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FIRM-SPECIFIC TEMPORAL VARIATION IN TECHNICAL EFFICIENCY:
RESULTS OF A STOCHASTIC OUTPUT DISTANCE FUNCTION

Rafael Alvarez y Luis Orea

ABSTRACT

The aim of this paper is to test the temporal variation of technical efficiency of the
Spanish Savings Banks during the period 1985-1994. Furthermore, a stochastic output
distance function (Shephard, 1970) is employed to accommodate multiple output technology.
The distance function provides the advantage that it does not need information about prices,
so it can accommodate the multiproduct nature of the financial sector only using the quantities
as data. The temporal variation of efficiency is modeled using an extension of Battese and
Coelli (1992), allowing for firm-specific patterns of temporal change.
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RESUMEN

El objetivo de este trabajo es contrastar la variacion temporal de la eficiencia técnica
de las Cajas de Ahorros esparfolas durante el periodo 1985-1994. Para ello la tecnologia se
modeliza a través de la funcién de distancia (Shephard, 1970) y el término de ineficiencia se
especifica mediante una generalizacion del modelo propuesto por Battedk (1892). La
funcion de distancia tiene la ventaja de que puede recoger tecnologias multiproducto sin
precisar de informacién acerca de precios. Esta ventaja es mayor en un sector como el
bancario en el que, generalmente, los precios se construyen a partir de gastos, lo cual podria
suponer un problema. Por ultimo, el modelo propuesto permite que el término de ineficiencia
varie con el tiempo de forma particular para cada empresa.

Palabras Clave:Eficiencia técnica variante en el tiempo, Funciones de distancia estocasticas,
Datos de panel.



1. INTRODUCTION

In the latest years, applications using distance functions [Shephard (1970)] have begun to be
very usual [Fare et al. (1993), Lovell et al. (1994), ICaed Perelman996) or Grosskopf et al.
(1997)]. The principal advantage of distance functions is that they allow thalipos$ispecifying
a multiple-input, multiple-output technology without price information so it can accommodate the
multiproduct nature of the financial sector only using data on quantities.

On the other hand, the use of panel data to estimate frontier functions avoids restrictive
assumptions about the distribution of the error terms, and solves some econometric problems over
the cross-sectional data. In turn, it is only required to assume that technical efficiency be time-
invariant (Schmidt and Sickles, 1984). However, some researchers have focused on relaxing this
last assumption at the cost of imposing some structure on the model. Cornwell, Schmidt and Sickles
(1990), Kumbhakar (1990), Battese and IC6¥992) and Lee and Schmidt (1993) have proposed
time-varying technical efficiency panel data models. The first of these models allows for firm-
specific patterns of temporal change in technical efficiency and it models technical efficiency
through the intercept of the production frorftieThe rest of these models adopt a different
approach in that they model technical efficiency through an error component but assume that
efficiency change is the same for all firms.

In this paper, we propose a model that allows for firm-specific patterns of temporal change
in technical efficiency using an error component model. The greater flexibility of this model captures
effects not visible in models that assume a common pattern of efficiency change. Moreover, we
apply this model using a stochastic output distance function to represent the technology.

The paper unfolds as follows. In Section 2 we define output distance functions. The model
is presented in Section 3, and in the subsequent section the likelihood function and estimation issues
are discussed. An empirical example is presented in Section 5. Finally, Section 6 concludes.

! see Cornwell, Schmidt and Sickles (1990).



2. OUTPUT DISTANCE FUNCTIONS

A production technology transforming inputs: (X, X2,..., %) O 04" into outputsy = (v,
Y2yeeey W) O 04" can be represented using the technoloéy set

T={(x,y):xO00),y0g¥ ,xcan producey } [1]

The output set, P(x), denotes the set of all output Veg{(ESﬂ+M, that are obtainable from the
input vectorx [ 0. That is:

P(x)={y:(x,y)OT} [2]

The output Distance Function can be defined in terms of the output set as:
Do( X,y )= min { W>0:( £ )IP(x)} 3]

The Output Distance Function is defined as the maximum feasible expansion of the output
vector with the input vector held fixed. That is, given an input vegtdhe value of the output
distance function, &x, y), places//Do(X, y) on the outer boundary of}(and on the ray through
y. The preceding discussion suggests that the distance fundtitakeva value which is less than
or equal to one if the output vectgr,is an element of the feasible production set).Pihat is,

Do(x, y) < 1 if y O P&). However, this conclusion is only valid under the assumption of weak
disposability of outputs

The Output Distance Function is non-decreasing, positively linearly homogeneous and
convex iny, and decreasing ik (Fare and Primont, 1995). The homogeneity condition is for our
purposes one of the most important, due to the role played in the estimation process. To see this,
note that for any scal@r> 0,

? We assume that the technology satisfies the axioms listed in Fare and Primont (1995).

® Thus the assumption of weak disposability of outputs is the "price" that must be paid if the technology is
to be characterized by the Output Distance Function (Féare and Primont, 1995).



Do( X.0y)= m|n{LIJ>O( )DP(X)}‘

—mln{(—) O(W)DP(X)}— [4]

—Hmln{(—)>0 (W)DP(X)} O D.( X,Y)

On the other hand, distance functions are closely related with efficiency measurement. More
specifically, the output-oriented Farrell measure of technical efficiency is the maximal feasible radial
expansion of output vector:

DFo=max.{ Q:Q.yOP(x)} [3]

Thus, the output distance function is the inverse of the output-oriented Farrell measure of
technical efficiency, defined in [5]. This measure lies between 1 andand the greater this
measure, the smaller the efficiency. However, in order to be consistent with the most parametric
efficiency studies, we will use a measure that lies between 0 and 1. In other words, we will use
directly the value of the output distance function as a measure of efficiency. This measure will take a
value of unity ify is located on the outer boundary of the production possibility set, and a value less
than one ify is in the interior of the production possibility4set

* This is the same solution adopted by Coelli and Perelman (1996).



3. A PANEL DATA MODEL WITH TIME-VARYING TECHNICAL EFFICIENCY

As Fare and Primont (1996) demonstrate,lilegdhe duality between the revenue function
and the output distance function would lead to a typical additive-error regressioﬁ 1sodeve
write the general form of the stochastic output distance function as:

1=Do( Yit XiesB)h (&) 3 h(er )=exp(uitvie) [6]

in which deviations from 1 are accommodated in the specification of (g, a vector of
parameters, ius a one-sided efficiency component andsva standard noise component that is
assumed to follow a normal distribution with zero mean and varighce

In this model, technical efficiency is firm-specific but time-invariant. The simplest way to
generalize [6] is to allow the error component representing technical efficiency to be time-varying,
and to make some assumptions concerning its structure (Lovell, 1996). Battese lla(Gd9Oag
proposed to replace with:

uc={ exp[-n(t-T)] }u [7]

The parametrization in [7] implies that, although each producer has his own level of
technical efficiency in the last period, expf;uhe pattern of change on technical efficiency is
common to all the producers. In this paper we generalize function [7] to allow for more flexibility in
the way that technical efficiency changes over time. Specifically, we propose a model with firm-
specific patterns of temporal change. The efficiency tegmsnow defined as:

uc={exp[-& (t-T)] }u [8]

whereé; are firm-specific parameters allowing for different patterns of temporal variation among
different firms, and uis the positive truncation of a N(f)) distribution. This is a relaxation of
Battese and Coell's model.

® Note that to apply the duality between stochastic output distance functions and costs functions constant
returns to scale must be imposed (Fare and Primont, 1996). In our case, we prefer to relax the returns to scale
instead of resorting to duality.



4. THE LIKELIHOOD FUNCTION AND ESTIMATION OF INEFFICIENCY

In log terms, the stochastic distance function can be written as:
0=1In Do ( yit’Xit;B)+£it [9]

en=vier{exp[ -¢ (t-T)] }u [10]

It is assumed that the:'s are independent and identically distributed (i.i.d.) &w{p,
random variables. The sl are assumed to be non-negative truncations of ﬂneﬁ)(distribution
and the (s and thews are independeentThe next step is to find the distribution of u conditional
ong. The density functions for v and u are:

_ Lvy
(V)= g L (o ) 1
f(u)= el (R [22]
[1-F(-_)1(2m) " 0, o

where F(-) represents the cumulative probability density function of a standard normal random

variable. Since they are independent, the joint probability density function (pdf) of v and u is the
product of their individual densities:

L exp[ -2 (U H LY

Fluv)= H 2 2
[1-F(-g)](2ﬂ)ouav Ou Ov

)1 [13]

In vectorial notation, let ivbe the (Tx1) vector of the w¥s associated with the; T
observations for the i-th firm. Using results from the multivariate normal distribution when the T
observations are independent, we obtain:

® Without the restrictions implied by linear homogeneity in outputs, the parameters of the model cannot be
estimated. This problem @hviously due to the fact that the regressand is a constant. However, as long as the
homogeneity restrictions are imposed, least squares will provide estimates of all the regression parameters.



f(uw )= 1 exp[ - T(UTH yp tove vy g

2

[1-F(-Ey1c2m)y™vi2g, o0 2 ow - 2 o
g

Usingeir = Vit + { exp [-€ (t-T)] } ui, and being:i the (Tx1) vector of thest's associated
with the T observations for the i-th firm, the joint pdf of §) is:

F(ue)= . 1 exp{ - [ (UK ¥
[1-F (- ) 1(2m )" g,0) o

u

[15]

LCei-expl-&(t-T)]u)(e-exp[-&(t-T)] Ui)] }
Ov

This expression is quite similar to [A.7] in Battese and Co#i92) except for the
specification oki. The density function af, obtained by integrating fi(i) over the range ofi,u
namely u> O, is:

f(fi): 1 J gi [1_F(_L|*)]f[(glt'l-'lexp[-£|(t-T)])Gl][16]
[1-F(-)] Ou Ov i Ou0v

where f(-) represents the pdf of a standard normal random variable and:

po, + exp{ -&(t-T)}eo)

I"li*: 2 [ 2 [17]
o tlexp{-{(t-T)}]'[exp{-&(t-T)}]ou
Gi*: . Guz ’sz . [18]
o tlexp{-&(t-T)} ' [exp{-&(t-T )} ]ou
Therefore, the conditional density ofivens; is the ratio of [15] to [16]:
f(ule )= - expl -5 (4 H ] [19]
[1-F(-E)1(2m) %0 |

o



This is the density function of the positive truncation of ep*Nf*Z) distribution.
Expression [19] is identical to [A.11] of Battese and Cak8ib@), though the definition @f* and

o* in [17] and [18] differs from their paper.

The likelihood function can be written as the product of density functions in [16]. For
computational purposes it is convenient to rewrite [16] as:

expl - L2y (B (Bt yaer (B
A — Z [20]
(av2+[exp{-fi(t-T)}]'[exp{-fi(t-T)}]auz)“Z[1-F(-aﬁ)](zn)“’zasrl

f(ei)=

The log-likelihood function of the output distance function model [9] and [10] is:

n(n'iy)=-2(ST)N(27)-2 5 (Ti-Din(0.)-

_;Z'n(av2+[ exp{ - & (t-T ) 1'[exp{ -& (t-T)}1 a0, )-

_NIn[1-F(-H )]+ZIn[1-F(-g:
Ou

)]-

A (NDo(y.X.B))(-NDo(yXx.B))y Ly (M, L B e 21
1 . -oNC o3y By

wheren* = (8, 0”, ou’, 1, &)

As we said before, the homogeneity restrictions must be imposed to estimate the model. We
have two alternatives, and equivalent, ways to do it. First, we can estimate the output distance
function (the regressand being a constant) with the homogeneity restrictions on the parameters.
Second, linear homogeneity in the output quantities implies a regression of the general form:



L Du(YxaiB)N(en) 22]

Nit

where v = (YulYnit, YeilYni, -.., Wei/ynir). In practice, we can choose one output and re-write the
constant regressand and the other outputs using the selected output as a numeraire (see Grosskopf
et al., 1997). The choice of the output is arbitrary and the resulting estinialbesinvariant to the

normalization. While such a scaling is not necessary for estimation purposes, we follow this strategy
to impose the homogeneity restrictions

In addition, we adopt the standard flexible translog functional form to represent the
technology, including dummy variablesy([b account for temporal effects. So, the generic model,
defined in [9] and [10], can be written in logs terms as (using [22]):

-Iny,; = Qo+ ZétDt ZakInan ZB Iy, + ZZakhlnxk.tlnxh.t

[23]
N 1N-1 M N-1 .
Z Zﬁjhlnyjltlnyhlt Z Zyk,- InintInyjit+Vit+{ exp[ -Ei( t-T )] }Ui
=
where
. Yii
Yiit= = [24]
Ynit

Technical efficiency indexes are obtained directly from the value of the stochastic distance

function. In other words, the technical efficiency indexes are obtained from the following
expression:

TE=Do( ¥ xt:B) expvie)=exp{ -uiexp[ -& (t-T )]} [25]

On the other hand, both inputs and outputs appear as regressors in distance functions, so we
should be explicit about the possibility of simultaneous equation bias. When we are working with
output (input) distance functions, the inputs (outputs) should be treated as exogenous and the
outputs (inputs) will be endogenous. However, Coelli and Pereb®@6) argue that when the

" An application using this scaling is Coelli and Perelman (1996).

10



normalization in [22] is used, only output ratios appear as regressors and these ratios may be
assumed to be exogenous since the output distance function is defined for radial expansion of all
outputs given the input levels, and hence by definition the output ratios are held constant for each

firm®.

5. EMPIRICAL ILLUSTRATION: THE SPANISH SAVINGS BANKS

The model developed above is illustrated with an empirical application to the Spanish
Savings Banks. The data are yearly data (1985-1994) from the Confederacion Espariola de Cajas de
Ahorros (CECA). A considerable number of mergers and acquisitions have occurred in this period,
raising questions about the best way to treat this issue. The approach followed in this paper is the
use of an unbalanced panel. The merged entities disappear from the sample and appear as a different
entity (result of that merger). Thereby, the number of firms declines from 77 the first year to 47 the
last year, being 642 the total number of observations.

Nevertheless, the use of an unbalanced panel also has its limitations, since the problem is not
simply related with the loss of data, but also with the possibility that the disappearance maybe lead
to attrition problems. If the probability that the observations disappear from the sample is correlated
with the phenomenon being modeled, then traditional statistical methods will result in biased and
inconsistent estimates (Hsiao, 1986). Weassume that such correlation does not exist, since the
correction of the possible bias would vindicate for itself a new investigation.

Three outputs and three inputs are included. The outputs gr&ofyds, cash and other
assets different from loanszfyoans to non-banks; and)yPeposits from non-banks and banks.
The inputs are: ¢x Physical Capital, measured by the value of fixed assets in the balahce; (x
Labor, measured by the wage expenses, implicitly assuming equal input prices for llarahks
(x3) Other Expenses.

® The same argument can be used with input distance functions.

® An alternative would be to use a variable measured in physical units, vg. the number of workers. However,
even in this case we need the implicit assumption of homogeneous staff composition among the firms. In
principle, this last option seems to introduce more important problems that the one chosen because prices do
not vary much from one firm to another due to the great similarities in all the wage agreements. The same
approach was used by Berg et al. (1991) for the Norwegian Banks.

11



The empirical results for the estimated model are presented in Tables T anti the
coefficients are highly significant and the elasticities possess the expected signs at the geometric
mean. Therefore, at this point, the estimated distance function fulfills the property of monotonicity
(non-decreasing in outputs and decreasing in inputs).

TABLE 1: Maximum-likelihood estimates (frontier parameters) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES
Constant oo -0.0996™ CxK Yea 0.1323

(0.0164) (0.0921)
Other Assets (A) Bt 0.0993* CxE V25 -0.4200*
(0.0420) (0.1166)
Credits (C) B2 0.5839* LxK 034 0.1468*
(0.0450) (0.0577)
Labor (L) o3 -0.5587* LxE oz 0.3576*
(0.0262) (0.1128)
Capital (K) o4 -0.0773% KxE o4s -0.1162*
(0.0184) (0.0552)
O. Expenses (E) as -0.2722* Dss Os6 -0.0287*
(0.0236) (0.0089)
A? B 0.2345 Dg7 3e7 -0.0967*
(0.2797) (0.0105)
c Bz 0.9323* Dss ss -0.2014*
(0.2683) (0.0125)
L? 0z -0.4774% Dso Bso -0.2117%
(0.1240) (0.0147)
K? 044 -0.0372 Dso %0 -0.2001*
(0.0497) (0.0172)
E ass -0.3434% Da1 o1 0.2771%
(0.1227) (0.0197)
AxC P2 0.3456 Do> 302 -0.3221%
(0.2931) (0.0223)
AxL yis 0.3698* Dos 303 -0.3293*
(0.1281) (0.0254)
AxK yi4 0.1244 Dos o4 -0.4259%
(0.0815) (0.0296)
AXE yis -0.5674** o’ =a’+a’ 0.2642%
(0.1264) (0.0533)
CxL ye3 0.2785* lambda =gu/ov 0.0093*
(0.1252) (0.0020)

(1) Standard Errors in parentheses.
(2) ** (*) Parameter significant at 99% (95%) confidence level.

TABLE 2: Maximum -likelihood estimates (efficiency parameters)

1% The value of the parameters that maximize the log-likelihood function [21] were solved using GAUSS.

12



PARAMETER ESTIMATES PARAMETER ESTIMATES

& -0.0479* 23 0.0523*
(0.0223) (0.0317)

&2 -0.1377* S24 -0.0441
(0.0646) (0.0300)

& -0.1230%* 25 0.1105*
(0.0388) (.00477)
& 0.0524 &2 -0.0702**
(0.0436) (0.0194)

& 0.0330 &7 -0.0001
(0.0337) (0.0100)

& -0.0183 28 0.1051**
(0.0240) (0.0354)

&7 -0.0381* E29 -0.0006
(0.0175) (0.0116)

s 0.1108 Ea0 -0.0161
(0.1114) (0.0255)

) 0.0349 & -1.0890
(0.0515) (1.4544)
Z10 -0.2413* & -0.0994**
(0.1174) (0.0321)

&n -0.5821* 1) -3.7497
(0.3469) (71.555)

Z12 -1.8213 T 0.1400**
(11.5778) (0.0315)

f13 -0.1639** 35 0.0102
(0.0621) (0.0141)
1 -2.8765 £ -0.1017*
(4.0301) (0.0214)

&15 -0.1079** Ea7 -0.0347
(0.0361) (0.0232)

16 -0.0694* 38 -0.0276
(0.0364) (0.0306)
Sz -0.0489** 30 -0.0256**
(0.0123) (0.0100)
18 0.1230** Za0 -0.0972**
(0.0518) (0.0188)

10 0.0918* En -0.0316
(0.0432) (0.0590)

E20 0.0881** Ea2 -0.0268
(0.0275) (0.0693)
i 0.0232 Ea3 -0.0536**
(0.0196) (0.0208)

& -4.1441 Saa -0.0099
(11.6593) (0.0140)

TABLE 2: Maximum -likelihood estimates (efficiency parameters)Continuation)
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PARAMETER ESTIMATES PARAMETER ESTIMATES
S5 -0.0707* o7 -0.0548
(0.0174) (0.0522)
Sa6 -0.0952* e -0.0728*
(0.0525) (0.0235)
2% -0.0655* 6o -0.0186
(0.0381) (0.0417)
S8 0.0126 E70 -0.1208*
(0.0085) (0.0374)
S0 -0.0062 in -0.1999*
(0.0199) (0.0963)
€50 0.0750* 132 -2.1362
(0.0405) (2.5956)
Es1 -0.0382 &3 0.3056**
(0.0270) (0.0908)
52 -0.0126 E7a -2.0533
(0.0180) (10.6507)
53 -0.1387 138 -0.0496
(0.1109) (0.0308)
54 -0.0745 &6 -0.1319*
(0.1331) (0.0323)
Es5 -0.3081 1344 -0.0163
(0.1912) (0.0304)
Es6 -0.0152 g8 0.0361
(0.0144) (0.0364)
Es7 -0.0446* E79 -0.3537*
(0.0198) (0.1750)
Es8 -0.0957* g0 -0.0244
(0.0312) (0.0354)
Es0 -0.0338 a1 0.0240
(0.0230) (0.0349)
60 0.0701* a2 -0.2623*
(0.0417) (0.0694)
o1 -0.0344 a3 -0.0973*
(0.0256) (0.0393)
62 -0.3078* es -0.0226
(0.0664) (0.0877)
63 0.0418 a5 -0.3834
(0.0282) (0.2588)
es -0.0883* a6 -0.4506*
(0.0264) (0.1086)
65 -0.1393* a7 -0.1097*
(0.0309) (0.0540)
66 0.0468 a8 -0.0175
(0.0377) (0.0727)

14




Following Fare and Primont (1996), the scale elasticity is given by:

d0Iné
0InA

& (X,y)= [26]

where:

Do (AX,0y)=1 [27]

The scale elasticity is the proportional increase in all outputs caused by an increase of the same
proportion in all inputs. Applying the implicit function rule to [26] and the homogeneity condition in the
output vector, the scale elasticity is:

EE ( X,y )=-A«Do ( X,y)X [28]

In words, the scale elasticity is the negative of the sum of the input elasticities. The scale elasticity,
in the approximation point, is 0.9082, indicating the presence of decreasing returns to scale at the mean.

The parameters relating to the temporal variation of technical efficiency are presented in Table 2.
Results show that there are @parameters not statistically different from zero, so we cannot reject the
time-invariant technical efficiency hypotheses for those 45 firms. There are 10 firms that improve their
technical efficiency level during the period, and 33 that are getting worse. All these results are obtained
using the 90% confidence level. If we use the 95% criterion, there greo@&@ameters not statistically
different from zero with only 5 firms improving their technical efficiency levels.

Since the proposed method is a slight modification of the BC model, results are compared with
those obtained from BC's application (imposing the restriction of €qaabss firms). Table 3 lists the
results of the application of the BC model to the same data.

As can be seen, the frontier parameters are quite similar to those obtained with our madel. The
parameterr{ in their notation) is negative and not statistically different from zero at the 95% confidence
level. If we compare this result with the outcome in Table 2, we can conclude that our model captures
effects not visible in the Battese and Co&li92) model, and, by extension, not visible in all those models
in which a common pattern of efficiency change is asstimed

" For example, the models by Kumbhakar (1990) and Lee and Schmidt (1993).
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TABLE 3: Maximum-likelihood estimates (Battese and Coli, 1992) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES
Constant oo -0.2008** CxE V25 -0.3238**
(0.0296) (0.1259)
Other Assets (A) B1 0.1980* LxK O34 0.1785*
(0.0464) (0.0671)
Credits (C) B2 0.5478* LxE 035 0.3492*
(0.0462) (0.1182)
Labor (L) o3 -0.5762* KxE 045 -0.1928*
(0.0333) (0.0567)
Capital (K) oa -0.0492* Dss 386 -0.0248*
(0.0199) (0.0111)
O. Expenses (E) as -0.2475* Ds7 87 -0.0793*
(0.0236) (0.0125)
A? Bu1 0.2212 Dss Ses -0.1759*
(0.2548) (0.0141)
c? B2z 0.3046 Dso o) -0.1836*
(0.2559) (0.0158)
L? 033 -0.5786™ Dgo 390 -0.1526*
(0.1300) (0.0179)
K? Olas 0.0230 Do1 So1 -0.2122*
(0.0557) (0.0202)
E o5 -0.2095 Do2 302 -0.2395*
(0.1315) (0.0219)
AxC [P -0.1899 Do3 303 -0.2321*
(0.2715) (0.0233)
AxL yi3 0.2149 Do S04 -0.2985*
(0.1444) (0.0250)
AxK Y14 0.1494* o’ =a’+a’ 0.2219*
(0.0883) (0.0478)
AxE yis -0.4271* lambda =gu/ov 0.0189*
(0.1384) (0.0046)
CxL Y23 0.0992 H -0.0001
(0.1282) (0.0060)
CxK Y24 0.2197*
(0.0917)

(1) Standard Errors in parentheses.
(2) ** (*) Parameter significant at 99% (95%) confidence level.




The BC model is nested in our model and we can therefore impose the reséieions. = =¢
in order to test the hypothesis of common pattern of efficiency change across firms. This hypothesis is
strongly rejected by the likelihood ratio statistic of 290.04. In other words, the new model is shown to be
a preferable specification for these data.

To obtain the technical efficiency indexes, we reestimate the model imposing the restriction of
&=0 on all those firms whosg parameter is not statistically different from zero at the 90% confidence
level, in order to improve the precision of the technical efficiency estifhakbe results of the estimation
of this restricted model are shown in Table 4 and the parameters relating to the temporal variation of
technical efficiency are presented in Table 5. The restricted model is not rejected by the likelihood ratio
statistic of 46.42 (the ratio is distributga with degrees of freedom equal to the number of restrictions
under the null, so the critical value is 61.37). The parameters are quite similar to those obtained with the
unrestricted model, they are significant and again the elasticities possess the expected signs.

With this new estimation, we obtain the technical efficiency indexes by applying equation [25].
Summary statistics of the predicted technical efficiency indexes appear in Table 6 (frms with the
maximum and minimum value in each year are in parentheses). Mean technical efficiency is decreasing
over time from 0.6853 in 1985 to 0.6656 in 1994.

The efficiency ranking changes each year: firm number 33 is the most efficient in the period 1985-
89 and firm number 87 is the most efficient from 1990 to 1994. Firm number 48 is the least efficient in the
period 1985-89. Firm 68 is the least efficient in 1990 and firm number 17 is the least efficient firm from
1991 to 1994. The changes in the rankings are due to thditfeaftithe model, with the largest change
occurring in firm 88. This firm goes from number 7 in the ranking in 19918(§EE:0.8709) to number 26
(TE881994=0.6488). In only four years (this firm is the result of a merger in 1991) it loss 23 points in its
efficiency level.

12 Stronger assumptions generate stronger results, but they strain one’s conscience more. In general, the choice of
maintained assumptions can only be determined by a careful consideration of the data and the characteristics of the
industry under study (Bauer, 1990, p. 41). In this case, we impose those restrictions due to the fact that we cannot
reject that they are different from zero.



TABLE 4: Maximum-likelihood estimates. Restricted model (frontier parameters) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES
Constant oo -0.2253* CxK yea 0.1470*
(0.0308) (0.0802)
Other Assets (A) B1 0.1210* CxE Y25 -0.3864*
(0.0398) (0.1227)
Credits (C) B2 0.5799* LxK 034 0.1551*
(0.0396) (0.0548)
Labor (L) o3 -0.5877* LxE 035 0.2693*
(0.0309) (0.1110)
Capital (K) oa -0.0478* KxE 045 -0.0825*
(0.0162) (0.0486)
O. Expenses (E) as -0.2713* Dss 66 -0.0231*
(0.0207) (0.0085)
A? Bu1 0.2624 Ds7 387 -0.0853*
(0.2483) (0.0098)
c? B2z 0.9160* Dss Ses -0.1862*
(0.2328) (0.0112)
L? 033 -0.4139* Dso o) -0.1927*
(0.1286) (0.0125)
K? Olas -0.0406 Dgo 390 -0.1761*
(0.0439) (0.0141)
E o5 -0.2868* Do1 So1 -0.2470*
(0.1199) (0.0156)
AxC [P 0.3972* Do2 302 -0.2864*
(0.2660) (0.0170)
AxL yi3 0.2743* Do3 303 -0.2890*
(0.1318) (0.0178)
AxK yia 0.1861* Do S04 -0.3733*
(0.0730) (0.0189)
AXE yis -0.5459** o’ =o’+a’ 0.3001*
(0.1229) (0.0571)
CxL Y23 0.2513* lambda =gu/ov 0.0080**
(0.1294) (0.0017)

(1) Standard Errors in parentheses.
(2) ** (*) Parameter significant at 99% (95%) confidence level.




TABLE 5: Maximum -likelihood estimates. Restricted model (efficiency parameters) (1)(2)

PARAMETER ESTIMATES PARAMETER ESTIMATES PARAMETER ESTIMATES
& -0.0336* E26 -0.0613* I -0.2501*
(0.0169) (0.0167) (0.0580)
& -0.0497 E2 0.0897* I -0.0409*
(0.0526) (0.0278) (0.0170)
& -0.0918* £ -0.0657* Eos -0.0980*
(0.0290) (0.0206) (0.0229)
& -0.0194* Ea 0.1101* Eos -0.0879*
(0.0119) (0.0240) (0.0220)
£10 -0.0590 Eas -0.0665* &0 -0.0943
(0.0597) (0.0150) (0.0304)
3 -0.1609* Ea0 -0.0241% i -0.0679*
(0.1024) (0.0076) (0.0420)
38 -0.0976* Ea0 -0.0662* Ers 0.2290*
(0.0426) (0.0138) (0.0600)
E1s -0.0915* £ -0.0263* & -0.0807*
(0.0296) (0.0146) (0.0237)
E16 -0.0486* Eas -0.0485* Eo1 -0.2663*
(0.0261) (0.0130) (0.1476)
&7 -0.0453* Eas -0.0334* I -0.1762%
(0.0107) (0.0250) (0.0550)
E1s 0.0900* Ea -0.0409* Eos -0.0566*
(0.0346) (0.0299) (0.0398)
E10 0.0688* E50 0.0608* Eos -0.3808*
(0.0324) (0.0298) (0.0913)
£20 0.0712* Es7 -0.0215* Eao -0.0861*
(0.0168) (0.0133) (0.0516)
&2 0.0423* Ess -0.1001*
(0.0225) (0.0309)
&2 0.0989* E60 0.0537*
(0.0319) (0.0317)

(1) Standard Errors in parentheses.
(2) ** (*) Parameter significant at 99% (95%) confidence level.
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TABLE 6: Technical efficiency indexes. Descriptive Statistics

YEAR MAX (FIRM) MIN (FIRM) MEAN
1985 0.9896 (33) 0.3623 (48) 0.6853
1986 0.9896 (33) 0.3623 (48) 0.6833
1987 0.9896 (33) 0.3623 (48) 0.6808
1988 0.9896 (33) 0.3623 (48) 0.6777
1989 0.9896 (33) 0.3623 (48) 0.6774
1990 0.9643 (87) 0.3310 (68) 0.6682
1991 0.9643 (87) 0.3489 (17) 0.6771
1992 0.9643 (87) 0.3322 (17) 0.6756
1993 0.9643 (87) 0.3157 (17) 0.6744
1994 0.9643 (87) 0.2992 (17) 0.6656

6. CONCLUDING REMARKS

In this paper a model for efficiency measurement with panel data has been proposed and applied in
an Output Distance Function framework. The distance function has the advantage that it does not need
information about prices, so it can accommodate multioutput technologies using only the quantities as
data. Unlike Kumbhakar (1990), Battese and IC6#992), and Lee and Schmidt (1993), the model
allows for firm-specific patterns of efficiency temporal change. The background is similar to the paper of
Cornwell, Schmidt and Sickles (1990) but here we model technical efficiency through an error component
whereas they model it through the intercept of the production frontier. This is a plausible extension of
previous models, and it is supported by the data to which we apply it.
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