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Abstract

We consider positive real valued random data X with the
decadic representation X =

∑∞
i=−∞ Di 10i and the first signifi-

cant digit D = D(X) ∈ {1, 2, . . . , 9} of X defined by the con-
dition D = Di ≥ 1, Di+1 = Di+2 = . . . = 0. The data X
are said to satisfy the Newcomb-Benford law if P{D = d} =
log10

d+1
d for all d ∈ {1, 2, . . . , 9}. This law holds for example for

the data with log10 X uniformly distributed on an interval (m, n)
where m and n are integers. We show that if log10 X has a dis-
tribution function G(x/σ) on the real line where σ > 0 and G(x)
has an absolutely continuous density g(x) which is monotone on
the intervals (−∞, 0) and (0,∞) then∣∣∣∣P{D = d} − log10

d + 1
d

∣∣∣∣ ≤ 2 g(0)
σ

.

The constant 2 can be replaced by 1 if g(x) = 0 on one of the
intervals (−∞, 0), (0,∞). Further, the constant 2g(0) is to be
replaced by

∫ |g′(x)|dx if instead of the monotonicity we assume
absolute integrability of the derivative g′(x).

1 Introduction

Our starting point is the following question: if we choose at random
numerical data from a large interval (e.g. of length about 1000), what is
the probability that the first digit will be 1? It follows from examining
of various types of data sources that the leading significant digit are
not uniformly distributed as might be expected, but instead follow a
particular logarithmic distribution.
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The first known written record about this question is the article
Note on the Frequency of Use of the Different Digits in Natural Num-
bers, published in the American Journal of Mathematics (1881) by the
astronomer-mathematician Simon Newcomb. He observed: “That the
ten digits do not occur with equal frequency must be evident to any one
making much use of logarithmic tables, and noticing how much faster
the first pages wear out than the last ones. The first significant figure is
oftener 1 than any other digit, and the frequency diminishes up to 9”.
He also went deeper and concluded the following logarithmic law:

The law of probability of the occurrence of numbers is such that
all mantissae of their logarithms are equally probable. (1)

(The base-10 mantissa of a positive random number X is the random
number R in [1/10, 1) satisfying the relation X = R·10n for some integer
n).

To return to the question above, consider for real valued random
data X > 0 the decadic expansion

X =
∞∑

i=−∞
Xi 10i, Xi ∈ D � {0, 1, . . . , 9}, (2)

where X and X = (. . . , X−1, X0, X1, . . .) are one-one related provided
we replace Xi < 9 and Xi−1 = Xi−2 = . . . = 9 by X̃i = Xi + 1 and
X̃i−1 = X̃i−2 = . . . = 0. Define now for any natural number k the first
k significant digits

D = (D1, . . . , Dk) ∈ (D − {0}) ⊗Dk−1

of X by the formula

D = (Xi, Xi−1, . . . , Xi−k+1) if Xi �= 0 and Xj = 0 for all j > i. (3)

Since all but finitely many of the Xi’s with i > 0 are zeros the segment
D of X of the properties specified in (3) exists and is unique for every
finite realisation of X.

In this precised framework the Newcomb law (1) implies that the
probability X has leading significant digit d is

P{D1 = d} = log10

(
d + 1

d

)
, d = 1, 2, ..., 9. (4)
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This means that in a large sample of independent observations on X,
30.1% of numbers should have leading significant digit 1, 17.6% leading
significant digit 2 and so on monotonically to 4.6% of numbers with
leading digit 9 (see Table 1).

Also the following general form of significant digits law can
be deduced from the Newcomb law: For all naturals k and all d =
(d1, . . . , dk) ∈ (D − {0}) ⊗Dk−1,

P{D = d} = log10

⎡
⎣1 +

(
k∑

i=1

di · 10k−i

)−1
⎤
⎦ . (5)

d P (D1 = d) P (D2 = d) P (D3 = d) P (D4 = d)
0 0.1197 0.1018 0.1002
1 0.3010 0.1139 0.1014 0.1001
2 0.1761 0.1088 0.1010 0.1001
3 0.1249 0.1043 0.1006 0.1001
4 0.0969 0.1003 0.1002 0.1000
5 0.0792 0.0967 0.0998 0.1000
6 0.0669 0.0934 0.0994 0.0999
7 0.0580 0.0904 0.0990 0.0999
8 0.0512 0.0876 0.0986 0.0999
9 0.0458 0.0850 0.0983 0.0998

Table 1: Marginal probabilities of digit occurrence by the law (5)
with any k ≥ 4.

One can see (or extrapolate) from Table 1 that for 4 ≤ i ≤ k the
difference between probabilities P{Di = d} for various d ∈ {0, 1, . . . , 9}
is inappreciable. It is easy to see that under the law (5) the random
digits D1, D2, . . . , Dk are dependent: the probability that the second
digit is d2 depends on the first digit d1. This dependence decreases
rapidly with increasing distance between the position of digits.

The Newcomb article was later forgotten and the distribution law (4)
was rediscovered again fifty-seven years later by the physicist Frank Ben-
ford, who published his conclusions in the article The Law of Anomalous
Numbers in the Proceedings of the American Philosophical Society 78
(1938). Frank Benford supported the law with over 20,000 entries taken
from widely divergent sources such as areas of 335 rivers, specific heats
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and molecular weights of 1389 chemical compounds, American League
baseball statistics, number gleaned from front pages of newspapers etc.
His frequencies came surprisingly close to the probabilities predicted by
(4). The formula (4) and also (5) became to be known as Benford’s laws.

Of course many tables of numerical data do not follow the logarith-
mic distribution (4), e.g. data such as square roots tables of integers
does not agree with the law. Benford came to the conclusion that “the
logarithmic law applies particularly to those outlaw numbers that are
without known relationship rather than to those that individually follow
an orderly course; and therefore the logarithmic relation is essentially a
Law of Anomalous Numbers”.

It has appeared an abundance of additional empirical evidence and
also many formal arguments, since Benford’s popularization of the law.
There are generally three types of reasoning in arguments supporting
Benford’s Law. Namely, discrete density and summability methods (see
Cohen [2], Flehinger [3]), continuous density and summability methods
(cf. Raimi [8]) and scale invariant hypotheses (see Cohen [2], Pinkham
[7]).

(i) In the first case it is assumed that the underlying data are natural
numbers, and various summability methods are proposed assigning the
density appearing in (1) to the set of positive integers Sd with first digit
d. The source of difficulty is that this set Sd does not have a natural
density, that is,

lim
n→∞

Sd ∩ {1, ..., n}
n

does not exist.

It is easy to see that the empirical density of S1 oscillates repeatedly
between 1/9 and 5/9. There also do not exist unique extensions of
density to sets like Sd coinciding with natural density on sets which
have natural density. Moreover these arguments do not result in a true
(countably additive) probability.

(ii) The first methods has been extended in essentially the same way
to the continuous density, but again, such extensions are not unique and
are also necessarily only finitely additive.

(iii) The third main approach is based on scale invariance, i. e.
any universal law should be independent of units. But there is also a

410 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 2, 407-420
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difficulty. There is no scale invariant Borel probability measure on the
positive reals (see Raimi [8]).

Recently have appeared arguments based on the base invariance (Hill
[4], Hill [5]). That means, any reasonable universal significant digit law
should be valid even when rewritten in terms of bases other than 10.

None of the previous papers obtained the Newcomb-Benford law (4)
by using the asymptotic methods of probability theory, based on statis-
tical arguments. In this article we present such a new approach.

2 The Newcomb law

As often happens with famous laws, there are some problems with what
exactly the Newcomb law (1) means. The “equal probabilities” men-
tioned there indicate that the law assumes discrete (finitely valued)
mantissae R. But equal probabilities of outcomes of log10 R then mean
exactly the same as equal probabilities of the outcomes of discrete R
itself, so why then “logarithms”? Moreover, the equal probabilities 1/9
for the random mantissa R ∈ {1/10, 2/10, . . . , 9/10} lead to the whole
class of sources

X = 10n R, n = 0, 1, . . . ,

with the uniform distribution of the significant digit D1 = 10 R, which
contradicts (4).

Thus if we want to deal seriously with the Newcomb law, we are in
the situation of someone who has to say “what the discoverer had in
mind”. However unpleasant this situation is, we risk to say that the
“equally probable” in (1) means the uniform distribution of log10 R on
the interval (−1, 0). For continuous R this means that the continuous
distribution function FR(r) = P{R < r} satisfies the condition

FR(r) = 1 + log10 r (6)

for all r ∈ [1/10, 1), and for discrete R taking on values from a finite
subset R ⊂ [1/10, 1) with minR = 1/10 this means that (6) holds for
all r ∈ R. The last condition means that the discrete R is obtained from
a continuous R̃ with log10 R̃ uniform on (−1, 0) by the quantization of
interval [1/10, 1) by the points of R where

P{R = rj} = P{rj ≤ R̃ < rj+1}
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for every rj ∈ R provided r1 < r2 < . . . . The uniformity condition
for the discrete mantissae can be strengthened by requiring that the
partition points R are equidistant in the sense that

ri =
1
10

+
9(i − 1)

10N
if R = {r1, . . . , rN}.

In this paper we restrict ourselves to continuous data X > 0. We of-
ten use for arbitrary integer j and the significant digits D = (D1, . . . , Dk)
the equivalence

10j ≤ X < 10j+1 ⇔ X =
k∑

i=1

Di10j+1−i + Yj (7)

where

Yj =
∞∑
i=0

Xj−k−i10j−k−i < 10j+1−k. (8)

Proposition 1. For any continuous source, (D1, . . . , Dk) ∈ (D−{0})⊗
Dk−1 are significant digits of X if and only if the mantissa of X satisfies
the inequality

k∑
i=1

Di10−i ≤ R <

k∑
i=1

Di10−i + 10−k. (9)

Proof. Let the left-hand side of (7) hold and let the significant digits
of X be (D1, . . . , Dk). If we divide the right-hand side of (7) by 10j+1

then we get

R =
k∑

i=1

Di10−i + Zj where 0 ≤ Zj < 10−k

which is equivalent to (9). Let now, conversely, the mantissa R of X
satisfy (9) for some D̃ = (D̃1, . . . , D̃k) ∈ (D−{0})⊗Dk−1. Multiplying
(9) by 10j+1 we get

10j+1 R =
k∑

i=1

D̃i10j+1−i + Yj , (10)
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where Yj satisfies (8). If X fulfills the left-hand condition of (7) then X
equals 10j+1R and also satisfies the right-hand relation of (7). Since one
value X = 10j+1R cannot be expressed in the form (10) for two different
vectors D̃ ∈ (D − {0}) ⊗Dk−1, the desired equality D = D̃ follows.

In the rest of paper we are interested in continuous data X > 0
satisfying the Newcomb law. Because of the problems with the form of
this law given in (1), we present a formal definition.

Definition 1. A nonnegative random variable X is said to be distributed
by the Newcomb law if the mantissa R of X is distributed in the definition
domain [1/10, 1) by the logarithmic law (6).

Let us consider integers −∞ < m < n < ∞ and a random variable
10m < X < 10n with a distribution function F (x) = P{X < x}. If for
every m ≤ j < n

Gj(x) � F (x) − F (10j)
F (10j+1) − F (10j)

= log10 x − j when 10j ≤ x < 10j+1 (11)

then X is distributed by the Newcomb law. Indeed, then Gj(x) is the
conditional distribution function of X under the condition considered in
(7). Under this condition the mantissa is R = X/10j+1 which implies
the distribution function of the mantissa satisfies for every r ∈ [1/10, 1)
the relation

FR(r) = Gj(10j+1r) = 1 + log10 r,

i.e. that (6) holds.

Example 1. If in the above considered model

F (x) =
log10 x − m

n − m
for 10m ≤ x < 10n

then (11) holds so that the data X are distributed by the Newcomb law.

Example 2. The model of Example 1 is sufficient but not necessary for
the validity of (11). To see this consider for simplicity m = 0 and n = 2.
If for some 0 < c < 1

F (x) =
{

c log10 x if 1 ≤ x < 10
c + (1 − c)(log10 x − 1) if 10 ≤ x ≤ 100
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then the probability density is c/(x ln 10) for 1 ≤ x < 10 and (1 −
c)/(x ln 10) for 10 ≤ x ≤ 100. If c �= 1/2 then this density differs from
the density 1/(2x ln 10) for 1 ≤ x ≤ 100 in the model of Example 1 with
m = 0 and n = 2.

Proposition 2. All distribution functions of nonnegative data X > 0
satisfying the Newcomb law are of the form

Gp(x) =
∞∑

j=−∞
pj

[
I[10j , 10j+1)(x) (log10 x − j) + I[10j+1,∞)(x)

]
,

where p = (pj : i = 0, ±1, ±2, . . .) is an arbitrary series of nonnegative
parameters summing up to 1.

Proof. Since R = X/10j+1 is the mantissa of X under the condition
10j ≤ X < 10j+1, (11) is not only sufficient but also necessary for the
conditional validity of (6). The parameters pj characterize the proba-
bilities P{10j ≤ X < 10j+1} of the conditions.

3 The Newcomb-Benford law

In this section we study some properties of data X > 0 distributed by
the Newcomb law. The following terminology refers to the fact that
the formula (4) for probabilities of significant digits has been introduced
as a “law of nature” of some kind independently by Newcomb [6] and
Benford [1]. Benford [1] introduced in a similar sense also the formula
(5) with k = 2.

Definition 2. We say that random data X > 0 satisfy the New-
comb-Benford law with a parameter k ≥ 1 if probabilities of the first k
significant digits are given by formula (5).

Proposition 3. If continuous data X > 0 are distributed by the New-
comb law then they satisfy the Newcomb-Benford law with an arbitrary
parameter k ≥ 1.

Proof. Let d be an arbitrary vector considered in (5) and

r =
k∑

j=1

dj10−j , s = 10kr =
k∑

j=1

dj10k−j
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the corresponding numbers from [1/10, 1) or [10k−1, 10k). By Pro-
position 1 and (6),

P{D = d} = P{r ≤ R < r + 10−k}
= log10

r + 10−k

r
= log10(1 + s−1)

which completes the proof.

One can easily verify that the sum of probabilities (5) over all d
considered there is 1. Indeed, assume first k > 1 and denote by s0 the
value of above defined s for dk = 0. By increasing dk by 1 we increase
s0 by 1 too. Therefore

9∑
dk=0

P{D = d} =
9∑

dk=0

log10

s + 1
s

= log10

9∏
dk=0

s + 1
s

= log10

(
s0 + 1

s0
· s0 + 2
s0 + 1

· . . . · s0 + 10
s0 + 9

)

= log10

s0 + 10
s0

= log10

s̃ + 1
s̃

= log10(1 + s̃−1),

where log10(1 + s̃−1) denotes P{(D1, . . . , Dk−1) = (d1, . . . , dk−1)}. By
induction we finally come to

9∑
d=1

log10

d + 1
d

= log10

(
2
1
· 3
2
· . . . · 10

9

)
= log10 10 = 1.

4 Asymptotes for the Newcomb-Benford law

In this section we are interested in conditions under which the Newcomb-
Benford laws (4) and (5) are valid or approximately valid. The exact
validity has been proved in Proposition 3 only for data X distributed
by the Newcomb law. As can be seen from Proposition 2, the Newcomb
distributions are rather curious and quite different from the standard dis-
tributions of data in the mathematical statistics. A question is, whether
or to what degree the Newcomb-Benford laws hold when X or log10 X is
distributed by the laws from the standard statistical families like the ex-
ponential or doubly exponential family, or the Normal, logistic, Cauchy,
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Beta, Rayleigh, Weibull and many other similar families. For simplicity
we restrict ourselves to the first significant digit law (4). Extension of
our result to the law (5) is only a technical problem.

We have seen in the previous section that (4) holds if log10 X is uni-
formly distributed on an arbitrary interval of the real line with integer
end-points m < n. The idea is to look for members of common statis-
tical families of distributions which are approximately uniform. Such
members are all distribution functions G(x/σ) with sufficiently large
scale factor σ. Large scale factors are needed not only in the distri-
butions of X but also in those of log10 X. Indeed, the units in which
are evaluated observations X are usually selected with the aim to use
a reasonably broad range of values and avoid too frequent use of too
many decimals or too many zeros. Therefore e.g. individual salaries are
usually measured in thousands while the state budgets in billions.

The main result of the present paper is the following

Theorem. If X are random positive data with a distribution function

G(x/σ) = P{log10 X < x}, σ > 0,

on the real line, where G(x) has an absolutely continuous density g(x)
with a derivative g′(x), then the first significant digit D of X satisfies
the inequality

max
1≤d≤9

∣∣∣∣P{D = d} − log10

d + 1
d

∣∣∣∣ ≤ 1
σ

∫ ∞

−∞
| g′(x)|dx. (12)

Therefore

lim
σ→∞ max

1≤d≤9

∣∣∣∣P{D = d} − log10

d + 1
d

∣∣∣∣ = 0 (13)

uniformly in the class of all distribution functions G with bounded L1-
norms

∫ |g′(x)|dx of the density derivatives.

Proof. We can assume without loss of generality that g(x) is positive
only for x ≥ 0. If

∫∞
0 |g′(x)|dx = ∞ then it is nothing to prove. Other-

wise the variation of g is bounded, so that g = g1−g2, where both g1(x)
and g2(x) are nonincreasing absolutely continuous on (0,∞) with

g1(0) + g2(0) =
∫ ∞

0
|g′(x)|dx . (14)
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Let p(d) = P{D = d} for 1 ≤ d ≤ 9. By (7), if 10j ≤ X ≤ 10j+1 then
D = d if and only if

10j d ≤ X ≤ 10j(d + 1).

But

P{10j d ≤ X ≤ 10j(d + 1)} =

= G

(
j + log10(d + 1)

σ

)
− G

(
j + log10 d

σ

)

= g

(
j + ξk,j

σ

)
1
σ

log10

d + 1
d

=
[
g1

(
j + ξk,j

σ

)
− g2

(
j + ξk,j

σ

)]
1
σ

log10

d + 1
d

,

where
0 ≤ log10 d ≤ ξk,j ≤ log10(d + 1) ≤ 1 .

Since g1, g2 are nonincreasing, this implies

g�

(
j + 1

σ

)
≤ g�

(
j + ξk,j

σ

)
≤ g�

(
j

σ

)
, � = 1, 2. (15)

Therefore

p(d) =
∞∑

j=0

[
G

(
j + log10(d + 1)

σ

)
− G

(
j + log10 d

σ

)]

=
1
σ

log10

d + 1
d

∞∑
j=0

[
g1

(
j + ξk,j

σ

)
− g2

(
j + ξk.j

σ

)]

� (C1(σ) − C2(σ)) log10

d + 1
d

,

where

C�(σ) =
1
σ

∞∑
j=0

g�

(
j + ξkj

σ

)
, � = 1, 2. (16)

Let us define for � = 1, 2

G�(x) =
∫ x

0
g�(y)dy
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and take into account that

1
σ

g�

(
j

σ

)
≤ G�

(
j

σ

)
− G�

(
j − 1

σ

)
for j ≥ 1

and
1
σ

g�

(
j

σ

)
≥ G�

(
j + 1

σ

)
− G�

(
j

σ

)
for j ≥ 0.

In this way we obtain from (15) and (16) for � = 1, 2

G�(∞) − G�(0) −
[
G�

(
1
σ

)
− G�(0)

]
≤ C�(σ)

≤ g�(0)
σ

+ G�(∞) − G�(0).

If we take into account that G�(0) = 0 and G�(1/σ) ≤ g�(0)/σ, we
conclude that

G�(∞) − g�(0)
σ

≤ C�(σ) ≤ G�(∞) +
g�(0)

σ
.

This implies

G1(∞) − G2(∞) − g1(0) + g2(0)
σ

≤ C1(σ) − C2(σ)

≤ G1(∞) − G2(∞) +
g1(0) + g2(0)

σ
.

But G1(∞) − G2(∞) = G(∞) = 1 and g1(0) + g2(0) is given by (14).
Consequently,

|C1(σ) − C2(σ) − 1| ≤
∫∞
0 |g′(x)|dx

σ

which completes the proof.

Note that if g(x) is unimodal with the mode at x = 0 then the
integral in (12) equals 2 g(0). If g(x) is positive only for x ≥ 0 and in
this domain it is nonincreasing then the integral equals g(0).

Example 3. For the standard normal g(x) = 1√
2π

exp−x2/2 we obtain
the inaccuracy of approximation bound

1
σ

∫ ∞

−∞
|g′(x)|dx =

2
σ
√

2π

.=
0.7979

σ
,
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for the exponential g(x) = exp−x we obtain the bound 1/σ and for the
Cauchy g(x) = 2/[π(1 + x2)] we obtain the bound

2
σπ

=
0.6366

σ
.

These bounds are probably not very tight – the aim of Theorem was just
to demonstrate that the approximation in standard statistical models is
possible.
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