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1 Electromechanical benchmark

In this section, we describe the development of a complex multi-domain electromechanical sys-
tem as an interconnection of simpler subsystems. We first give a global overview of the total
system to be modelled, then describe the subsystems of the model, and conclude with final re-
marks on how network modelling was used in this problem, and to what benefit.

Our electromechanical system exchanges energy between the power grid, a local mechanical
source and a local general load, which may contain subsystems from any domain.

1.1 System overview

A general description of our system appears in Figure 1.
The core of our model is a doubly-fed induction machine (DFIM) together with its controller,

a back-to-back 3phase converter (B2B). The DFIM is coupled to the power grid directly through
the stator, while the rotor receives power from the B2B, which in turn takes it from the power
grid.

The control objective, which does not form part of this Deliverable, is to effect the flow of
power from the grid and the local source to the local load, by means of Hamiltonian and port
related ideas.

The 20sim model of the whole system, in bond graph notation, appears in Figure 2. We
have suppressed the transformers and the dynamics of the flywheel’s beam, but they can be
incorporated easily from the 20sim library.

We will describe the DFIM with some detail since it is the most complex of the subsystems
and the one with more room for modelling improvement.

1.2 The doubly-fed induction machine

The doubly fed induction machine appears in Figure 1.2
It contains 6 energy storage elements with their associated dissipations and 6 inputs (the 3

stator and the 3 rotor voltages). The dynamical equations are ([8][10], but see [4][2] for a discus-
sion)

v = Ri +
dλ

dt
(1)

where R = diag(rs, rs, rs, rr, rr, rr) and the linking fluxes are related to the currents through an
angle-dependent inductance matrix

λ = L̃(θ)i. (2)

We assume that

• the machine is symmetric (all windings are equal)
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Figure 1: System overview.
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Figure 3: Basic scheme of the doubly fed induction machine

• stator-rotor cross inductances are smooth, sinusoidal functions of θ, with just the funda-
mental term.

To simplify the notation, we take Nr = Ns = N , so that we do not have to refer rotor variables to
stator windings. Then

L̃(θ) =

(

L̃s L̃sr(θ)

L̃T
sr(θ) L̃r

)

L̃s =





Lls + Lms − 1
2Lms − 1

2Lms

− 1
2Lms Lls + Lms − 1

2Lms

− 1
2Lms − 1

2Lms Lls + Lms



 L̃r =





Llr + Lmr − 1
2Lmr − 1

2Lmr

− 1
2Lmr Llr + Lmr − 1

2Lmr

− 1
2Lmr − 1

2Lmr Llr + Lmr



 .

Here Lls and Llr are leakage terms, while Lms and Lmr are magnetizing terms that can be com-
puted from the core reluctance Rm as

Lms = Lmr =
N2

Rm

.

The cross-inductance is

L̃sr(θ) = Lsr





cos θ cos(θ + 2
3π) cos(θ − 2

3π)
cos(θ − 2

3π) cos θ cos(θ + 2
3π)

cos(θ + 2
3π) cos(θ − 2

3π) cos θ





where again Lsr = N2

Rm

= Lms. Hence (1) is a highly nonlinear set of ODE.
For a 2-pole machine, the torque is given in terms of the coenergy by

Te(i, θ) =
∂Wc(i, θ)

∂θ

and since we are assuming a linear magnetic system, energy and coenergy are equal: Wc = Wf =
1
2 iT L̂(θ)i.
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Before proceeding to a θ-and-time-dependent transformation which eliminates most of the
nonlinearities in (1), it is better to perform a constant transformation which reduces an effective
degree of freedom for both the stator and the rotor. From the original (i, λ, v) quantities we
compute (i′, λ′, v′) by means of

y′ = Ay (3)

where y is any of i, λ, v and A is a 6 by 6 block-diagonal matrix

A =

(

As 0
0 Ar

)

where

As = Ar =







√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3






.

Notice that, since AT = A−1, this is a power-preserving transformation:

〈i′, v′〉 = 〈i, v〉.

The components of y′ are usually denoted by y′ = (yd, yq, y0).
Under this transformation, relation (2) becomes

λ′ = L′(θ)i′

where

L′(θ) =

















Lss 0 0 M cos θ −M sin θ 0
0 Lss 0 M sin θ M cos θ 0
0 0 Lls 0 0 0

M cos θ M sin θ 0 Lrr 0 0
−M sin θ M cos θ 0 0 Lrr 0

0 0 0 0 0 Llr

















=

(

L′
s L′T

m (θ)
L′

m(θ) L′
r

)

and M = 3
2Lms, Lss = Lls + M , Lrr = Llr + M .

In the new (prime) variables, equation (1) becomes

v′ =
d

dt
(L′(θ)i′) + Ri′. (4)

It can be seen from the form of L′ that the homopolar components y0 decouple from the rest,
yielding an independent linear dynamics, and from now on we will drop them from the compu-
tations, although we will keep the same notation:

v′ =
d

dt
(L′(θ)i′) + Ri′, (5)

where now everything is 4-dimensional.
One can try to eliminate the complicate, θ-dependent terms in (5) by means of a change of

variables (Blondel-Park transformation). There is a whole family of transformations, depending
on an arbitrary time-dependent parameter x(t):

f ′′ = K(x, θ)f ′

with

K(x, θ) =

(

Ks(x) 0
0 Kr(x, θ)

)

and
Ks(x) ≡ e−Jx = B(x), Kr(x, θ) ≡ e−J(x−θ) = B(x − θ), (6)
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where

B(z) =

(

cos z sin z

− sin z cos z

)

, (7)

and

J =

(

0 −1
1 0

)

. (8)

Notice that both Ks and Kr belong to SO(2) and hence this second transformation is also power
preserving.

Under this transformation (5) becomes

v′′ = ωK(∂θL
′ − L′K−1∂θK)K−1i′′ − ẋKL′K−1∂xKK−1i′′ + KL′K−1 di′′

dt
+ Ri′′ (9)

where [K,R] = 0 has been used. Taking into account that B(x + y) = B(x)B(y) and B(−x) =
B−1(x) and using (6), one gets

L′′ ≡ KL′K−1 =

(

LssI MI

MI LrrI

)

. (10)

Exploiting the fact that this L′′ is independent of both x and θ, it is easy to derive the identities

KL′K−1∂xKK−1 = ∂xKL′K−1,

K(∂θL
′ − L′K−1∂θK)K−1 = −∂θKL′K−1,

whereupon (9) becomes

v′′ = L′′ di′′

dt
+ ωΩi′′ + ẋΩxi′′ + Ri′′, (11)

with

Ω = −∂θKL′K−1 =

(

0 0
−MJ −LrrJ

)

, (12)

Ωx = ∂xKL′K−1 =

(

LssJ MJ

MJ LrrJ

)

. (13)

The prize for a constant inductance matrix is a nonlinear term involving ω and i′′. In what
follows we will refer to the individual components of a f ′′ 4−vector as fsd, fsq , frd, and frq.

The co-energy in the transformed coordinates is given by

Hc(θ, i) =
1

2
iT L(θ)i =

1

2
i′′T L′′i′′ + homopolar contributions.

However, the expression for the electrical torque Te must be computed using the physical cur-
rents i. Hence

Te =
1

2
iT ∂θL(θ)i

=
1

2
i′′T KA∂θ(A

T KT L′′KA)AT KT i′′

=
1

2
i′′T K∂θ(K

T L′′K)KT i′′

=
1

2
i′′T L′′∂θKKT i′′ + transpose

= i′′TT i′′, (14)

where

T =

(

0 M
2 J

−M
2 J 0

)

. (15)
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The mechanical equation is (the mechanical part is transformation-independent)

Jθ̈ = Te − Bθ̇ + Tm

where J is the total inertia moment of the rotor, B is a friction coefficient and (Tm, ω) is the me-
chanical port to which any flywheel or rotating machinery can be coupled . Taking into account
the form of Te, this can be written as

θ̇ = ω (16)

Jω̇ = i′′T Ti′′ − Bω + Tm. (17)

The explicit PCH form is given by

ż = (J (z) −R(z))(∇H(z))T + g(z)u,

where z ∈ R
n, J is antisymmetric, R is symmetric and positive semi-definite and u ∈ R

m is the
control. The function H(z) is the hamiltonian, or energy, of the system. The natural outputs in
this formulation are

y = gT (z)(∇H(z))T .

Equations (11) and (17) can be cast in this formulation with variables z = (λ′′, p = Jω), hamilto-
nian function

H =
1

2
(λ′′)T (L′′)−1λ′′ +

1

2J
p2, (18)

structure matrix

J =





−ẋLssJ −ẋM O2×1

−ẋMJ −(ẋ − ω)LrrJ MJi′′s
O1×2 Mi′′Ts J 0



 , (19)

and dissipation matrix

R =





RsI2 O2 O2×1

O2 RrI2 O2×1

O1×2 O1×2 Br



 , (20)

while the coupling is given by g = I5 with the controls u = (v′′
sd, v

′′
sq, v

′′
rd, v

′′
rq, Tm). The bond

graph corresponding to this description in the synchronous frame (ẋ = ωs) is shown in Figure
4. The stator and rotor resistances can be varied arbitrarily to include the effects of temperature.
This dq model is embedded into a 3-phase model which includes the A and K transformations,
as shown in 5.

1.3 The back-to-back converter

The iconic diagram for our three-phase converter appears in Figure 6.
The B2B is a Variable Structure System (VSS) which takes its power from the grid and delivers

it in appropriate form to the rotor of the DFIM. Its control is implemented by 6 pairs (3 phases ×
2 sides) of complementary switches. The main modelling challenge of this subsystem is the de-
tailed description of the switches. For the model in Figure 6, we have used one of the possibilities
offered by 20sim, a variable-resistance implementation. The modularity of the approach allows
for the replacement of this model by any other (the “hard model” [6], the averaged model [5], or
the fixed causality model [7], for instance).

The whole B2B system has also been described as a PCH system, using the ideas in [6], and,
in its averaged form, using the bond-graph formalism.
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Figure 6: Iconic diagram of the back-to-back converter.

Overall connection bond graph
DFIM PCH equations bond graph
B2B “hard switch” PCH equations iconic bond graph averaged

Power grid iconic bond graph
Local load iconic bond graph

Local mechanical source iconic bond graph

Table 1: List of submodels and port-based descriptions implemented.

1.4 Power grid, local load and mechanical source

Figures 7 and 8 show the models of the power grid and the local load chosen for this benchmark.
The power grid contains a single 3-phase source and a Π model of the line, while the load is just
a resistive charge, but anything could be added, or any other port-based description (PCH, bond
graph) could be used. The mechanical source is just an inertia, representing the flywheel. Once
more, the modularity of the port-based description allows the replacement of this simple model
by any other, no matter how complex as long as its interface is a (torque, angular velocity) power
port.

1.5 Submodel catalogue

Table 1 contains a list of the submodels implemented in this electromechanical benchmark.

1.6 Simulations

To present a simulation of the complete system, we have replaced the B2B with a transformer, as
shown in Figure 9. The rotor angular velocity is displayed in Figure 10, for n = 0 and n = 0.1,
where n is the turns-ratio parameter of the transformer. n = 0 corresponds to zero output voltage,
i.e. rotor windings shorted, and in this case the DFIM goes to its synchronous regime, as expected;
for n = 0.1 one gets a periodic behavior.
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Figure 10: Rotor angular velocity. For shorted rotor windings, it reaches the synchronous regime.

1.7 Control layer

As already explained, the detailed control is not a part of this benchmark. However, we will say
a few words about it to show how everything will fit together.

The DFIM subsystem, together with a simplified version of the power grid and the load, can
be controlled by means of IDA-PBC techniques [11] (see [3] for a technical discussion). Since we
have not yet developed an IDA-PBC controller for the B2B implementing this DFIM controller,
we have replaced the B2B by an ideal voltage source. This complete reduced system appears in
Figure 11.

To test the control, the maximum power that the (ideal bus) power grid can provide is limited
to 10 kW. At t = 1 the power needed by the local load starts to increase up to 30 kW, and the
balance is provided by the energy stored in the flywheel. Shortly before t = 2 the power dissi-
pated at the local load returns to its normal value, but the power taken from the grid is kept to its
maximum for a while to return the flywheel to its near synchronous speed. The whole sequence
is displayed in Figures 12 and 13.

1.8 Conclusions

This section describes some final remarks on port-based network modelling approach as applied
to our electromechanical system.

1.8.1 Modularity

The port based concept allows the easy swapping of submodels and submodel descriptions. This
is especially useful for testing controllers designed with parts of the submodels turned off or
simplified to a large extent.
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1.8.2 Modelling issues

The electromechanical system that we have presented has two areas with room for modelling
improvement.

1. The variable structure of the B2B. The “hard” description of the switches yields computa-
tional problems in the form of changing causalities. Two ways out of this is to use averaged
models [1] or more complex descriptions of the switches with ancillary storage elements[7].

2. The lumped parameter description of the DFIM. In the present form, the DFIM cannot be
decomposed as the interconnection of simpler elements since the electromagnetic field has
been “integrated out” and its effect condensed into the mutual inductances between the
different windings. A more fundamental description will have to use the distributed PCH
formalism and its discretization proposed by several members of the Geoplex consortium
or the distributed bond graph formalism and its Galerkin truncations [9].
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[3] C. Batlle, A. Dòria, and R. Ortega. Hamiltonian passivity-based control of a doubly-fed
induction machine coupled to a flywheel. Technical report, SUPELEC and UPC preprint, in
preparation.

[4] P. Breedveld. A generic dynamic model of multiphase electromechanical transduction in
rotating machinery. In Proceedings WESIC 2001, pages 381–394. University of Tweente, June
27-29 2001.

12



[5] M. Delgado and H. Sira-Ramı́rez. Modeling and simulation of switch regulated dc-to-dc
power converters of the boost type. Proc. of the First IEEE International Caracas Conference on
Devices, Circuits and Systems, pages 84–88, 1995.

[6] G. Escobar, A. van der Schaft, and R. Ortega. A hamiltonian viewpoint in the modeling of
switching power converters. Automatica, 35:445–452, 1999.

[7] P. H. Gawthrop. Hybrid bond graphs using switched i and c components. Technical Report
CSC 97005, Centre for Systems and Control, University of Glasgow, 1997.

[8] P. C. Krause and O. Wasynczuk. Electromechanical Motion Devices. McGraw-Hill, 1989.

[9] F.-S. Lee. Reticulation of distributed electromagnetic and electromechanical systems using the ex-
tended bond graph method. PhD thesis, The University of Texas at Austin, May 1993.

[10] S. E. Lyshevski. Electromechanical systems, electric machines and applied mechatronics. CRC Press
LLC, 2000.

[11] R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar. Interconnection and damp-
ing assignment passivity-based control of port-controlled hamiltonian systems. Automatica,
38:585–596, 2002.

13


	Electromechanical benchmark
	System overview
	The doubly-fed induction machine
	The back-to-back converter
	Power grid, local load and mechanical source
	Submodel catalogue
	Simulations
	Control layer
	Conclusions
	Modularity
	Modelling issues



