

.0000
.0323
.1661
.0903
.2060
. 1500
. 1525

(oMo N

-0.

-0.

.077
.033
.024

.016
.117
.026

Coé
.0000
.2841
.0512
.0651
.0733
.0159
L1177
.0709
.0478
.0144

C13
.0000
.4284
.1870
.0632
1212
.3140
4552

.077
-0.
-0.

034
016

.032
.046
. 147

co7

.0000
.1140
.3137
.1154
.0105
.3233
.2810
. 1286
.3321
.2004

Cl4

.0000
.1053
.0077
.0126
.0880
.0123
.1314



ROS8 -0.1717 0.0181 -0.0515
RO9 -0.5164 0.1695 -0.1366
R10 -0.3417 -0.0638 0.0697
Autoregression for common factor:
Lag Estimate S.E. T-stat
1 0.7209 0.1303 5.5325
Autoregression for individual factors
Factor: 1
Lag Estimate S.E. T-stat
1 0.0492 0.2077 0.2370
Factor: 2
Lag Estimate S.E. T-stat
1 0.4347 0.1875 2.3177
Factor: 3
Lag Estimate S.E. T-stat
1 -0.2669 0.1961 -1.3609
Factor: 4
Lag Estimate S.E. T-stat
1 0.3440 0.1992 1.7265
Factor: 5
Lag Estimate S.E. T-stat
1 0.0360 0.2041 0.1765
Factor: 6
Lag Estimate S.E. T-stat
1 -0.2954 0.1721 -1.7165
Factor: 7
Lag Estimate S.E. T-stat
1 -0.1143 0.2061 ~-0.5547
Factor: 8
Lag Estimate S.E. T-stat
1 0.2584 0.2014 1.2832
Factor: 9
Lag Estimate S.E. T-stat
1 -0.1360 0.2034 -0.6687
Factor: 10
Lag Estimate S.E. T-stat
1 -0.0398 0.2081 -0.1913
Factor: 11
Lag Estimate S.E. T-stat
1 -0.1000 0.2057 -0.4863
Factor: 12
Lag Estimate S.E. T-stat
1 0.0326 0.2090 0.1560
Factor: 13
Lag Estimate S.E. T-stat
1 0.4344 0.1882 2.3083
Factor: 14
Lag Estimate S.E. T-stat
1 -0.1078 0.2082 -0.5178
Starting values
0.72085216 0.049229162 0]
0.34400441 0.036016723 -0
0.25837328 -0.13603328 -0
0.032615121 0.43438948 -0
0.57899264 0.60391776 0
0.31435957 0.11140795 0

-0.1976
-0.0844
0.1746

.43466964
.29542326
.039803578
. 10779523
. 44450062
.47131986

0.1110
-0.2015
-0.0299

-0
-0.
-0.

-0.3296
-0.1959
-0.1959

. 26692729

11430116
10002056

. 14625468
.54963166
.49202091

=-0.0292
-0.2897
-0.0342




0.11060719 0.48725907 0.42905735 0.61349292
0.44651407 0.95564947 0.46109676 0.4318027S
0.69552643 0.57504456 0.82973610 0.96019903
0.68143681 0.66904094 0.96594325 0.67903233
0.75905143 0.37840002 0.73390683

Dynamic Factor Model: VAB example

MAXLIK: Version 3.1.3 4/21/97 5:27 pm

return code = 0
normal convergence

Mean log-likelihood -2.39937
Number of cases 25

Covariance matrix of the parameters computed by the following method:
Inverse of computed Hessian

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

P1 0.8130 0.1247 6.518 0.0000 0.0000
01D1 0.0361 0.2079 0.174 0.4311 -0.0000
02D1 0.5456 0.2390 2.283 0.0112 -0.0000
03D1 -0.4328 0.2034 -2.128 0.0167 0.0000
04D1 0.3127 0.2099 1.490 0.0681 -0.0000
05D1 0.0453 0.2184 0.207 0.4179 0.0000
06D1 -0.3118 0.1663 -1.875 0.0304 -0.0000
07D1 -0.1185 0.2092 -0.566 0.2856 -0.0000
08D1 0.2939 0.2065 1.423 0.0773 -0.0000
09D1 -0.0710 0.2074 -0.342 0.3660 -0.0000
10D1 -0.0548 0.2050 -0.267 0.3947 0.0000
11D1 -0.1281 0.2040 -0.628 0.2649 0.0000
12D1 0.0074 0.2285 0.032 0.4871 -0.0000
13D1 0.4523 0.3913 1.156 0.1239 -0.0000
14D1 -0.1927 0.2092 -0.921 0.1786 ~-0.0000
01G 0.1057 0.1346 0.785 0.2161 -0.0000
02G 0.6000 0.1714 3.500 0.0002 0.0000
03G 0.5690 0.1049 5.423 0.0000 -0.0000
04G 0.3786 0.1378 2.748 0.0030 0.0000
05G 0.4671 0.1106 4.225 0.0000 -0.0000
06G 0.2190 0.0800 2.737 0.0031 0.0000
07G 0.1181 0.1190 0.992 0.1605 0.0000
08G 0.4346 0.1404 3.096 0.0010 0.0000
09G 0.3999 0.1120 3.572 0.0002 0.0000
10G 0.0886 0.1220 0.726 0.2338 0.0000
11G 0.4547 0.1117 4.069 0.0000 -0.0000
12G 0.3655 0.1200 3.045 0.0012 0.0000
13G 0.6009 0.1948 3.084 0.0010 0.0000
14G 0.4527 0.1095 4.136 0.0000 -0.0000
01s 0.9757 0.1410 6.920 0.0000 0.0000
02S 0.4878 0.0920 5.303 0.0000 0.0000
03s 0.3538 0.0738 4.795 0.0000 0.0000
04s 0.6923 0.1029 6.725 0.0000 0.0000
05S 0.5605 0.0870 6.443 0.0000 0.0000




06Ss
07s
08s
09s
10S
11S
12S
13S
14S

[eNeNoNeoNeoNoNoNoNe]

Correlation matrix

OO OO0

.000
.012
.064
.187
.016

.057
.012
.014
.096
.003

0.
-0.
-0.
-0.

0.

003
006
149
145
031

.001
.002
.070
.026
.024

0.
-0.
-0.

0.
-0.

[eNeNoNoNe]

Number of iterations
Minutes to convergence

LR tests of Static Model against Dynamic

Chi-square statistic
Degrees of freedom
p-value

.6869 0.1008
.9678 0.1399
.6869 0.1039
.6874 0.1037
.9744 0.1408
.6646 0.1008
L7771 0.1146
L4243 0.0889
. 7060 0.1078
of the parameters
069 -0.045 0.002
044 -0.002 -0.125
123 -0.015 -0.101
004 0.026 -0.074
001 -0.009 0.001
.037 0.001 0.016
.021 0.001 0.048
.056 -0.012 0.044
.003 -0.088 0.029
.002 -0.029 0.016
23
3.34683

26.218928

15

0.035784

31

.814
.916
.611
. 627
.922
.596
.780
774
.548

OO OONONON O

.003
.019
.156
.016
.174

[eNeoNeoNoNe)

.005
.039
.080
.023
. 128

[eNeNeoNeoNe

Model

[eNeoNoNoNoNeNoNoNe]

- O 000

.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000

.001
.044
.022
.015
.057

.003
.002
.004
.012
.000

leBeoRoNe]

.010
.079
.090
.003

. 0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000

oNeoNoNo]

.016
.223
.115
.008

.020
.104
.042
.009
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