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CHARACTERS AND GALOIS INVARIANTS
OF REGULAR DESSINS
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Abstract

We describe a new invariant for the action of the absolute Ga-
lois groups on the set of Grothendieck dessins. It uses the fact that
the automorphism groups of regular dessins are isomorphic to au-
tomorphism groups of the corresponding Riemann surfaces and
define linear representations on the space of holomorphic differ-
entials. The characters of these representations give more precise
information about the action of the Galois group than all previ-
ously known invariants, as it is shown by a series of examples.
These examples have their own interest because the Galois action
on them is described only using properties of the fixed points in
the canonical model, without the explicit knowledge of equations.

1 Regular dessins, Galois actions, and charac-
ters

Let Y be a compact Riemann surface or equivalently a smooth projective
algebraic curve defined over a subfield of C. We call it a Belyi surface if a
Belyi function 8:Y — P! exists on Y, i.e. non-constant, meromorphic
and ramified at most above 0,1, 00. Equivalent definitions (see e.g. [JS]
or [Wol]) are

1. as an algebraic curve, Y can be defined over a number field

2. as a Riemann surface, Y is isomorphic to a quotient I'\'H of the
upper half plane H by a subgroup I' of finite index in a Fuchsian
triangle group A C PSLyR

3. the conformal structure of Y is uniquely determined by a
(Grothendieck) dessin, a bipartite graph D, that is with white
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and black vertices — every white vertex has only black neighbours
and vice versa — and Y — D a finite disjoint union of simply
connected cells.

In fact, every Belyi function defines a dessin given by the inverse
image $7'[0,1] of the real interval [0,1]. The white and black ver-
tices are the points of $71{0} and B~!{1} respectively, and any dessin
on a compact orientable 2-manifold determines uniquely a conformal
structure and a Belyi function on it with that property.

One of the main problems in the theory of Grothendieck’s dessins
d’enfants is to understand the action of the absolute Galois group
GalQ/Q on them. In fact, every ¢ € GalQ/Q maps every Belyi sur-
face Y onto another Belyi surface Y7 via the action on the points of the
nonsingular projective algebraic curves and on the coefficients of their
defining equations, and the action on the coefficients of the Belyi func-
tion B under consideration gives a new Belyi function 8 on Y7, hence
defining a Galois conjugate dessin D?. We think that a description of
this Galois action should be decomposed into the action on Riemann
surfaces with many automorphisms or regular dessins, see below, and
the action on their quotients.

To that aim we recall first that the property that the Riemann surface
X of genus g > 1 has many automorphisms may be defined in several
equivalent ways [Wol].

1. Every proper local deformation X, of X (corresponding to a point
P(X¢) in a small punctured neighbourhood of P(X) in the moduli
space M, ) has an automorphism group which is strictly smaller
than Aut X .

2. The universal covering group N C PSLy(R) of X is a normal
subgroup of a Fuchsian triangle group A (and Aut X = A/N =: G
if A is the normalizer of N in PSL;R, in particular if A is a
maximal triangle group).

3. X — Aut X\ X is a Belyi covering, i.e. there exists a Belyi function
B : X — P! defining a normal covering, given by the canonical
projection N\H — A\H = G\X where we identify the target
quotient space with P! and the fixed point orbits of A with 0,1, 00
respectively.
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4. The conformal structure on X is characterized by a regular dessin
what means that the dessin has an automorphism group acting
transitively on the edges.

5. At least for genus g > 3 the corresponding point P(X) of the mod-
uli space is an isolated singularity of M, in the sense of Zariski [Po]
(not to be confused with the more restricted notion of topologically

isolated points of the set of singular points in M, as considered
by Kulkarni [K]).

In the present paper, the most important characterizations are those
given in 2. and 3. We remark in passing that A is uniquely determined
by its signature < p,q,r > up to conjugation in PSL;R whence
we will simply write A =< p,q,7 > . Since N is torsion free, G =
A/N has three generators g,h,k with ghk = 1 and of orders p,q,r
respectively. These orders are of course also the ramification orders of
B above 0,1, 00, respectively.

Every dessin has a regular dessin as a finite cover. Equivalently,
every Belyi surface Y is covered by a Riemann surface with many au-
tomorphisms X taking the normalization of the covering given by the
original Belyi function 8 :Y — P!. The resulting normal covering map
B : X — P! is again a Belyi function whose dessin B~1[0,1] gives
the regular covering of the original dessin 871[0,1]. Its automorphism
group G, i.e. the covering group of B, is isomorphic to its hypermap
group ( = monodromy group of B ) and also to the hypermap group of
the original dessin #7'[0,1], namely the monodromy group of 3, and
can also be identified with a subgroup of the automorphism group of
the Belyi surface X , for details see Theorem 2 of [Wo2]. Now Galois
conjugations of Y and of the Belyi function 3 induce Galois conjugations
of X , and if X has many automorphisms then so has X? for any Galois
conjugation o, the automorphism group G of X being o-conjugate to
an automorphism group G? of X? . The canonical Belyi function

B: X - G\X = P' isconjugateto B’ : X7 —» G°\X° = P!

which is again a canonical Belyi function, with the same ramification
orders as B (canonical means that B is uniquely determined by X and
G which is Aut X in most cases — uniquely determined up to automor-
phisms of P! possibly permuting 0,1, 00, compare Remark 1 at the end
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of Section 3). Thus o induces an obvious mapping of regular dessins D
to regular dessins D? with isomorphic automorphism groups G = G7
and preserving the orders of the generators of G or equivalently, the
valencies of D . Therefore, the problem of understanding these Galois
actions can be divided into two parts.

e Consider isomorphic Belyi surfaces as equivalent and describe the
action of Gal Q/Q on the equivalence classes of Belyi surfaces with
many automorphisms X . In particular, determine the subgroup
H of all Galois conjugations o sending X to an isomorphic Belyi
surface X7, and the fixed field M(X) of H, the moduli field of
X . By a result essentially due to Coombes and Harbater ([DE],
[Wol]) a Belyi surface with many automorphisms X has a model
defined over its moduli field.

e Describe the action of H on the intermediate coverings of B : X —
P!, i.e. on all quotients of X by subgroups of G. Equivalently,
describe the action of H on the subgroups of the automorphism
group G of X (clearly, the automorphisms of X — defined over Q
— form a group invariant under conjugation by H ).

In this paper the first problem will be considered for a special fam-
ily of Riemann surfaces with a given automorphism group. The sec-
ond problem is connected to the theory of G-coverings and will not
be considered here (in the examples treated below this action will be
rather trivial). For regular dessins on Riemann surfaces with many
automorphisms, the isomorphism class of the automorphism group G,
together with the order of their generators is obviously invariant under
Galois conjugation — for an account of the actually known invariants
of dessins under the action of GalQ/Q see [JSt]. Unfortunately these
known invariants do not form a complete list of Galois invariants in
general. They are sufficient to characterize Galois orbits in some impor-
tant special cases such as elliptic curves with complex multiplication and
uniform dessins (Singerman/Syddall [SSy]) or Hurwitz curves with au-
tomorphism groups PSLyF, over a finite field F, (Streit [St2]). They
are also trivially sufficient for curves X with many automorphisms in
small genera g, 1 < g < 5, since X is uniquely determined by its au-
tomorphism group Aut X at least in these cases. (Then, by the way,
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M(X) = @, so X may be defined over the rationals). As far as we
know, historically the first examples where these invariants were known
to be insufficient are ‘Leila’s flowers’, see p.71 of [Sps].

One aim of our investigation is the careful study of an infinite family
of Riemann surfaces with automorphism groups

G=Z,x2Z,

which are the semi-direct products of the multiplicative cyclic groups
of prime orders g and p = 1 mod q. We give a very explicit description
of these surfaces and we try to collect as much information about these
surfaces as one can possibly extract. Partly this is done to exhibit the
power of a new Galois invariant we propose using the representations

v : G = GL(H(X,0F))

on the vector space of holomorphic differentials of degree k € N defined
by

Yk(9) + w > wog™!

for all g € G'. For a given group G we obtain a sequence of representa-
tions (1 )ren and call two such sequences (¥ )ken, (Yk)ren equivalent

iff there is a 7 € Aut G such that (Yr)ren = (¥r © T)ken, i.e. iff we can
find a fixed 7, such that 9 is isomorphic to {13; o7 for all kK € N. This
implies (¢r9Yr)ken = (trro7T)ren and we call these two sequences equiv-
alent as well. The composition of the representations 1, with a fixed
7 € Aut G corresponds to the existence of different homomorphisms of
A onto G with the same kernel. Here only outer automorphisms are
relevant as for all inner automorphisms we have ¥ = 1 o7 and
trpr(g) = tryp(r(g)) for all g € G. With respect to our second aim
we want to formulate our

Main Observation. Let X, X' be Riemann surfaces of genus g > 1
with many automorphisms and

G = A/N = A/N'

for a Fuchsian triangle group A containing the universal covering groups
N,N' of X and X' as normal subgroups. Let i, be the represen-
tations of G on the spaces of holomorphic k-differentials on X, X' re-
spectively. If

Xf

14

X7  for some o € GalQ/Q,
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then there ezists an T € Aut G such that the characters of 1y, satisfy
trir(g) = o(tre(r(g))) forall g€ G andall k,

i.e. (V) ken, (Yi)ken, respectively (trf)ren, (trib;)ken are equivalent.

The proof is almost obvious using the action of o on the curve X , on
a basis of its differentials which may be assumed to be defined over Q,
on the elements g of the automorphism group G, giving a coefficientwise
action of o on the representation matrices 1x(g) . Much less obvious is
the question if the Galois orbit of this character is a useful invariant, i.e.
if characters can distinguish Galois orbits whose other invariants are the
same, and if they can be explicitly calculated. The latter question of
how to calculate this invariant will be discussed in some detail in Section
6. All informations about this invariant are encoded in the behaviour
of elements of the cartographic group G by operating on the cosets of
the cyclic groups generated by the standard generators of G. We will
classify all regular dessins and Riemann surfaces having the described
groups as automorphism groups (Section 2). This family shows that
characters are in fact a powerful tool, but the dessins are interesting in
its own right by various reasons.

e The action of GalQ/Q on the curves of the family can be de-
scribed without explicit knowledge of the defining equations. The
method is based on ideas of the first author concerning canonical
models, fixed points and multipliers, first applied in [St2] on a se-
ries of Hurwitz curves. Another possible access could be the use
of Belyi’s cyclotomic character.

e Consequently, the moduli field can be determined explicitly. As
explained above, it coincides with the minimal field of definition
(Theorems 1 and 3).

e This field of definition is never @, so Hilbert’s irreducibility the-
orem fails to produce the groups G as Galois groups over @ by
specializing extensions of function fields ramified over three points
only.

e With Eichler’s trace formula, the character of 1 can be calculated
and decomposed into irreducible components (Theorem 5).
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e In general, there is no hope that the Galois orbits of the characters
in the Main Observation form a complete system of Galois invari-
ants for dessins. But in the case of our family of examples they
correspond in fact bijectively to the Galois orbits of the dessins in
question, already for 1-differentials (Theorem 4), although both
the number of Galois orbits and their length grow linearly with q.

e On the other hand, with methods explained in [JSt] it is easy to
prove that the previously known best Galois invariants for dessins
— the cartographic groups introduced in [JSt] — are the wreath
product (G x G)x Sy for almost all Galois orbits treated in The-
orem 3 (i.e. if the indices of X,;, are pairwise distinct). So
they are unable to distinguish different Galois orbits in most of
our cases.

e On the way, we will meet some well-known quotients of Fermat
curves giving simple examples of non-isomorphic Riemann surfaces
with many automorphisms, isomorphic (cyclic) automorphism
groups, but defined over @, hence not Galois conjugate to each
other (Theorem 2, Remark 6).

For completeness, we mention two more possibilities to obtain other
Galois invariants of dessins. First one may iterate the procedure de-
scribed in [JSt] leading from the hypermap group to the cartographic
group, or one may pass to more general combinations p(B) of the origi-
nal Belyi function B with other Shabat polynomials p and then consider
the monodromy group of p(B). It is an open problem to what extent
this idea leads to better Galois invariants. Secondly one may refine the
Main Observation by considering not the above mentioned characters
but directly the multipliers of the automorphism in their fixed points
which have to be used for the calculation of the characters, see the proof
of Lemma 7. But it turns out that this refinement gives no further
information, see [Be] or the Proposition in Section 6. An Important
Remark following this Proposition shows that, in general, characters
or multipliers do not determine uniquely Riemann surfaces with many
automorphisms or regular dessins. It is an open problem if in general
they determine uniquely their Galois orbits as they do in the series of
examples discussed in this paper.
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We obtained some useful hints by Gareth Jones, David Singerman
and the referee of this paper. The second author thanks Chiba Uni-
versity and the Japan Society for the Promotion of Science for their
hospitality in March 1998 when a first draft of this paper was written.

2 Classification

As already mentioned, we consider semidirect products
G = Z,x2Z,

of the multiplicative cyclic groups of prime order ¢ and p = 1 mod q.
For technical reasons we will suppose both primes to be > 3 and g # 7.
We will further suppose that Z; acts on the normal subgroup Z, by

b lab = a*

where a and b are generators of Z, and Z; respectively and u denotes a
fixed prime residue class of order ¢ in (Z/pZ)*. The conjugacy relation
is in fact the essential part of the presentation, as we can see in the first
point of the following Lemma (1., 3. and 6. are taken from Section 25
of [JL], the others are obvious).

Lemma 1.

1. G 1is presented by the generators a and b and the relations

2. For all n,m,j € N
bIa"b™y = o™ b
3. Denote by S the subgroup generated by u in the group (Z/pZ)* and

denote by v;, i =1,...,7:=(p—1)/q a system of representatives
of (Z/pZ)* mod S. Then G splits into the r + q conjugacy classes

{1}y , {5} := {a*¥ |j€Z/pZ},i =1,...,r

and
{a™b" |m € Z/pZ} , n # 0 mod q .
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4. The only nontrivial subgroups of G are the commutator subgroup
&= 25 =<a>

and the p conjugate cyclic subgroups of order q generated respec-
tively by a™b, m € Z/pZ. These subgroups form a partition of
G.

5. G can be generated by any two elements taken from two different
cyclic subgroups of order p or q.

6. G has q linear characters xn, n € Z/qZ, defined by
xn(a:cby) i e?ﬂiny;’q
and r irreducible characters ¢; of degree q defined by
¢ij(@®) =0 if y#Z0modg
qu(a.‘.c) o Z e21ri1.ljw:|:fp.

weSs

For the next lemma recall that a triangle group A with signature
<p,q,7r >, p,q,r € N, is presented by generators and relations
Y0, My Yos Yo =N = Voo = V0NVeo =1

and that all elements of finite order in A are conjugate in A to powers of
these generators. Therefore a homomorphism A : A — G has a torsion
free kernel if and only if the generators of A are mapped to elements of
the same order in G. These homomorphisms are easy to classify since
they are uniquely determined by the images of two generators.

Lemma 2. Suppose G defined as above, and suppose that
h: A =G

is a homomorphism with torsion free kernel. Then there are two possi-
bilities for the signature of A .

1. A =<p,q,q> . In this case there are p(p — 1)(q — 1) different
homomorphisms with torsion free kernel according to the choice of

h(vo) = ™, h(m) = a"b* , m € (Z/pZ)" , n € Z/PL, s € (Z/49Z)" .
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2. A =<gq,q,q> . In this case there are p(p — 1)(g¢ — 1)(¢ — 2)
different homomorphisms with torsion free kernel according to the
choice of

h‘(?{]) = a™b" 3 h‘(’h) == asbt , M, 8 € Z/pz'! ﬂ,t & (Z/qz)* )

and a™b" , a®b! neither lying in the same cyclic subgroup of G nor
having a product in Z, =< a > (equivalent to n # —t mod ¢q ).

The proof is obvious, only the last point deserves to be mentioned:
h(0) can be chosen freely among the p(q — 1) elements of order g in G,
and for the choice of h(<y;) one has to avoid the g — 1 nontrivial powers of
h(v0) and the p — 1 possibilities leading to an h(Ys) = (h(70)h(71)) !
of order p. For the reformulation with exponents, observe that b"a*b* =
a’b™b* for some v € Z/pZ.

Lemma 3. The automorphism group of G is isomorphic to a semidi-
rect product (Z/pZ)*XZ[pZ = AGL,(p). The automorphisms are de-
termined by

a— d, ke(Z/p2)*, b+ a™b,meZ/pZ.

Proof. Preserving the orders, every automorphism must satisfy
aw d*, ke (Z/p2)", b a™", meLpL, n€ (Z/qL)* .

Since the defining conjugacy relation has to be preserved, we also have
auk = b—na—mqkambn — au"k '

see Lemma 1. But uk = u"k mod p implies 4" ! = 1 mod p , hence

n=1modg.

Corollary 1.

1. There are q—1 different normal subgroups N5 of A =< p,q,q >,
s € (Z/qZ)* , with quotient A/N; =G .

2. There are (g—1)(¢—2) different normal subgroups Nyp ;. of A =
< q,q9,q9 > with quotient A/Np, = G where n,t,v € (Z/qZ)*
satisfy the condition n+t+v=0modgq.
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Proof and comment. It is easy to see that two homomorphisms
hi,ha : A — G have the same kernel if and only if there is an au-
tomorphism a of G with h; = a o hy. Therefore the respective number
of different normal subgroups with quotient G follows directly from the
preceding lemmas. By combining the homomorphisms with suitable au-
tomorphisms, we can moreover normalize the homomorphisms in ques-
tion in the following way.

For A =< p,q,q > we may assume h =: hy with

h(y) = a, h(m) = b°

for some s € (Z/qZ)* uniquely determining the kernel.
For A =< ¢,q,q > we may assume h =: hy 1, with

h(y) = ", h(n) = abt, h(ye) = a ¥b

with n,t,v € (Z/qZ)*, n+t+v =0 mod ¢q following from Y7170 = 1.
We observe that the condition n # —t mod ¢ is automatically satis-
fied and that the normal subgroups of A with quotient G' are uniquely
characterized by the triples (n,¢,v) as the kernels of these normalized
homomorphisms.

Lemma 4. For these normal subgroups Ns<I < p,q,q> and Nyp;,<l
< q,q,q > we have:

1. A=<p,q,q> isthe normalizer of Ny in PSLs(R).

2. A=<gq,q,q> isthe normalizer of Np s, in PSLy(R) if n,t,v €
(Z/qZ)* are pairwise distinct. If not, only two of the indices
can coincide, and then the normalizer is a triangle group A =
< 2q,q9,2 > containing A with index 2.

Proof. In any case, the normalizer is a Fuchsian group containing A .
It is known that triangle groups have only triangle groups as possible
supergroups, and using Singerman’s list of inclusions [Si], one may see
that the only possibilities in our situation are

<p,q,q> < <2p,q2>

L0, > < L2492, <q,3,33CE<2¢,3,25 .
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(We excluded the case g = 7 since < 7,7,7 > is exceptionally a non-
normal subgroup of < 2,3,7 >.)

1. Suppose that Nj is a normal subgroup not only of < p,q,q > but also
of < 2p,q,2 >. We may present the larger triangle group by generators
and relations

A=<a,m,0; a® == =anéd=1>
and relate it to the generators of A =< p,q,q > by

o’ = Yo 5“171‘5 = Yoo -

So, if we had a quotient G = A/N, extending G with index 2, there
would be an automorphism of G sending

h(n) = b° to h(ye) = (h(y0)h(n)) ™" = b7 = a™¥b7°,

see Lemma 1. According to Lemma 3 this would imply s = —s mod ¢
which is clearly impossible.

2. In the case Np;,< A =< q,q,q > we first note that n = ¢
v mod ¢ is impossible by our assumptions n,t,v € (Z/qZ)* , n+t+v
0 mod ¢. Consequently, there is no automorphism of G giving a cyclic
permutation of the generators h(v;) (see Lemma 3) whence Ny ., is
never a normal subgroup of < ¢,3,3 > or < 2¢,3,2 > by arguments
quite similar to the first case. The same arguments show that Ny,
is not a normal subgroup of A =< 2q,q,2 > if n,t,v are pairwise
distinct. However, the groups Ny ; (say) are in fact normal subgroups
of A which we may see as follows. Since the order of u in (Z/pZ)* is
odd (= q), it is a quadratic residue mod p . Therefore a w € (Z/qZ)*
exists satisfying

1l

w? = u and hence w? = —1modgq.

There is a supergroup G of G of index 2 presented by

G=<a,c;a?=c9=1,clac=a">

where ¢Z = b. As above, let A be generated by a,7;,d of the respective
orders 2¢,¢,2 and with a? =, 6 '116 = 7o . Then one can check by
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a straightforward but lengthy calculation — playing with the relations
and with n + 2t = 0 mod ¢ — that

o= h
a—c,yabt, i a™ f

defines a homomorphism A — G which restricts on A to the original
homomorphism h with kernel Ny ¢ .

Different normal subgroups N or Ny, ;, can be conjugate in PSLy(R)
only by elements of a group containing A with finite index, i.e. by el-
ements of the respective maximal triangle group. Looking at the effect
on the generators we can therefore deduce the

Corollary 2.
1. Among the normal subgroups Ns; of A =< p,q,q > there are

(g — 1)/2 PSLy(R)-conjugacy classes. For all s € (Z/qZ)*, N;
18 conjugate to N_g.

2. The normal subgroups Ny, and Npmsw of A =< q,q,9 > are
PSLy(R)-conjugate if and only if (n,t,v) is a permutation of
(m,s,w). There are g— 1 conjugacy classes of groups Ny ¢ and
(g —1)(g — 5)/6 conjugacy classes of groups Ny, with pairwise
different indices.

3 The Riemann surfaces with p—ramification

Theorem 1. Let A =< p,q,q>,G and Ny, s € (Z/qZ)*, be defined
as in the first case of the last section, i.e. let N be the kernel of the
homomorphism

hs : A - G givenby vy — a,m — b°.
Then

1. the quotient spaces N\H,s € (Z/qZ)*, form (¢ — 1)/2 non-
isomorphic compact Belyi surfaces X; with Xs = X_; for all s.

2. The genus of all X; is

o(X) = s (-1 (a-2).
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3. Their automorphism group is Aut X; =G .

4. Let  denote a fized q-th root of unity # 1 and choose an integer
u representing its residue class mod p. Then, as an algebraic
curve, Xs has the (affine, singular) model (with §s =1 mod q)

q
P =[] (=-¢*).
k=1

5. The curves X, s € (Z/qZ)* (or: their reqular dessins) form an
orbit for the action of GalQ(¢)/Q.

6. Their moduli field (or: minimal field of definition) is Q(C+¢7!).

7. The triangle group A has a normal subgroup I' of index ¢ contain-
ing all subgroups Ny as normal subgroups of index p. With the
homomorphisms hg, it can be described as the preimage

T = k' (Z;) = bl (<a>)
or as the kernel of the homomorphism
h:A — Z;, givenby v —= 1,11 = b, Y0 — bt

Its quotient surface Y = T'\H 1is of genus 0 and the covering
Y — A\H s normal and cyclic of order q. It is ramified at and
above two points.

Proof. 1. follows by Corollary 1.1 and Corollary 2.1.
2. follows by the index (A : Ng) = pg (and the usual comparison of the
volumes of the involved fundamental domains) as

Another possibility is the application of the Riemann-Hurwitz formula
to the pg-sheeted covering Xy — P! with g points lying over 0, each
with ramification index p, p points lying over 1 and p points lying over
oo, each with ramification index g.

3. follows by Lemma 4.1 and A/N; =G .
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7. The existence of I' and its properties follow from isomorphism theo-
rems of group theory. Note that all possible homomorphisms

hs = h: A 5 Z, givenby v — 1,7 = b, 7o = b7°

have the same kernel, so I' is independent of s. The genus of ¥ may
be computed in different ways. Since it is clear that the covering ¥ —
A\H = P! is cyclic of order ¢ and ramified of order g precisely above 1
and oo — recall the identification of 0,1, co with the fixed point orbits of
A given in Section 1 — we have also Y =2 P!. If we denote the respective
function fields of Y and A\H by C(z) and C(t), the covering map (of
course a Belyi function) can be explicitly given by

z—= x99 =1-1¢.

4. The function field of X; is a Galois extension of C(¢) with Galois
group anti-isomorphic to G, and C(z) is the normal intermediate field
fixed by the normal subgroup Z, generated by a. As a cyclic extension
of C(z) of order p, we may therefore write the function field of X in the
form C(z,y) where y? is a rational function of =, uniquely determined
up to taking powers with exponents prime to p and up to multiplication
with p-th powers in C(z). Moreover we may assume that the Belyi
function Xy — P! is given by (z,y) = z? = 1 — ¢t ramifying precisely
above t = 0 with order p, i.e. in the points with z = (¥, k € Z/qZ.
Therefore we can assume that

q
v = -
k=1

with some integers ¢, not divisible by p. In fact, the cyclic extension
only depends on the residue classes ¢; mod p and is invariant under
multiplication with a common factor ¢ € (Z/pZ)*, so it corresponds to
some point

{Cysai ,Cq) e P! (}Fp)

in a projective space over the finite field with p elements. According to
Kummer theory (see e.g. [L]), this point is uniquely determined by the
extension. Which point?

To decide this question we fix the g-th root of unity ¢ and an (also
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primitive) p—th root of unity n such that the action of G = Aut X; on
the functions satisfies

a(y) := yoa ! = ny, a(z) :=zoa! =z, b(z) = z0b”! = (z.
Now the action of b on the equation for y* induces a cyclic shift on the

place of the exponents (to simplify the argument, we can assume that
all ¢, =1 mod g, hence Y ¢, divisible by ¢q)

q
[[e-c = I @9 = I @-chn.
k=1

k mod g k mod q

Since b(y) is also a p—th root generating the field extension C(z,y)/C(z),
the shift of exponents gives the same point in P9~1(F,), hence

(Cl,...,Cq) = (lacscgs'-'acq_l)

for some ¢ € F; of order g. We can moreover conclude that for a
suitable integer representing the exponent, b(y) = y°g(z) with a rational
function g. Using ab = ba™ we get even ¢ = u (again a choice of an
integer representing u mod p, w.l.o.g. u =1 mod ¢), and following the
defining equation for y” we may determine g(z) explicitly by

= (z—1)*

(recall that 1 — u? is divisible by p). Note also that Y u* is divisible
by p whence the covering map X; — Y is unramified over =z = oo.
Finally one can replace { by any other primitive g-th root of unity ¢*
corresponding to other choices of the generator of Z; or to other choices
of the homomorphism h; .

5. follows from the equation given in 4.

6. may be seen using X = X_; or also by a more direct argument
involving the equations given in 4.: recall that S u* = pN for an
integer N and that we can assume u = 1 mod ¢ and therefore ¥ sku* =
0 mod ¢ . Now write the equation for X_; as

L _ p—Fkyuk k_lu"
v = [[e-c™* = ¥ [T (c*-2)
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and write again z for 1/z and y for +y/z" to deduce the equation for
Xais

Remarks. 1. We take the opportunity to point out a possible misun-
derstanding in Remark 4 of [Wol]. Recall that a Belyi pair means a pair
(U,B) of a Belyi surface U with a Belyi function 8 on it. Two Belyi
pairs (U, ) and (V,¢) are called isomorphic if there are isomorphisms

f:U—->V,pu:P 5 P with ¢gof = pop

(weakly isomorphic in the terminology of [CG]). As in the definition of
moduli fields of Belyi surfaces, let H be the subgroup of GalQ/Q con-
sisting of all o which conjugate the Belyi pair (U, 8) into an isomorphic
Belyi pair (U?,37). Then call the fixed field M(U,B) of H the mod-
uli field of (U,B). It is automatically contained in every common field
of definition of U and f. For a Riemann surface with many automor-
phisms N\H = X, N a normal subgroup of a triangle group A, and
its Belyi function B : X — P! = A\H it is true that the moduli fields
M(X) and M(X, B) coincide and that X can be defined over M(X).
But this is possibly not true for B because B is unique (canonical) only
up to automorphisms of P! exchanging 0, 1,00. In cases where A is not
maximal, i.e. if the same order occurs at non—-equivalent fixed points it
may happen that a Galois conjugation in GalQ/M(X) exchanges the
fixed points of A, hence B # B? (in the terminology of [CG], the Belyi
pairs are not strongly isomorphic). In that case, B can only be defined
over a field containing M (X) with index 2,3 or 6. This phenomenon oc-
curs precisely for our Belyi surfaces X, where the isomorphism to X_;
corresponds to an exchange of 1 and oco.

2. For Theorem 1 the primes ¢ =3 and 7 are admitted, but for ¢ = 3
we obtain curves which will be treated in the next section under the
name Y; ;.2 (the other prime here called p will there be called q).

3. Since it was not too difficult, we described here the Galois action
using the explicit equations. This can be avoided using fixed points and
multipliers on canonical models, see Section 5.

4 A well-known normal subcovering

Now we will concentrate on those cases where G is a quotient of A =
< q,q9,q > . In this section we consider the normal subcovering of
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Xn‘t,,,/[PI coming from the Fuchsian group I'n:y = h;‘i,v(Zp) where
hn,t v denotes the normalized homomorphism A — G introduced in the
proof of Corollary 1.2. As always, n,t,v € (Z/qZ)* with n+t+v =
0 mod ¢. We already know that the isomorphism classes of X, ; , depend
on n,t,v up to permutation only.

Lemma 5. As n,t,v let m,s,w € (Z/qZ)* with m+s+w =0mod ¢
and call
(n’ t! v) ~ (m$ S! w)

if and only if these triples coincide up to permutation and multiplication
by a common factor c € (Z/qZ)*. This is an equivalence relation. We
denote the equivalence classes by [n,t,v].

1. The only homomorphisms of A = < q,q,q > onto Z; =< b >
with torsion-free kernel are given by

fn,t,u Y% & bﬂu'Tl — bt:']"oo ~ bY
with n,t,v € (Z/qZ)* ,n+t+v=0mod q.
2. The kernel of fnty 8 Inyty-

3. There is a bijection between the PSLs(R)-conjugacy classes of
Ity and the equivalence classes [n,t,v).

4. The normalizer of T'nsy in PSLy(R) is A =< 2q,9,2 > . If
there is a t € (Z/qZ)* of order 3 and with 1 + ¢+ t*> = 0 mod ¢
(which happens if and only if ¢ = 1 mod 3 ) then the normalizer
of I'ye2 18 A =< q,3,3 > containing A as normal subgroup of
indez 3. In all other cases A is the normalizer of T'p s, .

Proof. 1. follows from the relation between the generators of A .

2. The homomorphism f,, is a combination of hy, 4, with the canonical
projection of G onto the factor group G/Z, = Z, =< b>.

3. If ¢ € (Z/qZ)*, fenctev 15 fntv, followed by the automorphism
Zq — Zg4 given by b +— b°, whence the kernels are invariant under
multiplication of the indices with common factors. The invariance of
the PSLy(R)-conjugacy class under permutations of the indices follows
as in Corollary 2.2 by the fact that the generators of A can be permuted
under the action of A =< 2¢,3,2 >. The assumptions on p and g

66 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 49-81



M. STREIT AND J. WOLFART CHARACTERS AND GALOIS INVARIANTS ...

guarantee that no other conjugations between the I', ; , are possible.

4. If t = v the homomorphism f; ; , clearly extends to a homomorphism
of <2g,q,2 > onto a group Zy, containing Z, =< b > (exercise).

In the second case mentioned, there is an index 3 extension H of Z,
containing Z; as normal subgroup and a non-normal subgroup < d >
of order 3 acting on Z, via

d'bd = b'.

Then f; ;2 is extendable to a homomorphism of < ¢,3,3 > onto this
semidirect product Z;x Zz. Observe that the conjugation by one of the
generators of A permutes the generators of A.
It is easy to check that not both cases can occur at the same time,
therefore A is the normalizer in all other cases.

Theorem 2. Let n,t,v be as above and define Yy ¢4 := Tt o\H . Then
we have

1. Ypt4 s a Belyi surface of genus (¢ —1)/2 and with many auto-
morphisms. Its Belyi function

Yn,t‘y - A\H g HDX

s a normal cyclic covering of degree q and with ramifications above
0,1,00 of order q.

2. The automorphism group is
AutYnso = Z; if n,t,v are pairwise distinct and not

equivalent to (1,t,t%) with t* =1, 1+t+t2=0mod q, and in
these cases we have

Aut Yl,t,ﬂz = Zq)d Z3 ’

A.utr Yn‘t‘t = Z2 X Zq .
The surfaces Y, are hyperelliptic.

3. Yatv = Ymsw if and only if (n,t,v) ~ (m,s,w).
4. Ynty has the (affine, singular) model over Q

Yy = g™ (z-1).
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Proof. 1., 2. and 3. follow almost directly from Lemma 5. The genus
can be again computed by Riemann-Hurwitz, and in the ¢ = v case one
can see that in fact Yy ;:/Z2 = P! or transform the equation of part 4.
into an equation u? = .... The shape of the equation can be guessed
as follows. The function field C(y,z) of Yy, is a cyclic extension of
the function field C(z) of P!, and the ramification shows that we can
assume y? = z#(z — 1)¥. To find the correct exponents, choose y such
that b(y) = Cy, ¢ the primitive g-th root of unity for which vp acts in
its fixed points on local branches of ¢z like multiplication by ¢ , and so
on for 1, Yeo -

Remarks. 4. The preceding proof follows a suggestion of Gareth
Jones. Another possibility to distinguish the different non-isomorphic
surfaces Yy, is the fact that their Jacobians have complex multiplica-
tion by the cyclotomic field Q(¢) but that their isogeny class can be
distinguished by the CM type. Moreover, the different CM types cor-
respond bijectively to the equivalence classes [n,t,v], see [KR], so we
can apply Torelli’s theorem to distinguish the curves. 5. In particular,
[KR] gives the following additional information. Non-isomorphic sur-
faces Y7, ¢, are not Galois—conjugate but the automorphism groups (or:
hypermap groups for their canonical regular dessin) coincide — at least
in general for ¢ > 17, see below — so they are incomplete as Galois
invariants. However, here the curves may be distinguished by the Main
Observation: the eigenspace decomposition of the usual representation

p:am— (wm woal), a€ Z,,

on the vector space of holomorphic differentials on Y, corresponds
bijectively up to isomorphism to the CM type of JacYy ., . Therefore,
the non-isomorphic surfaces can be distinguished by the trace of p(b).
We will come back to this question in Section 6.

6. For ¢ = 5 there is only one equivalence class of triples corresponding
to the well-known hyperelliptic curve y° = z(z—1) or u? = v3>—1. For
q = 11 there is one hyperelliptic and one ordinary triple. For ¢ = 13
there are three inequivalent triples of all types, namely

[1,6,6], [1,2,10], [1,3,9] (g = 6)

The Jacobian of Yj 39 is a product of three isogenous abelian varieties
of dimension 2, and the curve is a cover of another curve of genus 2,
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obtained by taking the quotient by the factor Z3 of the automorphism
group. First for ¢ = 17 we have two ordinary triples (and one hyperel-
liptic, of course), namely

(1,8,8], [1,2,14], [1,3,13] (g = 8).

7. Let us shed some light on the excluded case ¢ = 7. Here we are
in genus 3 and have a hyperelliptic curve Y7 33 and a non-hyperelliptic
curve Yj24. By the techniques going back to Shimura and Taniyama
and extensively used by Koblitz and Rohrlich [KR], the Jacobian of the
latter curve is isogenous to an elliptic curve with complex multiplica-
tion by Q(v/—7). But here Z7; or Z;x Z3 are far from being the true
automorphism group. As a consequence of the exceptional situation
<7,7,7>C<2,3,7> the full automorphism group is PSLy(F7) and
the curve is isomorphic to Klein’s quartic.

5 The Riemann surfaces without p—ramification

Theorem 3. Let A =< q,q,9 >, G and Np., be defined as in the
second case of Corollary 2, i.e. with n,t,v € (Z/qZ)* , n+t+v =
0mod g, Nuy the kernel of the homomorphism

hngo = h defined by h(yo) = B", hiy1) = ab', h(ye) = @™t
Then

1. the quotient spaces Np,\H are compact Belyi surfaces Xn 1, of
genus

1
g =1+ §p(q—3)-

Xntv 18 isomorphic to Xpm s if and only if (n,t,v) is a permu-
tation of (m,s,w).

2. Their automorphism group is
G if the indices are pairwise distinct

qé— = ZP‘A qu far Xn‘g,g
(for the definition of G see the proof of Lemma 4).
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3. For (n,t,v) fized, the surfaces Xsnst,sv, 8 € (Z/qZ)*, form the
orbit under the action of GalQ/Q. More precisely, for { := e2mi/a
and o(¢) = (%, s =1 mod q, we have

Xo'

o
nty — Xsn,st,su-

4. Under the Galois action, the isomorphism classes form

e one orbit consisting of all g—1 surfaces Xy, 44, all with mod-
uli field ( = minimal field of definition) Q((),

e one orbit consisting of all (¢g—1)/3 non-isomorphic surfaces
Xsstst3 if ¢ =1mod3 and t®=1modgq,1+t+1 =
0 mod q . In this case, their moduli field is the fized field K
of T:( > (t in the cyclotomic field Q(() .

e All other orbits are of length q — 1 and consist of surfaces
Xsnstsvs S € (Z/qZ)* . Here the moduli field is again Q(().

Proof. 1. is clear by the definition of the normal torsion—free subgroups
Nptv and a genus computation analogous to that of Theorem 1:

Pq 3
sz} e S = =),
g 2( q)

The isomorphisms between the different Belyi surfaces of this type are
determined by Corollary 2.2.

2. follows from Lemma 4.2 and its proof.

3. If Xnty and X, 54 belong to the same Galois orbit, then clearly
also their respective quotients Yy :, and Y . by the unique normal
subgroup Z,<! G'. Theorem 2 shows that these are Galois conjugate
if and only if they are isomorphic if and only if their index triples are
equivalent. So X,;, and X, s belong to the same Galois orbit at
most if (n,t,v) ~ (m,s,w). To see that this condition is also sufficient,
we follow the ideas of [St2] and need some preparation. Recall that for
a € G with fixed point P € X,;, there is a local variable z with
z(P) = 0 such that the action of a locally is described by z — £z for
some root of unity £ . We will call this £ (uniquely determined by P and
«) the multiplier of o in P.
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Lemma 6.

1. For the action of G on Xp 4, there are 3p fived points of order
q.

2. Every element a™b" of order g, m € Z/pZ,n € (Z/qZ)*, has
three fized points.

3. In its three fized points, b acts with multipliers (™, ¢t, (7 where
f,t,0 denote the inverses of n,t,v € (Z/qZ)* respectively, i.e.
with Aan =t =9v = 1 mod q.

Proof of Lemma 6. 1. follows by a simple counting argument: The
surface is triangulated by pg images of A-fundamental domains. To
each of these fundamental domains belong three fixed points of order ¢,
but every such fixed point belongs to ¢ A-fundamental domains. (David
Singerman indicated to us another possible argument using results of
Macbeath [Mc].)

2. In G, there are precisely p conjugate subgroups of order ¢, see Lemma
1.4. Two different such subgroups can be generated by a™b, a*b with
m % kmod p. If P were a common fixed point for both it would also
be a fixed point for a by consequence of

bla *tmp(P) = P

and the defining relations in G. But a acts fixed-point free on the
surface, whence every subgroup of order ¢ has a fixed point triple, and
these triples form in fact an orbit under the action of Z,.

3. On the universal covering H of X, ;, the generators 79,71,7« of A
act in their respective fixed points with multiplier (. Since h(yy) = b",
the fixed point of 7y has to be applied by the universal covering map
H — Xntw on one of the fixed points of b, and there b must have the
multiplier ¢(". The same argument applies in the fixed points of v; and
Yoo if we observe that e.g. ab' is conjugate to b' (see Lemma 1.3) and
has therefore the same multipliers in its fixed points.

Proof of Theorem 3, continued. Now we observe that no automor-
phism group of our surfaces in question contains Z; as normal subgroup
whence they are not hyperelliptic. Therefore the canonical model exists,
constructed as the image of the following embedding. Let wy,...,w, be
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a basis of the vector space of holomorphic differentials on X, ;, . Then
the map

Xnto = P71 0 P o (wi(P),...,we(P))

is a well-defined holomorphic embedding, so we may now identify X, ;,
with its image (automatically a projective algebraic curve by Chow’s
theorem). By [St1] it has the following remarkable property. The rep-
resentation introduced for the Main Observation in Section 1

¥ : G - GL(H*(Xnuv,9))

on the vector space of holomorphic 1-differentials defined by

P(@) : w = woa !

induces an action of 1(G)/{%1} assubgroup of PGL4(C) on the canon-
ical model. Now let P be a fixed point for & € G on this canonical model
with multiplier £. Asin [St2], P € P9"! can be represented as an eigen-
vector for ¥(a) with eigenvalue £~!. In our particular case, ¥ (b~') has
three eigenvectors giving fixed points of X, ;, and belonging to eigen-
values ¢®, (%, (7, see Lemma 6, and these eigenvalues uniquely determine
the isomorphism class of X, . (¥(b~!) may have more eigenvectors,
in particular for other eigenvalues, but these do not give points of the
canonical model.)

Let 0 € GalQ/Q be any Galois conjugation, tacitly assumed to be
extended to a field automorphism of C. As explained in Section 1,
o maps Xnt, to a Galois conjugate curve X7, which is again a
canonical model because the basis wy, ... ,w, is transformed into a basis
wy,...,wy of holomorphic differentials on X7 ,,. The representation
matrices 1 (a) are transformed by coefficient-wise conjugation into rep-
resentation matrices ¥(a)?. In particular, the fixed points P of b~!
on X,:, become fixed points P’ of b~! on X7 tv» DOW correspond-
ing to eigenvectors of 1)(b~1)? for eigenvalues o(¢?),o(¢?),o(¢?). There
is a unique s € (Z/qZ)* satisfying o(¢) = ¢* for 5 € (Z/qZ)*, 3s =
1 mod g. Since X7, , is uniquely determined up to isomorphism by the
eigenvalues (7, ¢, (57 | the only choice of the Galois conjugated surface
is Xsn,st,.w- _ _

4. Observe that o € GalQ/Q with o({) =(*, s € (Z/qZ)* transforms
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Xptv into an isomorphic surface if and only if (sn,st,sv) is a permu-
tation of (n,t,v).

Remark 8. Remark 1 applies vice versa to the surfaces X, ;2 and
their canonical Belyi functions B if t3 =1, 1+t +¢?> =0 mod q. Here
B is definable over the cubic extension Q(¢) of its moduli field only.

6 Representations

Now we consider the representation 1 on holomorphic k-differentials
introduced for the Main Observation in Section 1. By Eichler’s trace for-
mula (see [FK]) the trace tr(ix(c)) of an automorphism & can be easily
calculated by studying the fixed point behaviour of @ on X. For o # 1
let be Fiz(a) = {Py,... P;} the possibly empty set of all fixed points of
a and (Cp,,-..,Cp,) be the (unordered) collection of all multipliers of a,
i.e. the primitive roots of unity of the same order as «, which describe
the local action of @ at P;, ¢ = 1,...,t. That simply says that we can
choose a chart around P, such that P; is mapped to 0 and « is described
by z — (p,z. Then Eichler’s trace formula states:

b3 %Mlk a#1
tri(e) = ¢ T

(2k—1)(g—1)+51k a=1.
In the above formula the empty sum is taken to be zero and ¢ is the
Kronecker symbol. Summarizing this one can state that the fixed point

behaviour of a yields enough information to calculate the traces of all
Yr(a). Less obvious is that also the converse is true.

Proposition. Let (tr(yr(@)))ien be given. Then the multiplier data
(Cpyy---+Cp,) of a are uniquely determined.

Proof. Consider the function

fal2) = 3 tr(ge(e)2*

keN
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which is defined for |z| < 1 but which has a meromorphic continuation
on C:

—k
falz) = z+z Z IEPC_lzk:z+ Z ;Z(C;Iz)k
P

1-(a!
keN PeFiz(a) PeFiz(a) P keN
1 (=2

= z+ =T ~
PeFiz(a) 1-Cp 1-Cp'2

Therefore we see that a rotates like (p at a fixed point P iff f, has a
pole at z = (p. The residue

¢ ' (1= ¢ ') Res(fa(2), 2 = Cp)

gives the number of points with the same multiplier (p with respect to
a. This shows the statement.

This result also appears in [Be].

Important Remark. In the Main Observation of Section 1 we have
seen that the equivalence class of (tryk)ken is an invariant of the sur-
face X and the equivalence classes of the Galois orbit (tr¢yf )ren with
o € GalQ/Q is an invariant of the Galois orbit of X. In the following
we will show how to calculate these and that they are finer invariants
as the previously known invariants. However, the equivalence class of
(trix)ken does not determine the surface X, i.e. the dessin uniquely.
This is easiest seen by taking the elliptic curve E : y? = z(z — 1)(z — )\)
with A = $/1/2 € R. A Belyi function is given by B(z) = 42*(1—2*) and
we consider the smallest regular cover X of (E, 8). Using the known iso-
morphism between the monodromy group of B (the cartographic group
of the dessin) and the automorphism group Aut X (see [Wo2], Thm.
2), one can use computer algebra systems like [GAP] to show that
Aut X has order 2° - 32 = 576 and must therefore be solvable. The
ramification structure of (E,pB) is (4,2,2,2,2) for the points above 1
and (6,2,1,1,1,1) for the points above 0. The unique point above oo
has therefore ramification order (12). Below we have the corresponding
dessin of (E, 8) where opposite sides have to be identified.
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®
@

A

(E,B)

E turns out to be the unique intermediate elliptic curve between X and
Aut X\ X with the above ramification structure. Therefore an element
o € GalQ/Q which stabilizes X, i.e. X = X7 has to stabilize E. Now
choose o to be trivial on the maximal abelian extension of Q and non-
trivial on Q(+¥/2). Such a o would stabilize all traces but could not
stabilize X.

Now to apply Eichler’s trace formula, we have to calculate the fixed
point behaviour of a given group element «. From the point of view
of dessins we have 3 special group elements «yp, @, @ generating the
cartographic group, which in the case of regular dessins is isomorphic
to the automorphism group of the surface X. They are homomorphic
images of the generators 7,71, of A and can directly be read off
the dessin. The white and black vertices and the face centers of the
dessin can be thought to be represented by left cosets gU; of the cyclic
groups Uy, Uy, U generated by ag, @1, @ respectively: as in the proof
of Lemma 6, X is triangulated by | Aut X| images of a fundamental
domain D for A. We can choose D such that e.g. <y > D is a neigh-
bourhood of the fixed point zy of 99 and v < 49 > D a neighbourhood of
v¥(zp) for all v € A. Since these points project to the white vertices on
X they correspond bijectively to the left cosets gUp for Aut X = A/T’
and g = ~T'. In this sense a fixed point of « is a coset which is stabilized
by o and must therefore satisfy an equation

k
ag = ga;

where g is a representative of the stabilized coset gU;, ¢ = 0,1,00. It
is now clear that we can calculate not only the number of fixed points
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of o but also the multiplier: it is Cf if a; has the multiplier ¢; and «
satisfies the above equation. As these are the only information the trace
formula requires to calculate tr(y(c)) we are done. Below we exhibit
these calculations for the curves X, X, ;..

Lemma 7. Let G,a,b,(,n, Xs, Xnty be defined as in Theorems
1 and 8 and their proofs, n,t, v as in Lemma 6, and as in Lemma
1 let S denote the subgroup of (Z/pZ)* generated by u. For all m €
Z/pZ,z € (Z/pZ)*, y € (Z/qZ)*, we have

1. on X
1 _
trp(l) = 5(p-1)(¢-2), tr(@™s7™) = 0,
—zy _ Y
trgb(a } =1+ Z m,
wes
2- on Xﬂ,t.ﬂ

trp(1) = 1+ 5p(g—3), trp(a™) = 1,

ny ty iy
trp(a™bY) = 1 + lfcﬁy & lfcfy 2 IEC"’U .

The proof for the surfaces X, ;, follows the program explained above
and is essentially carried out in Lemma 6: recall that by Lemma 1.3,
a™b™¥ is conjugate to bY and therefore has the same multipliers in
its three fixed points, and recall that a acts without fixed points. For
the first part of the Lemma consider first the quotient Y = Z,\ X, =
< a > \X; of genus 0 treated in Theorem 1.7. There, b has two fixed
points with multipliers ¢ and (~!. Each of them lifts to p fixed points
on X, with the same multiplier (the covering X; — Y is ramified in
other points). Clearly, the generators a™b, m € Z/pZ of the p sub-
groups of order ¢ have two fixed points with multipliers ¢ and (!,
respectively. Taking (—y)-th powers, Eichler’s trace formula gives for
all me Z/pZ,y € (Z/qZ)*

A Y) = 14 o T =,
- T T—¢v
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By the construction of X, the element a has g fixed points given by the
coordinates z = (¥, y = 0 on the model of Theorem 1.4. or equivalently
by the < a >-cosets given by the ¢ different b powers b,b%,...,b7 as
representatives of these cosets. Now a satisfies the equation

k
ab® = bFa*" |

which gives the multipliers n“,n“g, ...,n*" and we can in fact apply
Eichler’s trace formula.

The behaviour of triy under Galois actions and the decomposition
of 9 in irreducible components by means of Eichler’s trace formula is
not obvious. It becomes easier if we state it in a different but equivalent
way, more in the spirit of Chevalley’s and Weil’s paper [CW]. For a real

number r let (r) = r — [r] denote the fractional part and as always
n = 627”:;‘! P %

Lemma 8. Let my,...,my and my,...,mk € (Z/pZ)* satisfy m;m; =
1 modp forall j and mi+ ...+ mr =0mod p. Then

k n‘ﬁl}' p—1 k maz
a3 e - B (e Sems ) a
3=1 z==1 j=1

Proof. For every j,

p-1
miz z ;
Yoyt = > (=)™,
2=0 p
hence

(1=a™) 32 (CFEI* = 3 6) (™7 — g™e) =

z

p-1 p—1
z z—1 = 1 1
=Y (G- D) ™ = el X L = -1
= ( P P p =p
Therefore
m.
n" 1 m;z, ,
— = 1 =-1-) (L) =
1 ——?fnj + 1 __nﬁy 1 - ( P )n
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and

j=1 z g=1 ?
s -m;z
2, =135 (=] .
z=1 7 p

The relation to the Chevalley—Weil result becomes more explicit if
we observe that tri(a™!) is the sum of the eigenvalues of a=!, choosing
a~!-eigendifferentials as basis of H(X,Q). Since the roots of unity
n*,z # 0mod p, are linearly independent over Q and since 1 +
2 zz0modp° =0, we can draw the following conclusion (valid in more
general cases, of course).

Corollary 3. Let a be an automorphism of prime order p of the compact
Riemann surface X , acting in its fized points with multipliers =™ .
Then, up to an additive term c independent of z # 0, the coefficient of
n*, z # 0, given by Lemma 8 is the dimension

6+ (1t SOU=E5)
J

of the eigenspace for the eigenvalue n° if we decompose H°(X,Q) in
eigenspaces for the action of a=!. The number ¢ gives the dimen-
sion of the subspace of a-invariant differentials (i.e. those lifted from

Z\X , Zp = < a > ), hence the genus of Z,\X .

Remark 9. If we replace p by ¢ and n by ( we can apply Lemma 8
also to try(a™b™Y) on X,;:, given by Lemma 7. For y # 0 mod ¢ the
result is the same as for the representation p of Z;, =< b > on the
intermediate covering Yy, (see Remark 5). Corollary 3 applies with
¢ =0 and gives the well-known eigenspace decomposition for this curve
whose Jacobian has complex multiplication by Q((), see [KR].

If we denote the representation 1 belonging to the surface Xaty
more precisely by vy, we obtain the following
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Theorem 4. The Belyi surfaces Xy, and )_(m,s,w belong to the same
Galois orbit if and only if there is a 0 € GalQ/Q with the property

o(trnip(9)) = trom s w(rg) for all g € G and a fized T € AutG.

Proof. The Main Observation indicates that Galois conjugate surfaces
(see Theorem 3) lead to Galois conjugate traces. On the other hand, if
we have Galois conjugated traces for the triples (n,¢,v) and (m,s,w),

Lemma 3, Lemma 7.2 and Lemma 8 imply the existence of some k €
(Z/qZ)* with

knz ktz kvz mz 8z wz
-1+ (‘5‘)"‘ (?)4‘ (?) = =1 <?)+ (fp")'*‘ (?)

for all z € (Z/qZ)*, and by [KR] this is possible only for equivalent
triples. Then Theorem 3 says that the surfaces are Galois conjugate.
The explicit decomposition of the character ¢riy into irreducible
characters is of some interest for several questions such as the explicit
computation of equations for the canonical model [St1] or more detailed
information about the Jacobians [Wo2]. Therefore we include this de-
composition for the convenience of the reader but we omit the proof
since it can be obtained by standard computations of multiplicities.

Theorem 5. The decomposition of the representation v into irreducible
components is given by the decomposition of its trace into the irreducible
characters of G (see Lemma 1.6) as follows.

1. On X, we have
L W
trp = Y (~1 + Z(~—’>) ;-
i=1 weS p

2. We consider the representation p introduced in Remark 4 as a com-
ponent of i defined on the (¢ — 1)/2-dimensional (G)-invariant
subspace of H%( Xy 10,9Q) of differentials lifted from Yatv. Then
we have on Xy ¢4

-
qg—3
trp = trp + sz_;qu,
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el k tk vk
trp = __1+(n_)+(_)+(__> Xk -
> (- )
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