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FIRM-SPECIFIC TEMPORAL VARIATION IN TECHNICAL EFFICIENCY:

RESULTS OF A STOCHASTIC OUTPUT DISTANCE FUNCTION

Rafael Álvarez y Luis Orea

A B S T R A C T

The aim of this paper is to test the temporal variation of technical efficiency of the

Spanish Savings Banks during the period 1985-1994.  Furthermore, a stochastic output

distance function (Shephard, 1970) is employed to accommodate multiple output technology. 

The distance function provides the advantage that it does not need information about prices,

so it can accommodate the multiproduct nature of the financial sector only using the quantities

as data.  The temporal variation of efficiency is modeled using an extension of Battese and

Coelli (1992), allowing for firm-specific patterns of temporal change.

Key words: Time-varying Technical Efficiency, Stochastic Distance Functions, Panel Data.

R E S U M E N

El objetivo de este trabajo es contrastar la variación temporal de la eficiencia técnica

de las Cajas de Ahorros españolas durante el periodo 1985-1994. Para ello la tecnología se

modeliza a través de la función de distancia (Shephard, 1970) y el término de ineficiencia se

especifica mediante una generalización del modelo propuesto por Battese y Coelli ( 1992). La

función de distancia tiene la ventaja de que puede recoger tecnologías multiproducto sin

precisar de información acerca de precios. Esta ventaja es mayor en un sector como el

bancario en el que, generalmente, los precios se construyen a partir de gastos, lo cual podría

suponer un problema. Por último, el modelo propuesto permite que el término de ineficiencia

varíe con el tiempo de forma particular para cada empresa.

Palabras Clave: Eficiencia técnica variante en el tiempo, Funciones de distancia estocásticas,

Datos de panel.
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1. INTRODUCTION

In the latest years, applications using distance functions [Shephard (1970)] have begun to be

very usual [Färe et al. (1993), Lovell et al. (1994), Coelli and Perelman (1996) or Grosskopf et al.

(1997)]. The principal advantage of distance functions is that they allow the possibility of specifying

a multiple-input, multiple-output technology without price information so it can accommodate the

multiproduct nature of the financial sector only using data on quantities.

On the other hand, the use of panel data to estimate frontier functions avoids restrictive

assumptions about the distribution of the error terms, and solves some econometric problems over

the cross-sectional data. In turn, it is only required to assume that technical efficiency be time-

invariant (Schmidt and Sickles, 1984). However, some researchers have focused on relaxing this

last assumption at the cost of imposing some structure on the model. Cornwell, Schmidt and Sickles

(1990), Kumbhakar (1990), Battese and Coelli (1992) and  Lee and Schmidt (1993) have proposed

time-varying technical efficiency panel data models. The first of these models allows for firm-

specific patterns of temporal change in technical efficiency and it models technical efficiency

through the intercept of the production frontier1. The rest of these models adopt a different

approach in that they model technical efficiency through an error component but assume that

efficiency change is the same for all firms.

In this paper, we propose a model that allows for firm-specific patterns of temporal change

in technical efficiency using an error component model. The greater flexibility of this model captures

effects not visible in models that assume a common pattern of efficiency change. Moreover, we

apply this model using a stochastic output distance function to represent the technology.

The paper unfolds as follows. In Section 2 we define output distance functions. The model

is presented in Section 3, and in the subsequent section the likelihood function and estimation issues

are discussed. An empirical example is presented in Section 5. Finally, Section 6 concludes.

                                           
    1 See Cornwell, Schmidt and Sickles (1990).
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2. OUTPUT DISTANCE FUNCTIONS

A production technology transforming inputs x = (x1, x2,..., xN) ∈ ℜ+
N into outputs  y = (y1,

y2,..., yM) ∈ ℜ+
M can be represented using the technology set2:

The output set, P(x), denotes the set of all output vectors, y ∈ ℜ+
M, that are obtainable from the

input vector x ∈ ℜ+
N. That is:

The output Distance Function can be defined in terms of the output set as:

The Output Distance Function is defined as the maximum feasible expansion of the output

vector with the input vector held fixed. That is, given an input vector, x, the value of the output

distance function, DO(x, y), places y/DO(x, y) on the outer boundary of P(x) and on the ray through

y. The preceding discussion suggests that the distance function will take a value which is less than

or equal to one if the output vector, y, is an element of the feasible production set, P(x). That is,

DO(x, y) � 1 if  y ∈ P(x). However, this conclusion is only valid under the assumption of weak

disposability of outputs3.

The Output Distance Function is non-decreasing, positively linearly homogeneous and

convex in y, and decreasing in x (Färe and Primont, 1995). The homogeneity condition is for our

purposes one of the most important, due to the role played in the estimation process. To see this,

note that for any scalar θ > 0,

                                           
    2 We assume that the technology satisfies the axioms listed in Färe and Primont (1995).

    3 Thus the assumption of weak disposability of outputs is the "price" that must be paid if the technology is
to be characterized by the Output Distance Function (Färe and Primont, 1995).
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On the other hand, distance functions are closely related with efficiency measurement. More

specifically, the output-oriented Farrell measure of technical efficiency is the maximal feasible radial

expansion of output vector:

Thus, the output distance function is the inverse of the output-oriented Farrell measure of

technical efficiency, defined in [5]. This measure lies between 1 and +�, and the greater this

measure, the smaller the efficiency. However, in order to be consistent with the most parametric

efficiency studies, we will use a measure that lies between 0 and 1. In other words, we will use

directly the value of the output distance function as a measure of efficiency. This measure will take a

value of unity if y is located on the outer boundary of the production possibility set, and a value less

than one if y is in the interior of the production possibility set4.

                                           
    4 This is the same solution adopted by Coelli and Perelman (1996).
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3. A PANEL DATA MODEL WITH TIME-VARYING TECHNICAL EFFICIENCY

As Färe and Primont (1996) demonstrate, recalling the duality between the revenue function

and the output distance function would lead to a typical additive-error regression model5. So, we

write the general form of the stochastic output distance function as:

in which deviations from 1 are accommodated in the specification of h(.), β is a vector of

parameters, ui is a one-sided efficiency component and vit is a standard noise component that is

assumed to follow a normal distribution with zero mean and variance σv
2.

In this model, technical efficiency is firm-specific but time-invariant. The simplest way to

generalize [6] is to allow the error component representing technical efficiency to be time-varying,

and to make some assumptions concerning its structure (Lovell, 1996). Battese and Coelli (1992)

proposed to replace ui with:

The parametrization in [7] implies that, although each producer has his own level of

technical efficiency in the last period, exp{-ui}, the pattern of change on technical efficiency is

common to all the producers. In this paper we generalize function [7] to allow for more flexibility in

the way that technical efficiency changes over time. Specifically, we propose a model with firm-

specific patterns of temporal change. The efficiency term (uit) is now defined as:

where ξi are firm-specific parameters allowing for different patterns of temporal variation among

different firms, and ui is the positive truncation of a N(0,σ2) distribution. This is a relaxation of

Battese and Coelli's model.

                                           
    5 Note that to apply the duality between stochastic output distance functions and costs functions constant
returns to scale must be imposed (Färe and Primont, 1996). In our case, we prefer to relax the returns to scale
instead of resorting to duality.

) v + u (  = )   ( h    ;    )  (  h ) ; x   ,y ( D =1 ti iti ti ti ti o expεεβ [6]

u } ] ) T - t (  - [   { = u iti ηexp [7]

u } ] ) T - t (   - [  { = u iiti ξexp [8]
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4. THE LIKELIHOOD FUNCTION AND ESTIMATION OF INEFFICIENCY

In log terms, the stochastic distance function can be written as:

εβ ti ti ti o  + )  ; x  ,y ( D  = 0 ln [9]

u } ] ) T - t (   - [  { + v = iiti ti ξε exp [10]

It is assumed that the vit´s are independent and identically distributed (i.i.d.) N(0,σv
2)

random variables. The ui´s are assumed to be non-negative truncations of the N(µ,σu
2) distribution

and the ui´s and  the vit´s are independent6. The next step is to find the distribution of u conditional

on ε. The density functions for v and u are:

where F(·) represents the cumulative probability density function of a standard normal random

variable. Since they are independent, the joint probability density function (pdf) of v and u is the

product of their individual densities:

In vectorial notation, let vi be the (Tix1) vector of the vit's associated with the Ti

observations for the i-th firm. Using results from the multivariate normal distribution when the Ti

observations are independent, we obtain:

                                           
    6 Without the restrictions implied by linear homogeneity in outputs, the parameters of the model cannot be
estimated. This problem is obviously due to the fact that the regressand is a constant. However, as long as the
homogeneity restrictions are imposed, least squares will provide estimates of all the regression parameters.
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Using εit = vit + { exp [-ξi (t-T)] } ui, and being εi the (Tix1) vector of the εit's associated

with the Ti observations for the i-th firm, the joint pdf of (ui,εi) is:

This expression is quite similar to [A.7] in Battese and Coelli (1992) except for the

specification of εi. The density function of εi, obtained by integrating f (ui, εi) over the range of ui,

namely ui � 0, is:

where  f (·) represents the pdf of a standard normal random variable and:

Therefore, the conditional density of ui given εi is the ratio of [15] to [16]:
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This is the density function of the positive truncation of a N(µ*,σ*2) distribution.

Expression [19] is identical to [A.11] of Battese and Coelli (1992), though the definition of µi* and

σi* in [17] and [18] differs from their paper.

The likelihood function can be written as the product of density functions in [16]. For

computational purposes it is convenient to rewrite [16] as:

The log-likelihood function of the output distance function model [9] and [10] is:

where η* = (β', σv
2, σu

2, µ, ξi)'.

As we said before, the homogeneity restrictions must be imposed to estimate the model. We

have two alternatives, and equivalent, ways to do it. First, we can estimate the output distance

function (the regressand being a constant) with the homogeneity restrictions on the parameters.

Second, linear homogeneity in the output quantities implies a regression of the general form:
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where y*it = (y1it/yNit, y2it/yNit, ..., yN-1it/yNit). In practice, we can choose one output and re-write the

constant regressand and the other outputs using the selected output as a numeraire (see Grosskopf

et al., 1997). The choice of the output is arbitrary and the resulting estimates will be invariant to the

normalization. While such a scaling is not necessary for estimation purposes, we follow this strategy

to impose the homogeneity restrictions7.

In addition, we adopt the standard flexible translog functional form to represent the

technology, including dummy variables (Dt) to account for temporal effects. So, the generic model,

defined in [9] and [10], can be written in logs terms as (using [22]):

where

Technical efficiency indexes are obtained directly from the value of the stochastic distance

function. In other words, the technical efficiency indexes are obtained from the following

expression:

On the other hand, both inputs and outputs appear as regressors in distance functions, so we

should be explicit about the possibility of simultaneous equation bias. When we are working with

output (input) distance functions, the inputs (outputs) should be treated as exogenous and the

outputs (inputs) will be endogenous. However, Coelli and Perelman (1996) argue that when the

                                           
    7 An application using this scaling is Coelli and Perelman (1996).
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normalization in [22] is used, only output ratios appear as regressors and these ratios may be

assumed to be exogenous since the output distance function is defined for radial expansion of all

outputs given the input levels, and hence by definition the output ratios are held constant for each

firm8.

5. EMPIRICAL ILLUSTRATION: THE SPANISH SAVINGS BANKS

The model developed above is illustrated with an empirical application to the Spanish

Savings Banks. The data are yearly data (1985-1994) from the Confederación Española de Cajas de

Ahorros (CECA). A considerable number of mergers and acquisitions have occurred in this period,

raising questions about the best way to treat this issue. The approach followed in this paper is the

use of an unbalanced panel. The merged entities disappear from the sample and appear as a different

entity (result of that merger). Thereby, the number of firms declines from 77 the first year to 47 the

last year, being 642 the total number of observations.

Nevertheless, the use of an unbalanced panel also has its limitations, since the problem is not

simply related with the loss of data, but also with the possibility that the disappearance maybe lead

to attrition problems. If the probability that the observations disappear from the sample is correlated

with the phenomenon being modeled, then traditional statistical methods will result in biased and

inconsistent estimates (Hsiao, 1986). We will assume that such correlation does not exist, since the

correction of the possible bias would vindicate for itself a new investigation.

Three outputs and three inputs are included. The outputs are: (y1) Bonds, cash and other

assets different from loans; (y2) Loans to non-banks; and (y3) Deposits from non-banks and banks.

The inputs are: (x1) Physical Capital, measured by the value of fixed assets in the balance; (x2)

Labor, measured by the wage expenses, implicitly assuming equal input prices for all banks9; and

(x3) Other Expenses.

                                           
    8 The same argument can be used with input distance functions.

    9 An alternative would be to use a variable measured in physical units, vg. the number of workers. However,
even in this case we need the implicit assumption of homogeneous staff composition among the firms. In
principle, this last option seems to introduce more important problems that the one chosen because prices do
not vary much from one firm to another due to the great similarities in all the wage agreements. The same
approach was used by Berg et al. (1991) for the Norwegian Banks.
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The empirical results for the estimated model are presented in Tables 1 and 210. All the

coefficients are highly significant and the elasticities possess the expected signs at the geometric

mean. Therefore, at this point, the estimated distance function fulfills the property of monotonicity

(non-decreasing in outputs and decreasing in inputs).

TABLE 1: Maximum-likelihood estimates (frontier parameters) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES

Constant α0 -0.0996**

(0.0164)

C x K γ24 0.1323

(0.0921)

Other Assets (A) β1 0.0993**

(0.0420)

C x E γ25 -0.4200**

(0.1166)

Credits (C) β2 0.5839**

(0.0450)

L x K α34 0.1468**

(0.0577)

Labor (L) α3 -0.5587**

(0.0262)

L x E α35 0.3576**

(0.1128)

Capital (K) α4 -0.0773**

(0.0184)

K x E α45 -0.1162*

(0.0552)

O. Expenses (E) α5 -0.2722**

(0.0236)

D86 δ86 -0.0287**

(0.0089)

A2 β11 0.2345

(0.2797)

D87 δ87 -0.0967**

(0.0105)

C2 β22 0.9323**

(0.2683)

D88 δ88 -0.2014**

(0.0125)

L2 α33 -0.4774**

(0.1240)

D89 δ89 -0.2117**

(0.0147)

K2 α44 -0.0372

(0.0497)

D90 δ90 -0.2001**

(0.0172)

E2 α55 -0.3434**

(0.1227)

D91 δ91 -0.2771**

(0.0197)

A x C β12 0.3456

(0.2931)

D92 δ92 -0.3221**

(0.0223)

A x L γ13 0.3698**

(0.1281)

D93 δ93 -0.3293**

(0.0254)

A x K γ14 0.1244

(0.0815)

D94 δ94 -0.4259**

(0.0296)

A x E γ15 -0.5674**

(0.1264)

---- σ2 = σu
2 + σv

2 0.2642**

(0.0533)

C x L γ23 0.2785*

(0.1252)

---- lambda = σu/σv 0.0093**

(0.0020)

(1) Standard Errors in parentheses.

(2) ** (*) Parameter significant at 99% (95%) confidence level.

TABLE 2: Maximum -likelihood estimates (efficiency parameters)

                                           
    10

 The value of the parameters that maximize the log-likelihood function [21] were solved using GAUSS.
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PARAMETER ESTIMATES PARAMETER ESTIMATES

ξ1 -0.0479*

(0.0223)

ξ23 0.0523*

(0.0317)

ξ2 -0.1377*

(0.0646)

ξ24 -0.0441

(0.0300)

ξ3 -0.1230**

(0.0388)

ξ25 0.1105*

(.00477)

ξ4 0.0524

(0.0436)

ξ26 -0.0702**

(0.0194)

ξ5 0.0330

(0.0337)

ξ27 -0.0001

(0.0100)

ξ6 -0.0183

(0.0240)

ξ28 0.1051**

(0.0354)

ξ7 -0.0381*

(0.0175)

ξ29 -0.0006

(0.0116)

ξ8 0.1108

(0.1114)

ξ30 -0.0161

(0.0255)

ξ9 0.0349

(0.0515)

ξ31 -1.0890

(1.4544)

ξ10 -0.2413*

(0.1174)

ξ32 -0.0994**

(0.0321)

ξ11 -0.5821*

(0.3469)

ξ33 -3.7497

(71.555)

ξ12 -1.8213

(11.5778)

ξ34 0.1400**

(0.0315)

ξ13 -0.1639**

(0.0621)

ξ35 0.0102

(0.0141)

ξ14 -2.8765

(4.0301)

ξ36 -0.1017**

(0.0214)

ξ15 -0.1079**

(0.0361)

ξ37 -0.0347

(0.0232)

ξ16 -0.0694*

(0.0364)

ξ38 -0.0276

(0.0306)

ξ17 -0.0489**

(0.0123)

ξ39 -0.0256**

(0.0100)

ξ18 0.1230**

(0.0518)

ξ40 -0.0972**

(0.0188)

ξ19 0.0918*

(0.0432)

ξ41 -0.0316

(0.0590)

ξ20 0.0881**

(0.0275)

ξ42 -0.0268

(0.0693)

ξ21 0.0232

(0.0196)

ξ43 -0.0536**

(0.0208)

ξ22 -4.1441

(11.6593)

ξ44 -0.0099

(0.0140)

TABLE 2: Maximum -likelihood estimates (efficiency parameters) (Continuation)
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PARAMETER ESTIMATES PARAMETER ESTIMATES

ξ45 -0.0707**

(0.0174)

ξ67 -0.0548

(0.0522)

ξ46 -0.0952*

(0.0525)

ξ68 -0.0728**

(0.0235)

ξ47 -0.0655*

(0.0381)

ξ69 -0.0186

(0.0417)

ξ48 0.0126

(0.0085)

ξ70 -0.1208**

(0.0374)

ξ49 -0.0062

(0.0199)

ξ71 -0.1999*

(0.0963)

ξ50 0.0750*

(0.0405)

ξ72 -2.1362

(2.5956)

ξ51 -0.0382

(0.0270)

ξ73 0.3056**

(0.0908)

ξ52 -0.0126

(0.0180)

ξ74 -2.0533

(10.6507)

ξ53 -0.1387

(0.1109)

ξ75 -0.0496

(0.0308)

ξ54 -0.0745

(0.1331)

ξ76 -0.1319**

(0.0323)

ξ55 -0.3081

(0.1912)

ξ77 -0.0163

(0.0304)

ξ56 -0.0152

(0.0144)

ξ78 0.0361

(0.0364)

ξ57 -0.0446*

(0.0198)

ξ79 -0.3537*

(0.1750)

ξ58 -0.0957**

(0.0312)

ξ80 -0.0244

(0.0354)

ξ59 -0.0338

(0.0230)

ξ81 0.0240

(0.0349)

ξ60 0.0701*

(0.0417)

ξ82 -0.2623**

(0.0694)

ξ61 -0.0344

(0.0256)

ξ83 -0.0973**

(0.0393)

ξ62 -0.3078**

(0.0664)

ξ84 -0.0226

(0.0877)

ξ63 0.0418

(0.0282)

ξ85 -0.3834

(0.2588)

ξ64 -0.0883**

(0.0264)

ξ86 -0.4506**

(0.1086)

ξ65 -0.1393**

(0.0309)

ξ87 -0.1097*

(0.0540)

ξ66 0.0468

(0.0377)

ξ88 -0.0175

(0.0727)
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Following Färe and Primont (1996), the scale elasticity is given by:

where:

           The scale elasticity is the proportional increase in all outputs caused by an increase of the same

proportion in all inputs. Applying the implicit function rule to [26] and the homogeneity condition in the

output vector, the scale elasticity is:

In words, the scale elasticity is the negative of the sum of the input elasticities. The scale elasticity,

in the approximation point, is 0.9082, indicating the presence of decreasing returns to scale at the mean.

The parameters relating to the temporal variation of technical efficiency are presented in Table 2.

Results show that there are 45 ξ parameters not statistically different from zero, so we cannot reject the

time-invariant technical efficiency hypotheses for those 45 firms. There are 10 firms that improve their

technical efficiency level during the period, and 33 that are getting worse. All these results are obtained

using the 90% confidence level. If we use the 95% criterion, there are 62 ξ parameters not statistically

different from zero with only 5 firms improving their technical efficiency levels.

Since the proposed method is a slight modification of the BC model, results are compared with

those obtained from BC's application (imposing the restriction of equal ξ across firms). Table 3 lists the

results of the application of the BC model to the same data.

As can be seen, the frontier parameters are quite similar to those obtained with our model. The ξ
parameter (η in their notation) is negative and not statistically different from zero at the 95% confidence

level. If we compare this result with the outcome in Table 2, we can conclude that our model captures

effects not visible in the Battese and Coelli (1992) model, and, by extension, not visible in all those models

in which a common pattern of efficiency change is assumed11.

                                           
    11

 For example, the models by Kumbhakar (1990) and Lee and Schmidt (1993).

λ
θ
   
   

 = )y   ,x (  eO
ln
ln

∂
∂

[26]

1 = )y    ,x  (  Do θλ [27]

x )y   ,x (  D  - = )y   ,x (  EE ox∆ [28]
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TABLE 3: Maximum-likelihood estimates (Battese and Coelli, 1992) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES

Constant α0 -0.2008**

(0.0296)

C x E γ25 -0.3238**

(0.1259)

Other Assets (A) β1 0.1980**

(0.0464)

L x K α34 0.1785**

(0.0671)

Credits (C) β2 0.5478**

(0.0462)

L x E α35 0.3492**

(0.1182)

Labor (L) α3 -0.5762**

(0.0333)

K x E α45 -0.1928**

(0.0567)

Capital (K) α4 -0.0492**

(0.0199)

D86 δ86 -0.0248*

(0.0111)

O. Expenses (E) α5 -0.2475**

(0.0236)

D87 δ87 -0.0793**

(0.0125)

A2 β11 0.2212

(0.2548)

D88 δ88 -0.1759**

(0.0141)

C2 β22 0.3046

(0.2559)

D89 δ89 -0.1836**

(0.0158)

L2 α33 -0.5786**

(0.1300)

D90 δ90 -0.1526**

(0.0179)

K2 α44 0.0230

(0.0557)

D91 δ91 -0.2122**

(0.0202)

E2 α55 -0.2095

(0.1315)

D92 δ92 -0.2395**

(0.0219)

A x C β12 -0.1899

(0.2715)

D93 δ93 -0.2321**

(0.0233)

A x L γ13 0.2149

(0.1444)

D94 δ94 -0.2985**

(0.0250)

A x K γ14 0.1494*

(0.0883)

---- σ2 = σu
2 + σv

2 0.2219**

(0.0478)

A x E γ15 -0.4271**

(0.1384)

---- lambda = σu/σv 0.0189**

(0.0046)

C x L γ23 0.0992

(0.1282)

---- ξ -0.0001

(0.0060)

C x K γ24 0.2197**

(0.0917)

(1) Standard Errors in parentheses.

(2) ** (*) Parameter significant at 99% (95%) confidence level.
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The BC model is nested in our model and we can therefore impose the restrictions ξ1=ξ2=...=ξi =ξ
in order to test the hypothesis of common pattern of efficiency change across firms. This hypothesis is

strongly rejected by the likelihood ratio statistic of 290.04. In other words, the new model is shown to be

a preferable specification for these data.

To obtain the technical efficiency indexes, we reestimate the model imposing the restriction of

ξi=0 on all those firms whose ξ parameter is not statistically different from zero at the 90% confidence

level, in order to improve the precision of the technical efficiency estimates12. The results of the estimation

of this restricted model are shown in Table 4 and the parameters relating to the temporal variation of

technical efficiency are presented in Table 5. The restricted model is not rejected by the likelihood ratio

statistic of 46.42 (the ratio is distributed χ2 with degrees of freedom equal to the number of restrictions

under the null, so the critical value is 61.37). The parameters are quite similar to those obtained with the

unrestricted model, they are significant and again the elasticities possess the expected signs.

With this new estimation, we obtain the technical efficiency indexes by applying equation [25].

Summary statistics of the predicted technical efficiency indexes appear in Table 6 (firms with the

maximum and minimum value in each year are in parentheses). Mean technical efficiency is decreasing

over time from 0.6853 in 1985 to 0.6656 in 1994.

The efficiency ranking changes each year: firm number 33 is the most efficient in the period 1985-

89 and firm number 87 is the most efficient from 1990 to 1994. Firm number 48 is the least efficient in the

period 1985-89. Firm 68 is the least efficient in 1990 and firm number 17 is the least efficient firm from

1991 to 1994. The changes in the rankings are due to the flexibility of the model, with the largest change

occurring in firm 88. This firm goes from number 7 in the ranking in 1991 (TE88
1991=0.8709) to number 26

(TE88
1994=0.6488). In only four years (this firm is the result of a merger in 1991) it loss 23 points in its

efficiency level.

                                           
    12

 Stronger assumptions generate stronger results, but they strain one´s conscience more. In general, the choice of
maintained assumptions can only be determined by a careful consideration of the data and the characteristics of the
industry under study (Bauer, 1990, p. 41). In this case, we impose those restrictions due to the fact that we cannot
reject that they are different from zero.
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TABLE 4: Maximum-likelihood estimates. Restricted model (frontier parameters) (1)(2)

VARIABLE PARAMETER ESTIMATES VARIABLE PARAMETER ESTIMATES

Constant α0 -0.2253**

(0.0308)

C x K γ24 0.1470*

(0.0802)

Other Assets (A) β1 0.1210**

(0.0398)

C x E γ25 -0.3864**

(0.1227)

Credits (C) β2 0.5799**

(0.0396)

L x K α34 0.1551**

(0.0548)

Labor (L) α3 -0.5877**

(0.0309)

L x E α35 0.2693**

(0.1110)

Capital (K) α4 -0.0478**

(0.0162)

K x E α45 -0.0825*

(0.0486)

O. Expenses (E) α5 -0.2713**

(0.0207)

D86 δ86 -0.0231**

(0.0085)

A2 β11 0.2624

(0.2483)

D87 δ87 -0.0853**

(0.0098)

C2 β22 0.9160**

(0.2328)

D88 δ88 -0.1862**

(0.0112)

L2 α33 -0.4139**

(0.1286)

D89 δ89 -0.1927**

(0.0125)

K2 α44 -0.0406

(0.0439)

D90 δ90 -0.1761**

(0.0141)

E2 α55 -0.2868**

(0.1199)

D91 δ91 -0.2470**

(0.0156)

A x C β12 0.3972*

(0.2660)

D92 δ92 -0.2864**

(0.0170)

A x L γ13 0.2743*

(0.1318)

D93 δ93 -0.2890**

(0.0178)

A x K γ14 0.1861**

(0.0730)

D94 δ94 -0.3733**

(0.0189)

A x E γ15 -0.5459**

(0.1229)

---- σ2 = σu
2 + σv

2 0.3001**

(0.0571)

C x L γ23 0.2513*

(0.1294)

---- lambda = σu/σv 0.0080**

(0.0017)

(1) Standard Errors in parentheses.

(2) ** (*) Parameter significant at 99% (95%) confidence level.
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TABLE 5: Maximum -likelihood estimates. Restricted model (efficiency parameters) (1)(2)

PARAMETER ESTIMATES PARAMETER ESTIMATES PARAMETER ESTIMATES

ξ1 -0.0336*

(0.0169)

ξ26 -0.0613**

(0.0167)

ξ62 -0.2501**

(0.0580)

ξ2 -0.0497

(0.0526)

ξ28 0.0897**

(0.0278)

ξ64 -0.0409**

(0.0170)

ξ3 -0.0918**

(0.0290)

ξ32 -0.0657**

(0.0206)

ξ65 -0.0980**

(0.0229)

ξ7 -0.0194*

(0.0119)

ξ34 0.1101**

(0.0240)

ξ68 -0.0879**

(0.0220)

ξ10 -0.0590

(0.0597)

ξ36 -0.0665**

(0.0150)

ξ70 -0.0943**

(0.0304)

ξ11 -0.1609*

(0.1024)

ξ39 -0.0241**

(0.0076)

ξ71 -0.0679*

(0.0420)

ξ13 -0.0976*

(0.0426)

ξ40 -0.0662**

(0.0138)

ξ73 0.2290**

(0.0600)

ξ15 -0.0915**

(0.0296)

ξ43 -0.0263*

(0.0146)

ξ76 -0.0807**

(0.0237)

ξ16 -0.0486*

(0.0261)

ξ45 -0.0485**

(0.0130)

ξ81 -0.2663*

(0.1476)

ξ17 -0.0453**

(0.0107)

ξ46 -0.0334*

(0.0250)

ξ84 -0.1762**

(0.0550)

ξ18 0.0900**

(0.0346)

ξ47 -0.0409*

(0.0299)

ξ85 -0.0566*

(0.0398)

ξ19 0.0688*

(0.0324)

ξ50 0.0608*

(0.0298)

ξ88 -0.3808**

(0.0913)

ξ20 0.0712**

(0.0168)

ξ57 -0.0215*

(0.0133)

ξ89 -0.0861*

(0.0516)

ξ23 0.0423*

(0.0225)

ξ58 -0.1001**

(0.0309)

ξ25 0.0989**

(0.0319)

ξ60 0.0537*

(0.0317)

(1) Standard Errors in parentheses.

(2) ** (*) Parameter significant at 99% (95%) confidence level.
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TABLE 6: Technical efficiency indexes. Descriptive Statistics

YEAR MAX (FIRM) MIN (FIRM) MEAN

1985 0.9896 (33) 0.3623 (48) 0.6853

1986 0.9896 (33) 0.3623 (48) 0.6833

1987 0.9896 (33) 0.3623 (48) 0.6808

1988 0.9896 (33) 0.3623 (48) 0.6777

1989 0.9896 (33) 0.3623 (48) 0.6774

1990 0.9643 (87) 0.3310 (68) 0.6682

1991 0.9643 (87) 0.3489 (17) 0.6771

1992 0.9643 (87) 0.3322 (17) 0.6756

1993 0.9643 (87) 0.3157 (17) 0.6744

1994 0.9643 (87) 0.2992 (17) 0.6656

6. CONCLUDING REMARKS

In this paper a model for efficiency measurement with panel data has been proposed and applied in

an Output Distance Function framework. The distance function has the advantage that it does not need

information about prices, so it can accommodate multioutput technologies using only the quantities as

data. Unlike Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993), the model

allows for firm-specific patterns of efficiency temporal change. The background is similar to the paper of

Cornwell, Schmidt and Sickles (1990) but here we model technical efficiency through an error component

whereas they model it through the intercept of the production frontier. This is a plausible extension of

previous models, and it is supported by the data to which we apply it.
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