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Abstract

A quantum sl(2, R) coalgebra (with deformation parameter z) is shown to un-

derly the construction of superintegrable Kepler potentials on 3D spaces of variable

and constant curvature, that include the classical spherical, hyperbolic and (anti-)

de Sitter spaces as well as their non-constant curvature analogues. In this context,

the non-deformed limit z → 0 is identified with the flat contraction leading to the

proper Euclidean and Minkowskian spaces/potentials. The corresponding Hamil-

tonians admit three constants of the motion coming from the coalgebra structure.

Furthermore, maximal superintegrability of the Kepler potential on the spaces of

constant curvature is explicitly shown by finding an additional constant of the mo-

tion coming from an additional symmetry that cannot be deduced from the quantum

algebra. In this way, the Laplace–Runge–Lenz vector for such spaces is deduced and

its algebraic properties are analysed.

1 Introduction

From the very beginning of our period as Ph.D. students at the University of Valladolid

it has been always a pleasure for us to meet J.F. Cariñena, Peṕın. Since then we know

that he is very interested in all the facets and approaches to the Kepler problem (see,

for instance, [1]), and in this workshop-tribute for his sixty-years-youth we would like to

dedicate this contribution on the Kepler potential to Peṕın, with our best wishes for the

future.

The scheme of the paper is as follows. In the next section we show how to construct

(classical, i.e. commutative) curved spaces by making use of quantum algebras. In par-

ticular, we consider the non-standard quantum deformation of sl(2, R) expressed as a

deformed Poisson coalgebra and through the associated coproduct we obtain superinte-

grable geodesic motions on 3D spaces of variable and constant curvature. We are able to

identify the resulting spaces with the classical spherical, Euclidean, hyperbolic, (anti-)de

Sitter and Minkowskian spaces and with their analogues of non-constant curvature. In
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section 3 we add a Kepler potential to the former free Hamiltonian by keeping its su-

perintegrability. Moreover, for the spaces of constant curvature we present a relationship

between quantum algebra symmetry and Lie algebra symmetry which, in turn, leads to

additional constants of the motion. In this way, the well-known maximal superintegrabil-

ity of the Kepler potential on spaces of constant curvature is obtained, and the explicit

form of the Laplace–Runge–Lenz vector is given for the six spaces.

2 Geodesic motion on 3D curved spaces

Let us consider the non-standard quantum deformation of sl(2, R) written as a Poisson

coalgebra (that we denote slz(2)) where z is a real deformation parameter (q = ez). The

deformed Poisson brackets, coproduct ∆ and Casimir C of slz(2) are given by [2]:

{J3, J+} = 2J+ cosh zJ−, {J3, J−} = −2
sinh zJ−

z
, {J−, J+} = 4J3, (1)

∆(J−) = J− ⊗ 1 + 1⊗ J−,

∆(Jl) = Jl ⊗ ezJ− + e−zJ− ⊗ Jl, l = +, 3,
(2)

C =
sinh zJ−

z
J+ − J2

3 . (3)

A one-particle symplectic realization of (1) with C(1) = 0 reads

J
(1)
− = q2

1, J
(1)
+ =

sinh zq2
1

zq2
1

p2
1, J

(1)
3 =

sinh zq2
1

zq2
1

q1p1. (4)

All these expressions reduce to the sl(2, R) coalgebra under the limit z → 0, that is,

the Poisson brackets and Casimir are non-deformed, the coproduct is primitive, ∆(X) =

X ⊗ 1 + 1⊗X, and the symplectic realization is J
(1)
− = q2

1, J
(1)
+ = p2

1 and J
(1)
3 = q1p1.

Starting from (4), the coproduct (2) determines the corresponding two-particle realiza-

tion and this allows one to deduce an N -particle realization by applying it recursively [3].

In particular, the 3-sites coproduct, ∆(3) = (∆ ⊗ id) ◦ ∆ = (id ⊗∆) ◦ ∆, gives rise to a

three-particle symplectic realization of (1) defined on slz(2)⊗ slz(2)⊗ slz(2); namely,

J
(3)
− = q2

1 + q2
2 + q2

3 ≡ q2,

J
(3)
+ =

sinh zq2
1

zq2
1

p2
1e

zq2
2ezq2

3 +
sinh zq2

2

zq2
2

p2
2e
−zq2

1ezq2
3 +

sinh zq2
3

zq2
3

p2
3e
−zq2

1e−zq2
2 ,

J
(3)
3 =

sinh zq2
1

zq2
1

q1p1e
zq2

2ezq2
3 +

sinh zq2
2

zq2
2

q2p2e
−zq2

1ezq2
3 +

sinh zq2
3

zq2
3

q3p3e
−zq2

1e−zq2
2 .

(5)

The coalgebra approach introduced in [3] provides three functions, coming from the two-

and three-sites coproduct of the Casimir (3):

C(2) ≡ C12 =
sinh zq2

1

zq2
1

sinh zq2
2

zq2
2

(q1p2 − q2p1)
2 e−zq2

1ezq2
2 ,
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C(2) ≡ C23 =
sinh zq2

2

zq2
2

sinh zq2
3

zq2
3

(q2p3 − q3p2)
2 e−zq2

2ezq2
3 ,

C(3) ≡ C123 =
sinh zq2

1

zq2
1

sinh zq2
2

zq2
2

(q1p2 − q2p1)
2 e−zq2

1ezq2
2e2zq2

3 (6)

+
sinh zq2

1

zq2
1

sinh zq2
3

zq2
3

(q1p3 − q3p1)
2 e−zq2

1ezq2
3

+
sinh zq2

2

zq2
2

sinh zq2
3

zq2
3

(q2p3 − q3p2)
2 e−2zq2

1e−zq2
2ezq2

3 .

Then a large family of (minimally or weak) superintegrable Hamiltonians can be con-

structed through the following statement:

Proposition 1. (i) The three-particle generators (5) fulfil the commutation rules (1) with

respect to the canonical Poisson bracket

{f, g} =
3∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

)
. (7)

(ii) These generators Poisson commute with the three functions (6).

(iii) Any arbitrary function defined on (5), H = H(J
(3)
− , J

(3)
+ , J

(3)
3 ) (but not on C), provides

a completely integrable Hamiltonian as either {C(2), C(3),H} or {C(2), C(3),H} are three

functionally independent functions in involution.

(iv) The four functions {C(2), C(2), C(3),H} are functionally independent.

As a byproduct, we obtain superintegrable free Hamiltonians which determine the

geodesic motion of a particle on certain 3D spaces through

H = 1
2
J

(3)
+ f(zJ

(3)
− ), (8)

where f is an arbitrary smooth function such that limz→0 f(zJ
(3)
− ) = 1, so that limz→0H =

1
2
p2. By writing the Hamiltonian (8) as a free Lagrangian, the metric on the underlying

3D space can be deduced and its sectional curvatures turn out to be, in general, non-

constant. In this way, a quantum deformation can be understood as the introduction

of a variable curvature on the formerly flat Euclidean space in such a manner that the

non-deformed limit z → 0 can then be identified with the flat contraction providing the

proper 3D Euclidean space. Let us illustrate these ideas by recalling two specific choices

for H which have recently been studied in [4, 5].

2.1 Spaces of non-constant curvature

The simplest Hamiltonian (8) arises by setting f ≡ 1: Hnc = 1
2
J

(3)
+ . This can be

rewritten as the free Lagrangian

2Tnc =
zq2

1

sinh zq2
1

e−zq2
2e−zq2

3 q̇2
1 +

zq2
2

sinh zq2
2

ezq2
1e−zq2

3 q̇2
2 +

zq2
3

sinh zq2
3

ezq2
1ezq2

2 q̇2
3, (9)
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which defines a geodesic flow on a 3D Riemannian space with a definite positive metric

given by

ds2
nc =

2zq2
1

sinh zq2
1

e−zq2
2e−zq2

3 dq2
1 +

2zq2
2

sinh zq2
2

ezq2
1e−zq2

3 dq2
2 +

2zq2
3

sinh zq2
3

ezq2
1ezq2

2 dq2
3. (10)

The sectional curvatures Kij in the planes 12, 13 and 23, and the scalar curvature K turn

out to be
K12 = z

4
e−zq2

(1 + e2zq2
3 − 2e2zq2

),

K13 = z
4
e−zq2

(2− e2zq2
3 + e2zq2

2e2zq2
3 − 2e2zq2

),

K23 = z
4
e−zq2

(2− e2zq2
2e2zq2

3 − 2e2zq2
),

K = 2(K12 + K13 + K23) = −5z sinh(zq2).

Next we introduce new canonical coordinates (ρ, θ, φ) and the conjugated momenta

(pρ, pθ, pφ) (with respect to (7)) defined by [5]

cosh2(λ1ρ) = e2zq2

,

sinh2(λ1ρ) cos2(λ2θ) = e2zq2
1e2zq2

2(e2zq2
3 − 1),

sinh2(λ1ρ) sin2(λ2θ) cos2 φ = e2zq2
1(e2zq2

2 − 1), (11)

sinh2(λ1ρ) sin2(λ2θ) sin2 φ = e2zq2
1 − 1,

where z = λ2
1 and λ2 6= 0 is an additional parameter which can be either a real or a pure

imaginary number [4] and enables to deal with Riemannian and Lorentzian signatures.

Thus the metric (10) is transformed into

ds2
nc =

1

cosh(λ1ρ)

(
dρ2 + λ2

2

sinh2(λ1ρ)

λ2
1

(
dθ2 +

sin2(λ2θ)

λ2
2

dφ2

))
, (12)

which is just the metric of the 3D Riemannian and relativistic spacetimes [6] written in

geodesic polar coordinates multiplied by a global factor e−zJ
(3)
− ≡ 1/cosh(λ1ρ). In the new

coordinates the sectional and scalar curvatures read

K12 = K13 = −1

2
λ2

1

sinh2(λ1ρ)

cosh(λ1ρ)
, K23 =

1

2
K12, K = −5

2
λ2

1

sinh2(λ1ρ)

cosh(λ1ρ)
.

Therefore, according to the pair (λ1, λ2) we have obtained analogues of the 3D spherical

(i, 1), hyperbolic (1, 1), de Sitter (1, i) and anti-de Sitter (i, i) spaces with variable radial

sectional and scalar curvatures. These reduce to the flat Euclidean (0, 1) and Minkowskian

(0, i) spaces under the limit z → 0. The contraction λ2 = 0, which is well defined in the

metric (12), would lead to oscillating and expanding Newton–Hooke (λ1 = i, 1) spacetimes

of non-constant curvature; again their limit z → 0 would give the flat Galilean spacetime.

Nevertheless we avoid this contraction since the metric is degenerate so that a direct

relationship with a 3D Hamiltonian is lost.

The resulting superintegrable Hamiltonian on these six curved spaces with its three

constants of motion in the latter phase space read

Hnc =
1

2
cosh(λ1ρ)

(
p2

ρ +
λ2

1

λ2
2 sinh2(λ1ρ)

(
p2

θ +
λ2

2

sin2(λ2θ)
p2

φ

))
, (13)
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C(2) = p2
φ, C(2) =

(
cos φ pθ − λ2

sin φ pφ

tan(λ2θ)

)2

, C(3) = p2
θ +

λ2
2 p2

φ

sin2(λ2θ)
, (14)

where Hnc = 2Hnc, C(2) = 4C(2), C(2) = 4λ2
2C(2) and C(3) = 4λ2

2C(3).

We remark that, in general, other choices for the Hamiltonian (8) (with f 6= 1) give

rise to more complicated spaces of non-constant curvature, for which a clear geometrical

interpretation, similar to the one above developed, remains as an open problem. However

a very particular choice of the function H leads to spaces of constant curvature.

2.2 Spaces of constant curvature

If we now consider the function f = ezJ
(3)
− in (8), we obtain a Hamiltonian Hcc =

1
2
J

(3)
+ ezJ

(3)
− endowed with an additional constant of motion I(2) [2]:

I(2) =
sinh zq2

1

2zq2
1

ezq2
1p2

1, (15)

which does not come from the coalgebra symmetry but it is a consequence of the Stäckel

system [7] defined by Hcc. Since I(2) is functionally independent with respect to the three

previous constants of the motion (6), Hcc is a maximally superintegrable Hamiltonian with

free Lagrangian and associated metric given, in terms of (9) and (10), by Tcc = Tnc e−zq2

and ds2
cc = ds2

nc e−zq2
. Such a metric is of Riemannian type with constant sectional and

scalar curvatures: Kij = z and K = 6z.

A more familiar expression for the metric and the associated spaces can be deduced

by applying the change of coordinates (11) and next introducing a new radial coordinate

r as cos(λ1r) = 1/ cosh(λ1ρ) [4]. Thus we find that dscc is transformed into a metric

written in terms of geodesic polar (spherical) coordinates [6]:

ds2
cc = dr2 + λ2

2

sin2(λ1r)

λ2
1

(
dθ2 +

sin2(λ2θ)

λ2
2

dφ2

)
. (16)

According to the pair (λ1, λ2) (we take again the simplest values: 1, 0, i), this metric covers

well known classical spaces of constant curvature z = λ2
1: the 3D spherical (1, 1), Euclidean

(0, 1), hyperbolic (i, 1), anti-de Sitter (1, i), Minkowskian (0, i), de Sitter (i, i), oscillating

Newton–Hooke (1, 0), expanding Newton–Hooke (i, 0) and Galilean (0, 0) spaces; we shall

avoid the non-relativistic spacetimes with λ2 = 0 as the metric is degenerate. Recall that

r is a radial (time-like) geodesic distance, θ is either an angle in the Riemannian spaces or

a rapidity in the relativistic spacetimes (λ2 = i/c with c being the speed of light), while

φ is an ordinary angle for the six spaces.

In this new phase space, the Hamiltonian, Hcc = 2Hcc, reads

Hcc =
1

2

(
p2

r +
λ2

1

λ2
2 sin2(λ1r)

(
p2

θ +
λ2

2

sin2(λ2θ)
p2

φ

))
, (17)
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while its four constants of motion are C(2), C(2), C
(3) given in (14) and

I(2) =

(
λ2 sin(λ2θ) sin φ pr +

λ1 cos(λ2θ) sin φ

tan(λ1r)
pθ +

λ1λ2 cos φ

tan(λ1r) sin(λ2θ)
pφ

)2

, (18)

where I(2) = 4λ2
2I(2). We stress that all these results can alternatively be obtained by

following a Lie group approach [6] instead of a quantum algebra one. Explicitly, the

Hamiltonian (17) has a Poisson–Lie algebra symmetry determined by a subset of Z2⊗Z2

graded contractions of so(4), soκ1,κ2(4), where κi are two real contraction parameters; the

six generators Jµν (µ, ν = 0, 1, 2, 3; µ < ν) of soκ1,κ2(4) satisfy the following Poisson–Lie

brackets:

{J12, J13} = κ2J23, {J12, J23} = −J13, {J13, J23} = J12,

{J12, J01} = J02, {J13, J01} = J03, {J23, J02} = J03,

{J12, J02} = −κ2J01, {J13, J03} = −κ2J01, {J23, J03} = −J02,

{J01, J02} = κ1J12, {J01, J03} = κ1J13, {J02, J03} = κ1κ2J23,

{J01, J23} = 0, {J02, J13} = 0, {J03, J12} = 0.

(19)

The parameters κi are related to the λi through κ1 ≡ z = λ2
1 and κ2 ≡ λ2

2. Conse-

quently, the above six spaces of constant curvature has a deformed coalgebra symmetry,

(slz(2)⊗ slz(2)⊗ slz(2))λ2
, and also a Poisson–Lie algebra symmetry soκ1,κ2(4); the lat-

ter comprises so(4) for the spherical, iso(3) for the Euclidean, so(3, 1) for the hyperbolic,

so(2, 2) for the anti-de Sitter, iso(2, 1) for the Minkowskian, and so(3, 1) for the de Sitter

space.

In terms of the geodesic polar phase space and the parameters λi the symplectic

realization of the generators Jµν is given by [6]:

J01 = cos(λ2θ) pr −
λ1 sin(λ2θ)

λ2 tan(λ1r)
pθ, J23 = pφ,

J02 = λ2 sin(λ2θ) cos φ pr +
λ1 cos(λ2θ) cos φ

tan(λ1r)
pθ −

λ1λ2 sin φ

tan(λ1r) sin(λ2θ)
pφ,

J03 = λ2 sin(λ2θ) sin φ pr +
λ1 cos(λ2θ) sin φ

tan(λ1r)
pθ +

λ1λ2 cos φ

tan(λ1r) sin(λ2θ)
pφ,

J12 = cos φ pθ −
λ2 sin φ

tan(λ2θ)
pφ, J13 = sin φ pθ +

λ2 cos φ

tan(λ2θ)
pφ. (20)

Hence the four constants of the motion (14) and (18) as well as the free Hamiltonian (17)

are related to the generators Jµν through

C(2) = J2
23, C(2) = J2

12, C(3) = J2
12 + J2

13 + λ2
2J

2
23, I(2) = J2

03,

2λ2
2Hcc = λ2

2J
2
01 + J2

02 + J2
03 + λ2

1

(
J2

12 + J2
13 + λ2

2J
2
23

)
,

so that Hcc is just the quadratic Casimir of soκ1,κ2(4) associated to the Killing–Cartan

form.
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3 Kepler potentials

The results of proposition 1 allows one to construct many types of superintegrable

potentials on 3D curved spaces through specific choices of the Hamiltonian function H =

H(J
(3)
− , J

(3)
+ , J

(3)
3 ) which could be momenta-dependent potentials, central ones, etc. (see [8]

for the 2D case). In order to introduce a Kepler potential we consider the free Hamiltonian

(8) as the kinetic energy and add a term U(zJ
(3)
− ) which is a smooth function such that

limz→0 U(zJ
(3)
− ) = −γ/

√
q2 (γ is a real constant). Thus a family of Kepler potentials is

defined by

H =
1

2
J

(3)
+ f(zJ

(3)
− ) + U(zJ

(3)
− ), (21)

which can be interpeted either as deformations of the Kepler potential on the flat Euclid-

ean space (H → 1
2
p2 − γ/

√
q2 when z → 0), or as Kepler-type potentials on 3D curved

spaces. All the Hamiltonians contained within (21) are superintegrable sharing the same

set of three constants of the motion (6).

We propose the following functions as the Hamiltonians containing a Kepler potential

on the aforementioned spaces of variable (HSK
nc ) and constant curvature (HMSK

cc ):

HSK
nc =

1

2
J+ − γ

√
2z

e2zJ− − 1
e2zJ− ,

HMSK
cc =

1

2
J+ ezJ− − γ

√
2z

e2zJ− − 1
.

(22)

By firstly introducing in both Hamiltonians the symplectic realization (5) and secondly

the new coordinates (ρ, θ, φ) (11) in HSK
nc and (r, θ, φ) in HMSK

cc we find that these read

HSK
nc =

1

2
cosh(λ1ρ)

(
p2

ρ +
λ2

1

λ2
2 sinh2(λ1ρ)

(
p2

θ +
λ2

2 p2
φ

sin2(λ2θ)

)
− 2λ1k

tanh(λ1ρ)

)
,

HMSK
cc =

1

2

(
p2

r +
λ2

1

λ2
2 sin2(λ1r)

(
p2

θ +
λ2

2 p2
φ

sin2(λ2θ)

))
− λ1k

tan(λ1r)
, (23)

where HSK
nc = 2HSK

nc , HMSK
cc = 2HMSK

cc and k = 2
√

2 γ. Hence HMSK
cc contains the proper

Kepler potential, either −k/ tan r, −k/r or −k/ tanh r, on six spaces of constant curva-

ture [1, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17], while HSK
nc provides a generalization to their

variable curvature counterpart.

The constants of the motion C(2) and C(3), which ensure complete integrability, to-

gether with the Hamiltonian allows us to write three equations, each of them depending

on a canonical pair:

C(2)(φ, pφ) = p2
φ, C(3)(θ, pθ) = p2

θ +
λ2

2

sin2(λ2θ)
C(2),

HSK
nc (ρ, pρ) =

1

2
cosh(λ1ρ)

(
p2

ρ +
λ2

1

λ2
2 sinh2(λ1ρ)

C(3) − 2λ1k

tanh(λ1ρ)

)
,

HMSK
cc (r, pr) =

1

2
p2

r +
λ2

1

2λ2
2 sin2(λ1r)

C(3) − λ1k

tan(λ1r)
.
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Therefore both Hamiltonians are separable and reduced to a 1D radial system. Their

integration would lead to the solutions of such Kepler potentials; for HSK
nc one would find

very cumbersome elliptic functions.

The constant of the motion I(2) (18) (coming from the Stäckel system associated to

free motion) is lost for the Hamiltonian HMSK
cc defined on the spaces of constant curvature.

Nevertheless, maximal superintegrability for HMSK
cc is preserved since there is an additional

constant of the motion, a component of the Laplace–Runge–Lenz vector, which does

not come from the coalgebra approach (as I(2)) but this is provided by the Poisson–Lie

symmetry; this is a consequence of the particular potential expression we have considered.

This property is summed up as follows [6].

Proposition 2. Let the following three functions written in terms of the generators Jµν

(20) of soκ1,κ2(4):

L1 = −J02J12 − J03J13 + k λ2
2 cos(λ2θ),

L2 = J01J12 − J03J23 + k λ2 sin(λ2θ) cos φ,

L3 = J01J13 + J02J23 + k λ2 sin(λ2θ) sin φ.

(24)

(i) The three Li Poisson commute with HMSK
cc and these are the components of the Laplace–

Runge–Lenz vector on the 3D Riemannian (λ2 real) and relativistic (λ2 imaginary) spaces

of constant curvature.

(ii) Each set {C(2) = J2
23, L1, H

MSK
cc }, {C(3) − C(2) − λ2

2C(2) = J2
13, L2, H

MSK
cc } and {C(2) =

J2
12, L3, H

MSK
cc } is formed by three functionally independent functions in involution.

(iii) The four functions {C(2), C(2), C
(3), HMSK

cc } together with any of the components Li

are functionally independent.

To end with, we present some properties satisfied by the components Li. The three

generators {J12, J13, J23} span a rotation subalgebra so(3) for the three Riemannian spaces

and a Lorentz one so(2, 1) for the three relativistic spacetimes (see (19)). According to

the signature of the metric, determined by λ2, the following Poisson–Lie brackets show

that the three components Li are transformed either as a vector under rotations when λ2

is real, or as a vector under Lorentz transformations when λ2 is imaginary:

{J12, L1} = λ2
2L2, {J12, L2} = −L1, {J12, L3} = 0,

{J13, L1} = λ2
2L3, {J13, L2} = 0, {J13, L3} = −L1,

{J23, L1} = 0, {J23, L2} = L3, {J23, L3} = −L2.

(25)

The commutation rules among the components Li are found to be

{Li, Lj} = 2
(
λ2

1C
(3) − λ2

2H
MSK
cc

)
Jij, i < j, i, j = 1, 2, 3. (26)

Next we scale the components as P1 = L1/λ2, P2 = λ2L2 and P3 = λ2L3, and write the
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Poisson brackets for Jij,Pi (i, j = 1, 2, 3):

{J12, J13} = λ2
2J23, {J12, J23} = −J13, {J13, J23} = J12,

{J12,P1} = P2, {J13,P1} = P3, {J23,P2} = P3,

{J12,P2} = −λ2
2P1, {J13,P3} = −λ2

2P1, {J23,P3} = −P2,

{P1,P2} = µJ12, {P1,P3} = µJ13, {P2,P3} = µλ2
2J23,

{P1, J23} = 0, {P2, J13} = 0, {P3, J12} = 0,

(27)

where µ = 2
(
λ2

1C
(3) − λ2

2H
MSK
cc

)
is a quadratic function on the three Jij through C(3)

(note that C(3) does not Poisson commute with Pi). Hence when comparing (27) with

the Poisson–Lie algebra soκ1,κ2(4) (19) we find that the former can be seen as a cubic

generalization of the latter under the identification κ2 ≡ λ2
2 and the replacement of the

translations J0i → Pi. The cubic Poisson brackets are those involving two Pi and the

former contraction/deformation parameter κ1 ≡ λ2
1 (the constant curvature of the space)

has been replaced by the function µ. Notice that each set of three generators Jij,Pi,Pj

(for i, j fixed) define a cubic Higgs algebra [10].

More details on this construction as well its generalization to arbitrary dimension will

presented elsewhere.
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