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1. INTRODUCTION

Similarity is one of the most fundamental concepts, both in physics and
mathematics. We meet it, formally, for the first time when, as a school boy (or
schoolgirl) we are exposed to the theory of similar triangles. But, informally,
children can pretty well say if the toys, cars and trains with which they play
are really similar!

This first aspect, geometrical similitude, is the best known and the best
understood. Another one, more abstract, deals with the physical similitude.
Since all systems must obey the same physical laws, in addition to the geo-
metrical scaling factors, relations between different physical quantities must
be fulfilled in order to make two systems really similar. An amusing example
is given by Swift’s Gulliver travels. For example, on the earth, his giants, say
10 times bigger that Gulliver (a human being), would collapse under their own
weight. Being made of the same flesh and bones as you and me, their mus-
cles will be characterised by the same coefficient (expressed in Newton/m?).
The section of their muscles varying as the square of the dimension and their
weight as the cube, they won’t be able to survive on earth. Of course, every-
thing will be allright if we put them on a planet, where the gravity is g/10.
Then, the natural frequency of the motion of their leg (number of steps in unit
of time), will be ten times smaller. We recognize how central will be these
ideas in the theory of modelling. Such reduced models play a central role in
shipbuilding, aeronautical engineering, oceanography, etc... In engineering,
quite often, many different phenomena, belonging to different branches of sci-
ence take place simultaneously and conflicts are possible. Moreover, changing
gravity on earth is impossible (we should go to a satellite).
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But other aspects of similarity can be found in the logic of a machine or
in an algorithm. A good example is provided by the scheme of a massively
parallel computer known as the hypercube (Figure 1). Each horizontal line
represents a processor. A vertical bar represents a connection between these
processors. In order to build a computer with twice as many processors (8
for example), we take two 4 processors computers and connect the processors
bearing the same number. Such a structure will be called self-similar (i.e.,
similar to itself). It has nice properties of optimisation. In the hypercube,
the number of connections go as (1/2)N log, N, while the maximum number
of transfers to bring information from any processor to another one is log, N.

two ...

four ...

eight processors
Figure 1

Under its geometrical and logical aspects, similarity and self-similarity ap-
pear as rather regular, easy to distinguish patterns. Nature has more fantasy
and in some cases it likes to add some randomness. Self-similarity, in that
case, is more difficult to distinguish but is still there. Mandelbrot has widely
written on this topic and from the galactic structure to the one found in the
Brownian motion (via the coast of Brittany) has shown many beautiful pic-
tures. Before we go to more mathematical details a brief historical approach
is also helpful.

Besides geometrical similarity, the first one to recognize a coherent struc-
ture in a physical phenomena was Fourier with his study of the heat propaga-
tion. Then, the idea of physical similarity between different experiments and
the possibility of comparing their results after the introduction of properly
chosen dimensionless quantities is recognized mostly by the fluid dynamists of
the late 19 - beginning 20 century. From these works, it emerges the concept
of Dimensional Analysis [1] with the Pi theorem of Vaschy-Buckingham. At
the same time, reduced models are used in engineering.
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On the other hand, Lie [2] in an effort to solve ordinary differential and
partial differential equations introduces transformations, in which similarity
transformations are specially simple. But the success of this generalization
is very limited. On the other hand, dimensional analysis is badly presented
with the accent put on the notion of “physical dimension” and not on the
invariance properties of the modelling equations, which, precisely, define the
dimensions. .

The Soviet School with Sedov [3], Zeldovich [4] and Barenblatt [5] extends
considerably the mathematical analysis by similarity transformation of differ-
ent problems while Ovsjannikov [6], Eisenhart [2], Bluman and Cole [7] pick
up and push further the mathematical theory of group transformation.

Later on, Wilson introduces the concept of renormalization in field theory
which is quickly used by condensed matter physicists to study critical phe-
nomena. An introduction of the renormalization group in physics is given
in [8] while a more mathematically oriented treatment is given by Feigen-
baum [9, 10]. As mentioned previously in the meantime, Mandelbrot and
co—workers develop the concept of fractals on a very simple basis and, at least
at the beginning, as a tool describing nature specially in the so called “soft sci-
ence” as geology, botany, geography. The logical aspect of similarity (and the
self-similar character of optimal devices) is the work of people in information
theory, connecting networks and computer structures. A good introduction
on this topic will be found in [11].

The purpose of this long introduction was to show that similarity is a very
fruitful concept, with many aspects and many possible approaches. In the
rest of the paper, we will concentrate on what can be considered as the core of
the problem namely the invariant properties under similarity transformations
of the model’s equations. Rescaling, which is mentionned in the tittle is a
simple tool (but very important to understand and appreciate the nature of
self-similarity, embedding it in a more general concept). It will be introduced
in due time. The paper is organized as follows:

2. The Similarity Transformation

3. Ordinary Differential Equations Invariant under Similarity Transforma-
tions

4. Partial Differential Equations Invariant under Similarity Transformation
5. Rescaling and the Asymptotic Nature of the Self-similar Solutions

6. Conclusions
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2. THE SIMILARITY TRANSFORMATION

Let us show, on an example, what is the similarity transformation and,
first, how it is used to find out the most reduced form of the modelling equa-
tions and what are the essential parameters. This is important in the theory
of reduced models and in computer calculations. We consider a prey—predator
problem governed by the system of two equations

dzr
dt
d

d_ZZ = y(as + b1z + bany).

Usually = designates the prey with a; > 0, b;; and b, negatives and y desig-
nates the predator with a, and by, negatives and by, positive. We introduce
the similarity transformations both on the variables and the parameters as
follows

= z(a; + buz + bi2y),
(1)

t=a*t, ==d0d°z, y=a'y,
ay =aMay, by = a*by, by = a*?by,, (2)
ay = a2y, by = a*'by, by = a¥?2by,.

The invariance of (1) under (2) implies

B—oa=0F+X=28+pn=0+7+ po,

Yy—a=9+d=7+0+ p2 = 27+ pos. ®
From (3) we deduce
a+d =a+i=0, (4)
B = A1 — p11 = X2 — Yo, (5)
Y= Ay — for = AL — a2 (6)

From (5) we deduce the dimensionless X = b;;z/a;, and the existence of the
essential parameter Ry = a,by; /asby;. From (6) we deduce the dimensionless
Y = byyy/a, and the essential parameter R, = a3bi2/a1by2. Equation (1) can
now be written

1dX
——— =X(1 Y
AT (1+X + R)Y),

14dY
—_——= X+Y).
o di Y1+ RX+Y)

(7)
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Finally (4) points out a third essential parameter a;/a, (in addition to R; and
R,). Consequently the parameter’s space has been reduced from 6 to 3. Two
problems with the same R;, R, and a;/a, are strictly similar. The determi-
nation of these essential parameters is always the first step to be performed
when we meet a new problem.

3. ORDINARY DIFFERENTIAL EQUATIONS INVARIANT UNDER
SIMILARITY TRANSFORMATIONS

To avoid writing lengthy equations we will consider only first, second and
third order equations. The generalization is usually straightforward. The
dependent variable will be denoted by z and the independent by ¢ (since quite
often in Physics this variable is the time). The most general first, second and
third order ODE can be written as

dz d’z dz d’z d’z dz
Et"—f(fl?,t), d_t{_f(E’m’t)’ —&t?—f<d_t2—’ a—t',w,t), (8)

respectively. In the preceding section we were trying to compare the solutions
of two models M and M with different parameters and, consequently, we have
considered all the possible modifications both in the variables (independent
and dependent) and in the parameters. Now we want to solve a fixed system -
and consequently the parameters do not change any more, and we just consider
the two transformations

t=a%, z=d°z. (9)

It is easily demonstrated that a necessary and sufficient condition for (8) to
be invariant under (9) is that the three equations can be written as

dz (a:) dza:__ ke (.’L‘ 1 d:z:)
dt_t F tk )’ dtz—t F th? th=1 d¢ )’

e _jop(z 1dz 1 d%s
dt3 th? th=1 d¢’ tk-2 d¢2 | °

In (10) & = B/a, which is usually given by the equation. What are the
consequences of the forms (10) taken by the equations? The first one is the
existence of a so—called self-similar solution given by z = £tF where £ is an
invariant of the transformation (a constant). Indeed introducing z = £t* in

(10)
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(10) we see that time cancels, obtaining the three algebraic equations

k¢ =F(), k(k—1)¢=F( kE),

11

k(k —1)(k —2)¢ = F(¢, k¢, k(k —1)¢). -

We note that the solution z = £t* is a very special one, with no degree

of freedom. An extra degree of freedom is obtained if, in addition to the

invariance under self-similar transformations as given by (9) the equations

are invariant under time translation with a solution z = £(¢t — ¢,)* which,

nevertheless, remains a very special one. Happily, two properties are going to
underline the usefulness of this self-similar solution (SSS).

First we use the invariance property to reduce the order of these equations.
Second, we will see that the SSS is sometimes the asymptotic solution (or a
singular solution). The first property is demonstrated by the introduction of
the new variables

1 dz 1 d’z

T

=@ 1Ty M H=Ema 12)

* From z = £tF we deduce by derivation
dz x4 rd€ ’
dt--kt £+t e (13)
Using the first of (10) and introducing a new time df = dt/t, i.e., 0 = log (t/to),

we obtain
l/iF(é)"kég d§
S _pe) -k

and the first order ODE invariant under
self-similarity is reduced to a quadrature.
£ ¢ Note that if F'(¢) = k& has a solution &,
we have 8 — to0o while ¢ — §; indicating
that £ = & is either a repulsive or attrac-
tive barrier on the ¢ axis. Fig. 2 shows the
case of an attractive £§;. Remember now
that &, is the solution of F'(¢) = k¢, i.e.,
Figure 2 precisely the SSS.

For the second order ODE the reduction proceeds in a similar way. We

compute d¢/dt and dn/dt. Then, using the second of (10) and introducing
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the same logarithmic compression of time with

0 = log (%), (14)
we can write
d¢
W (15)
S =F&n-(-1n

System (15) is quite useful. First of all dividing dn/df by d¢/d@ we eliminate
0 and reduce by one the order of the equation. Moreover we can consider (15)
as giving the time evolution of a two-dimensional dynamical system. The
equilibrium point (¢ = &, n = 1) is given by 7y = k&, and &, by the equation

F(fo, k§o) = k(k - 1)50, . (16)

but (16) is just the second of (11), which defines the SSS of the SODE (i.e.,
Second ODE). In the same way for a TODE (i.e., Third ODE) we obtain the
3D dynamical system

d¢

@=77—k§,

dn

a9 =p—(k—1)n, (17)
d N

£=F(§, n, 1) — (k= 2)p.

Again a reduction of the order of the system can be obtained by dividing
dn/d@ and du/d by d&/d6, eliminating consequently the time 6. Also the
equilibrium point of this system is given by & = &y, n = k&, and p = k(k—1)&o,
where &, is given by

F(ﬁo, k&o, k(k - 1)50) = k(k - 1)(k - z)fm (18)

in agreement with the third of (11) defining the SSS of the TODE.

This property of the SSS to be the equilibrium point of a dynamical system
will be crucial in the study of the properties of the SSS in the section dealing
with rescaling. As a first step in this direction let us consider the ODE

d’z r2rtl
e Th T

=0, m,peR" K >0, (19)
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under the transformation ¢ = a®f, = a’Z, the equation is invariant if k =
B/a = (m — 2)/2p, indicating an SSS in At(m~2)/2P with

KA = (1 _moym-2 (20)

In order to have always A real we will assume 2p + 2 > m > 2.

To show the asymptotic nature of the SSS let us suppose that ¢ = z/t* is
a rescaled coordinate while § (with d§ = dt/t) is the new time. We must call
d¢/df the new velocity w which according to the first equation (15) is given
by w = n — k€. Introducing in the second of (15) we obtain

dw

35 = F& w+ k) = (2k — Dw — k(k — 1)¢. (21)

Now we interpret (21) as describing the motion in the new space-time ¢, 6
with 3 forces:
1) F(§, w+ k€) a rescaled physical force.
2) A transformation force deriving from the potential ¢ = k(k — 1)&2/2.
3) A friction —(2k — 1)w which has the usual sign if & > 1/2 (i.e., it

dissipates energy and drives the motion to a rest).

Then from (19) and (10) we see that F(£, w + k€) = —Kz?*+1¢2=*=™ which
with the definitions of k£ and:¢ it becomes simply —K¢2P*! ) ie., a time inde-
pendent force deriving from the potential K¢2P+2/(2p + 2). Now we suppose
that 1 > k > 1/2, implying

2p+2>m>p+2 (22)

and in the new space-time the motion takes place in a total potential @rf
resulting of

— a confining potential K¢2P+2/(2p + 2),

— a repulsive potential in £2.

For small ¢ the repulsive potential is dominant while for large £ it is the
rescaled physical potential with an overall potential as shown on Fig. 3.
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®+(¢) Now our knowledge of the role of
the friction allows us to state that for
large time the particle will be at rest
at one of the minimum points A or B
where the two forces cancel, i.e., the
SSS. Consequently, in some problems,
the evolution comes to rest after a com-
plicated motion in the rescaled space-

V A ¢ time. We will find the same property
in the evolution of systems described
Figure 3 . by partial differential equations.

The last section of this paper on rescaling will be a systematic study of
these new spaces where more general transformations are considered.

To end this rather long section on ODE we briefly mention further sim-
plifications when, in addition to invariance under self-similarity, the system
is also invariant under time translation. Again we consider only SODE and
TODE. Their most general forms are for the SODE

d’z
F + $2q+1f(£) =0 (23)
and for the TODE
d3z
w T 1 f(€,m) =0, (24)
where ¢ and 7 are now
1 dz 1 d’z

C=ama 1T Ee e (25)

The self-similar solution is z = A(t — t,)~'/%, ¢ and 7 being the invariants of
the transformation. The SODE (23) having two symmetries can be solved. It
exhibits the first integral of motion obtained from

do  edt

z  (g+1&+f(E)
To obtain the SSS we introduce = = A(t — t5)~'/ in (23) and (25). It gives
& = —1/(qA?) and A(1 + q)/q* + A??+! f(&) = 0 which can be written

(g+1)& + f(&) =0. (27)

= 0. (26)
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Now (26) indicates that the motion of the point ¢ (on the ¢ axis) converges or
diverges from the zero of the denominator of the term £d¢/[(g + 1)€2 + f(€)].
But we have just shown that this zero corresponds to the SSS. Moreover if
the integration in (26) can be made, we end up with a relation giving £ as a
function of z, i.e., dz/dt as a function of z. A last integration precises the
relation between ¢ and z.

The case of TODE is slightly more complex. The two symmetries are not
enough to obtain an integral of motion. But they allow the obtention of a
first order differential equation, which writes

dn _ f(& )+ (2¢+1)én
¢ (¢g+1E-n =

Note that the SSS obtained by plugging z = A(t — t;) /¢ in (24) is given by
the solution of

(¢+1)(2q +1)& + £ (§o, (¢ +1)&5) = 0. (29)

We immediately recognize that the cancellation of both the numerator and
the denominator of (28) gives the SSS. Introducing a time 6 with

d¢

-d_g‘ = (q + 1)52 -1,

dn
we can identify the SSS with the equilibrium point of the 2D dynamical sys-
tem (30) and the stability properties of this point, i.e., the behavior of the
system (30) linearised around the point (¢ = &, n = (¢+ 1)¢&2) will give infor-
mation about the attractive or repulsive character of the SSS (at least in its
neighbourhood).

(30)

4. PARTIAL DIFFERENTIAL EQUATIONS INVARIANT UNDER
SIMILARITY TRANSFORMATIONS

Again we introduce an example, namely the equation describing the non-
linear heat diffusion

ov 0 oYy

2 (v2).
ot oz Oz

where s is a real positive number. We introduce the similarity transformations

t=a%t, z=ad%, T=a"U. (32)

(31)
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Imposing the invariance of equation (31) under this transformation we see
that o and @ can be arbitrary chosen with -y given by

28 —a
—

v= (33)

Let us introduce as new independent and dependent variables the invariants
of the transformations, i.e.,

= (2)"% 6=(5)"w. o

In (34) we have introduced an explicit time T" which will be taken as the initial
time. Let us now rewrite (31) with the following notations

2\ = g, Y_ 2)‘__1
[0 « S
We obtain
sdo 1723 d¢
"3 (¢ £) R i)’ (35)

We have decreased by one the number of independent variables (and in that
case obtained an ordinary differential equation). Moreover ) is at our disposal
and we can ask: what is the price we have to pay?

As in the case of the previous section, we have no choice for the initial
conditions. At time t = T, ¥ = ¢ and z = £, (35) is just the differential
equation giving those initial conditions leading to a self-similar solution. Two
questions must be raised. Are these initial conditions physical? What happens
for other initial conditions?

To answer the first question, we must precise the type of initial condition
we are interested in. For example we consider a ¥ with compact support and
a finite amount of initial heat. We can write

/\Il(a:, t = T)dz = /.¢(§)d§ - /\Il(ac, t)dz
() [

(36) expresses simply that the heat is conserved and uses the form of the
self-similar solution to express this conservation at ¢t = T' and at any time ¢,

(36)
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this imposes A = 1/(s + 2). Moreover, this choice turns the second member
of (35) into total derivative and leads to the result

s ) 1/s
90 = (K- go7m) 0

K being given by integration of [ d¢(£)dé equal to the initial total amount of
heat. If we take such precised initial conditions, the subsequent evolution will
be entirely taken care of by the double rescaling both in z and ¥. Incidently,
for the linear case (s = 0) we find A = 1/2 and y/a = —1/2. Let us rewrite
(37) as

Y S€2 1/s
00,= K" (1= ) 9
In the limit s — 0 and from its definition, K must go to one and ¢(¢) becomes
_ ﬁ_) _ (_"’_2)
#(6) =exp (— ) = e (- 1) (39)

which is the solution given by Fourier who use arguments very similar to those
given above, noticing that z/+v/ leads to a reduction to one variable.

What happens for initial conditions not given by (38)? We must, at this
point, enlarge the frame of self-similarity and introduce the concept of rescal-
ing.

5. RESCALING

In fact the concept of self-similarity and the SSS obtained, uses already
the concept of rescaling. This is evident on the nonlinear diffusion equation
(31). For example for the linear s = 0 case, dividing z by v/% and multi-
plying ¥ by +/t allows a- simplification of the problem and more precisely a
formal elimination of the time ¢. But we were working in a mathematical
philosophy. Was it possible to absorb the time in a similarity transformation?
What happens for initial conditions different from those forced upon by the
transformation? A hint to the solution of these questions was given when we
‘have interpreted equation (21) as describing the motion of a particle in a new
space—time and a new phase space. Consequently here we consider rescaling
from a physical point of view as a tool to describe a phenomena in a new
space-time with appearance of new forces and new phenomena. Then we will
select the scales left at our disposal to simplify, if possible, the problems, at
least in an asymptotic limit. We forecast two results:
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(1) The cases where our rescaling will coincide with the rescaling given by
the similarity transformations will certainly describe specially interest-
ing situations.

(2) Systems which do not possess the self-similarity property but which may
acquire it asymptotically, if we can prove that in the limit the blocking
term goes to zero.

We see, consequently, that rescaling is, a priori, a concept completely
different from self-similarity but that the technical problems (especially com-
putational) will sometimes be very analogous if not identical. On the other
hand we will see that our scaling factor will be sometimes very special.

5.1. RESCALING OF THE NEWTON LAW. We consider a one dimensional
motion z(¢) with an acceleration I' to which we add a friction and, conse-
quently, the Newton law writes

d2_:27 + ﬂd_x
dit? dt

We rescale both space and time with two scales C(t) and A(¢) with

= D(z, ). (40)

z=¢C(t), dt = A(t)*d6. (41)

¢ and 6 are the new space and time, C(t) is always positive and both C(t)
and A(t) never vanish. We must define the new velocity w as.

d¢

w= a'é" ’ (42)

which taking (41) into account gives the Ifollowing relation between the old

(v = dz/dt) and the new velocities (omitting from here on the explicit time
dependence)

S A2 Tt

Equations (41) and (43) give the relation between the two elements of the
phase space

(43)

0r Oz c 0
9 Ow c?
dzdv = P dédw = | q¢ C dédw = —Edé dw. (44)

% ow dt A2
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Equation (44) indicates that C' = A provides conservation of the phase space
volume element and consequently we can guess that this choice will play a
crucial role in problems like the solution of Vlasov equation.

Now we consider the “new equation (40)”. A little algebra gives

d*¢ , A (. dC dA\] d¢
w0+ (g o) | .
(@0 a0y, _a
C \ d¢? at J> C™°

We have generalized what we found precedently. The forces are

i) A rescaled “Physical force” (A*/C)T.

ii) A force corresponding to a linear oscillator (see [12] or [13])
At (&’C  dC
iii) A friction which is added to the original one.

We rediscover on (45) a result already suggested by (44), i.e., if A = C then
the additional friction term cancels and, correlatively, we have conservation
of the phase space volume element.

The choice of C and A depends now of the problem. For example if 3 # 0,
A and C can be selected in order to cancel the total friction in the new space—
time with the possibility of obtaining a constant of motion [14]. In [15] the
case of the nonlinear time dependent harmonic oscillator described by (19)
is extended to all possible values of the parameters m and p. We see that,
indeed, the scales A2 = t and C = t(™~2)/? play a central role in this problem
(these are the scales associated to the self-similarity) but that, also, other
scales are introduced.

5.2. RESCALING THE SCHRODINGER EQUATION. This is a quite impor-
tant problem. The details of the computation can be found in [16] and [17].
We sketch the main steps.

First of all z and ¢ are rescaled with C(t) and A(t), the new coordinaté
and time being ¢ and @ defined in (41). Then the Schrédinger equation goes
over to

ov h* 5%

’Lﬁ—a—t- = —-2—;;;% + V(il),t)\I/. (46)
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The rescaling of ¥(z,t) is selected as

U(z,t) = Z(z,1)$(,0). (47)

Plugging (47) in (46) we impose for the new Schrodinger equation to begin as
(46), i.e
ndt_ _ WO,
80~ 2m 8e? ’
but this implies Z(d#/dt) = Z/C? and consequently A = C. This is not
surprising since we know that quantum mechanics ignore the friction concept.
The next step is to get rid in the second member of (48) of the term 9¢/d¢.

We also impose the normalisation of ¢(¢, ), ie., [ ¢¢*df = [T T*dz = 1. We
get :

(48)

dC

— (-1/2 -
Z(z,t) =C %exp (271) c™! =2 2 (49)
and one scale is free C(t). The new Schrédinger equation writes
6¢ h? 0%¢
%~ 2moe +V(¢,0)6, (50)
with
2
V(E,0) = C?V(z,t) + = C“’d Cg . (51)

dt?

It is worthwile to note that if in (45), which is the equation giving the new
forces, we have C' = A and assume that the physical force is the gradient
of a potential, we recover (51). Although it is simply a consequence of the
correspondence principles it was interesting to see the precised details, given
above, on the transformation of the Schrédinger equation.

Finally let us show how rescaling can be used in the case of a quantum
harmonic oscillator with time dependent frequency. We consider a potential
given by (1/2)Q?(t)z® and let us introduce it in (51). The new potential is

1 s.,[(d°C
2O§ (dﬁ + Q°C (52)
and we take a scale C such that
2 2 '
4¢ L o= (53)

dt? c3
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The importance of this equation was pointed out for the first time by Lewis
in [18]. The new potential is (1/2)w?¢? and is time independent with the well
known solution in term of Hermite polynomials. The rescaling with a solution
of (53) has transformed the quantum harmonic oscillator with time varying
frequency into one with no time variation. Another example can be found in
problems of time evolution of populations [19].

5.3. RESCALING PARTIAL DIFFERENTIAL EQUATIONS. Let us take again
the nonlinear heat equation (31). We rescale both the dependent and inde-
pendent variables with time varying scales, i.e., we introduce a new coordinate
¢ = z/C(t) with C(t) an arbitrary positive function (i.e., not goint through
Z€r0). ' '

A new time 6 with d@ = dt/A?(t) where A(t) is also arbitrary and a new
dependent variable ¢(§,60) = ¥(z,t)/B(t) are introduced. The three scales
A(t), B(t), C(t) are at our disposal. Equation (31) is now written

3¢ C.06 B, _ A2B’ ;0
a6 Yot T4 ¢ R Cr BE (¢ .5) (54)

In (54), the dots indicate the derivatives with respect to ¢t. Now, the essential
idea is that, after a transient period where ¢ will be a function of both ¢ and 6,
it will become independent of 6 and the subsequent evolution will be described
by the rescaling. The contraction of the two variables z and ¢ into one which
was forced upon in the self-similar solutions must now come naturally.

Obviously, the different coefficients in (54) must be time independent. Let
us try the following forms for A, B,C

A=(14+Qt)* B=@1+Q)° C=(1+Q). (55)

n (55), Q is a real positive number. A little algebra indicates that we must
take @ = 1/2, B8 = (2y — 1)/s, v being, for the moment, arbitrary. Equation
(54) is now written

5= ae (¢38<§) o€

What is the physical problem in the new space-time? We have heat diffusion
with a heat current given by

) — Q’y(s+2)—1

(€¢> ¢ (56)

9¢

= —fﬂ¢’a—£ — %o, (57)
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and a source. In fact the last term in the right hand side of (56) indicates the
presence of a source given by

s+2)—1

s =X " (58)

S

(56) being now written

op 0J
50 + 5 = S. (59)
The presence of a source proportional to ¢ (as in a nuclear reactor) is not
compatible with a steady state. We cancel it taking v = 1/(s + 2). A steady
state is now possible with an equilibrium between the “physical current” -
Kkp*0¢p/ €, which leads to a diffusion and the “transformation current”- yQ£¢,
which is a return current. Now, the final equation

d /,d¢ Q d _
vz (PF) T qeen =0 (60)
is strictly identical to (35). When we take A = 1/(s+2) -¢f withy = 1/(s+2)!
indeed, we have build the self-similar solution through the different require-
ments on the coefficients and the source term. On diffusion type equation
rescaling introduces (see [20] for more details)

e a rescaled “physical current”,
e 3 transformation current,

e source terms (positive or negative).

These terms are used to conjecture on the asymptotic state of the system
(usually a steady state). For partial differential equation describing motion of
particles we will come back to transformations of the type described in Section
5.2 with rescaled physical force, linear in £, transformation forces and friction.
An interesting case is given in [21] for the one dimensional expansion of an
electron beam.

6. CONCLUSION

Invariance under similarity transformation and/or under time translation
are quite common properties in the equations modelling the physical world.
They allow partial or total integration and lead to much simpler equations
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which can eventually be numerically solved with a much reduced numerical
effort (decrease in the dimension of the phase space or the parameters space,
or decrease in the number of independent variables).

. Nevertheless similarity transformations and time translations put con-
straints on the initial conditions which can be treated although they often
point out these initial conditions or the critical parameters for which the na-
ture of the solution changes.

Embedding these concepts in the physical frame of rescaling can permit
to precise the nature of these SSS and give information on their possible
asymptotic nature. In that case the knowledge of the physicists complements
nicely the more rigorous mathematical treatment.

One application not mentionent here is the use of rescaling in problems
where space and time scales vary considerably (like expansion or collapse in
astrophysics or plasma physics). In that case it is more convenient to take
care of these scale variations analytically by using rescaled space-time rather
than reajusting many times the size of the grid’s mesh and the time steps. An
example is given in [22].

REFERENCES

BRIDGMAN, P.W., “Dimensional Analysis”, AMS Press inc., New York, 1978.

EI1SENHART, L.P., “Continuous Group of Transformations”, Dover, New
York, 1961.

SEDOV, L.I., “Similarity and Dimension Methods”, 4th ed., Academic Press,
New York, 1959.

ZELDOVICH, Y.B., Novikou, 1.D., “Relativistic Astrophysics, Stars and
Relativity”, University of Chicago Press, Chicago, 1971.

BARENBLATT, G.I., “Similarity, Self-Similarity and Intermediate Asymp-
totics”, Consultants Bureau, New York, 1979.

OvVSsJANNIKOV, L.V., “Group Properties of Differential Equations”, English
translation: Bluman, Cal. Tech., Pasadena, 1962.

BrLumaN, G.W., CoLE, J.D., “Similarity Methods for Differential Equa-
tions”, Springer Heidelberg, Berlin, New York, 1974.

TOULOUSE, G., BOK, J., Principe de moindre difficulté et structures hiérar-
chiques, Revue frangaise de Sociologie, 19 (1978), 391 -406.

FEIGENBAUM, M.J., Quantitative universality for a class of nonlinear trans-
formations, J. Stat. Phys., 19 (1978), 25-58.

[10] FEIGENBAUM, M.J., The universal metric properties of nonlinear transfor-

mation, J. Stat. Phys., 21 (1979), 669-706.
[11]) BENES, V.E., “Mathematical Theory of Connecting Networks and Telephone
Traffic”, Academic Press, New York, 1965.

[12] Moraux, M.P., FuaLkow, E., FEIX, M.R., Asymptotic solutions of

time dependent anharmonic oscillator equation, J. Phys. A Maths. General,

14 (1981), 1611-1619.

o N o o n w e
B A LA T, A N

)



[13]

[14]
[15]

[16]

(17]
[18]

[19]
[20]

[21]

[22]

SIMILARITY AND RESCALING 19

FEIx, M.R., “Self-similarity and Rescaling Methods in Nonlinear Physics”,
Lectures Notes. Instituto de Fisica, Universidade Federal do Rio Grande do
Sul, Porto Alegre, 1986.

FEIX, M.R., LEwis, H.R., Invariants for dissipative nonlinear systems by
using rescaling, J. Math. Phys., 26 (1985), 68—73.

BESNARD, D., BUrRGAN, J.R., FEIX, M.R., FIJALKOW, E., MUNIER,
A., Nonlinear time dependent anharmonic oscillator: Asymptotic behavior
connected invariant, J. of Math. Phys., 24 (1983), 1123-1128.

BurcaN, J.R., FEIX, M.R., FuaLkow, E., MUNIER, A., Solution
of the multidimensional quantum harmonic oscillator with time-dependent
frequencies through Fourier, Hermite and Wigner transforms, Phys. Letters,
74 (a) (1979), 11-14.

BURrGAN, J.R., FEIX, M.R., FuuALKOW, E., MUNIER, A., Self similar
and asymptotic solution for a one dimensional Vlasov beam, J. of Plasma
Physics, 29 (1983), 139-142.

LEwis, H.R., Classical and quantum systems with time-dependent
harmonic-oscillator-type Hamiltonians, Phys. Rev. Letters, 18 (1967),
510-512.

CAIRO, L., FEIX, M.R., On the Hamiltonian structure of 2d ODE possessing
an invariant, J. Phys. A. Maths. General, 25 (1992), L1287-11293.

ZRINEH, H., NAVET, M., FuuaALKow, E., FEIX, M.R., Nonlinear trans-
port equations and rescaling methods, Transport Theory and Statistical
Physics, 16 (1987), 279-296.

BurcaAN, J.R., GUTIERREZ, J., MUNIER, A., FuALkOwW, E., FEIX,
M.R., Group transformation for phase space fluids, in “Strongly Coupled
Plasmas”, G. Kalman (Ed.), Plenum, New York, 1979, 597 —643.

BouqQueT, S., CAIRO, L., FEIX, M.R., Time evolution for different geo-
metrical configurations of charged particles in a time—varying magnetic field,
J. Plasma Physics, 34 (1985), 127-141.






