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ABSTRACT

The idea is to use the observed time variations of the tidal amplitudes in
order to estimate the variations of the calibration coefficients of the tidal records.
The amplitude variations are revealed through the so called normalized tidal pa-
rameters determined in very short intervals of the records. Then the calibration
variations are approximated through a regression analysis. The analysis takes into
account the artificial changes of the sensibility.

1. INTRODUCTION

It is a well known and evident fact that the variations of the sensibility can
be manifested as variations of the tidal amplitudes. Here we shall use this and
develop a technique for the determination of the sensibility/amplitude variations
before the tidat analysis. We shall namely use the filtered numbers computed for
the analysis and an amplitude factor § determined through them.

In another paper we intend to develop a method for analysis where the
sensibility/amplitude variations can be incorporated in the observational equations.

Let us note that the pure amplitude variations are interesting as possible
earthquake and volcano precursors, Our study is orientated towards this heavy
problem. First of all we have to be able to establish the total sensibility/amplitude
variations. Only after that, through a comparison with the calibration data, it could
be possible to separate the amplitude variations.

2. NORMALIZED TIDAL PARAMETERS
The basic equation for the Earth tide data is

20) = Y 0, cos (@, + it + %) + D) + &), te(@,b) (1)

i=1
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Here g(#) is the ordinate at time t of the observed tidal phenomena, &, @,
and w, are the theoretical elements of the j-th tide, d, and #, are the Earth tidal
parameters, D(f) is the drift and &(¢) is the noise, i.e. the observational error at
time t. The expression te(a,b} means that we dispose by a record of g(#) in a time
interval (a,b).

The equation (1) can be written for a set of values te(a,b), for example every
hour, so that (1) is in fact a system of equations. The object of the tidal analysis

is to solve this system and find the estimates 5j and. x;of &, and x, respectively.

We shall suppose that this is done, i.e. 5j and x; are obtained by using one
or another method of analysis.
Let us see what will happen if we replace

h; by Ej = 5jhj and ¢, by 431- = ¢ + %, )

The equations (1) then become

g2l = 2 Oy By cos (@; + wt + xy) + D@ + &), te(a,b) 3)
i=1 -
with new unknowns denoted here by d,, and %,,. We shall call them «normalized
parameters» because they have the following properties.
If we solve the system (3) in the same way as (1), i.e. by applying the same
method of analysis on the same data for te(a,b), we shall get identically the
estimates

8N1 :anz == 8Nm= Land %y, = %y, =...= &y, = 0. (4)

m

On the basis of this the equations (3) can be replaced by

g = 8, iﬁj cos (P, + @t + ) + D) + &(t), tefa,b). )

i=1

If we apply once again the same method for analysis for t€(a,b) we shall get as
estimates of d, and #,

8y = 1and &, = 0. (6)

The properties (4) and (6) of the normalized parameters will be accomplished
independently on the properties of the noise and the drift, even if there are some
systematic errors. However, if we analyze another time interval, for example a
subinterval (a,,b,) with a central epoch ¢, we shall get an estitnate &, = &, (¥)
generally depending on the time due to the noise and all possible errors. If (a,,b)
are n subintervals of (a,b) with central epochs ¢, { = 1,2,...n, the empirically

obtained function d,(t,) can be used for studying some systematic errors in par-
ticular an error coming from a sensibility/amplitude variation.
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If there is a constant error in the calibration it will not affect the values of

the normalized parameter 3,,(!{). But, if the calibration coefficient is variable and
the variations are not introduced correctly, these kind of systematic errors can be

studied through d,(z).

For example let C(z,} < C(¢,) are the true values of the calibration coefficients
at time ¢, and #, respectively. If the difference between C(¢,) and C(¢,) is not taken
into account, the expected values of 8, will be d,(t,) < d,(z,) instead of d(r,) =
o) = 1.

. 1)This could be used for studying the sensibility/amplitude variations through
a processing of calibrated data. However, as it will be discussed in the next
paragraph, more information about the sensibility can be obtained if we process
the data before the calibration.

3. ANALYSIS OF RAW DATA

Let y(#), te(a,b), are the raw (non-calibrated) data of a tidal record, i.e. ¥(2)
are ordinates in soine conventional units, like mm or mV, while g(¢) are expressed
in tidal uniis, e.g. pgal. The relation between (¢} and g(?) is

g(t) = C(@) - y(1) or y(t} = R(1) - g(8), R(t) = L/IC(D), €

where C(#) is the calibration coefficient at time ¢. The coefficient R(f) can be called
a response coefficient, It describes how the initial input geophysical signal g() is
transformed by the instrumentation into the output y(¢), namely

. recording output

input instrumentation 1P

signal = e g. gravimeter = | on a record
&0 tiltmeter, etc. y(0=R().g(®}

The coefficients C and R are considered as functions of ¢ as there can be
variations in the sensibility or the amplitudes. They can be represented as

R(t) = R, + AR() and C(r) = C, + AC(H) &

where R, and C, are some constants.
By using (?) we get the equation
YO =Y, d(0h;cos (9, + wy + k) + D) + &), tela,b) (9
=1

where D(f) and &(¢) are now the drift and the noise in the units of y(r). The
amplitude factor &, in (1) is here replaced by

d(n = 6, R() - : (10)

while the phase shift remains the same.
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We can apply the analysis on the raw data y(#) in the same way as on g(?)
for te(a,b), by using the equations (9) instead of (1). Then we shall get some
estimates d; as amplitade factors which are a kind of a mean value of dfz). It
seems very natural to define the constants R, and C, in relation with 4, as it follows

d = &R, = &/C, (11)

This is not perfectly correct because R, and C, thus defined are not just the
same for j = 1,2,...m. However, it can be shown that (11) is justified when R(f)
is a linear function, i.e. the error in this expression is of a second order. Then,

as we do not pretend for a very high precision, we can afford us to use it.
If we replace similarly to (2)

hby b, = d hand ¢, by §, = ¢, + &, (12)

the equations (9) become, like (3),

W0 = 3 dy (O cos (§, + o + k) + D) + &), 1e(@b)  (13)

where
dy(0) = d(p/ d. (14)
Now, if we accept (11) and apply here (10}, we get

afw-(t)=———~6"4'M Sk G

SR, R, Cl O {15

where 8,() is a normalized amplitude factor which depends on ¢ but which does
not depend on the index j. That is why we can replace (13) through

W0 = 80 3 fiy cos (B, + g + ky + D(t) + e(). (16)

=1

If we analyze, again in the same way, the data y(t) for te(a,b) we shall get
an estimate of the normalized parameter

Sult) = 1, amn

related to the central epoch ¢, of (a,b). If we process the intervals (a,,b) we shall

get estimates (1) depending on ¢.

According to (15) 8,(t,) will be related with the calibration coefficients.
Something more, from here we get a rather strong result that we can compute the
calibration coefficient C(z), as well as the response coefficient R(¢) at time ¢ through

C(t) = Cy/ (1), R(2) = R, 0(8) = 60 / C, (18)
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provided we know C,. Actually, C, is not known but we can use, as an appro-
ximation, a mean value of the calibration coefficients. Then (18} can be used,
with much precaution, to check up some values of C() and their relative variations.

4. DETERMINATION OF THE NORMALIZED TIDAL PARAMETERS
FROM VERY SHORT TIME INTERVALS

The replacement of the equations (1) by (5) as well as (9) by (16) has the
following important advantage. Through this we take into account the differences
within the tidal parameters for the different tidal waves. The consequences are:
(i) we have only one couple of unknowns, namely &, and %, and (ii) we can
estimate such a limited number of unknowns from very short tidal records.

If the method for analysis (Venedikov, 1966, Melchior and Venedikov, 1968,
Venedikov, 1984, see also Melchior, 1978) is used, the original record is first
subdivided into intervals of 48 hours or another length of this order, then these
intervals are filtered. As the intervals (a,,b,) used above we can take just these
filtered intervals. .

For such an interval, for a given tidal group, for example for SD, we obtain
one couple of filtered numbers, U() and V(¢}, by applying respectively an even
and an odd filter. The equations (1) are transformed in the following way:

U@ = iajcjhj cos (9, + o + %) + £(0),

= (19)
Vi) = E Oshy sin (@, + wit + %) + £2)

j=1

The effect of the filters is: the drift is eliminated, the noise is transformed
into £,(#) and £,(1) and the tides are multiplied by the amplifying factors of the
filters ¢; and s,.

Without repeating the details, by using the normalization already described,
we can get the following equations

Uy = 60 Y, chy cos (§ + of + % + &) and
=t 20
V(e) = 80 Y, 54 sin (P, + o + 2 + £,(0).
=1
For a given fixed t = 1, i.e. for a given interval (g, .,b,), the system (20) of two

equations can be easily solved and we can get the value 5N(ti), of course with a
corresponding influence of the noise.
If {/(r) and V(¢) are fiitered numbers obtained from the raw data y(r) we can

relate 3N(ti) with C(¢,) or R(x;} through (18).
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5. A REGRESSION ANALYSIS OF THE NORMALIZED PARAMETERS
WITH THE USE OF CALIBRATION DATA (LINEAR INTERPOLA-
TION)

Let the calibrations are made at the epochs T = 7,,7,,...7, and the observed
values of the calibration coefficients are {(7,}, c(r.) ...c(z,). We shall consider the
widely spread practice to make a linear interpolation between every two conse-
cutive calibrations. According to it, the calibration coefficient at time 1, say c(f),
is computed after

() = o(te) + @t (I—1), Hf T St = Teo, (21)
where the coefficients @, are computed after

a, = c(z)

ax« = (cft)—c(n—1)) / (Tv—1x=1), &k = 2,...¥ 22

When this expression is used this has the meaning, that for the observations ¢(1,),
k= 1,2,...v, we accept the equations

C(‘L'z) =4,
olr) = a, + aft,—1)
or)) = a, + afr,—1) + ajlr,— 1) (23)

c(t) = @ + adT:—11) + adra—12) + ... + @ (Tv—1v-1)

This is a system of v equations with the same number ¥ of unknowns, the coef-
ficients a,. The solution of the system is namely (22).

There is no room for any statistical processing of (23), for example for the
Method of the Least Squares, because the number of the equations (23) is just
equal of the number of the unknowns. For this reason we cannot estimate the
precision of g,. Actually, as we have zero degrees of freedom, the estimates a,
have indefinite intervals of confidence. Something more, any error in g, is directly
transferred as a systematic efror onto the data.

These weaknesses of the scheme can be partly reduced if we use our nor-
malized parameters and the equations (18). This can be done in the following
way.
We shall introduce a variable

x(®) = Caf ON(t), i = 1,2,...1. (24)
‘Then, according to (18) and (21), we shall have the observational equations for y

xf)=a, +a,(t—1v), forr, St =1,

xXn=a +a(r,-1)+a(t—-1), forr, <1< 1,
............. (25)

M) =a + a,(r,—1) + ... +a, (t—1,_),

forr, ,<r<7t,ft=1¢t,i=1,2,..n
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If there are discontinues changes in C(f), there are further complications in
the scheme which is without this not very comfortable for computations. Let us
suppose that such a change we have after 7,, i.e. we have new sensibility and
new calibrations made at time 7,,,, 7,.,,...T,,. Then for z,,, we must introduce
a new calibration constant at the place of a, and write new equations, independent
from the equations (25), like

) =a,, 1t a.(t. Tt Fa (-t ) forr,, Sttt (26)

If there is another change of the sensibility we must create another new system
of equations, like (26), and so on. What is interesting, through (25) or (25), (26)
and all other equations like (26), we can determine the coefficients a,, k = 1,...v
or k = 1,..v,...¥ + u etc. Then, on the basis of the expressions (21) through
(23) we can compute the calibration coefficient C(f) at any time . And all this
without using the observed calibration coefficients ¢(z,), i.e. the calibrations them-
selves. The only application of the calibrations is to determine the mean value C,
for the computation of x(r) after (24).

" Evidently, this kind of equations are to be solved by the Method of the least
squares.

6. SOME RESULTS

This technique was applied on the gravity observations by a LCR gravimeter
in the Geodynamic station Cueva de los Verdes in Lanzarote, the Canary Islands.
An interesting moment in these data is that there are several artificial changes of
the sensibility. There were slow inclination of the gravimeter which produced
slow linear variations of the calibration ¢oefficient.

When there was a new adjustment of the position of the gravimeter, it pro-
voked a jump in the sensibility. Evidently, before and after these jumps there
were made corresponding calibrations.
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Figure 1. Observed calibration coefficients

2.2

The jumps are clearly seen on Figure 1 on which is p.otted the empirically
obtained calibration curve. There are indicated all determinations of the calibration
coefficients.
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Figure 2. The curve of x(1) = C,/ 8,(r) where &, are normalized & factors obtained from non-
calibrated data.

In Figure 2 the curve of x(r,) = C, / d,(z,) is plotted where &, (¢) is obtained
from the raw data y(#), i.e. the data before the calibration are used. According to
our consideration above, this curve should describe the variations of the sensibility.
There is possible a systematic shift due to the more or less arbitrary choice of C,
in (24). One can see that there is indeed a close relation with the curve on Figure
1.

The data from Fig. 2 were adjusted as it was suggested in paragraph 5. The
adjustment allows jumps at the points where are made changes in the sensibility.
The curve obtained is plotted on Figure 3. It is close to Figure 1 but the two
curves are not identical. In particular, there are some differences between the
estimated and the experimental jumps.
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Figure 3. Adjusted calibration curve.

On Figure 4 is plotted the guantity (24), x() = C, / 84(t), where J, is
obtained through the processing of the calibrated data, The applied calibration
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Figure 4. The curve of x(r) = C, / 0,(#) where 8, are normalized & factors obtained from calibrated
data by using the observed calibration coefficients (Figure 1).
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coefficients are those on Figure 1. In the ideal case of a perfect calibration x(z)
should be a constant. One can see that there are some systematic deviations of
x(t,) from a constant.

Through the adjusted curve on Figure 3 the data were again calibrated. On
the last Figure 5 the quantity x(z) is again plotted. Now the normalized d, used
is taken from the newly calibrated data. Compared to Fig. 4, here we are somewhat
closer to the ideal case x(f) = const.
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Fighre 5. The curve of x{t) = C.d / &,(t) where J, are notrnalized & factor obtained from calibrated
data by using the adjusted cafibration curve (Figure 3).
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